三线制传感器与PLC

三线制传感器与PLC
三线制传感器与PLC

三线制传感器与PLC

————————————————————————————————作者:————————————————————————————————日期:

弱电基础知识之二线制三线制四线制比较

弱电基础知识之二线三线四线制接线比较 1. 仪表的二线制与四线制 二线制仪表即电源与信号共用两根线一般 四线制仪表电源与信号线分开信号为4~20mA或0~10mA,电源220AC(为多). 2.在热电阻中有两线制、三线制、四线制 两线制没有线路电阻补偿,配线简单,但要带进引线电阻的附加误差。因此不适用制造A级精度的热电阻,且在使用时引线及导线都不宜过长。 三线制有线路电阻补偿,可以消除引线电阻的影响,测量精度高于2线制。作为过程检测元件,其应用最广。 四线制:在热电阻的根部两端各连接两根导线的方式称为四线制,其中两根引线为热电阻提供恒定电流I,把R转换成电压信号U,再通过另两根引线把U引至PLC。这种引线方式可完全消除引线的电阻影响,但成本较高,主要用于高精度的温度检测。 3.西门子的二线制和四线制 二线制是PLC模块提供电源和采集电流信号 四线制仅仅采集电流信号

传感器的结构: 两线制: 传感器电阻变化值与连接导线电阻值共同构成传感器的输出值,由于导线电阻带来的附加误差使实际测量值偏高,用于测量精度要求不高的场合,并且导线的长度不宜过长。 三线制: 要求引出的三根导线截面积和长度均相同,测量铂电阻的电路一般是不平衡电桥,铂电阻作为电桥的一个桥臂电阻,将导线一根接到电桥的电源端,其余两根分别接到铂电阻所在的桥臂及与其相邻的桥臂上,当桥路平衡时,导线电阻的变化对测量结果没有任何影响,这样就消除了导线线路电阻带来的测量误差,但是必须为全等臂电桥,否则不可能完全消除导线电阻的影响。采用三线制会大大减小导线电阻带来的附加误差,工业上一般都采用三线制接法。 四线制: 当测量电阻数值很小时,测试线的电阻可能引入明显误差,四线测量用两条附加测试线提供恒定电流,另两条测试线测量未知电阻的电压降,在电压表输入阻抗足够高的条件下,电流几乎不流过电压表,这样就可以精确测量未知电阻上的压降,计算得出电阻值 在桥式电路中,为了减小热电阻阻值随温度变化对支路电流的影响并限制流过热电阻的电流,组成电桥的两个支路的上电阻通常取热电阻阻值的几十倍,其值达到10-50K(和桥路供电电压有关),下电阻一般和热电阻某温度下阻值相同。测量时取两者的电位差。虽然如此,热电阻阻值随温度变化对支路电流的影响还是会造成输出的非线性,通常需要做一定补偿。 如果直接测量阻值,应该采用恒流源给热电阻供电,热电阻阻值变化时支路电流保持恒定,热电阻压降为线性较好的温度函数。 放大前应该做滤波处理或者在放大电路中加积分元件。

PLC与传感器的连接方法

PLC与传感器的连接方法 一:引言 PLC的数字量输入接口并不复杂,我们都知道PLC为了提高抗干扰能力,输入接口都采用光电耦合器来隔离输入信号与内部处理电路的传输。因此,输入端的信号只是驱动光电耦合器的内部LED导通,被光电耦合器的光电管接收,即可使外部输入信号可靠传输。 目前PLC数字量输入端口一般分单端共点与双端输入,各厂商的单端共点(Com)的接口有光电耦合器正极共点与负极共点之分,日系PLC通常采用正极共点,欧系PLC习惯采用负极共点;日系PLC供应欧洲市场也按欧洲习惯采用负极共点;为了能灵活使用又发展了单端共点(S/S)可选型,根据需要单端共点可以接负极也可以接正极。 由于这些区别,用户在选配外部传感器时接法上需要一定的区分与了解才能正确使用传感器与PLC为后期的编程工作和系统稳定奠定基础。 二:输入电路的形式 1、输入类型的分类 PLC的数字量输入端子,按电源分直流与交流,按输入接口分类由单端共点输入与双端输入,单端共点接电源正极为SINK(sink Current 拉电流),单端共点接电源负极为SRCE(source Current 灌电流)。 2、术语的解释 SINK漏型 SOURCE源型 SINK漏型为电流从输入端流出,那么输入端与电源负极相连即可,说明接口内部的光电耦合器为单端共点为电源正极,可接NPN型传感器。 SOURCE源型为电流从输入端流进,那么输入端与电源正极相连即可,说明接口内部的光电耦合器为单端共点为电源负极,可接PNP型传感器。 国内对这两种方式的说法有各种表达: 1)、根据TI的定义,sink Current 为拉电流,source Current为灌电流, 2)、由按接口的单端共点的极性,共正极与共负极。这样的表述比较容易分清楚。 3)、SINK为NPN接法,SOURCE为PNP接法(按传感器的输出形式的表述)。 4)、SINK为负逻辑接法,SOURCE为正逻辑接法(按传感器的输出形式的表述)。 5)、SINK为传感器的低电平有效,SOURCE为传感器的高电平有效(按传感器的输出状态的表述)。 这种表述的笔者接触的最多,也是最容易引起混淆的说法。 接近开关与光电开关三、四线输出分NPN与PNP输出,对于无检测信号时NPN的接近开关与光电开关输出为高电平(对内部有上拉电阻而言),当有检测信号,内部NPN管导通,开关输出为低电平。 对于无检测信号时PNP的接近开关与光电开关输出为低电平(对内部有下拉电阻而言),当有检测信号,内部PNP管导通,开关输出为高电平。 以上的情况只是针对,传感器是属于常开的状态下。目前可厂商生产的传感器有常开与常闭之分;常闭型NPN输出为低电平,常闭型PNP输出为高电平。因此用户在选型上与供应商配合上经常产生偏差。 另一种情况,用户也遇到SINK接PNP型传感器,SOURCE接NPN型传感器,也能驱动PLC接口,对于PLC输入信号状态则由PLC程序修改。原因是传感器输出有个上拉电阻与下拉电阻的缘故,对于集电极开路的

现场传感器接线说明

现场传感器接线说明 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

1)室外温湿度传感器 现场使用的室外温湿度传感器主要有两个型号 QFA3160 电源:24VDC;输出:0-10V QFA3171电源:24VDC;输出:4-20mA 按上图片可以修改传感器的信号类型和量程范围,信号类型出场都是调试好的,基本不用改。量程范围根据当地气候,一般情况用R3档。 上图为传感器接线图(需要注意QFA3171温度和湿度需要单独供电)。 调试的时候需要检查 1.传感器供电(一般为24VDC,特殊类型需查看说明书)。 2.传感器和模块上的接线(电压和电流型在AI模块上的接线不同)。 3.传感器量程;信号类型是否和硬件组态中一致。 4.改完量程一定要盖上传感器的盖子才能正确度数 5.程序中的FC105的上下限应与计算值对应。 2)水管温度传感器 现场使用的室外温湿度传感器主要有两个型号 PT100和LG-Ni1000;PT100为温度0度时电阻为100欧姆的铂电阻,LG-Ni1000是指温度0度是电阻为1000欧姆的镍电阻。 接线方式分为2线制和3线制。3线制的接法可以消除线组对传感器测量数值的影响 传感器端只有两个段子,3线制接线方法为将其中两个线接到传感器一个段子上,模块端分别接在S-和M-上,剩余的一根线接到M+上;2线制的接法为将两根线分别接到传感器两个段子上,模块端分别接在M+和M-,同时将模块端S-和M-短接。

硬件组态的时候,如果选择的是PT100Sta.,那么程序中除以10,如果选择的是PT100Cl.,就要除100。 3)流量传感器 流量传感器型号:DWM2000 电源:24VDC 输出:4-20mA 接线方法和设置如下图: 拨码的计算 调试的时候需要检查 1.传感器供电(一般为24VDC,特殊类型需查看说明书)。 2.传感器和模块上的接线。 3.传感器量程;信号类型是否和硬件组态中一致。 4.必须在不开水泵,同时保证管道中液体静止时才能调零。 5.程序中的FC105的上下限应与计算值对应。 4)西门子压力传感器 型号:QBE2002 电源:24VDC 输出:0-10V 接线方法: 现场很多西门子传感器线的颜色为棕、蓝、白与接线图上线色不同,但是还是按照棕—供电、白—GND、蓝—输出信号的接法。 5)瑞士Huba压力传感器

二线制三线制四线制比较

1. 仪表的二线制与四线制 二线制仪表即电源与信号共用两根线一般 四线制仪表电源与信号线分开信号为4~20mA或0~10mA,电源220AC(为多). 2.在热电阻中有两线制、三线制、四线制 两线制没有线路电阻补偿,配线简单,但要带进引线电阻的附加误差。因此不适用制造A 级精度的热电阻,且在使用时引线及导线都不宜过长。 三线制有线路电阻补偿,可以消除引线电阻的影响,测量精度高于2线制。作为过程检测元件,其应用最广。 四线制:在热电阻的根部两端各连接两根导线的方式称为四线制,其中两根引线为热电阻提供恒定电流I,把R转换成电压信号U,再通过另两根引线把U引至PLC。这种引线方式可完全消除引线的电阻影响,但成本较高,主要用于高精度的温度检测。 3.西门子的二线制和四线制 二线制是PLC模块提供电源和采集电流信号 四线制仅仅采集电流信号

传感器的结构: 两线制: 传感器电阻变化值与连接导线电阻值共同构成传感器的输出值,由于导线电阻带来的附加误差使实际测量值偏高,用于测量精度要求不高的场合,并且导线的长度不宜过长。 三线制: 要求引出的三根导线截面积和长度均相同,测量铂电阻的电路一般是不平衡电桥,铂电阻作为电桥的一个桥臂电阻,将导线一根接到电桥的电源端,其余两根分别接到铂电阻所在的桥臂及与其相邻的桥臂上,当桥路平衡时,导线电阻的变化对测量结果没有任何影响,这样就消除了导线线路电阻带来的测量误差,但是必须为全等臂电桥,否则不可能完全消除导线电阻的影响。采用三线制会大大减小导线电阻带来的附加误差,工业上一般都采用三线制接法。 四线制: 当测量电阻数值很小时,测试线的电阻可能引入明显误差,四线测量用两条附加测试线提供恒定电流,另两条测试线测量未知电阻的电压降,在电压表输入阻抗足够高的条件下,电流几乎不流过电压表,这样就可以精确测量未知电阻上的压降,计算得出电阻值 在桥式电路中,为了减小热电阻阻值随温度变化对支路电流的影响并限制流过热电阻的电流,组成电桥的两个支路的上电阻通常取热电阻阻值的几十倍,其值达到 10-50K(和桥路供电电压有关),下电阻一般和热电阻某温度下阻值相同。测量时取两者的电位差。虽然如此,热电阻阻值随温度变化对支路电流的影响还是会造成输出的非线性,通常需要做一定补偿。 如果直接测量阻值,应该采用恒流源给热电阻供电,热电阻阻值变化时支路电流保持恒定,热电阻压降为线性较好的温度函数。 放大前应该做滤波处理或者在放大电路中加积分元件。 ?怎样判断pt100的好坏,用万用表能测量么? 根据分度表参照当时温度看阻值是否相符 ?通常情况下是这样的,将一个基准电压加在pt100回路上,测量pt100上的电压信号(mv),阻值变化是电压信号自然也变化,再经过运放放大后进入A/D芯片进行A/D转换,经过程序再 将电压信号换算成电阻值,采用查表方式(将电阻值和相对应的温度值做成表格放到芯片rom 中)的到温度值。 ?一般短距离选用二线制接法,中距离选用三线制接法,要求精度高、近距离选用四线制接法。

PLC与感应器接线方法

一、概述 PLC的数字量输入接口并不复杂,我们都知道PLC为了提高抗干扰能力,输入接口都采用光电耦合器来隔离输入信号与内部处理电路的传输。因此,输入端的信号只是驱动光电耦合器的内部LED导通,被光电耦合器的光电管接收,即可使外部输入信号可靠传输。 目前PLC数字量输入端口一般分单端共点与双端输入,各厂商的单端共点(Com)的接口有光电耦合器正极共点与负极共点之分,日系PLC通常采用正极共点,欧系PLC习惯采用负极共点;日系PLC供应欧洲市场也按欧洲习惯采用负极共点;为了能灵活使用又发展了单端共点(S/S)可选型,根据需要单端共点可以接负极也可以接正极。 由于这些区别,用户在选配外部传感器时接法上需要一定的区分与了解才能正确使用传感器与PLC为后期的编程工作和系统稳定奠定基础。 二、输入电路的形式 1、输入类型的分类 PLC的数字量输入端子,按电源分直流与交流,按输入接口分类由单端共点输入与双端输入,单端共点接电源正极为SINK(sink Current 拉电流),单端共点接电源负极为SRCE(source Current 灌电流)。 2、术语的解释 SINK漏型 SOURCE源型

SINK漏型为电流从输入端流出,那么输入端与电源负极相连即可,说明接口内部的光电耦合器为单端共点为电源正极,可接NPN型传感器。 SOURCE源型为电流从输入端流进,那么输入端与电源正极相连即可,说明接口内部的光电耦合器为单端共点为电源负极,可接PNP型传感器。 国内对这两种方式的说法有各种表达: 2.1 根据TI的定义,sink Current 为拉电流,source Current为灌电流 2.2 由按接口的单端共点的极性,共正极与共负极。这样的表述比较容易分清楚。 2.3 SINK为NPN接法,SOURCE为PNP接法(按传感器的输出形式的表述)。 2.4 SINK为负逻辑接法,SOURCE为正逻辑接法(按传感器的输出形式的表述)。 2.5 SINK为传感器的低电平有效,SOURCE为传感器的高电平有效(按传感器的输出状态的表述)。 这种表述的笔者接触的最多,也是最容易引起混淆的说法。 接近开关与光电开关三、四线输出分NPN与PNP输出,对于无检测信号时NPN 的接近开关与光电开关输出为高电平(对内部有上拉电阻而言),当有检测信号,内部NPN管导通,开关输出为低电平。 对于无检测信号时PNP的接近开关与光电开关输出为低电平(对内部有下拉电阻而言),当有检测信号,内部PNP管导通,开关输出为高电平。 以上的情况只是针对,传感器是属于常开的状态下。目前可厂商生产的传感器有常开与常闭之分;常闭型NPN输出为低电平,常闭型PNP输出为高电平。因此用户在选型上与供应商配合上经常产生偏差。 另一种情况,用户也遇到SINK接PNP型传感器,SOURCE接NPN型传感器,也能驱动PLC接口,对于PLC输入信号状态则由PLC 程序修改。原因是传感器输出有个上拉电阻与下拉电阻的缘故,对于集电极开路的传感器,这样的接法是无效的;另外输出的上拉电阻与下拉电阻阻值与PLC接口漏电流参数有很大

直线位移传感器的接线方法与注意事项

1、直线位移传感器(俗称电子尺),供电电压一般在5v——36v为宜,不要超过36v,否则容易烧坏线路。 2、供电电压要稳定,工业电源要求±0.1%的稳定性,比如基准电压10v,允许有±0.01v的波动,否则,会导致显示的较大波动。如果这时的显示波动幅度不超过波动电压的波动幅度,直线位移传感器(电子尺)就属于正常。 3、供电电源要有足够的容量,如果电源容量太小,容易发生如下情况:合模运动会导致射胶直线位移传感器(电子尺)显示跳动,或熔胶运动会导致合模电子尺的显示波动。特别是电磁阀驱动电源于电子尺供电电源在一起时容易出现上述情况,严重时可以用万用表的电压档测量到电压的波动。如果在排除了静电干扰、高频干扰、对中性不好的情况下仍不能解决问题,也可以怀疑是电源的功率偏小。 4、不能接错直线位移传感器(电子尺)的三条线,1#、3#线是电源线,2#是输出线除1#、3#线电源线可以调换外,2#线只能是输出线。上述线一旦接错,将出现线性误差大,控制精度差,容易显示跳动等现象。如果出现控制非常困难,就应该怀疑是接错线。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/231816309.html,。

二线制三线制四线制比较

1.仪表的二线制与四线制 二线制仪表即电源与信号共用两根线一般 四线制仪表电源与信号线分开信号为4~20mA或0~10mA,电源220AC(为多).2.在热电阻中有两线制、三线制、四线制 两线制没有线路电阻补偿,配线简单,但要带进引线电阻的附加误差。因此不适用制造A 级精度的热电阻,且在使用时引线及导线都不宜过长。 三线制有线路电阻补偿,可以消除引线电阻的影响,测量精度高于2线制。作为过程检测元件,其应用最广。 四线制:在热电阻的根部两端各连接两根导线的方式称为四线制,其中两根引线为热电阻提供恒定电流I,把R转换成电压信号U,再通过另两根引线把U引至PLC。这种引线方式可完全消除引线的电阻影响,但成本较高,主要用于高精度的温度检测。 3.西门子的二线制和四线制 二线制是PLC模块提供电源和采集电流信号 四线制仅仅采集电流信号

传感器的结构: 两线制: 传感器电阻变化值与连接导线电阻值共同构成传感器的输出值,由于导线电阻带来的附加误差使实际测量值偏高,用于测量精度要求不高的场合,并且导线的长度不宜过长。 三线制: 要求引出的三根导线截面积和长度均相同,测量铂电阻的电路一般是不平衡电桥,铂电阻作为电桥的一个桥臂电阻,将导线一根接到电桥的电源端,其余两根分别接到铂电阻所在的桥臂及与其相邻的桥臂上,当桥路平衡时,导线电阻的变化对测量结果没有任何影响,这样就消除了导线线路电阻带来的测量误差,但是必须为全等臂电桥,否则不可能完全消除导线电阻的影响。采用三线制会大大减小导线电阻带来的附加误差,工业上一般都采用三线制接法。 四线制: 当测量电阻数值很小时,测试线的电阻可能引入明显误差,四线测量用两条附加测试线提供恒定电流,另两条测试线测量未知电阻的电压降,在电压表输入阻抗足够高的条件下,电流几乎不流过电压表,这样就可以精确测量未知电阻上的压降,计算得出电阻值 在桥式电路中,为了减小热电阻阻值随温度变化对支路电流的影响并限制流过热电阻的电流,组成电桥的两个支路的上电阻通常取热电阻阻值的几十倍,其值达到10-50K(和桥路供电电压有关),下电阻一般和热电阻某温度下阻值相同。测量时取两者的电位差。虽然如此,热电阻阻值随温度变化对支路电流的影响还是会造成输出的非线性,通常需要做一定补偿。 如果直接测量阻值,应该采用恒流源给热电阻供电,热电阻阻值变化时支路电流保持恒定,热电阻压降为线性较好的温度函数。 放大前应该做滤波处理或者在放大电路中加积分元件。 ?怎样判断pt100的好坏,用万用表能测量么? 根据分度表参照当时温度看阻值是否相符 ?通常情况下是这样的,将一个基准电压加在pt100回路上,测量pt100上的电压信号(mv),阻值变化是电压信号自然也变化,再经过运放放大后进入A/D芯片进行A/D转换,经过程序再 将电压信号换算成电阻值,采用查表方式(将电阻值和相对应的温度值做成表格放到芯片rom 中)的到温度值。 ?一般短距离选用二线制接法,中距离选用三线制接法,要求精度高、近距离选用四线制接法。

PLC与传感器的接线

PLC与传感器的接线 01概述 PLC的数字量输入接口并不复杂,我们都知道PLC为了提高抗干扰能力,输入接口都采用光电耦合器来隔离输入信号与内部处理电路的传输。因此,输入端的信号只是驱动光电耦合器的内部LED导通,被光电耦合器的光电管接收,即可使外部输入信号可靠传输。 目前PLC数字量输入端口一般分单端共点与双端输入,各厂商的单端共点(Com)的接口 有光电耦合器正极共点与负极共点之分,日系PLC 通常采用正极共点,欧系PLC习惯采用负极共点;日系PLC供应欧洲市场也按欧洲习惯采用负极共点;为了能灵活使用又发展了单端共点(S/S)可选型,根据需要单端共点可以接负极也可以接正极。由于这些区别,用户在选配外部传感器时接法上需要一定的区分与了解才能正确使用传感器与PLC为后期的编程工作和系统稳定奠定基础。 02输入电路的形式

1、输入类型的分类 PLC的数字量输入端子,按电源分直流与交流,按输入接口分类由单端共点输入与双端输入,单端共点接电源正极为SINK(sink Current 拉电流),单端共点接电源负极为SRCE(source Current灌电流)。 2、术语的解释 SINK漏型SOURCE源型 SINK漏型为电流从输入端流出,那么输入端与电源负极相连即可,说明接口内部的光电耦合器为单端共点为电源正极,可接NPN型传感器。 SOURCE源型为电流从输入端流进,那么输入端与电源正极相连即可,说明接口内部的光电耦合器为单端共点为电源负极,可接PNP型传感器。国内对这两种方式的说法有各种表达:

2.1 根据TI的定义,sink Current为拉电流,source Current为灌电流 2.2 由按接口的单端共点的极性,共正极与共负极。这样的表述比较容易分清楚。 2.3 SINK为NPN接法,SOURCE为PNP接法(按传感器的输出形式的表述)。 2.4 SINK 为负逻辑接法,SOURCE为正逻辑接法(按传感器的输出形式的表述)。 2.5 SINK为传感器的低电平有效,SOURCE为传感器的高电平有效(按传感器的输出状态的表述)。 这种表述的笔者接触的最多,也是最容易引起混淆的说法。接近开关与光电开关三、四线输出分NPN与PNP输出,对于无检测信号时NPN 的接近开 关与光电开关输出为高电平(对内部有上拉电阻而言),当有检测信号,内部NPN管导通, 开关输出为低电平。 对于无检测信号时PNP的接近开关与光电开关输出为低电平(对内部

传感器接线端子说明

涡街流量计使用说明 一、 涡街表头实现功能 : 1.液晶点阵汉字显示,直观方便,操作简洁明了; 2.带温度/压力传感器接口。温度可配接Pt100或Pt1000,压力可接表 压或绝压传感器,并可分段修正; 3.输出信号多样化,可根据客户要求选择两线制4-20mA 输出、三线制脉 冲输出和三线制当量输出; 4.具有卓越的非线性修正功能,大大提高仪表的线性; 5.具有软件频谱分析功能,提高了仪表抗干扰和抗震的能力; 6.测量介质广泛,可测量蒸汽、液体、一般气体、天然气等; 7.超低功耗,一节干电池全性能工作可维持至少3年; 8.工作模式可自动切换,电池供电、两线制、三线制; 9.自检功能,有丰富的自检信息;方便用户检修和调试。 10.具有独立密码设置,参数、总量清零和校准可设置不同级别的密码,方便用户管理; 11. 三线制模式下支持485通讯; 12.显示单位可选择,可自定义; 二、 涡街表头操作: 仪表通过按键进行参数设置,一般在安装时要使用按键手动设置一些参数。仪表有三个按键,从左到右顺序为F1、F2和F3键.通常F1为移位键,F2为确认和换项键,F3为修改和返回键。如有按键特殊功能,按键功能有所不同,使用时请参看液晶屏界面下方的按键功能说明。仪表运行时,可通过F3键手动切换到主界面2/主界面3,主界面2显示内容除瞬时流量更改显示为工况流量外,其余与主界面1内容基本相同,主界面3同时显示工况和瞬时的流量。 2.1 启动 仪表上电时,将进行自检,如果自检异常,将显示自检错误界面(自检界面说明参照自检菜单),大约1~2秒后跳转到主界面。否则将直接跳转到主界面。主界面启动后如下图所示: 主界面1 2 3 4 5 6 1

光电开关传感器接线图

光电开关传感器接线图光电开关传感器双线直流接线方法 光电开关传感器电路原理图 接线电压:10—65V直流 常开触点(NO) 无极性 防短路的输出 漏电电流≤ 电压降≤5V 注意不允许双线直流传感器的串并联连接 光电开关传感器三线直流接线图 电路原理图 接线电压:10—30V直流 常开触点(NO) 电压降≤ 防短路的输出 完备的极性保护 三线直流与四线直流传感器的串联 当串联时,电压降相加,单个传感器的准备延迟时间相加。

四线直流光电开关传感器接线方法 电路原理图 接线电压:10—65V 切换开关 防短路的输出 完备的极性保护 电压降≤ 三线直流与四线直流光电开关传感器的并联接线图

光电开关传感器双线交流接线方法 电路原理图 常开触点(NO) 常闭触点(NC) 接线电压:20—250V交流 漏电电流≤ 电压降≤7V(有效值) 双线交流传感器的串联 常开触点:“与”逻辑 常闭触点:“或非”逻辑 当串联时,在传感器上的电压降相加,它减低了负载上可利用的电压,因此要注意:不能低于负载上的最小工作电压(注意到电网电压的波动)。 机械开关与交流光电开关传感器串联接线方法 断开的触点中断了传感器的电源电压,若在传感器被衰减期间内机械触点闭和的话,则会产生一个短时间的功能故障,传感器的准备延迟时间(t≤80ms)避免了立即的通断动作。 补偿方法:将一电阻并联在机械触点上(当触点断开时也是一样),此电阻使传感器的准备时间不再起作用,对于200V交流,此电阻大约为82KΩ/1w。 电阻的计算方法:近似值大约为400Ω/V

双线交流光电开关传感器的并联接线方法 常开触点:“与”逻辑 常闭触点:“或非”逻辑 闭和触点使传感器的工作电压短路,当触点短开以后只有在准备延迟时间(t≤80ms)之后传感器才处于功能准备状态。 补偿办法:触点上串联一个电阻可以可靠地保证了传感器的最小工作电压,因此避免了在机械触点断开之后的准备延迟。 计算电阻的公式:R=10/I P=I2×R

PLC与传感器连接解决方案选型参考

PLC与传感器连接方案选型参考 传感器模拟信号数据采集与PLC系统匹配方案选型 概述 在工业现场中,压力、位移、温度、流量、转速等各类模拟量传感器因设计使用的技术方法不同。传感器工作配电的方式主要分为两线制和四线制,其输出的模拟信号也各有差异,而常见的有0-20mA/4-20mA电流信号和0-75mV/0-5V/1-5V电压信号。要把各类传感器模拟信号成功采集到PLC/DCS/FCS/MCU/FA/PC系统,就要根据传感器与数据采集系统的功能和技术特点进行匹配选型,同时也要考虑到工业现场传感器与PLC等数据采集系统的供电差异及各种EMC干扰的影响,通常把传感器输出的模拟信号隔离、放大、转换后送到PLC等数据采集系统。PLC通过信号线采集传感器的模拟或数字信号,然后进行处理,如果传感器是模拟输出,PLC就要接模拟输入接口,如果传感器是数字信号输出,PLC就要接数字输入接口。 开关量传感器就是一个无触点的开关 ,开关量传感器可作为PLC的开关量输入信号。一般 用于开关量控制的设备,机床,机器等。模拟量传感器是把不同的物理量(如 压力、流量、温度) 转换成模拟量(4-20MA的电流或1-5V的电压)。模拟量传感器作为PLC的模拟量输入模块的输入信 号。一般用于过程控制。 数字传感器是指将传统的模拟式传感器经过加装或改造A/D转换模块, 使之输出信号为数字量(或数字编码)的传感器,主要包括:放大器、A/D转换器、微处理器(CPU)、 存储器、通讯接口电路等。 常用的模拟量传感器分为两线制和四线制,两线制和四线制都只有两根信号线,它们之间的 主要区别在于:两线制的两根信号线既要给传感器或者变送器供电,又要提供电流电压信号;而四 线制的两根信号线只提供电流信号。因此,通常提供两线制电流电压信号的传感器或者变送器是无 源的;而提供四线制电流信号的传感器或者变送器是有源的。因此,当PLC等数据采集系统的模板 输入通道设定为连接四线制传感器时,PLC只从模板通道的端子上采集模拟信号,而当PLC等数据 采集系统的模板输入通道设定为连接二线制传感器时,PLC的模拟输入模板的通道上还要向外输出 一个直流24V的电源,以驱动两线制传感器工作。 4-20mA和电工标准有关,4-20mA信号制 是国际电工委员会(IEC)过程控制系统用模拟信号标准。我国从DDZ-Ⅲ型电动仪表开始采用这一国 际标准信号制,仪表传输信号采用4-20mA,联络信号采用1-5VDC,即采用电流传输、电压接收的信 号系统。因为信号起点电流为4mA,为变送器提供了静态工作电流,同时仪表电气零点为4mA,不与 机械零点重合,这种活零点有利于识别断电和断线等故障。 IC封装和标准DIN 35导轨安装的产品图片展示

天津华宁系列传感器接线图

天津华宁系列传感器接线图 跑偏传感器的接线方法:(如下图) 跑偏传感器 图-4 跑偏传感器的接线如图所示:只接一对接点,一般是接常开点,如果接到控制器里,则直接接线就行了,接到输入端的“IN”和公共端上。如果接到下位机里,还需要在输入端串接一个1K和并联一个22K的电阻。 入口跑偏传感器控制器接线方法 下位机接线方法 跑偏传感器入口 图-5 温度传感器的接线方法:(如下图) 入口温度传感器 控制器接线方法下位机接线方法 温度传感器 入口 图-6 温度传感器的接线方法如上图所示:如果接到控制器里,就直接接到控制器的输入端的“IN”和公共端上;如果接到下位机里,还需要在输入端串接一个1K和并联一个22K的电阻。

堆煤传感器的接线方法(如下图) 控制器接线方法 入口 外接大地 外接大地 入口 下位机接线方法 图-7 跳线端子号:1:1000K (干煤) 2:750K 3:550K 4:350K (湿煤) 根据煤的干湿情况选择适当的跳线,选择哪个,就把跳线插在相应的端子上。 堆煤传感器的接线如上图所示:电源正--接控制器系统的“+”,电源负--接控制器系统的公共端,earth--接大地,com--接输入口的“IN ”。如果接到控制器里,则接输出2,如果接到下位机里,则接输出1。 烟雾传感器的接线方法(如下图)

烟雾传感器 下位机输入口 下位机接线方法 烟雾传感器 控制器输入口 控制器接线方法 图-8 烟雾传感器的接线方法如上图所示:“”接到控制器系统的电源正;“”接到控制器系统的公共端;“ 4,5”接到控制器系统输入端的“IN”和公共端上,其中,在“4,5”端,如果接到控制器里,直接接线就可以了,如果接到下位机里,需要在输入端串接一个1K电阻在并联一个22K电阻。 速度传感器的接线方法(如下图) 控制器或下位机 输入端 速度传感器内部接 线端子 图-9 GSC-200/1000-SC速度图示如上图,A:对应电源正,B:对应电源负,C:信号输出 D:对应公共端,接线时,B、D短接,并接到控制器或下位机的公共端上。C接到控制器或下位机的输入口上。 纵撕传感器的接线方法(如下图)

二线制三线制四线制仪表区别

浅谈仪表的两线制、三线制、四线制(转) 我们讨论的两线制、三线制、四线制,是指各种输出为模拟直流电流信号的变送器,其工作原理和结构上的区别,而并非只指变送器的接线形式。否则热电偶配毫伏计测量温度可称为是两线制的鼻祖了! 几线制的称谓,是在两线制变送器诞生后才有的。这是电子放大器在仪表中广泛应用的结果,放大的本质就是一种能量转换过程,这就离不开供电。因此最先出现的是四线制的变送器;即两根线负责电源的供应,另外两根线负责输出被转换放大的信号(如电压、电流、等)。DDZ-Ⅱ型电动单元组合仪表的出现,供电为220V.AC,输出信号为0--10mA.DC的四线制变送器得到了广泛的应用,目前在有些工厂还可见到它的身影。 七十年代我国开始生产DDZ-Ⅲ型电动单元组合仪表,并采用国际电工委员会(IEC)的:过程控制系统用模拟信号标准。即仪表传输信号采用4-20mA.DC,联络信号采用1-5V.DC,即采用电流传输、电压接收的信号系统。采用4-20mA.DC信号,现场仪表就可实现两线制。但限于条件,当时两线制仅在压力、差压变送器上采用,温度变送器等仍采用四线制。现在国内两线制变送器的产品范围也大大扩展了,应用领域也越来越多。同时从国外进来的变送器也是两线制的居多。 因为要实现两线制变送器必须同时满足以下条件:

1.V≤Emin-ImaxRLmax 变送器的输出端电压V等于规定的最低电源电压减去电流在负载电阻和传输导线电阻上的压降。 2. I≤Imin 变送器的正常工作电流I必须小于或等于变送器的输出电流。 3. P<Imin(Emin-IminRLmax) 变送器的最小消耗功率P不能超过上式,通常<90mW。 式中:Emin=最低电源电压,对多数仪表而言Emin=24(1-5%)=22.8V,5%为24V电源允许的负向变化量; Imax="20mA"; Imin="4mA"; RLmax="250"Ω+传输导线电阻。 如果变送器在设计上满足了上述的三个条件,就可实现两线制传输。所谓两线制即电源、负载串联在一起,有一公共点,而现场变送器与控制室仪表之间的信号联络及供电仅用两根电线,这两根电线既是电源线又是信号线。两线制变送器由于信号起点电流为4mA.DC,为变送器提供了静态工作电流,同时仪表电气零点为4mA.DC,不与

PLC与传感器的接线方法

PLC与传感器的接线方法 收藏此信息打印该信息添加:佚名来源:未知 一、概述 PLC的数字量输入接口并不复杂,我们都知道PLC为了提高抗干扰能力,输入接口都采用光电耦合器来隔离输入信号与内部处理电路的传输。因此,输入端的信号只是驱动光电耦合器的内部LED导通,被光电耦合器的光电管接收,即可使外部输入信号可靠传输。 目前PLC数字量输入端口一般分单端共点与双端输入,各厂商的单端共点(Co m)的接口有光电耦合器正极共点与负极共点之分,日系PLC通常采用正极共点,欧系PLC习惯采用负极共点;日系PLC供应欧洲市场也按欧洲习惯采用负极共点;为了能灵活使用又发展了单端共点(S/S)可选型,根据需要单端共点可以接负极也可以接正极。 由于这些区别,用户在选配外部传感器时接法上需要一定的区分与了解才能正确使用传感器与PLC为后期的编程工作和系统稳定奠定基础。 二、输入电路的形式 1、输入类型的分类 PLC的数字量输入端子,按电源分直流与交流,按输入接口分类由单端共点输入与双端输入,单端共点接电源正极为SINK(sink Current 拉电流),单端共点接电源负极为SRCE(source Current 灌电流)。 2、术语的解释 SINK漏型

SOURCE源型 SINK漏型为电流从输入端流出,那么输入端与电源负极相连即可,说明接口内部的光电耦合器为单端共点为电源正极,可接NPN型传感器。 SOURCE源型为电流从输入端流进,那么输入端与电源正极相连即可,说明接口内部的光电耦合器为单端共点为电源负极,可接PNP型传感器。 国内对这两种方式的说法有各种表达: 2.1 根据TI的定义,sink Current 为拉电流,source Current为灌电流 2.2 由按接口的单端共点的极性,共正极与共负极。这样的表述比较容易分清楚。 2.3 SINK为NPN接法,SOURCE为PNP接法(按传感器的输出形式的表述)。 2.4 SINK为负逻辑接法,SOURCE为正逻辑接法(按传感器的输出形式的表述)。 2.5 SINK为传感器的低电平有效,SOURCE为传感器的高电平有效(按传感器的输出状态的表述)。 这种表述的笔者接触的最多,也是最容易引起混淆的说法。 接近开关与光电开关三、四线输出分NPN与PNP输出,对于无检测信号时NP N的接近开关与光电开关输出为高电平(对内部有上拉电阻而言),当有检测信号,内部NPN管导通,开关输出为低电平。 对于无检测信号时PNP的接近开关与光电开关输出为低电平(对内部有下拉电阻而言),当有检测信号,内部PNP管导通,开关输出为高电平。 以上的情况只是针对,传感器是属于常开的状态下。目前可厂商生产的传感器有常开与常闭之分;常闭型NPN输出为低电平,常闭型PNP输出为高电平。因此用户在选型上与供应商配合上经常产生偏差。

热电阻接入电路两线制和三线制接线法的分析

1.10 热电阻接入电路两线制和三线制接线法的分析 热电阻接入电路两线制三线制接线法 1.分析两线制由于引线电阻的误差 图1-12中,r为引线的电阻,R t为Pt电阻,其中由欧姆定律可得: 当R r=R t时(电桥平衡),V0=-I22r 。 从V0的表达式可以看出,引线电阻的影响十分明显,两线制接线法的误差很大。 2.分析三线制如何消除引线电阻的误差 三线制接线法由图1-13所示,由欧姆定律可得: 当R r=R t时,电桥平衡,I1=I2,V0=0。 可见三线制接线法可很好的消除引线电阻,提高热电阻的精度。 工业用热电阻温度计的使用注意事项

热电阻温度计是利用导体或半导体的电阻值随温度变化的性质来测量温度的,在工业生产中广泛用来测量(-100~500)℃范围的温度,其主要特点是测温准确度高,便于自动测量。由于热电偶在低温范围中产生的热电势小,因而对测量仪表要求严格,而采用热电阻温度计测量低温是很适宜的。 热电阻温度计按结构形式可分为普通工业型、铠装型及特殊型等。 常用的普通工业型热电阻主要有: 1.铂热电阻:广泛用来测量(-200~850)℃范围内的温度。在少数情况下,低温可测至1K,高温可测至1000℃。其物理、化学性能稳定,复现性好,但价格昂贵。铂热电阻与温度是近似线性关系。其分度号主要有Pt10和Pt100。 2.铜热电阻:广泛用来测量(-50~150)℃范围内的温度。其优点是高纯铜丝容易获得,价格便宜,互换性好,但易于氧化。铜热电阻与温度呈线性关系。其分度号主要有Cu50和Cu100。 铠装热电阻是在铠装热电偶的基础上发展来的,由热电阻、绝缘材料和金属套管三者组合加工而成,其特点是外形尺寸可以做得很小(最小直径可达20毫米),因而反应速度快,有良好的机械性能,耐振耐冲击,具有良好的挠性,且不易受有害介质的侵蚀。 使用热电阻前必须检查它的好环,简易的检查方法是将热电阻从保护管中抽出,用万用表测量其电阻。若万用表读数为“0"或者万用表读数小于R0值,则该热电阻已短路,必须找出短路处进行修复;若万用表读数为“∞",则该热电阻已断路,不能使用;若万用表读数比R0的阻值偏高一些,说明该热电阻是正常的。 热电阻的阻值不正确时,应从下部端点交叉处增减电阻丝,而不应从其它处调整。完全调好后应将电阻丝排列整齐,不能碰接,仍按原样包扎好。 经修复的热电阻,必须经过检定合格后方可使用。 热电阻安装时,其插入深度不小于热电阻保护管外径的8倍~10倍,尽可能使热电阻受热部分增长。热电阻尽可能垂直安装,以防在高温下弯曲变形。热电阻在使用中为了减小辐射热和热传导所产生的误差,应尽量使保护套管表面和被测介质温度接近,减小热电阻保护套管的黑色系数。 当用与热电阻相配的二次仪表测量温度时,热电阻安置在被测温度的现场,而二次仪表则放置在操作室内。如果用不平衡电桥来测量,那么连接热电阻的导线都分布在桥路的一个臂上。由于热电阻与仪表之间一般都有一段较长的距离,因此两根连接导线的电阻随温度的变化,将同热电阻阻值的变化一起加在不平衡电桥的一个臂上,使测量产生较大的误差。为减小这一误差,一般在测温热电阻与仪表连接时,采用三线制接法(图1),即从热电阻引出三根导线,将连接热电阻的两根导线正好分别处于相邻的两个桥臂内(图2)。当环境温度变化而使导线电阻值改变时,其产生的作用正好互相抵消,使桥路输出的不平衡电压不会因之而改变。另一导线电阻R1的变动,仅对供桥电压有极微小的影响,但在准确度范围内。其示意图如下所示:

PLC连接称重测力传感器的几种方法

PLC连接称重测力传感器的几种方法 上海天贺自动化仪表有限公司李树伟 在用PLC组成称重及配料控制系统时,与称重传感器的连接一般有以下几种方式: 1.称重传感器(称重模组)+接线盒+模拟称重放大器+PLC模拟量输入模块 一般称重传感器的信号输出都是与重量载荷成正比的毫伏级电压信号,普通PLC的模拟量输入模块无法直接处理,故需附加称重放大器将微弱的传感器信号调理放大到0~10V或者4~20mA的所谓标准工业过程信号,以供PLC的模拟量模块进行处理。典型产品有我公司生产的经济型放大器RW-ST01,工业级精密型放大器RW-PT01及内置接线盒的四路求和放大器RW-JT4。这种方式的好处是系统灵活,编程方便直接,系统反应速度快。缺点是模拟量信号在传输的过程中容易受到干扰。并且普通的PLC模拟量输入模块的分辨率都有限,一般不超过4000个分度,很难做到高精度称重。 2.称重传感器(称重模组)+接线盒+数字称重变送器(RS232或RS485输出)接PLC标 准串行通讯口 这种方式的好处是省去了PLC的模拟量输入模块,利用标准的MODBUS协议即可完成称重信号的采集,并且可以同时并接多路称重传感器。缺点是占用了PLC的通讯口,并且由于串行通信速率的限制,整个系统的响应时间较长。一般都在几十毫秒的数量级。这种连接方式的典型产品有我公司生产的RW-PT01D型数字称重测力变送器。 3.称重传感器(称重模组)+接线盒+频率输出型称重变送器,接PLC的高速脉冲捕捉端 口 这种连接方式的好处是省去了模拟量输入模块,可以长距离传输,抗干扰能力强,容易隔离,响应速度较快。对应我公司的产品是RW-PT01F

称重传感器接线方法及接线图分析-推荐下载

称重传感器接线方法及接线图分析 由于称重传感器具有测量精度高、温度特性好、工作稳定等优点使得其广泛应用于各种结构 的动、静态测量及各种电子称的一次仪表。上一篇文章中小编为大家简单介绍了有关称重传感器原理的知识,本篇文章中小编通过搜集整理资料将继续为大家介绍有 关称重传感器的知识,即称重传感器接线方法及原 理剖析(称重传感器参数)。 两种称重传感器接线方法简介(称重传感器的选用) 称重传感器可以采用两种不同的输入、输出接线方法:一种是四线制接法,四线制接法的称重传感器对二次仪表无特殊要求,使用起来比较方便,但当电缆 线较长时,容易受环境温度波动等因素的影响;  另一种是六线制接法(如图1所示).六线制接法的称重传感器要求与之配套使用的二次仪表具备反馈输入接口,使用范围有一定的局限性,但不容易受环境 温度波动等因素的影响,在精密测量及长距离测量时具有一定的优势。 两种称重传感器接线电路图 在称重设备中,四线的称重传感器用的比较多,如果要将六线传感器接到四线传感器的设备上时,可以把反馈正和激励正接到一起,反馈负和激励负,接到一起。信号线要注意一点就是,红色和白色在两种类型的传感器上对应的输出信号是不一样的。 下面小编以称重指示控制仪F701中称重传感器接线图为例对其接线原理进行简单的分析。 F701是专门用于单一物料重量称量和控制的仪表,下图所示为称重指示控制仪F701中称重传感器接线图 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

相关文档
最新文档