量子力学典型例题分析解答.doc

量子力学典型例题分析解答.doc
量子力学典型例题分析解答.doc

量子力学例题

第二章

一.求解一位定态薛定谔方程

1.试求在不对称势井中的粒子能级和波函数

[解] 薛定谔方程:

当, 故有

利用波函数在处的连续条件由处连续条件:

由处连续条件:

给定一个n 值,可解一个, 为分离能级. 2.粒子在一维势井中的运动

求粒子的束缚定态能级与相应的归一化定态波函数[解]体系的定态薛定谔方程为

当时

对束缚态

解为

在处连续性要求

将代入得

相应归一化波函数为:

归一化波函数为:

3分子间的范得瓦耳斯力所产生的势能可近似地表示为

求束缚态的能级所满足的方程

[解]束缚态下粒子能量的取值范围为

当时

当时

薛定谔方程为

解为

当时

解为

当时

薛定谔方程为

薛定谔方程为

解为

波函数满足的连续性要求,有

要使有非零解不能同时为零

则其系数组成的行列式必须为零

计算行列式,得方程

例题

主要类型: 1.算符运算; 2.力学量的平均值; 3.力学量几率分布.

一. 有关算符的运算

1.证明如下对易关系

(1)

(2)

(3)

(4)

(5)

[证]

(1)

(2)

(3)

一般地,若算符是任一标量算符,有(4)

一般地,若算符是任一矢量算符,可证明有

(5)

=0

同理:。

2.证明哈密顿算符为厄密算符

[解]考虑一维情况

为厄密算符, 为厄密算符,为实数

为厄密算符为厄密算符

3已知轨道角动量的两个算符和共同的正交归一化本征函数完备集为,

取: 试证明: 也是和共同本征函数, 对应本征值

分别为: 。

[证]

是的对应本征值为的本征函数

是的对应本征值为的本征函数又:

可求出:

二.有关力学量平均值与几率分布方面

1.(1)证明是的一个本征函数并求出相应的本征值;(2)求x在态中的平均值

[解]

是的本征函数。本征值

2.设粒子在宽度为a的一维无限深势阱中运动,如粒子的状态由波函数

描写。求粒子能量的可能值相应的概率及平均值

【解】

宽度为a的一维无限深势井的能量本征函数

注意:是否归一化波函数

能量本征值

出现的几率 , 出现的几率能量平均值

另一做法

3 .一维谐振子在时的归一化波函数为

所描写的态中式中,式中是谐振子的能量本征函数,求(1)的数值;2)在态中能量的可能值,相应的概率及平均值;(3)时系统的波函数;(4)时能量的可能值相应的概率及平均值

[解](1) , 归一化,,

(2),

,;,;

,;

(3)时,

所以:

时,能量的可能值、相应的概率、平均值同(2)。

4.设氢原子处于状态

求氢原子的能量,角动量平方以及角动量z分量的可能值,这些可能值出现的几率和这些力学量的平均值。

[解] 能量本征值

能量本征

当n=2

本征值为的

,出现的几率为100%

可能值为出现的几率分别为:。

5 .在轨道角动量和共同的本征态下,试求下列期望值

(1).; (2).

[解]:

三测不准关系

1.粒子处于状态式中为常数,求粒子的动量的平均值,并计算测不准关系

[解]先归一化

(1)动量平均值

(2)

(3)

附:

常用积分式:

(1)

(2)

(3)

第四章例题1.力学量的矩阵表示

由坐标算符的归一化本征矢及动量算符构造成算符和

试分别:1). 求和在态下的期望值;2). 给出和的物理意义【解】(1). 设态矢已归一化

(粒子位置几率密度)

(2)

(利用化到坐标表象)

又:,

上式

2.试证明:由任意一对以归一化的共轭右矢和左矢构成的投影算符

(1). 是厄密算符,(2). 有,(3).的本征值为0和1

【证】(1). 厄密算符的定义

为厄密算符

(2) 已归一化

(3). 由的本征值方程

,

又:

即:

(本题主要考查厄密算符概念,本征值方程,狄拉克符号的应用)

3.分别在坐标表象,动量表象,能量表象中写出一维无限深势井中(宽度)基态粒子的波函数。(本题主要考查波函数在具体表象中的表示)

【解】所描述的状态,基态波函数

(1). 在x表象:

(2). 动量表象:

量子力学思考题及解答

1、以下说法是否正确: (1)量子力学适用于微观体系,而经典力学适用于宏观体系; (2)量子力学适用于η不能忽略的体系,而经典力学适用于η可以忽略的体系。 解答:(1)量子力学是比经典力学更为普遍的理论体系,它可以包容整个经典力学体系。 (2)对于宏观体系或η可以忽略的体系,并非量子力学不能适用,而是量子力学实际上已 经过渡到经典力学,二者相吻合了。 2、微观粒子的状态用波函数完全描述,这里“完全”的含义是什么? 解答:按着波函数的统计解释,波函数统计性的描述了体系的量子态。如已知单粒子(不考虑自旋)波函数)(r ? ψ,则不仅可以确定粒子的位置概率分布,而且如粒子的动量、能量等其他力学量的概率分布也均可通过)(r ? ψ而完全确定。由于量子理论和经典理论不同,它一般只能预言测量的统计结果,而只要已知体系的波函数,便可由它获得该体系的一切可能物理信息。从这个意义上说,有关体系的全部信息显然已包含在波函数中,所以说微观粒子的状态用波函数完全描述,并把波函数称为态函数。 3、以微观粒子的双缝干涉实验为例,说明态的叠加原理。 解答:设1ψ和2ψ是分别打开左边和右边狭缝时的波函数,当两个缝同时打开时,实验说明到达屏上粒子的波函数由1ψ和2ψ的线性叠加2211ψψψc c +=来表示,可见态的叠加不是概率相加,而是波函数的叠加,屏上粒子位置的概率分布由222112 ψψψ c c +=确定,2 ψ中 出现有1ψ和2ψ的干涉项]Re[2* 21* 21ψψc c ,1c 和2c 的模对相对相位对概率分布具有重要作用。 4、量子态的叠加原理常被表述为:“如果1ψ和2ψ是体系的可能态,则它们的线性叠加 2211ψψψc c +=也是体系的一个可能态”。 (1)是否可能出现)()()()(),(2211x t c x t c t x ψψψ+=; (2)对其中的1c 与2c 是任意与r ? 无关的复数,但可能是时间t 的函数。这种理解正确吗? 解答:(1)可能,这时)(1t c 与)(2t c 按薛定谔方程的要求随时间变化。

量子力学教程课后习题答案

量子力学习题及解答 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)()(5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλ λρλρ ρ 这里的λρ的物理意义是黑体波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=h v , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

必修五解三角形常考题型非常全面

必修五解三角形常考题型 1.1正弦定理和余弦定理 1.1.1正弦定理 【典型题剖析】 考察点1:利用正弦定理解三角形 例1 在V ABC 中,已知A:B:C=1:2:3,求a :b :c. 【点拨】 本题考查利用正弦定理实现三角形中边与角的互化,利用三角形内角和定理及正弦定理的变形形式 a :b :c=sinA: sinB: sinC 求解。 解:::1:2:3,A . ,,, 6 3 2 1::sin :sin :sin sin :sin :sin :1 2.6 3 2 2A B C B C A B C a b A B C ππ π π π π π =++=∴= = = ∴=== =Q 而 【解题策略】要牢记正弦定理极其变形形式,要做到灵活应用。 例2在ABC 中,已知 ,C=30°,求a+b 的取值范围。 【点拨】 此题可先运用正弦定理将a+b 表示为某个角的三角函数,然后再求解。 解:∵C=30°, ,∴由正弦定理得: sin sin sin a b c A B C === ∴ )sin (150°-A ). ∴ )[sinA+sin(150° )·2sin75°·cos(75° -A)= 2 cos(75°-A) ① 当75°-A=0°,即A=75°时,a+b 取得最大值 2 ; ② ∵A=180°-(C+B)=150°-B,∴A <150°,∴0°<A <150°, ∴-75°<75°-A <75°,∴cos75°<cos(75°-A)≤1, ∴> 2 cos75° = 2 × 4 . 综合①②可得a+b 的取值范围为 ,8+ 考察点2:利用正弦定理判断三角形形状 例3在△ABC 中,2 a ·tanB=2 b ·tanA ,判断三角形ABC 的形状。 【点拨】通过正弦定理把边的关系转化为角的关系,利用角的关系判断△ABC 的形状。

解三角形的必备知识和典型例题及习题

解三角形的必备知识和典型例题及习题 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。 (1)三边之间的关系:a 2+b 2=c 2。(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。 (1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 a 2= b 2+ c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =2 1ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)?S =21ab sin C =21bc sin A =21ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题: 第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题: 第1、已知三边求三角. 第2、已知两边和他们的夹角,求第三边和其他两角. 5.三角形中的三角变换 三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

大学物理上册期末考试重点例题

大学物理上册期末考试 重点例题 Document number:PBGCG-0857-BTDO-0089-PTT1998

第一章 质点运动学习题 1-4一质点在xOy 平面上运动,运动方程为 x =3t +5, y = 2 1t 2 +3t -4.(SI ) (式中t 以 s 计,x ,y 以m 计.) (1)以时间t 为变量,写出质点位置矢量的表示式; (2)求出t =1 s 时刻和t =2s 时刻的位置矢量,并计算这1秒内质点的位移; (3)计算t =0 s 时刻到t =4s 时刻内的平均速度; (4)求出质点速度矢量表示式,并计算t =4 s 时质点的速度; (5)计算t =0s 到t =4s 内质点的平均加速度; (6)求出质点加速度矢量的表示式,并计算t =4s 时质点的加速度。 (请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式). 解:(1)质点位置矢量 21 (35)(34)2r xi yj t i t t j =+=+++-m (2)将1=t ,2=t 代入上式即有 211 [(315)(1314)](80.5)2t s r i j m i j m ==?++?+?-=- 221 [(325)(2324)](114)2 t s r i j m i j ==?++?+?-=+m 21(114)(80.5)(3 4.5)t s t s r r r i j m i j m i j m ==?=-=+--=+ (3) ∵ 20241 [(305)(0304)](54)2 1 [(345)(4344)](1716)2 t s t s r i j m i j m r i j m i j m ===?++?+?-=-=?++?+?-=+ ∴ 1140(1716)(54)(35)m s 404 t s t s r r r i j i j v m s i j t --==-?+--= ==?=+??-

从经典力学到量子力学的思想体系探讨

从经典力学到量子力学的思想体系探讨 一、量子力学的产生与发展 19世纪末正当人们为经典物理取得重大成就的时候,一系列经典理论无法解释的现象 一个接一个地发现了。德国物理学家维恩通过热辐射能谱的测量发现的热辐射定理。德国物理学家普朗克为了解释热辐射能谱提出了一个大胆的假设:在热辐射的产生与吸收过程中能量是以 h为最小单位,一份一份交换的。这个能量量子化的假设不仅强调了热辐射能量的不连续性,而且与辐射能量和频率无关由振幅确定的基本概念直接相矛盾,无法纳入任何一个经典范畴。当时只有少数科学家认真研究这个问题。 著名科学家爱因斯坦经过认真思考,于1905年提出了光量子说。1916年美国物理学家密立根发表了光电效应实验结果,验证了爱因斯坦的光量子说。 1913年丹麦物理学家玻尔为解决卢瑟福原子行星模型的不稳定(按经典理论,原子中 电子绕原子核作圆周运动要辐射能量,导致轨道半径缩小直到跌落进原子核,与正电荷中和),提出定态假设:原子中的电子并不像行星一样可在任意经典力学的轨道上运转,稳定轨道的作用量fpdq必须为h的整数倍(角动量量子化),即fpdq=nh,n称之为量子数。玻尔又提出原子发光过程不是经典辐射,是电子在不同的稳定轨道态之间的不连续的跃迁过程,光的频率由轨道态之间的能量差△E=hV确定,即频率法则。这样,玻尔原子理论以它简单明晰的图像解释了氢原子分立光谱线,并以电子轨道态直观地解释了化学元素周期表,导致了72号元素铅的发现,在随后的短短十多年内引发了一系列的重大科学进展。这在物理学史 上是空前的。 由于量子论的深刻内涵,以玻尔为代表的哥本哈根学派对此进行了深入的研究,他们对对应原理、矩阵力学、不相容原理、测不准关系、互补原理。量子力学的几率解释等都做出了贡献。 1923年4月美国物理学家康普顿发表了X射线被电子散射所引起的频率变小现象,即 康普顿效应。按经典波动理论,静止物体对波的散射不会改变频率。而按爱因斯坦光量子说这是两个“粒子”碰撞的结果。光量子在碰撞时不仅将能量传递而且也将动量传递给了电子,使光量子说得到了实验的证明。 光不仅仅是电磁波,也是一种具有能量动量的粒子。1924年美籍奥地利物理学家泡利 发表了“不相容原理”:原子中不能有两个电子同时处于同一量子态。这一原理解释了原子中电子的壳层结构。这个原理对所有实体物质的基本粒子(通常称之为费米子,如质子、中

量子力学习题集及答案

09光信息量子力学习题集 一、填空题 1. 设电子能量为4电子伏,其德布罗意波长为( 6.125ο A )。 2. 索末菲的量子化条件为=nh pdq ),应用这量子化条件求得一维谐振 子的能级=n E ( ηωn )。 3. 德布罗意假说的正确性,在1927年为戴维孙和革末所做的( 电 )子衍 射实验所证实,德布罗意关系(公式)为( ηω=E )和( k p ρηρ = )。 4. 三维空间自由粒子的归一化波函数为()r p ρ ρψ=( r p i e ρ ρη η?2 /3) 2(1π ), () ()=? +∞ ∞ -*'τψψd r r p p ρρρρ( )(p p ρ ρ-'δ )。 5. 动量算符的归一化本征态=)(r p ρ ρψ( r p i e ρ ρηη?2/3)2(1π ),=' ∞ ?τψψd r r p p )()(*ρρρρ( )(p p ρ ρ-'δ )。 6. t=0时体系的状态为()()()x x x 2020,ψψψ+=,其中()x n ψ为一维线性谐振子的定态波函数,则()=t x ,ψ( t i t i e x e x ωωψψ2 522 0)(2)(--+ )。 7. 按照量子力学理论,微观粒子的几率密度w =2 ),几率流密度= ( () ** 2ψ?ψ-ψ?ψμ ηi )。 8. 设)(r ρψ描写粒子的状态,2)(r ρψ是( 粒子的几率密度 ),在)(r ρψ中F ?的平均值为F =( ??dx dx F ψψψψ* *? ) 。 9. 波函数ψ和ψc 是描写( 同一 )状态,δψi e 中的δi e 称为( 相因子 ), δi e 不影响波函数ψ1=δi )。 10. 定态是指( 能量具有确定值 )的状态,束缚态是指(无穷远处波函数为 零)的状态。 11. )i exp()()i exp()(),(2211t E x t E x t x η η-+-=ψψψ是定态的条件是 ( 21E E = ),这时几率密度和( 几率密度 )都与时间无关。 12. ( 粒子在能量小于势垒高度时仍能贯穿势垒的现象 )称为隧道效应。 13. ( 无穷远处波函数为零 )的状态称为束缚态,其能量一般为( 分立 )谱。 14. 3.t=0时体系的状态为()()()x x x 300,ψψψ+=,其中()x n ψ为一维线性谐振子的定态波函数,则()=t x ,ψ( t i t i e x e x ωωψψ2 732 0)()(--+ )。 15. 粒子处在a x ≤≤0的一维无限深势阱中,第一激发态的能量为

解三角形典型例题

1.正弦定理和余弦定理 在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 2.S △ABC =2ab sin C =2bc sin A =2ac sin B =4R =2(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r . 1.在△ABC 中,A >B ?a >b ?sin A >sin B ?cos A c; a-b

大学物理期末考试经典题型(带详细答案的)

例1:1 mol 氦气经如图所示的循环,其中p 2= 2 p 1,V 4= 2 V 1,求在1~2、2~3、3~4、4~1等过程中气体与环境的热量交换以及循环效率(可将氦气视为理想气体)。O p V V 1 V 4 p 1p 2解:p 2= 2 p 1 V 2= V 11234T 2= 2 T 1p 3= 2 p 1V 3= 2 V 1T 3= 4 T 1p 4= p 1V 4= 2 V 1 T 4= 2 T 1 (1)O p V V 1 V 4 p 1p 21234)(1212T T C M m Q V -=1→2 为等体过程, 2→3 为等压过程, )(2323T T C M m Q p -=1 1123)2(23RT T T R =-=1 115)24(2 5RT T T R =-=3→4 为等体过程, )(3434T T C M m Q V -=1 113)42(2 3 RT T T R -=-=4→1 为等压过程, )(4141T T C M m Q p -=1 112 5)2(25RT T T R -=-= O p V V 1 V 4 p 1p 21234(2)经历一个循环,系统吸收的总热量 23121Q Q Q +=1 112 13 523RT RT RT =+=系统放出的总热量1 41342211 RT Q Q Q =+=% 1.1513 2 112≈=-=Q Q η三、卡诺循环 A → B :等温膨胀B → C :绝热膨胀C → D :等温压缩D →A :绝热压缩 ab 为等温膨胀过程:0ln 1>=a b ab V V RT M m Q bc 为绝热膨胀过程:0=bc Q cd 为等温压缩过程:0ln 1<= c d cd V V RT M m Q da 为绝热压缩过程:0 =da Q p V O a b c d V a V d V b V c T 1T 2 a b ab V V RT M m Q Q ln 11= =d c c d V V RT M m Q Q ln 12= =, 卡诺热机的循环效率: p V O a b c d V a V d V b V c ) )(1 212a b d c V V V V T T Q Q (ln ln 11-=- =ηT 1T 2 bc 、ab 过程均为绝热过程,由绝热方程: 11--=γγc c b b V T V T 1 1--=γγd d a a V T V T (T b = T 1, T c = T 2)(T a = T 1, T d = T 2) d c a b V V V V =1 212T T Q Q -=- =11η p V O a b c d V a V d V b V c T 1T 2 卡诺制冷机的制冷系数: 1 2 1212))(T T V V V V T T Q Q a b d c ==(ln ln 2 122122T T T Q Q Q A Q -= -== 卡ω

量子力学与能带理论

量子力学与能带理论 孟令进 专业: 应用物理 班级:1411101 学号:1141100117 摘要:曾谨言先生在《量子力学》一书中用量子力学解释了能带的形成,从定态薛定谔方程出发,将原子中原子实假定固定不动,并且在结构上呈现周期性排列,那么电子则可以看成在原子实以及其他电子的周期性的势场中运动,利用定态薛定谔方程可以解出其能级结构,从而得到能带理论。 一、定态薛定谔方程 1.一维定态薛定谔方程 我们首先利用薛定谔方程解决一类简单的问题,一维定态问题,即能量一定的状态。我们设粒子质量为m ,沿着x 方向运动,势场的势能为V(x),那么薛定谔方程可以写为 ),()(2),(222t x x V x m t x t i ψψ?? ????+??-=?? ,因为处于一定的能量E 状态,定态的波函数可以写为 /)(),(iEt e x t x -=ψψ,两式整理可得,)(x ψ满足的能量本征方程)(),()(2222x E t x x V x m ψψ=?? ????+??- ,或称为一维定态薛定谔方程。求解这个方程时,我们需要带入边界条件,连接条件。 2.定态薛定谔方程与方势垒 在经典力学当中,当一个具有能量E 的粒子射向高度为V 的势垒时,如果E>V ,则粒子能够顺利的越过这个势垒,如果E0的粒子从左方入射,那么在前两个区域的波函数可以用一维定态薛定谔方程解除来,结果如下:

解三角形典型例题答案

1. 解:cos cos cos ,sin cos sin cos sin cos a A b B c C A A B B C C +=+= sin 2sin 2sin 2,2sin()cos()2sin cos A B C A B A B C C +=+-= cos()cos(),2cos cos 0A B A B A B -=-+= cos 0A =或cos 0B =,得2A π=或2B π= 所以△ABC 是直角三角形。 2. 证明:将ac b c a B 2cos 222-+=,bc a c b A 2cos 2 22-+=代入右边 得右边22222222 22()222a c b b c a a b c abc abc ab +-+--=-= 22a b a b ab b a -==-=左边, ∴)cos cos (a A b B c a b b a -=- 3.证明:∵△AB C 是锐角三角形,∴,2A B π+>即022A B ππ>>-> ∴sin sin()2 A B π >-,即sin cos A B >;同理sin cos B C >;sin cos C A > ∴C B A C B A cos cos cos sin sin sin ++>++ 4.解:∵2,a c b +=∴sin sin 2sin A C B +=,即2sin cos 4sin cos 2222 A C A C B B +-=, ∴1sin cos 222B A C -==0,22 B π<<∴cos 2B = ∴sin 2sin cos 22244B B B ==?=839 5解:22222222sin()sin cos sin ,sin()cos sin sin a b A B a A B A a b A B b A B B ++===-- cos sin ,sin 2sin 2,222cos sin B A A B A B A B A B π===+=或2 ∴等腰或直角三角形 6解:2sin sin 2sin sin )sin ,R A A R C C b B ?-?=- 222sin sin )sin ,,a A c C b B a c b -=--=-

大学物理典型例题分析

大学物理典型例题分析 第13章光的干涉 例13-1如图将一厚度为l ,折射率为n 的薄玻璃片放在一狭缝和屏幕之间,设入射光波长为λ,测量中点C处的光强与片厚l 的函数关系。如果l =0时,该点的强度为 0I ,试问: (1)点C的光强与片厚l的函数关系是什么; (2)l 取什么值时,点C 的光强最小。 解 (1)在C 点来自两狭缝光线的光程差为nl l δ=- 相应的相位差为 22(1)n l π π ?δλ λ ?= = - 点C 的光强为: 2 14cos 2I I ??= 其中:I1 为通过单个狭缝在点C 的光强。 014I I = (2)当 1(1)()2 n l k δλ =-=-时 点C 的光强最小。所以 1() 1,2,3, 21l k k n λ=-=- 例13-2如图所示是一种利用干涉方法测量气体折射率的干涉示意图。其中T 1 ,T 2 为一对完全相同的玻璃管,长为l ,实验开始时,两管中为空气,在 P 0 处出现零级明纹。然后在T 2 管中注入待测气体而将空气排除,在这过程中,干涉条纹就会移动,通过测定干涉条纹的移 动数可以推知气体的折射率。 设l =20cm ,光波波长589.3nm λ=,空气的折射率1.000276,充一某种气体后,条纹 移动200条,求这种气体的折射率。 解当两管同为空气时,零级明纹出现在P 0处,则从S 1和S 2射出的光在此处相遇时,光程差为零。T 2管充以某种气体后,从S2射出的光到达屏处的光程就要增加,零级明纹将要向下移动,出现在o P ' 处。如干涉条纹移动N条明纹,这样P 0 处将成为第N 级明纹,因此,充气后两 光线在P 0 处的光程差为 S 1 L 1 L 2 T 2 T 1 S 2 S E P 0 P 0 ' 例13-2图 例13-1图

量子力学和经典力学联系的实例分析

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 量子力学与经典力学的联系的实例分析 摘要:量子力学与经典力学研究的对象不同,范围不同,二者之间是不是不可逾越的?当然不是,在一定条件下,二者可以过渡.本文首先对量子力学和经典力学的关系进行了分析,其次通过具体的实例来说明量子力学过渡到经典力学的条件,最后分析出从运动学角度,经典力学向量子力学过渡可归结为从泊松括号向对易得过渡.

关键词:量子力学;经典力学;过渡 从高中到大学低年级,我们所涉及的物理学内容均为经典物理学范畴,经典物理学理论在宏观低速范围内已是相当完善,正如十九世纪末一些物理学家所描述的那样,做机械运动的物体,当运动速度小于真空中的光速时准确地遵从牛顿力学规律;分子热运动的规律有完备的热力学和统计力学理论;电磁运动有麦克斯韦方程加以描述;光的现象有光的波动理论,整个物理世界的重要规律都已发现,以后的工作只要重复前人的实验,提高实验精度,在测量数据后面多添加几个有效数字而已.正因如此为何在学完经典物理学以后还要继续学习近代物理学,如何引入近代物理学就显得格外重要. 毫无疑问近代物理学的产生是物理学上号称在物理学晴朗的天空上“两朵小小的乌云”造成的[1],正是这引发了物理学的一场大革命.这“两朵小小的乌云”即黑体辐射实验和迈克尔逊-莫雷实验.1900年为了解释黑体辐射实验,普朗克能量子的假设,导致了量子理论思想的萌芽,接着光电效应、康普顿效应以及原子结构等一系列问题上,经典物理都碰到了无法克服的困难,通过引入量子化思想,这些问题都迎刃而解,这就导致了描述微观世界的理论-量子力学的建立. 在经典物理十分成熟、完备的情况下引入静近代物理学,毫无疑问必须强调以下问题:(1)经典物理学的适用范围是宏观低速运动;(2)19世纪末20世纪初,物理学已经研究到微观现象和高速运动的新阶段;(3)新的研究范畴必须引入新的理论,这样,近代物理学的出现也就顺理成章了. 尽管强调经典物理学的适用范围是宏观低速运动,但碰到微观高速问题,人们依旧习惯于首先用已知非常熟悉的经典物理来解决物理学家如此,我们也不例外.无疑用经典物理学去解决高速微观问题最终必将以失败而告终.然而在近代物理学课程的研究中有意识地首先让经典物理学去碰壁,去得出结论,但结论是矛盾的和错误的,然后,引出近代物理学的有关理论,问题最后迎刃而解[2]. 经典物理学是在宏观和低速领域物理经验的基础上建立起来的物理概念和理论体系,其基础是牛顿力学和麦克斯韦电磁学.近代物理学则是在微观和高速领域物理实验的基础上建立起来的概念和理论体系,其基础是相对论和量子力学,必须指出,在相对论和量子力学建立以后的当代物理学研究中.虽然大量的是近代物理学问题,但也有不少属于经典物理学问题.因此不能说有了近代物理学就可抛弃经典物理学. 量子力学是物理学研究的经验扩充到微观领域的结果.因此,量子力学的建立必然是以经典力学为基础,它们之间存在必然的联系,量子力学修改了物理学中关于物理世界的描述以及物理规律陈述的基本概念.量子力学关于微观世界的各种规律的研究给

结构化学练习之量子力学基础习题附参考答案

结构化学练习之量子力学基础习题附参考答案

量子力学基础习题 一、填空题(在题中的空格处填上正确答案)1101、光波粒二象性的关系式为_______________________________________。1102、德布罗意关系式为____________________;宏观物体的λ值比微观物体的λ值_______________。1103、在电子衍射实验中,│ψ│2对一个电子来说,代表___________________。 1104、测不准关系是_____________________,它说明了_____________________。 1105、一组正交、归一的波函数ψ1,ψ2,ψ3,…。 正交性的数学表达式为,归一性的表达式为。1106、│ψ(x1,y1,z1,x2,y2,z2)│2

代表______________________。 1107、物理量xp y- yp x的量子力学算符在直角坐标系中的表达式是_____。 1108、质量为m的一个粒子在长为l的一维势箱中运动, (1)体系哈密顿算符的本征函数集为_______________________________ ; (2)体系的本征值谱为____________________,最低能量为____________ ; (3)体系处于基态时,粒子出现在0 ─l/2间的概率为_______________ ; (4)势箱越长,其电子从基态向激发态跃迁时吸收光谱波长__________ ; (5)若该粒子在长l、宽为2l的长方形势箱

中运动, 则其本征函数集为____________,本征 值 谱 为 _______________________________。 1109、质量为m 的粒子被局限在边长为a 的立方箱中运动。波函数ψ 211(x ,y ,z )= _________________________;当粒子处于状态 ψ 211 时,概率密度最大处坐标是 _______________________;若体系的能量为 2 247ma h ,其简并度是_______________。 1110、在边长为a 的正方体箱中运动的粒子,其能级E = 2 243ma h 的简并度是_____,E '= 2 2827ma h 的简 并度是______________。 1111、双原子分子的振动,可近似看作是质量为μ= 2 121m m m m +的一维谐振子,其势能为V =kx 2/2,它 的 薛 定 谔 方 程 是

正弦定理余弦定理综合应用解三角形经典例题老师

一、知识梳理 1.内角和定理:在ABC ?中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C - 面积公式: 111 sin sin sin 222ABC S ab C bc A ac B ?= == 在三角形中大边对大角,反之亦然. 2.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二: ?? ? ??===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) 形式三:::sin :sin :sin a b c A B C = 形式四: sin ,sin ,sin 222a b c A B C R R R = == 3.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:2 2 2 2cos a b c bc A =+- 2 2 2 2cos b c a ca B =+- 222 2cos c a b ab C =+-(解三角形的重要工具) 形式二: 222cos 2b c a A bc +-= 222cos 2a c b B ac +-= 222 cos 2a b c C ab +-= 二、方法归纳 (1)已知两角A 、B 与一边a ,由A +B +C =π及sin sin sin a b c A B C == ,可求出角C ,再求b 、c . (2)已知两边b 、c 与其夹角A ,由a 2=b 2+c 2 -2b c cosA ,求出a ,再由余弦定理,求出角B 、C . (3)已知三边a 、b 、c ,由余弦定理可求出角A 、B 、C . (4)已知两边a 、b 及其中一边的对角A ,由正弦定理sin sin a b A B = ,求出另一边b 的对角B ,由C =π-(A +B ),求出c ,再由sin sin a c A C =求出C ,而通过sin sin a b A B = 求B 时,可能出一解,两解或无解的情况 a = b sinA 有一解 b >a >b sinA 有两解 a ≥b 有一解 a >b 有一解 三、课堂精讲例题 问题一:利用正弦定理解三角形

大学物理典型例题分析

大学物理典型例题分析 第13章光的干涉 例13-1如图将一厚度为I,折射率为n的薄玻璃片放在一狭缝和屏幕之间, I (k 1k 1,2,3,川 2 n 1 种利用干涉方法测量气体折射率的干涉示意图。其中 对完全相同的玻璃管,长为I,实验开始时,两管中为空气,在P0处出现零级明纹。然后 在T2管中注入待测气体而将空气排除,在这过程中,干涉条纹就会移动,通过测定干涉条纹的移动数可以推知气体的折射率。 设l=20cm,光波波长589.3nm,空气的折射率1.000276,充一某种气体后,条纹移动 200条,求这种气体的折射率。 解当两管同为空气时,零级明纹出现在P。处,则从S和S2射出的光在此处相遇时, 光程差为零。T2管充以某种气体后,从s射出的光到达屏处的光程就要增加,零级明纹将要向下移动,出现在 FO 处。如干涉条纹移动N条明纹,这样P。处将成为第N级明纹,因此, 充气后两光线在P0处的光程差为 n2l n1l ,测量中点C处的光强与片厚I的函数关系。如果1=0时,该点的强度为 (1) 点C的光强与片厚I的函数关系是什么; (2) I取什么值时,点C的光强最小。 解(1)在C点来自两狭缝光线的光程差为 相应的相位差为 长为 nl Io ,试问: I M1 C 点C的光强为: 2 I 2 其中:h为通过单个狭缝在点 I 411 cos 例13-1图 ⑵当 —(n 1)I C的光 强。 I i (n 1)l 1 (k 2)时 设入射光波 点C的光强最小。所以 例13-2如图所示是

所以 n 2l nj N 即 代入数据得 n 2 N l n 1 n 2 200 589.3 103 1.0002 7 6 1.000865 0.2 例13-3.在双缝干涉实验中,波长 =5500?的单色平行光垂直入射到缝间距 a=2 10 -4 m 的双缝上,屏到双缝的距离 D = 2m .求: (1 )中央明纹两侧的两条第 10级明纹中心的间距; (2)用一厚度为e=6.6 10-6 m 、折射率为n=1.58的玻璃片覆盖一缝后,零级明纹将移到 原来的 第几级明纹处 ? D 解:(1)因为相邻明(暗)条纹的间距为 T ,共20个间距 x 20— 0.11m 所以 a (2)覆盖玻璃后,零级明纹应满足: r 2 (r 1 e) ne 0 设不盖玻璃片时,此点为第k 级明纹,则应有 r 2 r 1 k 所以 (n 1)e k (n 1)e k 6.96 7 零级明纹移到原第 7级明纹处. 例13-4薄钢片上有两条紧靠的平行细缝,用波长 =5461?的平面光波正入射到钢片 上。屏幕距双缝的距离为 D =2.00m ,测得中央明条纹两侧的第五级明条纹间的距离为 x =12.0mm., (1) 求两缝间的距离。 (2) 从任一明条纹(记作0)向一边数到第20条明条纹,共经过多大距离? (3) 如果使光波斜入射到钢片上,条纹间距将如何改变? 2kD x --------- 解(1) d 2kd d x 此处 k 5 10D d 0.910mm x (2)共经过20个条纹间距,即经过的距离

经典力学与量子力学中的一维谐振子

经典力学与量子力学中的一维谐振子 物理与电子信息工程学院物理学 [摘要]一维谐振动是一种最简单的振动形式,许多复杂的运动都可分析为一维谐振动。本文以一维谐振子为研究对象,首先讨论经典力学与量子力学中的一维谐振子的运动方程和能量特征,然后分析坐标表象以及粒子数表象下的一维谐振子,最后讨论经典力学与量子力学中的一维谐振子的区别与联系。 [关键词]谐振子经典力学量子力学运动方程能量分布 1 前言 所谓谐振,在运动学中就是简谐振动。一个劲度系数为k的轻质弹簧的一端固定,另一端固结一个可以自由运动的质量为m的物体,就构成一个弹簧振子[1]。该振子是在一个位置(即平衡位置)附近做往复运动。在这种振动形式下,物体受力的大小总是和它偏离平衡位置的距离成正比,并且受力方向总是指向平衡位置。这种情况即为一维谐振子。 一维谐振子在应用上有很大价值,因为经典力学告诉我们只要选择适当的坐标,任意粒子体系的微小振动都可以认为是一些相互独立的振子的运动的集合。普朗克在他的辐射理论中将辐射物质的中心当作一些谐振子,从而得到和实验相符合的结果。在分子光谱中,我们可以把分子的振动近似地当作谐振子的波函数。另外在量子场论中电磁场的问题也能归结成谐振子的形式。因此在量子力学中,谐振子问题的地位较经典物理中来得重要。应用线性谐振子模型可以解决许多量子力学中的实际问题。 本文将以一维谐振子为研究对象,首先分别讨论经典力学与量子力学中一维谐振子的运动方程和能量特征,然后讨论坐标表象以及粒子数表象下的一维谐振子,最后分析经典力学与量子力学中的一维谐振子的区别与联系并简要讨论经典力学与量子力学的过渡问题。从而帮助我们更加深入的理解一维谐振子的物理实质,充分认识微观粒子的波粒二象性。

量子力学思考题及解答

量子力学思考题 1、以下说法是否正确: (1)量子力学适用于微观体系,而经典力学适用于宏观体系; (2)量子力学适用于 不能忽略的体系,而经典力学适用于 可以忽略的体系。 解答:(1)量子力学是比经典力学更为普遍的理论体系,它可以包容整个经典力学体系。 (2)对于宏观体系或 可以忽略的体系,并非量子力学不能适用,而是量子力学实际上已 经过渡到经典力学,二者相吻合了。 2、微观粒子的状态用波函数完全描述,这里“完全”的含义是什么? 解答:按着波函数的统计解释,波函数统计性的描述了体系的量子态。如已知单粒子(不考虑自旋)波函数)(r ψ,则不仅可以确定粒子的位置概率分布,而且如粒子的动量、能量等其他力学量的概率分布也均可通过)(r ψ而完全确定。由于量子理论和经典理论不同,它一般只能预言测量的统计结果,而只要已知体系的波函数,便可由它获得该体系的一切可能物理信息。从这个意义上说,有关体系的全部信息显然已包含在波函数中,所以说微观粒子的状态用波函数完全描述,并把波函数称为态函数。 3、以微观粒子的双缝干涉实验为例,说明态的叠加原理。 解答:设1ψ和2ψ是分别打开左边和右边狭缝时的波函数,当两个缝同时打开时,实验说明到达屏上粒子的波函数由1ψ和2ψ的线性叠加2211ψψψc c +=来表示,可见态的叠加不是概率相加,而是波函数的叠加,屏上粒子位置的概率分布由222112 ψψψ c c +=确定,2 ψ中 出现有1ψ和2ψ的干涉项]Re[2* 21* 21ψψc c ,1c 和2c 的模对相对相位对概率分布具有重要作用。 4、量子态的叠加原理常被表述为:“如果1ψ和2ψ是体系的可能态,则它们的线性叠加 2211ψψψc c +=也是体系的一个可能态”。 (1)是否可能出现)()()()(),(2211x t c x t c t x ψψψ+=; (2)对其中的1c 与2c 是任意与r 无关的复数,但可能是时间t 的函数。这种理解正确吗? 解答:(1)可能,这时)(1t c 与)(2t c 按薛定谔方程的要求随时间变化。 (2)如按这种理解 ),()(),()(),(2211t x t c t x t c t x ψψψ+=

最新大学物理例题

例1 路灯离地面高度为H,一个身高为h 的人,在灯下水平路面上以匀速度步行。如图3-4所示。求当人与灯的水平距离为时,他的头顶在地面上的影子移动的速度的大小。 解:建立如右下图所示的坐标,时刻头顶影子的坐标为 ,设头顶影子的坐标为,则 由图中看出有 则有 所以有 ; 例2如右图所示,跨过滑轮C的绳子,一端挂有重物B,另一端A被人拉着沿水平方向匀速运动,其速率。A离地高度保持为h,h =1.5m。运动开始时,重物放在地面B0处,此时绳C在铅直位置绷紧,滑轮离地高度H = 10m,滑轮半径忽略不计,求: (1) 重物B上升的运动方程; (2) 重物B在时刻的速率和加速度; (3) 重物B到达C处所需的时间。 解:(1)物体在B0处时,滑轮左边绳长为l0 = H-h,当重物的位移为y时,右边绳长为

因绳长为 由上式可得重物的运动方程为 (SI) (2)重物B的速度和加速度为 (3)由知 当时,。 此题解题思路是先求运动方程,即位移与时间的函数关系,再通过微分求质点运动的速度和加速度。 例3一质点在xy平面上运动,运动函数为x = 2t, y = 4t2-8(SI)。 (1) 求质点运动的轨道方程并画出轨道曲线; (2) 求t1=1s和t2=2s时,质点的位置、速度和加速度。

解:(1) 在运动方程中消去t,可得轨道方程为 , 轨道曲线为一抛物线如右图所示。 (2) 由 可得: 在t1=1s 时, 在t2=2s 时, 例4质点由静止开始作直线运动,初始加速度为a0,以后加速度均匀增加,每经过τ秒增加a0,求经过t秒后质点的速度和位移。 解:本题可以通过积分法由质点运动加速度和初始条件,求解质点的速度和位移。 由题意可知,加速度和时间的关系为: 根据直线运动加速度的定义

相关文档
最新文档