汽车空调:电动汽车空调热泵型涡旋压缩机结构分析

汽车空调:电动汽车空调热泵型涡旋压缩机结构分析
汽车空调:电动汽车空调热泵型涡旋压缩机结构分析

电动汽车空调热泵型涡旋压缩机结构分析

【摘要】为了解决电动汽车空调系统冬季采暖问题,针对冬季空调工况下压缩机单级压比增大的运行特性,以涡旋压缩机制热性能系数为热力学优化目标函数,确定了制冷剂循环系统中的最佳补气压力,优化了涡旋压缩机静涡旋盘上的中间补气口的几何位置和形状,使其具备了准双级压缩功能。将研发的热泵型电动涡旋压缩机安装于电动汽车空调系统,利用空气焓差法对系统进行了制热、制冷性能实验。实验结果表明,静涡旋盘结构优化后的热泵型电动涡旋压缩机,其制热和制冷能力可以满足5 人座电动汽车司乘人员的冬季和夏季舒适性要求,并且具有较高的制热和制冷性能系数,从而提升了汽车空调系统热泵循环和制冷循环的热经济性,达到了节能的目的。

【关键词】电动汽车空调涡旋压缩机热泵优化性能实验

电动汽车已发展为重要的道路交通工具之一,其空调系统的压缩机动力源以及冬季采暖方式与普通内燃机汽车相比,有着本质的区别。对于现有的电动汽车空调系统,使用普通型电动压缩机也有其局限性: 制冷系统仅在夏季运行以满足车室内空气降温的要求,而冬季主要采用PTC 加热模式来满足采暖要求,其制热效率相对较低,对车载蓄电池的电能消耗较大,严重缩短了电动汽车的续行里程,制约了电动汽车推广和普及。而目前热泵型空调压缩机主要应用于家用及商用空调装置,其外形尺寸较大,整机重量较重,很难适用于电动汽车空调系统。同时,汽车空调的工作环境有其特殊性: 承受频繁的震动和冲击,空调的热负荷大,压缩机的安装结构空间有限。因此,急需开发一种新型的冷暖两用式( 热泵型) 电动汽车空调压缩机,并且要求开发的热泵型电动汽车空调压缩机具有结构紧凑、小型轻量化、制冷和制热性能良好等优点。

以电动汽车空调热泵型涡旋压缩机为研究对象,针对冬季空调工况下压缩机单级压比增大的运行特性,优化压缩机的静涡旋盘结构使其具备准双级压缩功能,并通过空气焓差实验法对样机的制热和制冷性能进行验证,以期提高压缩机的排气量,并降低压缩机的排气温度,从而提升汽车空调系统在低温环境下的制热能力。

1. 涡旋压缩机中间补气压力的确定

对于热泵型电动汽车空调系统,夏季制冷循环时,车室内换热器为蒸发器,通过吸热降低车室内空气温度至24 ~27 ℃; 冬季制热循环时,车室内换热器为冷凝器,通过放热提高车室内空气温度至18 ~20℃,从而满足车内人员的舒适性要求。热泵型电动汽车空调系统的工作原理如图1 所示。

根据热力学过程方程可知,压缩机排气温度Td( K) 与吸气温度Ts( K) 的关系为:

式中: m t为温度多方指数; p s、p d分别为压缩机的吸气压力和排气压力,MPa。

相对于制冷循环,制热循环时压缩机的吸气压力变低,因此压比p d/p s将提高,由式( 1) 可知,压缩机的排气温度也升高,这会导致空调系统中制冷剂分解、密封及绝缘材料老化、润滑油结碳,严重时还会使节流阀和干燥过滤器发生堵塞。所以,为了降低压缩机的排气温度T d,增加热泵循环时系统中制冷剂的质量流量,需要在系统的组成元件中引入闪蒸器的同时,相应地改变涡旋压缩机内部的静涡旋盘零件结构,使压缩机的单级压缩过程转换为准双

级压缩过程,即将p d /p s分解为p m /p s和p d /p m两个压缩阶段,并利用从闪蒸器过来的中温中压( Tm,pm)制冷剂气体冷却低压级压缩机的排气。此时,制热循环时制冷剂的热力过程及与其对应的压-焓图如图2 所示。

汽车空调系统冬季循环的制热性能系数如式( 2) 所示。

式中: h i为热力循环状态点i 的比焓,kJ /kg; G g、G d分别为高压级和低压级制冷剂的流量,kg /s; x 为制冷剂经过辅助节流阀节流后的干度; C l为与冷凝温度t k相对应的制冷剂液体比热容,kJ /( kg·℃) ; r m为与中间温度t m相对应的制冷剂汽化潜热,kJ /kg。

由式( 2) 、( 3) 可知,最高的COP hmax对应着最佳的中间温度t mopt,即存在着最佳中间压力p mopt。本文采用的优化方法为:

1) 根据热泵循环设计工况给定的冷凝压力p k和蒸发压力p o值,按公式p m = ( p k p o) 0. 5求取一个中间压力初值,并利用制冷剂的热力学性质表查出它对应的中间温度初值;

2) 在中间温度初值的上下按2 ℃的间隔选取5 ~6 个中间温度值;

3) 进行5 ~6 次热力计算,并将计算结果绘制成COP h-tm曲线图,图中曲线的顶点所对应的中间温度即为最佳中间温度t mopt,与之相对应的压力即为最佳中间压力p mopt。

2. 压缩机中间补气口结构的优化

根据涡旋压缩机的热力学过程方程和涡旋型线几何学可得中间压缩腔的内容积比V i2及中间补气口所处的位置展角Фm,如公式( 4) 、( 5) 所示。联立式( 4) 、( 5) ,将最佳中间压力p mopt代入,即可求出中间补气口所处位置展角的最佳值Фmopt。

式中: N 为涡旋压缩机压缩腔对数; α为涡旋型线起始展角,r /min; θm为涡旋压缩机中间压缩腔所对应的曲轴转角,r /min。

为了避免涡旋压缩机中间腔补气回流至吸气腔现象的发生,要求在压缩机运行过程中,当静涡旋盘中间补气口位于吸气腔的瞬间,其必须能被动涡旋盘的涡旋齿顶部覆盖。所以,中间补气口的半径r及其圆心距离最近涡旋壁的垂直距离d 必须满足条件式( 6) 。

同时,为了降低补气过程中制冷剂气体的流动阻力损失和噪声,应尽量扩大中间补气口的流通截面,本文研制的静涡旋盘中间补气口由两个半圆弧和一个矩形所组成,其具体结构形式如图3所示。

3. 制热和制冷性能实验

本文研制的热泵型电动涡旋压缩机的几何排量为28 mL,转速为6000 r /min,汽车空调系统使用的制冷剂为R134a,压缩机的驱动电源为DC336V。将开发的热泵型电动涡旋压缩机安装于5 人座轿车空调系统,利用空气焓差法对汽车空调系统进行制热、制冷性能实验,实验结果分别如表1 和表2 所示。

根据表1 和表2 中的实验结果数据可以看出,被测电动涡旋压缩机所提供的2. 734 kW 制热量和4. 187 kW 制冷量,可以满足小型汽车空调系统的冬季热负荷及夏季冷负荷要求。由于冬季空调的工况条件比夏季空调制冷循环的工况条件恶劣,热泵循环时蒸发器内部制冷剂的蒸发温度更低,压缩机在相同的转速条件下,其内部制冷剂的体积流量虽然不变,但是随着吸气比容的变大,制冷剂的质量流量将会减少,从而导致了热泵循环的制热量低于制冷循环的制冷量。

表1 制热循环实验

表2 制冷循环实验

对照GB21360—2008( 汽车空调用制冷压缩机)中的测试结果要求,从表1、表2 中的实验结果数据还可以看出,电动涡旋压缩机的静涡旋盘结构经过优化设计后,具有较高的制热和制冷性能系数,从而达到了产品节能的目的。

4. 结论

为了满足电动汽车空调系统的冬季制热要求,对涡旋压缩机的静涡旋盘结构进行了改型设计,使压缩机对制冷剂气体的压缩热力过程由单级压缩演变为准双级压缩。理论和实验研究结果表明:

1) 在冬季汽车空调系统的热泵循环名义工况下,以压缩机的制热性能系数为热力学优化目标函数,制冷剂循环系统中存在着一个最佳补气压力。与此相对应,涡旋压缩机静涡旋盘上的中间补气口有一个最佳几何位置。

2) 静涡旋盘结构优化后的热泵型电动涡旋压缩机,其空调系统的制热和制冷能力,可以满足5 人座电动汽车司乘人员的冬季和夏季舒适性要求。

3) 采用中间补气的热泵型电动涡旋压缩机,降低了压缩机的排气温度,增加了热泵循环时汽车空调系统中制冷剂的质量流量,从而提升了汽车空调系统热泵循环和制冷循环的热经济性,实现了节能的目的。

电动汽车拆解3——空调压缩机

空调压缩机:不断推进电动化 三电(SANDEN)从1971年开始生产车载空调压缩机。如今已在欧洲、北美和亚洲拥有生产基地,掌握着全球25%的份额。 受全球环保规定和高燃效技术发展的影响,在汽车行业中,发动机的小型化和HEV(混合动力车)·EV(电动汽车)化的速度正在加快。 关于应对环保规定的办法,除了提高发动机效率、添设增压器来缩小发动机体积外,HEV还可尽量延长电机驱动时间,EV可在轻量化的同时配备高性能电池等。具体做法因汽车厂商而异。 备有3类压缩机 本公司的空调压缩机大致分为三类。 面向需要提高现有内燃机效率、实现小型化的汽车厂商,供应的是借助传统发动机皮带传动类型的压缩机。面向以发动机为主体、电机为辅的车辆(Mild- HEV)供应的是皮带传动和电机驱动兼顾的混合式压缩机。对于以电机为主体(Strong-HEV、EV)的车辆,则供应电动压缩机。(图1)。 图1:空调压缩机的类型包括使用发动机驱动的类型,同时使用发动机和 电机驱动的混合动力型,单纯使用电机驱动的类型3种。 本公司的电动压缩机开发始于1986年。开发伊始虽然也经历过摸索阶段,但是在向推进车辆电动化的美国汽车厂商供货的过程中,产品化速度非常之快。 1990年,电动车“EVS-10”在美国投入使用。当时就是本公司供应的电动压缩机,但产量还非常少,在成本、充电电池、基础设施的限制下未能普及。

当时的电动压缩机需要另配逆变器,成本昂贵,空间利用率也比较低。之后,本公司在电动压缩机与逆变器的一体化、压缩机构的高效化及小型轻量化等方面推进了开发。 对于2005年上市的本田“思域混合动力”车型,本公司以此前开发的电动压缩机为基础,又开发出了皮带传动与电机驱动兼顾的混合式压缩机(图2)。这种混合式压缩机能够在车内温度高、车速慢等空调负荷较高的情况下同时使用皮带传动和电机驱动,使制冷能力达到最大(图3)。 图2:本田2005年9月上市的“思域混合动力” (a)车辆。(b)混合 式压缩机。同时支持发动机驱动与电机驱动。 图3:混合式压缩机的驱动分为三种(a)发动机运转带动压缩机工作时。 (b)空调专用电机运转带动压缩机工作时。(c)发动机用与电机用压缩 机同时运转时。 而在空调负荷较低时,则可以区别使用皮带传动和电机驱动,在车辆停止时单独使用电机驱动,以最低限度的制冷性能抑制车内温度的上升。 最新型电动压缩机 本公司2009年开始向德国戴姆勒(Daimler)的高级混合动力车“S400”供应电动压缩机(图4)。S400的要求非常高,面临低电压驱动等众多难题。但戴姆

电动汽车空调系统

电动汽车空调系统 、电动汽车空调系统 全球气候变暖、大气污染以及能源成本高涨等问题日趋严峻,汽车作为环境污染和能源消耗的主要来源之一,其节能减排问题受到了越来越广泛的重视,各国政府和汽车企业均将节能环保当作未来汽车技术发展的指导方向,这样节能环保的电动也就应运而生。电动汽车是集汽车技术、电子及计算机技术、电化学技术、能源与新材料技术于一体的高新技术产品,与普通内燃机汽车相比,具有无污染、噪声低及节省石油资源的特点。基于以上电动汽车的特点,它极有可能成为人类新一代的清洁环保交通工具,它的推广普及具有不可估量的重要意义。 电动汽车的出现也为电动汽车空调的研究开发提出了新的课题与挑战。汽车空调的功能就是把车厢内的温度、湿度、空气清洁度及空气流动性保持在使人感觉舒适的状态。在各种气候环境条件下,电动汽车车厢内应保持舒适状态,以提供舒适的驾驶和乘坐环境。另外,拥有一套节能高效的空调系统对电动汽车开拓市场也起到至关重要的作用。因此,在开发研制电动汽车同时, 必然也要对其配套的空调系统进行开发与研制。 对于目前传统燃油汽车空调系统,制冷主要采用发动机驱动的蒸汽压缩式制冷系统进行降温,而制热主要采用燃油发动机产生的余热。而对于电动汽车中的纯电动汽车以及燃料电池汽车来说,没有发动机作为空调压缩机的动力源,也不能提供作为汽车空调冬天制热用的热源,因此无法直接采用传统汽车空调系统的解决方案;对于混合动力车型来说,发动机的控制方式多样,故空调压缩机也不能采用发动机直接驱动的方案。综合以上原因,在电动汽车的开发过程中,必须研究适合电动汽车使用的新型空调系统。对于电动汽车来说,车上拥有高压直流电源,因此,采用电动热泵型空调系统,压缩机采用电机直接驱动,成为电动汽车可行的解决方案。 、电动汽车空调的特点 电动汽车空调与普通空调装置相比,电动汽车空调装置以及车内环境主要有以下特点:八、、? 1)汽车空调系统安装在运动的车辆上,要承受剧烈而频繁的振动与冲击,要求电动汽车

汽车空调的组成与原理

汽车空调的组成与原理 一、汽车空调的工作原理 压缩机运转时,将蒸发器产生的低温低压制冷剂蒸气吸入并压缩后,在高温高压(约700C,1471KPa)的状况下排出。这些气态蒸气流入冷凝器,并在此受到散热和冷却风扇的作用强制冷却到500C 左右。这时,制冷剂由气态变为液态。被液化了的制冷剂,进入干燥器,除去了水和杂质后,流入膨胀阀。高压的液态制冷剂从膨胀阀的小空流出,变为低压雾状后流入蒸发器。雾状制冷剂在蒸发器吸热汽化变为气态制冷剂,从而使蒸发器表面温度下降。从送风机出来的空气,不断流过蒸发器表面,被冷却后送进车厢降温。气态制冷剂通过蒸发器后又重新被压缩机吸入,这样反复循环即可达到制冷目的。 二、汽车空调主要功能包括以下4大部分: 制冷、制热、通风、除湿 制冷系统原理:汽车空调的压缩机依靠汽车发动机的动力提供汽车在怠速状态下打开空调制冷怠速会明显增大油耗也会相应的增加 油耗增加的大小与环境温度有最直接的关系环境温度高制冷剂膨胀 的压力大发动机驱动空调的消耗也相应加大环境温度低油耗相应减少。 制热系统原理:汽车空调制热与压缩机没有丝毫关系制热的热源不是空调本身获取的是由汽车的散热水箱(中控台下面的暖风机总成

的副水箱)提供早晨在热车前空调吹出来的是冷风待热车后空调热风源源不断的送出来制热本身基本没有能量消耗是利用汽车的余热完成的.但在冬季,为了提升水温,加大喷油量,也使耗油量增加。但是只是在启动初期,等发动机运转正常,就是利用发动机的散热来供暖了。(而有的柴油车由于水温上升慢,为了一发动车就能享受到暖风,所以在暖风机里面加有电热丝)。 通风:通风分为循环和外循环使用循环时车空气基本不与外界交流使用外循环时位于挡风玻璃下的新风口会将外界的空气源源不断的送进来以保持车空气的清新. 除湿:空调制冷的过程就是除湿的过程从制冷时产生的大量冷凝水就可以看出来了在湿度较大的阴雨天气或是温差太大的时候车的玻璃上容易起雾打开空调驱雾就是一个除湿的过程。 三、汽车空调的组成 汽车空调一般主要由压缩机、电控离合器、冷凝器、蒸发器、膨胀阀、贮液干燥器、管道、冷凝风扇等组成。汽车空调分高压管路和低压管路。 1.电磁离合器 在非独立式汽车空调制冷系统中,压缩机是由汽车主发动机驱动的。在需要时接通或切断发动机与压缩机之间的动力传递。另外,当压缩机过载时,它还能起到一定的保护作用。因此,通过控制电磁离合器的结合与分离,就可接通与断开压缩机。当空调开关接通

电动车空调的技术要求-

电动车空调的技术要求 1.1 要求 1)电机与压缩机一体式设计。电机在压缩机内部对压缩机进行驱动,通过冷媒循环可自行冷却而不需外加冷却设备; 2)欠压保护。当动力电源电压过低(低于260V±5V)时,驱动器将自动切断电路以保护电池与压缩机。在不重启压缩机的情况下,若电源电压回升至275V ±5V则压缩机自动重新启动; 3)过流保护。当电路中电流过高时,驱动器将自动切断电路以避免电流过大对压缩机及驱动器造成损坏; 4)预留调速信号输入接口。通过在调速线上输入400Hz,12V占空比可调的PWM 信号可以对压缩机转速进行调节,0-100%占空比对应转速为1000RPM-6500RPM; 5)可通过CAN通信功能进行调速; 5)驱动器压缩机一体化设计,通过贴合压缩机冷端表面进行冷却; 6)驱动控制器控制电源12VDC; 1.2 参数 1)工作环境温度范围:驱动器:-30℃to85℃;压缩机:-30℃to105℃; 2)电源: 1 ->工作电压范围:260V-380VDC; 2->额定输入电压:320VDC; 3->额定输入功率:2437W; 4->控制电源电压范围:9-15VDC; 5->控制电源最大输入电流:500mA; 3)电机参数: 1->电机类型:直流无刷无传感器电机,6极; 2->额定电压:336VDC; 3->额定功率:2437W; 4->额定转速:6500RPM; 5->最小转速:1000RPM;

6->转速误差:<1% 4)压缩机参数: 图1:压缩机外形图 1->排量:27cc/rev; 2->尺寸:208X121X176mm; 3->额定转速:6500RPM; 4->制冷剂:R134a; 5->冷冻油:RL68H;(120ml) 6->制冷量:4875W; 7->性能曲线: 图2:性能曲线图

电动汽车拆解003 空调压缩机

【电动汽车拆解】(三) 空调压缩机:不断推进电动化 小野时人三电开发本部全球开发统括室室长 三电(SANDEN)从1971年开始生产车载空调压缩机。如今已在欧洲、北美和亚洲拥有生产基地,掌握着全球25%的份额。 受全球环保规定和高燃效技术发展的影响,在汽车行业中,发动机的小型化和HEV(混合动力车)·EV(电动汽车)化的速度正在加快。 关于应对环保规定的办法,除了提高发动机效率、添设增压器来缩小发动机体积外,HEV还可尽量延长电机驱动时间,EV可在轻量化的同时配备高性能电池等。具体做法因汽车厂商而异。 备有3类压缩机 本公司的空调压缩机大致分为三类。 面向需要提高现有内燃机效率、实现小型化的汽车厂商,供应的是借助传统发动机皮带传动类型的压缩机。面向以发动机为主体、电机为辅的车辆(Mild- HEV)供应的是皮带传动和电机驱动兼顾的混合式压缩机。对于以电机为主体(Strong-HEV、EV)的车辆,则供应电动压缩机。(图1)。 本公司的电动压缩机开发始于1986年。开发伊始虽然也经历过摸索阶段,但是在向推进车辆电动化的美国汽车厂商供货的过程中,产品化速度非常之快。1990年,电动车“EVS-10”在美国投入使用。当时就是本公司供应的电动压缩机,但产量还非常少,在成本、充电电池、基础设施的限制下未能普及。 当时的电动压缩机需要另配逆变器,成本昂贵,空间利用率也比较低。之后,本公司在电动压缩机与逆变器的一体化、压缩机构的高效化及小型轻量化等方面推进了开发。 对于2005年上市的本田“思域混合动力”车型,本公司以此前开发的电动压缩机为基础,又开发出了皮带传动与电机驱动兼顾的混合式压缩机(图2)。这种混合式压缩机能够在车内温度高、车速慢等空调负荷较高的情况下同时使用皮带传动和电机驱动,使制冷能力达到最大(图3)。

电动汽车空调系统方案

电动汽车加装空调系统方案 现阶段的电动汽车空调控制系统主要分两种: 1、热电(偶)空调控制系统 2、热泵型空调控制系统 热电偶空调控制系统具有很多适合电动汽车使用的特点,并且与传统机械压缩式空调系统相比,热电空气调节具有以下特点: a)、热电元件工作需要直流电源; b)、改变电流方向即可产生制冷、制热的逆效果; c)、热电制冷片热惯性非常小,制冷时间很短,在热端散热良好冷端空载的情况下,通电不到一分钟,制冷片就能达到最大温差; d)、调节组件工作电流的大小即可调节制冷速度和温度,温度控制精度可达0.001℃,并且容易实现能量的连续调节; e)、在正确设计和应用条件下,其制冷效率可达90%以上,而制热效率远大于1; f)、体积小、重量轻、结构紧凑,有利于减小电动汽车的整备质量;可靠性高、寿命长并且维护方便;没有转动部件,因此无振动、无摩擦、无噪声且耐冲击 但是对于热电(偶)电动汽车空调系统,目前存在着热电材料的优值系数较低,制冷性能不够理想,并且热电堆产量受到构成热电元件的蹄元素产量的限制。不具备电动汽车

空调节能高效的要求。这使得电动汽车空调更倾向于选用节能高效的热泵型空调。 热泵型空调控制系统是在原有燃油汽车上进行改进的,该技术最大的优点就是制冷、制热效率高,相关企业开发的全封闭电动涡旋压缩机,是由一个直流无刷电动机驱动,通过制冷剂回气冷却,具有噪声低,振动小,结构紧凑,质量轻等优点。 综上所述:电动汽车所优先选用的空调系统为冷暖一体式热泵型空调控制系统。加热系统采用传统的PTC加热系统,制冷系统采用蓄电池直接驱动电动压缩机,通过脉宽调制对压缩机转速进行调整,从而调节制冷量,冷凝设备主要用的是平行流冷凝器,蒸发设备主要用的是层叠式蒸发器,节流装置仍然是热力膨胀阀,制冷剂仍然是R134a。 空调各部件尺寸根据各个供应商送样决定。

变排量压缩机结构

变排量压缩机结构原理 轿车空调压缩机是由发动机直连驱动的,对于定排量压缩机汽车空调系Array统,用蒸发器出风温度来控制压缩机电磁离合器吸合或脱离,用间歇运行来 控制系统制冷能力和车内空调负荷相适应。这种控制方式除了车内空调温度波动 大,系统的频繁开停的不可逆损失使系统能耗增加等缺点外,最大的一个问题是压 缩机的周期性离合对汽车发动机引起的干扰,这种情况在汽车发动机容量较小时显 得更为突出。为了解决这个问题,变排量压缩机应运而生。 所谓的变排量压缩机,结构是基于传纺的斜盘式或摇板式压缩机,传统的斜盘 式或摇板式压缩机中,斜盘或摇板的偏转角度是固定不变的,即活塞的最大行程是 固定的。而升级为可变排量压缩机后,调节斜盘或摇板的角度,从而调节活塞的最 大行程,改变压缩机的排气量。 相对于传统的定排量压缩机系统,需要有在压缩机前端安装电磁离合器控制压 缩机间歇工作,以调节制冷量。可变排理压缩机取消了电磁离合器,通过活塞行程 的无级连续调节,调节制冷量。,车内环境热舒适性好,降低能耗!

三电可变排量压缩机 可变排量压缩机变排量的控制方式有两种:一种是机械式可变排量,即在压缩机内部有调节阀,依据空调的管路压力自适应的改变压缩机的排量;另一种是电控可变排量,在原机械调节阀的基础上增加了一个电磁调节阀,空调控制单元从蒸发器出风温度传感器获得信号,对压缩机的功率进行无级调节。

可变排量压缩机结构图 注意三个压力:一个是压缩机的吸入低压的制冷剂;另一个是压缩机排出的高压制冷剂;第三个是斜盘或摇板所在的曲轴箱的压力;这个曲轴箱内的压力基本是大于或等于压缩机的吸入压力,而远小于压缩机的排气压力。 控制阀用于调节曲轴箱内的压力,当曲轴箱压力等于压缩机的吸气压力时,压缩机处于最大排量;当控制曲轴箱压力高于吸气压力后,斜盘或摇板角度减小,压缩机的排量减小。

中国电动汽车空调压缩机行业研究报告

中国电动汽车空调压缩机市场投资及分析 预测报告

内容简介 本研究报告在大量周密的市场调研基础上,主要依据了国家统计局、国家商务部、国务院发展研究中心、工商局、发改委、国家海关总署、以及各行业协会、国际调研机构、国内外媒体报刊等提供的大量资料,对电动汽车空调压缩机行业进行了全面的分析。报告分别研究了电动汽车空调压缩机的基本情况、我国电动汽车空调压缩机行业现状、电动汽车空调压缩机市场动态、国内外电动汽车空调压缩机优势企业的经营状况、电动汽车空调压缩机的发展趋势等。本报告是电动汽车空调压缩机制造企业、科研部门、投资机构等相关单位准确、全面、迅速了解目前行业发展动向,把握企业战略发展定位不可或缺的重要决策依据。 国外涡旋式汽车空调压缩机发展很快,主要生产涡旋式压缩机的有日本电装、三电、三菱重工、美国的韦斯通等企业,年产量都在百万台以上,林肯、克莱斯勒、本田、道奇、皇冠等车都在选用涡旋式压缩机。 近年来,国内中高档车在选用涡旋式压缩机上开始有所改观,日系车中尤其是三菱体系的,如欧蓝得、蓝瑟、本田,还有象福特蒙迪欧等用的都是涡旋式的。国内汽车空调的发展起步晚,公众对涡旋式汽车空调压缩机的认知度还不够。首先用于微型车上,在体现出了其非凡的性能优势后,才被人们逐步认可。由于微型车本身发动机功率小,在启动力矩、功耗、降温速度、平均温度等方面实现理想化的要求更为迫切,在制冷量不变的条件下,压缩机的功耗小到极致。 本报告的研究框架全面、严谨,分析内容客观、公正、系统,是相关单位进行市场研究工作时不可或缺的重要参考资料,同时也可作为金融机构进行信贷分析、证券分析、投资分析等研究工作时的参考依据。

热泵型电动汽车空调系统性能试验研究上课讲义

热泵型电动汽车空调系统性能试验研究 1.1 研究背景及意义 目前,随着人类越来越多的使用燃油汽车,汽车尾气排放出的二氧化碳加剧了全球 气候极端变化。我国的石油资源的探明储量极其有限,早在2009 年,石油消费进口依 存度就突破了“国际警戒线”(50%),高达52%。汽车保有量却是逐年增加,如果 汽车几乎完全依赖于化石燃料,很容易受到国际石油价格的冲击,甚至导致燃料的供应 中断。再者,燃油汽车的尾气排放出大量的污染物如PM10(可吸入颗粒物)、NOx(氮 氧化物)、SO2(二氧化硫)和VOCs(挥发性有机化合物)等,已经成为我国城市大 气污染的主要污染源,严重危害了人们的健康。纯电动汽车是以电能驱动的,具有燃 油汽车无法比拟的优点,主要表现在:一、污染少、噪声低。其本身不排放污染大气 的有害气体,即使按所耗电量换算为发电厂的排放,除硫和微粒外,其它污染物也显著 减少,且电动汽车电动机的发出的噪声较燃油汽车发动机小得多;二、能源的利用具有 多元化,电力可以从多种一次能源如煤、核能、水力、太阳能、风能、潮汐能等获得, 能源利用更加安全;三、可在夜间利用电网的廉价“谷电”进行充电,起到平抑电网的 峰谷差的作用;四、效率更高和控制更容易实现智能化。 作为一种具有环保和节能优势的先进交通工具,电动汽车受到了越来越广泛的关注。美、日、欧等发达国家不惜投入巨资进行电动汽车的研究开发,取得了丰硕的研究成果,纯电动汽车目前在许多发达国家已得到商业化的应用。我国电动汽车发展起步 较晚,但国家从维护能源安全,改善大气环境,提高汽车工业竞争力和实现我国汽车工 业的跨越式发展的战略高度考虑,从“八五”开始到现在,电动汽车研究一直是国家计 划项目,并在2001 年设立了“电动汽车重大科技专项”,通过组织企业、高校和科研 机构,集中各方面力量进行技术攻关。与此同时,上海、广州和深圳等地的地方政 府也出台了相应的扶持新能源汽车的发展政策,计划实现电动汽车在本地的产业化。 电动汽车代表未来汽车发展的方向,各国政策的扶持为电动汽车的发展铺平了道 路,近年来,它们在全世界范围内呈现出欣欣向荣的的发展态势,据国外著名金融杂志 JP Morgan 报道,预计到2020 年全球将有1100 万辆电动汽车上市销售,这意味着到那时电动汽车将分别占有北美20%和全球13%的市场份额,但目前电动汽车的发展遇到 很多技术问题,特别动力电池技术,续驶里程的提高和充电网络的建设等问题。 空调系统作为改善驾驶员工作条件、提高工作效率、提高汽车安全性及为乘员营造 健康舒适的乘车环境的重要手段,对燃油汽车和电动汽车而言,都是必不可少的。电 动汽车用空调系统与普通的汽车(内燃机驱动)空调相比,由于原动机不同而引发一系 列新变化。主要体现在:1)普通的汽车空调系统的压缩机依靠发动机通过一个电磁离 合器驱动,而电动汽车空调压缩机自带电动机独立驱动;2)电动汽车没有用来采暖的 发动机余热,不能提供作为汽车空调冬天采暖用的热源,必须自身具有供暖的功能,即 要求制冷、制热双向运行的热泵型空调系统。 纯电动汽车空调系统制冷、供暖和除霜所需能量均来自于整车动力电池。作为电动 汽车功耗最大的辅助子系统,空调系统的使用将极大的降低其续驶里程。因而,通过优 化电动汽车空调系统的设计以提高其性能对提高电动汽车续驶里程,推广电动汽车的应 用有着重要意义。 1.2.2 热泵式汽车空调研究现状 汽车空调系统是实现对车厢内空气进行制冷、加热、换气和空气净化的装置。随着 汽车的日益普及以及人们对汽车的舒适性、安全性要求的提高,汽车空调系统已经成为 现代汽车上必不可少的装置。汽车空调工作环境的特殊性如需要承受频繁的震动和冲

汽车空调压缩机设计

目录 摘要 (1) Abstract (1) 第一章绪论 (1) 1.1 汽车空调的历程 (1) 1.2 汽车空调制冷系统的构成及原理 (3) 1.3 空调压缩机的发展 (4) 1.4 空调压缩机的前景 (5) 1.5 本章小结 (6) 第二章空调压缩机的结构与原理 (5) 2.1 空调压缩机的分类 (5) 2.2 汽车空调压缩机的特殊要求 (10) 2.3 活塞斜板式压缩机的结构原理 (10) 2.4 本章小结 (12) 第三章压缩机测绘 (13) 3.1 测绘的意义和过程 (13) 3.2 压缩机零件的测绘 (13) 3.2.1 电磁离合器 (14) 3.2.2 斜板轴 (15) 3.2.3 活塞 (16) 3.2.4 弹片阀 (17) 3.2.5 缸体 (18) 3.2.6 前后端盖 (19) 3.3 本章小结 (20) 第四章空调压缩机的三维建模 (21) 4.1 SolidWorks软件介绍 (21) 4.2 电磁离合器的三维建模 (22) 4.3 活塞体三维建模 (25) 4.4 前后端盖的三维建模 (30) 4.5 缸体的三维建模 (32) 4.6 轴的三维建模 (33) 4.7 空调压缩机的装配 (33) 4.8 本章小结 (35)

总结 (36) 参考文献 (37) 致谢 (38)

第一章绪论 1.1汽车空调的历程 汽车问世已有一百多年的历史。随着人们的生活水平的逐步提高,汽车已成为人们生活中的必需品,成为房间生活的延伸部分。对房间环境的要求同样延伸到汽车上,空调便是其中一个重要内容。汽车上安装空调装置的主要目的在于营造一个舒适的环境条件[1]。 汽车空调是从暖气开始的,最初是用煤炭脚炉取暖及把排气管从车室内通过。第一台完整的汽车空调装置出现在1927年,它包括一个加热器、一套通风系统及一个空气过滤器。从1936年起,美国开始着手研制汽车冷气机,到了1940年,美国Packard 公司首次在汽车上采用制冷装置,其后到50年代中在美国生产的Nash牌轿车上安装了冷暖兼容的整体式空调装置,60年代空调装置才开始在汽车上普及并获得迅速发展。根据粗略统计,截至80年代末,全世界车用空调装置年产量已超过3500万辆。发达国家中汽车空调的普及率达到80%~90%,二十世纪末全世界汽车空调器市场的年需求量达到7000万套。10年功夫就翻一番,可见其发展速度之快。 我国从1971年开始在长春一汽的红旗牌轿车上装上了空调器,上海也于80年代初在上海牌轿车上装上了国产空调器。我国从1994年开始在桑塔纳轿车(新车型)上试装了国产R134a空调器。我国车用空调装置虽起步较晚,但发展速度不慢。据统计,1992年我国空调汽车的产量为16万辆,总保有量为76万辆。到了2000年空调车产量可达88万辆,总保有量约485万辆。不到10年时间,增加了4~5倍。 1.1.1汽车空调的意义 汽车空调由五个要素组成,即温度、湿度、气流、洁净度和辐射。由于空调一定要有空气流动,一般由风机完成。风机的噪音及空气通过风道而产生的噪音使人感到不舒服,因而减少风机噪音及气流噪音也成了空调的任务[2]。 调节温度是空调的主要任务。汽车空调首先是有暖气设备,其结构比较简单,轿车和中小型汽车一般以发动机冷却水作为暖风的热源;而大型客车或严寒地区的车辆则常采用独立式加热器,夏季的降温则由制冷装置完成。

E66A520B-1140H2汽车空调电动压缩机技术规格书

汽车空调电动涡旋压缩机技术规格书SPECIFICATIONS OF 540VDC COMPRESSOR Model: E66A520B-1140H2 Date: March 29st.,2015 南京奥特佳新能源科技有限公司

1.范围 RANGE 本技术规格书适用于E66A520B-1140H2压缩机。 This specification is applied for Aotecar E66A520B-1140H2 compressor. 2.标准依据 BASED ON THE STANDARD GB/T GB/T GB/T GB/T4208-1993 GB/T5773-2004 GB/T17619-1998 GB/ GB/T18655-2002 GB/T19951-2005 JB/T9617-1999 QC/T413-2002 QC/T660-2000 ISO7637-2:2004 ISO7637-3:2007 3.一般要求 GENERAL REQUIREMENTS 4.技术参数 基本参数 4.1.1 压缩机 COMPRESSOR

4.1.2电动机 MOTOR 4.1.3驱动器特性 DRIVER

性能 PERFORMANCE 4.2.1 制冷性能 cooling performance 注 :转速误差±1%, 实测制冷量不小于表中数值的93%, 实测功率不大于表中数值的110%. Remark: Speed tolerance ±1%, actual test cooling capacity data not less than 90% of data in the table, actual test power rate not exceed 110% of data in the table ※ 制冷能力测试条件 COOLING CAPACITY TEST CONDITIONS Remark: Noise sensor locate at 15cm above compressor. 压缩机运行范围 Compressor running envelope

北汽EV160电动汽车空调压缩机电控原理及故障

分析北汽EV160电动汽车空调压缩机电控原理及故障 北汽EV160纯电动汽车的空调压缩机由高压电驱动,压缩机控制器安装在压缩机上,受整车控制单元VCU控制。压缩机是空调制冷系统制冷剂循环的动力。压缩机的故障有机械故障和电气系统故障,电气系统故障又分为高压电故障和低压电控制系统故障,压缩机的高压上电受到低压电控制。空调压缩机高压电不能上电,无法正常工作,往往是由于低压控制系统的故障引起的;因此,空调压缩机的电气故障诊断重点从低压电路控制系统着手。当然压缩机的故障诊断关系到高压电,从业者一定要有相应的高压从业资格证,遵守高压维修的相关规范,才能确保人身安全。 一、北汽EV160纯电动汽车空调系统的结构组成及控制原理 1.电动汽车空调系统的结构组成 电动汽车的空调系统与传统动力汽车基本相同,由压缩机、冷凝器、蒸发器、冷却风扇、鼓风机、膨胀阀、储液干燥器和高低压管路附件等组成。传统汽车压缩机由发动机传动带通过电磁离合器带动,而电动汽车采用电动压缩机,电动压缩机由动力电池提供高压电驱动。 2.纯电动汽车空调系统的控制原理 整车控制器VCU采集到空调A/C开关信号、空调压力开关信号、蒸发器温度信号、风速信号以及环境温度信号,经过运算处理形成控制信号,通过CAN总线传输给空调控制器,由空调控制器控制空调压缩机高压电路的通断。 3.北汽EV160汽车空调电动压缩机电路原理 空调继电器控制压缩机12V低压电源,低压电源电压是空调压缩机控制器的通信信号传输及控制功能得以正常运行的可靠保证。整车控制器vCU通过数据总线“CANH、CANL”与空调压缩机控制器相连接,再由压缩机控制器控制空调压缩机的高压电源线“DC+与DC-”通断。高压互锁信号线在高压上电前确保整个高压系统的完整性,使高压电处于一个封闭的环境下工作,提高安全性。空调压缩机的高压线束与低压线束相互独立,线束的各个端子定义如图3和图4,其中高压端子B与DC+对应,为高压电源正极,A与DC-对应,为高压电源负极。空调压缩机是空调系统的动力,当空调系统工作的时候,压缩机使制冷剂在制冷系统中正常循环流动实现制冷。一旦压缩机有故障不能正常工作,空调循环系统无法运行,当然也就无法制冷了。因此压缩机就象汽车的发动机、人体的心脏,是空调系统动力的源泉。图5为北汽EV160纯电动汽车空调压缩机的外部结构,压缩机及其控制器连接在一起,形成整体结构。 二、电动压缩机常见故障原因及排除 空调电动压缩机不能工作的故障有机械故障和电子控制系统方面的故障。 三、北汽EV160汽车空调电动压缩机及控制线路的检测 1.空调压缩机故障的判别 把点火开关旋至“ON”档,打开空调“A/C”开关,风量开至最大,观察发现鼓风机工作正常,但无冷风,汽车仪表无高压绝缘性故障描述,进一步检查,发现空调压缩机不工作,初步断定为空调压缩机或其控制系统的问题,决定对空调压缩机及其控制线路进行诊断,查找故障原因,并修复排除故障。 压缩机维修诊断关系到高压危险,操作前一定要穿橡胶绝缘鞋,戴绝缘手套。严格按照高压电的操作规范操作。举升汽车,拆下空调压缩机低压连接器,识别压缩机低压连接器及高压

汽车空调压缩机项目可研报告

汽车空调压缩机项目 可研报告 规划设计/投资分析/实施方案

汽车空调压缩机项目可研报告 汽车空调压缩机是汽车空调制冷系统的心脏,是制冷剂能够在系统内循环的动力源。我国汽车产业快速发展,已经成为国民经济的重要支柱产业。2017年,我国汽车行业产量为2902万辆,同比增长3.2%;销量为2888万辆,同比增长3.0%。我国汽车行业产销量已经连续九年位居全球第一,整体发展态势良好。在汽车市场蓬勃发展的情况下,我国汽车零部件产业也随之稳步提升,汽车空调压缩机行业迎来发展机遇。我国是全球最大的汽车产销国,同时也是全球主要的汽车空调压缩机生产地之一。2011-2017年间,我国汽车空调压缩机产量逐年稳定增长,2016年产量为3123万台,同比增长9.1%,2017年产量达到3404万台左右。随着我国汽车制造能力不断提升,汽车空调压缩机行业技术水平也随之不断进步。 该汽车空调压缩机项目计划总投资18381.94万元,其中:固定资产投资12219.49万元,占项目总投资的66.48%;流动资金6162.45万元,占项目总投资的33.52%。 达产年营业收入42773.00万元,总成本费用33182.25万元,税金及附加359.43万元,利润总额9590.75万元,利税总额11273.04万元,税后净利润7193.06万元,达产年纳税总额4079.98万元;达产年投资利润

率52.17%,投资利税率61.33%,投资回报率39.13%,全部投资回收期 4.06年,提供就业职位644个。 认真贯彻执行“三高、三少”的原则。“三高”即:高起点、高水平、高投资回报率;“三少”即:少占地、少能耗、少排放。 ......

一种电动汽车空调压缩机的电机控制系统

名称:一种电动汽车空调压缩机的电机控制系统 申请人:芜湖博耐尔汽车电气系统有限公司 发明人: 权 利 要 求 书 1.一种电动汽车空调压缩机的电机控制系统,其特征在于:所述的控制系统包括功率模块IGBT(1)、MCU处理器(2)、位置检测电路(3)、电流检测电路(4)、功率模块驱动电路(5)和电机控制电路(6);所述的功率模块驱动电路(5)控制功率模块IGBT(1)的导通频率实现永磁同步电机线圈磁场顺序变化驱动电机运转;所述的位置检测电路(3)检测不导通线圈反向电动势的零点变化判断电机转子的磁极位置;所述的电流检测电路(4)通过实时检测电机线圈的相电流,并与MCU处理器(2)中电机理论模型进行比较,实现电机的闭环控制;所述的电机控制电路(6)使外界控制单元与电机驱动器MCU进行通讯。 请给出TGBT的中文释义! 一种晶体管 名称为绝缘栅双极型晶体管 2.根据权利要求1所述的一种电动汽车空调压缩机的电机控制系统,其特征在于:所述的电机控制电路(6)的控制软件采用磁场定向控制算法。 一种电动汽车空调压缩机的电机控制系统 技术领域 本实用新型涉及电动汽车空调领域,尤其是涉及一种电动汽车空调压缩机的电机控制系统。

背景技术 传统汽车的压缩机由发动机直接驱动,在电动汽车中由于发动机的取消,因此也要改为电机驱动。永磁同步电机简称PMSM电机,采用正弦电流工作方式而具有的高效率和优良的调控性无疑是电动汽车空调压缩机驱动电机的最佳选择。PMSM电机由电机和控制系统两部分构成,控制系统是PMSM电机的核心,其控制算法的设计水平和控制程序编制的好坏直接关系到PMSM电机的工作性能。而目前还未有针对汽车空调压缩机开发的PMSM 电机控制系统,因此,急需提供一种可以实现电动压缩机PMSM电机的运转和调速功能的驱动器。 实用新型内容 本实用新型所要解决的技术问题是针对现有技术中存在的问题提供一种电动汽车空调压缩机的电机控制系统,其目的是使电动压缩机PMSM电机平稳运行并实现转速的线性调节。 本实用新型的技术方案是该种电动汽车空调压缩机的电机控制系统,所述的控制系统包括功率模块IGBT、MCU处理器、位置检测电路、电流检测电路、功率模块驱动电路和电机控制电路;所述的功率模块驱动电路控制功率模块IGBT的导通频率实现永磁同步电机线圈磁场顺序变化驱动电机运转;所述的位置检测电路检测不导通线圈反向电动势的零点变化判断电机转子的磁极位置;所述的电流检测电路通过实时检测电机线圈的相电流,并与MCU处理器中电机理论模型进行比较,实现电机的闭环控制;所述的电机控制电路使外界控制单元与电机驱动器MCU进行通讯。 所述的电机控制电路的控制软件采用磁场定向控制算法。

电动汽车空调系统

电动汽车空调系统 3.1、电动汽车空调系统 全球气候变暖、大气污染以及能源成本高涨等问题日趋严峻,汽车作为环境污染和能源消耗的主要来源之一,其节能减排问题受到了越来越广泛的重视,各国政府和汽车企业均将节能环保当作未来汽车技术发展的指导方向,这样节能环保的电动也就应运而生。电动汽车是集汽车技术、电子及计算机技术、电化学技术、能源与新材料技术于一体的高新技术产品,与普通内燃机汽车相比,具有无污染、噪声低及节省石油资源的特点。基于以上电动汽车的特点,它极有可能成为人类新一代的清洁环保交通工具,它的推广普及具有不可估量的重要意义。 电动汽车的出现也为电动汽车空调的研究开发提出了新的课题与挑战。汽车空调的功能就是把车厢内的温度、湿度、空气清洁度及空气流动性保持在使人感觉舒适的状态。在各种气候环境条件下,电动汽车车厢内应保持舒适状态,以提供舒适的驾驶和乘坐环境。另外,拥有一套节能高效的空调系统对电动汽车开拓市场也起到至关重要的作用。因此,在开发研制电动汽车同时,必然也要对其配套的空调系统进行开发与研制。 对于目前传统燃油汽车空调系统,制冷主要采用发动机驱动的蒸汽压缩式制冷系统进行降温,而制热主要采用燃油发动机产生的余热。而对于电动汽车中的纯电动汽车以及燃料电池汽车来说,没有发动机作为空调压缩机的动力源,也不能提供作为汽车空调冬天制热用的热源,因此无法直接采用传统汽车空调系统的解决方案;对于混合动力车型来说,发动机的控制方式多样,故空调压缩机也不能采用发动机直接驱动的方案。综合以上原因,在电动汽车的开发过程中,必须研究适合电动汽车使用的新型空调系统。对于电动汽车来说,车上拥有高压直流电源,因此,采用电动热泵型空调系统,压缩机采用电机直接驱动,成为电动汽车可行的解决方案。 3.2、电动汽车空调的特点 电动汽车空调与普通空调装置相比,电动汽车空调装置以及车内环境主要有以下特点:

汽车变排量空调压缩机工作原理

汽车变排量空调压缩机工作原理 一、摘要:变排量空调在现代汽车上得到越来越广泛的使用" 本文介绍汽车变排量空调的优点" 重点阐述具有代表性的9种汽车变排量空调压缩机的结构和工作原理。(注:新式可变排量压缩机参考相关资料)。 轿车空调用变排量压缩机按照结构形式分为摇板式、斜盘式、滚动活塞式、螺杆式、旋片 式、涡旋式等机型,其中斜盘式变排量压缩机目前使用最多,按控制方式分为内部控制式变排 量压缩机和外部控制式变排量压缩机。其生产厂家及其对应生产的变排量压缩机型号如表1所 示。 变排量空调在奥迪、波罗、大宇、标志、别克、中华、奥拓等轿车上得到了广泛的使用, 如表2所示。和传统的定量空调相比,变排量空调有如下的优点:①排气压力和工作转矩的波动 减小,避免了对发动机的冲击;②保持了温度的稳定性;③保持了蒸发器低压的稳定性,而且 蒸发器不会结霜;④$提高了压缩机的使用寿命;⑤减少了功率消耗。

1、V5变排量压缩机 V5变排量压缩机由一个可变角度的摇板和5个轴向定位的气缸组成,其外形如图1所示,控制阀结构如图2所示。压缩机容积控制中心是一个波纹管式操纵控制阀,装在压缩机的后端,可检测压缩机吸气腔的压力,锥阀控制摇板箱和吸气腔(波纹管室) 之间的通道,球阀控制排气腔和摇板箱之间的通道,排量的改变是依靠摇板箱压力的改变来实现。摇板箱压力降低,作用在活塞上的反作用力就使摇板倾斜一定角度,这就增加了活塞行程(即增加了压缩机排量);反之,摇板箱压力增加,就增加了作用在活塞背面的作用力,使摇板往回移动,减少了倾角,即减小了活塞行程(也就减少了压缩机排量)排气压力影响控制阀的控制点的变化,排气压力升高,控制点降低。当空调容量要求大时,吸气压力将高于控制点,控制阀的锥阀打开并保持从摇板箱吸入气体至吸气腔&如果没有摇板箱——吸气腔间压力差,压缩机将有最大的容积。通常压缩机的排气压力比曲轴箱的压力大得多,曲轴压力高于或等于压缩机的吸气压力。在最大排量时,摇板箱的压力才等于吸气压力,在其它情况下,摇板箱的压力大于吸气压力。

电动汽车拆解3――空调压缩机.

空调压缩机:不断推进电动化 三电(SANDEN 从 1971年开始生产车载空调压缩机。如今已在欧洲、北美和 亚洲拥有生产基地,掌握着全球 25%的份额。 受全球环保规定和高燃效技术发展的影响, 在汽车行业中, 发动机的小型化和HEV (混合动力车·EV(电动汽车化的速度正在加快。 关于应对环保规定的办法, 除了提高发动机效率、添设增压器来缩小发动机体积外, HEV 还可尽量延长电机驱动时间, EV 可在轻量化的同时配备高性能电池 等。具体做法因汽车厂商而异。 备有 3类压缩机 本公司的空调压缩机大致分为三类。 面向需要提高现有内燃机效率、实现小型化的汽车厂商, 供应的是借助传统发动机皮带传动类型的压缩机。面向以发动机为主体、电机为辅的车辆(Mild- HEV 供应的是皮带传动和电机驱动兼顾的混合式压缩机。对于以电机为主体 (Strong-HEV 、 EV 的车辆,则供应电动压缩机。(图 1。 图 1:空调压缩机的类型包括使用发动机驱动的类型,同时使用发动机和 电机驱动的混合动力型,单纯使用电机驱动的类型 3种。 本公司的电动压缩机开发始于 1986年。开发伊始虽然也经历过摸索阶段,但是在向推进车辆电动化的美国汽车厂商供货的过程中, 产品化速度非常之快。 1990年, 电动车“EVS -10”在美国投入使用。当时就是本公司供应的电动压缩机, 但产量还 非常少,在成本、充电电池、基础设施的限制下未能普及。

当时的电动压缩机需要另配逆变器, 成本昂贵, 空间利用率也比较低。之后, 本公司在电动压缩机与逆变器的一体化、压缩机构的高效化及小型轻量化等方面推进了开发。 对于 2005年上市的本田“思域混合动力”车型,本公司以此前开发的电动压缩机为基础,又开发出了皮带传动与电机驱动兼顾的混合式压缩机(图 2。这种混合式压缩机能够在车内温度高、车速慢等空调负荷较高的情况下同时使用皮带传动和电机驱动,使制冷能力达到最大(图 3。 图 2: 本田 2005年 9月上市的“思域混合动力” (a 车辆。(b 混合 式压缩机。同时支持发动机驱动与电机驱动。

机械毕业设计1182平动转子式汽车空调压缩机设计

摘要 21世纪,随着全球经济的发展,汽车业得到了蓬勃发展。作为小型汽车使用的空调,由于受到空间尺寸的苛刻限制,以及发动机功率相对较小,因此非常注意压缩机 的效率、外形尺寸以及功耗等的影响。针对传统压缩机存在的一些不足,本设计研究 了一种平动转子式压缩机,该压缩机的最大特点是转子采用平动转动的运转方式,因 此主要运动件之间的相对速度较小,故其摩擦损失很小。本设计主要完成以下方面的 工作: (1)简单介绍了汽车空调制冷系统的构成和工作原理,阐述了汽车空调压缩机的 发展历程,并对其特殊要求进行了说明,进而重点介绍了现有的滑片式和涡旋式这两 种两种类型压缩机的结构形式与特点。 (2)重点详细介绍了平动转子式压缩机的设计思想,工作原理,并进行总体设计。(3)对平动转子式压缩机的几个重要零件如气缸、转子、转轴、平动滑片、转轴 轴承座和后端盖进行了结构设计,并在工艺和选材上进行了详细的分析。 (4)对平动转子式压缩机的吸排气系统和润滑系统进行了系统的设计和分析。 (5)对平动转子式压缩机进行了热力学方面的分析与计算,并推导了平动转子和 滑片的运动学和动力学公式,同时还对转子进行了动平衡方面的分析。 与传统滑片式压缩机相比,本设计中的压缩机的主要运动副如转子与气缸、转子 与端盖、滑片与缸孔之间的相对运动速度要小很多,因此它具有较少的摩擦和磨损。 同时他还与涡旋压缩机的平动机构有机融合在一起,取其之长,因此等效制冷能力比 现存的压缩机高。而且结构紧凑、外形尺寸小、重量轻,特别适宜小型汽车使用。 在设计过程中运用了AutoCAD,Pro/E及Word,不但把所学的专业知识联系起来,而且还提高了计算机应用能力,拓宽了知识面。 关键词汽车空调;压缩机;平动转子;结构设计

电动汽车空调系统设计指南

电动汽车空调系统设计指南

目 次 1 范围 (1) 2 规范性引用文件 (1) 3 设计依据标准 (1) 3.1 欧盟标准 (1) 3.2 美国标准 (1) 3.3 国家标准 (1) 3.4 行业标准 (2) 3.5 企业标准 (3) 4 基本要求 (3) 5 空调系统结构布置与设计内容....................................... (4) 5.1 空调系统方案设计 (4) 5.2 HVAC总成选型与布置设计 (4) 5.3 空调控制面板设计 (5) 5.4 空调系统的风道设计 (5) 5.5 压缩机选型设计及压缩机安装支架设计 (7) 5.6 冷凝器及储液器设计 (7) 5.7 冷凝器风扇的选型与安装结构设计 (7) 5.8 制冷管路设计 (8) 5.9 电气控制原理设计与协调 (8) 5.10 空调系统的性能指标及系统试验 (9) 附录A(规范性附录) 空调系统设计流程 (10)

目 次 本指南是充分借鉴公司电动车型空调系统设计过程中的经验及积累的数据、结合公司现有的实际情况及未来发展需要编写而成的,旨在指导公司空调系统的设计工作,期望在空调系统设计的过程中,提高设计效率和精度,本指南将在本公司所有电动车型空调系统设计中实施,并在实践过程中进一步提高完善。

电动汽车空调系统设计指南 1范围 本指南概述了电动汽车空调系统设计依据标准、基本要求、空调系统结构布置与设计内容。 本指南适用于新产品空调系统的设计,老产品改进和改型的空调系统设计可参照执行。 2规范性引用文件 下列文件对本文件的引用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 Q/J B022 电动汽车HVAC总成技术条件 Q/J C021 空调系统参数匹配计算指南 Q/FD TSF6 001 整车空调系统环模试验及路试技术要求 3空调系统设计依据标准 以下标准是空调系统设计过程中性能和结构应依据的标准,空调系统国内国外设计指标及试验项目详见各标准内相关规定。 3.1 欧盟标准 672/2010/EU机动车辆玻璃表面的除霜和除雾系统 2006/40/EC 机动车辆空调系统的排放 ECE R100 关于认证机动车辆的统一规定,涉及施工安全与功能安全的特殊要求 ECE R122 关于M类、N类 及O类车辆在其加热系统方面认证的统一规定 3.2 美国标准 SAE J 2344-2010 电动汽车安全指南 SAE J 902-1999 乘用车前风窗除霜系统 SAE J 381-2000 载货车、大客车及多用途车风窗玻璃除霜系统试验规程和性能要求 49 CFR 393 G77 加热器 FMVSS 101 操纵件、指示器及信号装置的标志 FMVSS 103 风窗玻璃除霜和除雾系统 FMVSS 302 内饰材料的易燃性

相关文档
最新文档