功能材料发展趋势

功能材料发展趋势
功能材料发展趋势

材料】功能材料发展趋势

功能材料发展趋势

功能材料是一大类具有特殊电、磁、光、声、热、力、化学以及生物功能的新型材料,是信息技术、生物技术、能源技术等高技术领域和国防建设的重要基础材料,同时也对改造某些传统产业,如农业、化工、建材等起着重要作用。功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。功能材料按使用性能分,可分为微电子材料、光电子材料、传感器材料、信息材料、生物医用材料、生态环境材料、能源材料和机敏(智能)材料。由于我们已把电子信息材料单独作为一类新材料领域,所以这里所指的新型功能材料是除电子信息材料以外的主要功能材料。

功能材料是新材料领域的核心,对高新技术的发展起着重要的推动和支撑作用,在全球新材料研究领域中,功能材料约占85%。随着信息社会的到来,特种功能材料对高新技术的发展起着重要的推动和支撑作用,是二十一世纪信息、生物、能源、环保、空间等高技术领域的关键材料,成为世界各国新材料领域研究发展的重点,也是世界各国高技术发展中战略竞争的热点。

鉴于功能材料的重要地位,世界各国均十分重视功能材料技术的研究。1989年美国200多位科学家撰写了《90年代的材料科学与材料工程》报告,建议政府支持的6类材料中有5类属于功能材料。从1995年至2001年每两年更新一次的《美国国家关键技术》报告中,特种功能材料和制品技术占了很大的比例。2001年日本文部省科学技术政策研究所发布的第七次技术预测研究报告中列出了影响未来的100项重要课题,一半以上的课题为新材料或依赖于新材料发展的课题,而其中绝大部分均为功能材料。欧盟的第六框架计划和韩国的国家计划等在他们的最新科技发展计划中,都把功能材料技术列为关键技术之一加以重点支持。各国都非常强调功能材料对发展本国国民经济、保卫国家安全、增进人民健康和提高人民生活质量等方面的突出作用。

1、新型功能材料国外发展现状

当前国际功能材料及其应用技术正面临新的突破,诸如超导材料、微电子材料、光子材料、信息材料、能源转换及储能材料、生态环境材料、生物医用材料及材料的分子、原子设计等

正处于日新月异的发展之中,发展功能材料技术正在成为一些发达国家强化其经济及军事优势的重要手段。

超导材料以NbTi、Nb3Sn为代表的实用超导材料已实现了商品化,在核磁共振人体成像(NMRI)、超导磁体及大型加速器磁体等多个领域获得了应用;SQUID作为超导体弱电应用的典范已在微弱电磁信号测量方面起到了重要作用,其灵敏度是其它任何非超导的装置无法达到的。但是,由于常规低温超导体的临界温度太低,必须在昂贵复杂的液氦(4.2K)系统中使用,因而严重地限制了低温超导应用的发展。

高温氧化物超导体的出现,突破了温度壁垒,把超导应用温度从液氦(4.2K)提高到液氮(77K)温区。同液氦相比,液氮是一种非常经济的冷媒,并且具有较高的热容量,给工程应用带来了极大的方便。另外,高温超导体都具有相当高的上临界场[Hc2(4K)>50T],能够用来产生20T以上的强磁场,这正好克服了常规低温超导材料的不足之处。正因为这些由本征特性Tc、Hc2所带来的在经济和技术上的巨大潜在能力,吸引了大量的科学工作者采用最先进的技术装备,对高Tc超导机制、材料的物理特性、化学性质、合成工艺及显微组织进行了广泛和深入的研究。高温氧化物超导体是非常复杂的多元体系,在研究过程中遇到了涉及多种领域的重要问题,这些领域包括凝聚态物理、晶体化学、工艺技术及微结构分析等。一些材料科学研究领域最新的技术和手段,如非晶技术、纳米粉技术、磁光技术、隧道显微技术及场离子显微技术等都被用来研究高温超导体,其中许多研究工作都涉及了材料科学的前沿问题。高温超导材料的研究工作已在单晶、薄膜、体材料、线材和应用等方面取得了重要进展。

生物医用材料作为高技术重要组成部分的生物医用材料已进入一个快速发展的新阶段,其市场销售额正以每年16%的速度递增,预计20年内,生物医用材料所占的份额将赶上药物市场,成为一个支柱产业。生物活性陶瓷已成为医用生物陶瓷的主要方向;生物降解高分子材料是医用高分子材料的重要方向;医用复合生物材料的研究重点是强韧化生物复合材料和功能性生物复合材料,带有治疗功能的HA生物复合材料的研究也十分活跃。

能源材料太阳能电池材料是新能源材料研究开发的热点,IBM公司研制的多层复合太阳能电池,转换率高达40%。美国能源部在全部氢能研究经费中,大约有50%用于储氢技术。

固体氧化物燃料电池的研究十分活跃,关键是电池材料,如固体电解质薄膜和电池阴极材料,还有质子交换膜型燃料电池用的有机质子交换膜等,都是目前研究的热点。

生态环境材料生态环境材料是20世纪90年代在国际高技术新材料研究中形成的一个新领域,其研究开发在日、美、德等发达国家十分活跃,主要研究方向是:①直接面临的与环境问题相关的材料技术,例如,生物可降解材料技术,CO2气体的固化技术,SOx、NOx催化转化技术、废物的再资源化技术,环境污染修复技术,材料制备加工中的洁净技术以及节省资源、节省能源的技术;②开发能使经济可持续发展的环境协调性材料,如仿生材料、环境保护材料、氟里昂、石棉等有害物质的替代材料、绿色新材料等;③材料的环境协调性评价。

智能材料智能材料是继天然材料、合成高分子材料、人工设计材料之后的第四代材料,是现代高技术新材料发展的重要方向之一,将支撑未来高技术的发展,使传统意义下的功能材料和结构材料之间的界线逐渐消失,实现结构功能化、功能多样化。科学家预言,智能材料的研制和大规模应用将导致材料科学发展的重大革命。国外在智能材料的研发方面取得很多技术突破,如英国宇航公司在导线传感器,用于测试飞机蒙皮上的应变与温度情况;英国开发出一种快速反应形状记忆合金,寿命期具有百万次循环,且输出功率高,以它作制动器时、反应时间,仅为10分钟;在压电材料、磁致伸缩材料、导电高分子材料、电流变液和磁流变液等智能材料驱动组件材料在航空上的应用取得大量创新成果。

2、国内功能材料发展的现状和差距

我国非常重视功能材料的发展,在国家攻关、“863”、“973”、国家自然科学基金等计划中,功能材料都占有很大比例。在“九五”“十五”国防计划中还将特种功能材料列为“国防尖端”材料。这些科技行动的实施,使我国在功能材料领域取得了丰硕的成果。在“863”计划支持下,开辟了超导材料、平板显示材料、稀土功能材料、生物医用材料、储氢等新能源材料,金刚石薄膜,高性能固体推进剂材料,红外隐身材料,材料设计与性能预测等功能材料新领域,取得了一批接近或达到国际先进水平的研究成果,在国际上占有了一席之地。镍氢电池、锂离子电池的主要性能指标和生产工艺技术均达到了国外的先进水平,推动了镍氢电池的产业化;功能陶瓷材料的研究开发取得了显著进展,以片式电子组件为目

标,我国在高性能瓷料的研究上取得了突破,并在低烧瓷料和贱金属电极上形成了自己的特色并实现了产业化,使片式电容材料及其组件进入了世界先进行列;高档钕铁硼产品的研究开发和产业化取得显著进展,在某些成分配方和相关技术上取得了自主知识产权;功能材料还在“两弹一星”、“四大装备四颗星”等国防工程中做出了举足轻重的贡献。

目前世界各国功能材料的研究极为活跃,充满了机遇和挑战,新技术、新专利层出不穷。发达国家企图通过知识产权的形式在特种功能材料领域形成技术垄断,并试图占领中国广阔的市场,这种态势已引起我国的高度重视。近年来,我国在新型稀土永磁、生物医用、生态环境材料、催化材料与技术等领域加强了专利保护。但是,我们应该看到,我国目前功能材料的创新性研究不够,申报的专利数,尤其是具有原创性的国际专利数与我国的地位远不相称。我国功能材料在系统集成方面也存在不足,有待改进和发展。

3、国内外功能材料社会经济发展需求分析

1)功能材料的国外需求分析

根据预测,2001年新材料技术产业在世界市场的销售额将超过4000亿美元,,其中功能材料约占75~80%。某些特种功能材料就其单项而言,其市场也是巨大的。1995年信息功能陶瓷材料及其制品的世界市场销售额已达210亿美元,预期到2010年将达到800亿美元;2000年超导材料销售额已达80亿美元,预测2010年的年销售额预计将达到600亿美元,其中高温超导电力设备的全球销售额可达50-60亿美元,到2020年,全球与超导相关的产业的产值(按1995年的价格估算)可能达到1500亿到2000亿美元,其中高温超导占60%;2010年全球钕铁硼永磁材料的市场需求量将达14.6万吨,产值达80亿美元,带动相关产业产值700亿美元;生物医用材料是一个正在迅速发展的高技术领域,目前全球生物医用材料及制品的产值超过700亿美元,美国约为400亿美元,与半导体产业相当,是美国经济中最活跃、出口量最大的6个产业之一,近年来一直保持每年20%以上的速率持续增长,预计到本世纪前十年左右,生物医用材料产业将达到药物市场的份额;随着可持续发展政策被各国政府的广泛采纳,生态环境材料的市场需求也将迅速增加,估计2010年的社会需求将高于500亿美元。可见,在全球经济中,特种功能材料无论是需求的规模,还是需求的增长速度,都是相当惊人的。

2)功能材料的国内需求分析

中国作为一个12亿人口的大国,正在实施宏伟的第三步发展战略,这一根本国情加之特种功能材料在经济社会发展中的重要作用和地位,决定了我国对功能材料的需求将是巨大的。功能材料不仅是发展我国信息技术、生物技术、能源技术等高技术领域和国防建设的重要基础材料,而且是改造与提升我国基础工业和传统产业的基础,直接关系到我国资源、环境及社会的可持续发展。

我国国防现代化建设一直受到以美国为首的西方国家的封锁和禁运,所以我国国防用关键特种功能材料是不可能依靠进口来解决的,必须要走独立自主、自力更生的道路。如军事通信、航空、航天、导弹、热核聚变、激光武器、激光雷达、新型战斗机、主战坦克以及军用高能量密度组件等,都离不开特种功能材料的支撑。

我国经济的快速增长和社会可持续发展,对发展新型能源及能源材料具有迫切的需求。能源材料是发展能源技术、提高能源生产和利用效率的关键因素,我国目前是世界上能源消费增长最快的国家,同时也是能源紧缺的国家。发展电动汽车、使用清洁能源、节约石油资源等政策措施使得新型能源转换及储能材料的需求不断增加。近年来,随着电子信息技术的迅猛发展,我国便携式电器如手提电话、笔记本计算机用户每年均以超过20%的速度增加,形成了一个对小型高能量密度电池的巨大社会需求。

随着移动通信等新一代电子信息技术的迅速崛起,作为一大批基础电子元器件技术核心的信息功能陶瓷日益成为我国发展相关高技术的需求重点。按照5%的世界市场占有率计,2010年我国信息功能陶瓷材料及制品的年销售额将达300亿元人民币,对信息通讯产业发展具有举足轻重的作用。

我国是一个稀土大国,其工业储量占世界总储量的70%以上,发展稀土功能材料我国有着独特的资源优势。例如,稀土永磁材料全世界的年平均增长率为23%,而我国高达60%,1995年全球的钕铁硼永磁材料的生产总量为6000吨,其中我国为2000吨,占总量的1/3,预测2010年全球钕铁硼永磁材料的产量将达14.6万吨,产值达80亿美元,其中我国的产量将达5.4万吨,产值达20多亿美元,相关器件产值达100~150亿美元。稀土在发光、催化等领域的应用也具有广阔的市场需求。

我国西部还拥有一些储量丰富的资源,如稀土、钨、钛、钼、钽、铌、钒、锂等,有的工业储量甚至占世界总储量的一半以上,这些资源均是特种功能材料的重要原材料。研究开发与上述元素相关的特种功能材料,拓宽其应用领域,取得自主知识产权,将大幅度地提高我国相关特种功能材料及制品的国际市场竞争力,这对实现西部资源的高附加值利用,将西部的资源优势转化为技术优势和经济优势具有重要意义,将有力地支持国家的西部大开发。

随着我国人民生活质量的进一步改善和提高,我国潜在的生物医用材料市场将很快转化为充满勃勃生机的现实市场,从而创造出巨大的社会经济效益,成为国民经济的一个支柱产业。我国已确定“在发展中解决保护,在保护环境的基础上实现持续发展”的原则,签署了有关国际公约,并通过了国家有关环境保护的法律、法规,这些都为生态环境材料需求发展创造了有利条件。发展生态环境材料,除了在社会和经济方面具有巨大的需求之外,在政治上还对我国加入WTO,融入国际社会,提升国际地位具有重要作用。此外,生态环境材料还对我国的“科技、人文、绿色”奥运工程起着特殊的作用。

总之,在未来的五到十年,我国经济、社会及国家安全对功能材料有着巨大的需求,功能材料是关系到我国能否顺利实现第三步战略目标的关键新材料。

4、发展重点与关键技术选择

1)发展重点

高温超导材料制备与应用技术

稀土功能材料

新型能量转换材料与技术(能源材料)

生物医用材料

绿色奥运工程材料与技术

分辨离膜材料与技术(海水、氯碱膜)

印刷(制版、感光)、显示(OLED)材料

高新技术改造传统产业技术

2)关键技术选择

能源材料

①固体氧化物燃料电池:

固体氧化物燃料电池是一种新型绿色能源装置,比质子交换膜燃料电池有更高的转换效率和节能效果,可减少二氧化碳排放50%,不产生NOx,已成为发达国家重点研究开发的新能源技术。但目前研究的固体氧化物燃料电池的工作温度达800~900℃,其关键部件的材料制备总是成为制约固体氧化物燃料电池发展的瓶颈。应突破的关键技术主要有:a)高性能电极材料及其制备技术;b)新型电解质材料及电极支撑电解质隔膜的制备技术;c)电池结构优化设计及其制备技术;d)电池的结构、性能与表征的研究。

②光电转换效率大于18%的硅基太阳能电池商品化;

研制出光电转换效率大于18%的低成本、大面积、可商业化的硅基太阳能电池及其组件。

③太阳能的综合利用(光电、热电、热交换)及其与风力发电的耦合技术;建立总体利用效率达15%的追尾聚集光式太阳能光电、热电、热交换系统并实用化,建立太阳能综合利用与风力发电耦合的实用型分布式地面电站,并可并网供电。

稀土材料

①稀土催化材料

②稀土永磁材料

突破高性能(N50)、高均匀性、高工作温度、低温度系数的烧结稀土永磁材料和高性能(磁能积20MGOe)粘结稀土永磁材料的产业化关键技术。

③高亮度、长寿命白光LED节能照明系统

低成本、高亮度、长寿命白光LED节能照明系统产业化并进入普通百姓家庭。

生物医用材料

①生物芯片;

②生物兼容性好、可降解或可诱导再生的人体软、硬组织替换材料;

③具有分子识别和特异免疫功能的血液净化材料和装置。

生态环境材料

①有机膜分离技术:海水(或盐碱水)淡化效率达50%的有机膜实用化和产业化。

②固沙植被材料与技术;

③节能、环保的建筑材料及其关键工艺技术:

突破日产2000吨的流态化水泥烧成技术,其单位能耗与粉尘排放低于目前的新型干法工艺;实现纯氧燃烧生产浮法建筑玻璃的产业化。

特种功能材料

①无机分离催化膜:突破无机分离催化膜(透氧膜、分子筛膜、透氢膜)的关键制备技术,建立无机分离催化膜用于天然气催化转化制备合成气和液体燃料、天然气直接转化制备乙烯、生物质原料制备乙醇、天然气制氢等方面的示范性生产装置。

②大尺寸光学金刚石膜;

③有机磁性材料:突破本征有机磁性材料的关键技术。

④敏感材料与传感器。

新材料行业发展趋势

新材料行业发展趋势 与传统材料相比,新材料产业具有技术高度密集,研究与开发投入高,产品的附加值高,生产与市场的国际性强,以及应用范围广,发展前景好等特点,其研发水平及产业化规模已成为衡量一个国家经济,社会发展,科技进步和国防实力的重要标志,世界各国特别是发达国家都十分重视新材料产业的发展。下面是有关于新材料行业发展趋势的分析,一起来看看。 中国新材料产业发展前景分析新材料作为二十一世纪三大关键技术之一,是高新技术发展的基础和先导,已成为全球经济迅猛增长的源动力。 随着科学技术发展,人们在传统材料的基础上,根据现代科技的研究成果,开发出新材料。新材料按组分为金属材料、无机非金属材料(如陶瓷、砷化镓半导体等)、有机高分子材料、先进复合材料四大类。按材料性能分为结构材料和功能材料。结构材料主要是利用材料的力学和理化性能,以满足高强度、高刚度、高硬度、耐高温、耐磨、耐蚀、抗辐照等性能要求;功能材料主要是利用材料具有的电、磁、声、光热等效应,以实现某种功能,如半导体材料、磁性材料、光敏材料、热敏材料、隐身材料和制造原子弹、氢弹的核材料等。新材料在国防建设上作用重大。例如,超纯硅、砷化镓研制成功,导致大规模和超大规模集成电路的诞生,使计

算机运算速度从每秒几十万次提高到每秒百亿次以上;航空发动机材料的工作温度每提高100℃,推力可增大24%;隐身材料能吸收电磁波或降低武器装备的红外辐射,使敌方探测系统难以发现等等。 在新材料产业中分布情况 21世纪科技发展的主要方向之一是新材料的研制和应用。新材料的研究,是人类对物质性质认识和应用向更深层次的进军。 信息材料是最活跃的新材料领域,微电子材料在未来10~15年仍是最基本的信息材料,集成电路及半导体材料将以硅材料为主体,化合物半导体材料及新一代高温半导体材料共同发展。光电子材料将成为发展最快和最有前途的信息材料,主要集中在激光材料、高亮度发光二极管材料、红外探测器材料、液晶显示材料、光纤材料等领域。 XX年,在“国家半导体照明工程”计划的推动下,我国半导体照明产业发展加速,关键技术取得突破,蓝光功率型LED芯片发光效率达到90mW,处于国际先进水平;封装的功率型白光LED发光效率超过30lm/W,达到国际先进水平。建立了上海、大连、厦门、南昌4个国家半导体照明产业化基地,民营资本投资近37亿元人民币,我国LED产业迎来了快速发展的时期。 XX年我国推出了激光电视样机,技术水平达到国际先进。

新材料技术发展的方向

展望新材料的未来 新材料技术的发展不仅促进了信息技术和生物技术的革命,而且对制造业、物资供应以及个人生活方式产生重大的影响。记者日前采访了中国科学院“高科技发展报告”课题组的有关专家,请他们介绍了当前世界上新材料技术的研究进展情况及发展趋势。材料技术的进步使得“芯片上的实验室”成为可能,大大促进了现代生物技术的发展。新材料技术的发展赋予材料科学新的内涵和广阔的发展空间。目前,新材料技术正朝着研制生产更小、更智能、多功能、环保型以及可定制的产品、元件等方向发展纳米材料20世纪90年代,全球逐步掀起了纳米材料研究热潮。由于纳米技术从根本上改变了材料和器件的制造方法,使得纳米材料在磁、光、电敏感性方面呈现出常规材料不具备的许多特性,在许多领域有着广阔的应用前景。专家预测,纳米材料的研究开发将是一次技术革命,进而将引起21世纪又一次产业革命。日本三井物产公司曾在去年末宣布该公司将批量生产碳纳米管,从2002年4月开始建立年产量120吨的生产设备,9月份投入试生产,这是世界上首次批量生产低价纳米产品。美国ibm公司的科研人员,在2001年4月,用碳纳米管制造出了第一批晶体管,这一利用电子的波性,而不是常规导线实现传递住处的技术突破,有可能导致更快更小的产品出现,并可能使现有的硅芯片技术逐渐被淘汰。在碳纳米管研究方兴未艾的同时,纳米事业的新秀--“纳米带”又问世了。在美国佐治亚理工学院工作的三位中国科学家2001年初利用高温气体固相法,在世界上首次合成了半导体化物纳米带状

结构。这是继发现多壁碳纳米管和合成单壁纳米管以来,一维纳米材料合成领域的又一大突破。这种纳米带的横截面是一个窄矩形结构,带宽为30~300mm,厚度为5~10nm,而长度可达几毫米,是迄今为止合成的惟一具有结构可控且无缺陷的宽带半导体准一维带状结构。目前已经成功合成了氧化锡、氧化铟、氧化隔等材料纳米带。由于半导体氧化物纳米带克服了碳纳米管的不稳定性和内部缺陷问题,具有比碳纳米管更独特和优越的结构及物理性能,因而能够更早地投入工业生产和商业开发。 超导材料超导材料在电动机、变压器和磁悬浮列车等领域有着巨大的市场,如用超导材料制造电机可增大极限输出量20倍,减轻重量90%。超导材料的研制,关键在于提高材料的临界温度,若此问题得到解决,则会使许多领域产生重大变化。去年,科学家在超导材料上有不少新收获,相继发现了临界温度更训的新型超导材料,使人类朝着开发室温超导材料迈出了一大步。在日本,有人发现二硼化镁可在-234℃成为超导体,这是迄今为止发现临界温度最高的金属化合物超导体。由于二硼化镁的发现,使世界凝聚态物理学界为之振奋。由于二硼化镁超导体易合成、易加工,很容易制成薄膜或线材,因而应用前景看好。 美国科学家在研制更具实用性超导材料方面取得了明显的进展,并开始进入实用阶段。美国底物律的福瑞斯比电站在地下铺设了360多米的超导电缆,电缆中123kg重的导线是由含铋、锶、钙、铜的氧化物超导瓷制造的。这是世界上首次实用的超导输电线路。我国在高

国内外研究现状及发展趋势

国内外研究现状及发展趋势 世界银行2000年研究报告《中国:服务业发展和中国经济竞争力》的研究结果表明,在中国有4个服务性行业对于提高生产力和推动中国经济增长具有重要意义,它们是物流服务、商业服务、电子商务和电信。其中,物流服务占1997年服务业产出的42.4%,是比重最大的一类。进入21世纪,中国要实现对WTO缔约国全面开放服务业的承诺,物流服务作为在服务业中所占比例较大的服务门类,肯定会首先遭遇国际物流业的竞争。 物流的配送方式从手工下单、手工核查的方式慢慢转变成现今的物流平台电子信息化管理方式,从而节省了大量的人力,使得配送流程管理自动化、一体化。 当今出现一种智能运输系统,即是物流系统的一种,也是我国未来大力研究的方向。它是指采用信息处理、通信、控制、电子等先进技术,使人、车、路更加协调地结合在一起,减少交通事故、阻塞和污染,从而提高交通运输效率及生产率的综合系统。我国是从70年代开始注意电子信息技术在公路交通领域的研究及应用工作的,相应建立了电子信息技术、科技情报信息、交通工程、自动控制等方面的研究机构。迄今为止以取得了以道路桥梁自动化检测、道路桥梁数据库、高速公路通信监控系统、高速公路收费系统、交通与气象数据采

集自动化系统等为代表的一批成果。尽管如此,由于研究的分散以及研究水平所限,形成多数研究项目是针对交通运输的某一局部问题而进得的,缺乏一个综全性的、具有战略意义的研究项目恰恰是覆盖这些领域的一项综合性技术,也就是说可以通过智能运输系统将原来这些互不相干的项目有机的联系在一起,使公路交通系统的规划、建设、管理、运营等各方面工作在更高的层次上协调发展,使公路交通发挥出更大的效益。 1.国内物流产业发展迅速。国内物流产业正处在前所未有的高速增长阶段。2008年,全国社会物流总额达89.9万亿元,比2000年增长4.2倍,年均增长23%;物流业实现增加值2万亿元,比2000年增长1.9倍,年均增长14%。2008年,物流业增加值占全部服务业增加值的比重为16. 5%,占GDP的比重为6. 6%。预计“十一五”期间,我国物流产业年均增速保持在15%以上,远远高于美国的10%和加拿大、西欧的9%。 2.物流专业化水平与服务效率不断提高。社会物流总费用与GDP 的比例体现了一个国家物流产业专业化水平和服务效率。我国社会物流总费用与GDP的比例在近年来呈现不断下降趋势,“十五”期间,社会物流总费用占GDP的比例,由2000年的19.4%下降到2006年的18. 3%;2007年这一比例则下降到18. 0%,标志着我国物流产业的专业化水平和服务效率不断提高。但同发达国家相比较,我国物流

铜基电子封装材料研究进展

第30卷第6期V ol.30No.6 临沂师范学院学报 Journal of Linyi Normal University 2008年12月 Dec.2008铜基电子封装材料研究进展 王常春1,朱世忠2,孟令江3 (1.临沂师范学院物理系,山东临沂276005;2.山东医学高等专科学校,山东临沂276002; 3.临沂市高新技术开发区罗西街道办事处,山东临沂276014) 摘要:介绍了国内外铜基电子封装材料的研究现状及最新发展动态,指出了目前我国新型铜基电子封装材料研究中所存在的问题及进一步完善的措施,预测了电子封装用铜基复合材料的发展趋势和应 用前景.未来的铜基电子封装材料将朝着高性能、低成本、轻量化和集成化的方向发展. 关键词:电子封装;铜基复合材料;热导率;热膨胀系数 中图分类号:TG148文献标识码:A文章编号:1009-6051(2008)06-0043-05 0引言 随着信息化时代的迅速发展,对现代电子元器件集成度和运行速度的要求越来越高,相应功耗也越来越大,这必然会导致电路发热量的提高,从而使工作温度不断上升[1?4].一般来说,在半导体器件中,温度每升高18℃,失效的可能性就增加2~3倍[5].另外,温度分布不均匀也会使电子元器件的噪音大大增加.为解决这些问题,开发低成本、低膨胀、高导热、易加工、可靠性高的电子封装材料已成为当务之急[6,7]. 传统的电子封装材料(见表1[8])由于具有一些不可避免的问题,只能部分满足电子封装的发展要求.Invar、Kovar的加工性能良好,具有较低的热膨胀系数,但导热性能很差;Mo和W的热膨胀系数较低,导热性能远高于Invar和Kovar,而且强度和硬度很高,所以,Mo和W在电力半导体行业中得到了普遍的应用.但是,Mo和W价格昂贵、加工困难、可焊性差、密度大,而且导热性能比纯Cu 表1常用封装材料的性能指标[8] 材料热膨胀系数(20℃)/(×10?6·K?1)导热系数/(W·m?1·K?1)密度/(g·cm?3) Si 4.1150 2.3 GaAs 5.839 5.3 Al2O3 6.520 3.9 AlN 4.5250 3.3 Al23230 2.7 Cu174008.9 Mo 5.014010.2 W 4.4516819.3 Kovar 5.9178.3 Invar 1.6108.1 W-10vol.%Cu 6.520917.0 Mo-10vol.%Cu7.018010.0 Cu/Invar/Cu 5.21608.4 收稿日期:2008-10-09 作者简介:王常春(1974–),男,山东沂南人,临沂师范学院副教授,博士.研究方向:金属基复合材料.

新型功能材料发展趋势

新型功能材料发展趋势 功能材料是一大类具有特殊电、磁、光、声、热、力、化学以及生物功能的新型材料,是信息技术、生物技术、能源技术等高技术领域和国防建设的重要基础材料,同时也对改造某些传统产业,如农业、化工、建材等起着重要作用。功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。功能材料按使用性能分,可分为微电子材料、光电子材料、传感器材料、信息材料、生物医用材料、生态环境材料、能源材料和机敏(智能)材料。由于我们已把电子信息材料单独作为一类新材料领域,所以这里所指的新型功能材料是除电子信息材料以外的主要功能材料。 功能材料是新材料领域的核心,对高新技术的发展起着重要的推动和支撑作用,在全球新材料研究领域中,功能材料约占 85 % 。随着信息社会的到来,特种功能材料对高新技术的发展起着重要的推动和支撑作用,是二十一世纪信息、生物、能源、环保、空间等高技术领域的关键材料,成为世界各国新材料领域研究发展的重点,也是世界各国高技术发展中战略竞争的热点。 鉴于功能材料的重要地位,世界各国均十分重视功能材料技术的研究。 1989年美国200多位科学家撰写了《90年代的材料科学与材料工程》报告,建议政府支持的6类材料中有5类属于功能材料。从1995年至2001年每两年更新一次的《美国国家关键技术》报告中,特种功能材料和制品技术占了很大的比例。2001年日本文部省科学技术政策研究所发布的第七次技术预测研究报告中列出了影响未来的100项重要课题,一半以上的课题为新材料或依赖于新材料发展的课题,而其中绝大部分均为功能材料。欧盟的第六框架计划和韩国的国家计划等

新材料 新兴产业发展的基础和先导新材料产业概况新材料的分

新材料:新兴产业发展的基础和先导1.新材料产业概况 新材料的分类 新材料,是指新近发展的或正在研发中的、在性能上优于传统材料或者有特殊功能的一些材料;或者通过新技术的处理,在传统材料的基础上获得的性能显着提高或产生了新功能的材料;一般情况下,能够满足高技术产业发展需要的一些关键材料也被纳入新材料的范畴。 作为新兴产业的基础和先导,新材料的应用范围极其广泛,它同信息技术、生物技术一样一起成为二十一世纪最重要和最具发展潜力的领域。跟传统材料一样,新材料可以按性能特征、材质和应用领域三个不同角度进行分类。 从材料性能来看,新材料可以分为功能材料和结构材料两类。功能材料是指通过利用材料所具有的电、磁、声、光热等效应及其相互转化功能,以实现某种功能,如半导体材料、磁性材料、光敏材料、热敏材料、隐身材料和制造原子弹、氢弹的核材料等。结构材料主要是利用材料的力学性能,从而研发出具有高比强度、高比刚度、耐高温、耐磨损、耐腐蚀等性能的材料。新型结构材料主要包括新型金属工程结构材料、先进陶瓷材料、高分子合成材料和复合材料。 新型材料按材质可分为金属材料、无机非金属材料、有机高分子材料和先进复合材料四大类。 从应用领域和当前新材料的研究热点出发,我们可以将新材料分为:电子信息材料、新能源材料、纳米材料、先进复合材料、先进陶瓷材料、生态环境材料、新型功能材料(含高温超导材料、磁性材料、金刚石薄膜、功能高分子材料等)、生物医用材料、高性能结构材料、智能材料、新型建筑及化工新材料等。 新材料:新兴产业发展的基础和先导

2009年11月,温总理发表《让科技引领中国可持续发展》,报告中将新材料产业列为国家新兴战略性产业之一,要求尽快形成具有世界先进水平的新材料与绿色制造产业体系。 新能源、新材料、生物制药、网络信息、海洋空间、生命科学及地质勘探等七大战略性新兴产业规划正在加速成形中。作为七大新兴产业之一的新材料犹为瞩目。不难发现,新材料涵盖了其它六大新兴产业的大部分内容,是新兴产业发展的根基和先导。加快新材料产业的发展将是国家顺利发展新兴产业的前提和重要组成部分。 从需求看,包括大飞机、高铁、新能源汽车等重点工程,以及三网融合、物联网、节能环保等重要产业,都需要应用各种新材料,其市场需求正在不断扩大,新材料产品进出口额也逐年攀升。 政策方面,政府通过国家自然科学基金、973计划、863计划、火炬计划等7个专项计划来支持新材料产业的发展,材料领域的项目数和投资金额在各项科技计划中都占到15%~30%。市场需求的日益扩大,加之政策的支持,新材料将在新兴产业中得到优先发展。 近年来,随着我国在能源、生物、电子以及建筑等众多领域的飞速发展,新材料产业正进入一个充满机遇的黄金发展阶段。统计显示,近10年以来世界材料产业的产值以每年约30%的速度增长。在经济强劲复苏和高新技术产业迅猛发展的拉动下,未来我国新材料市场将继续保持高速增长。 2.重点行业分析 按照应用领域,我们把新材料分为信息材料、能源材料、建筑材料、化工材料、环境材料和生物医用材料六大类。

机器学习研究现状与发展趋势

机器学习研究现状与发展趋势 计算机科学与软件学院 引言: 机器能否象人类一样能具有学习能力呢?1959年美国的塞缪尔(Samuel)设计了一个下棋程序,这个程序具有学习能力,它可以在不断的对奕中改善自己的棋艺。4年后,这个程序战胜了设计者本人。又过了3年,这个程序战胜了美国一个保持8年之久的常胜不败的冠军。这个程序向人们展示了机器学习的能力,提出了许多令人深思的社会问题与哲学问题。 机器学习的研究是根据生理学、认知科学等对人类学习机理的了解,建立人类学习过程的计算模型或认识模型,发展各种学习理论和学习方法,研究通用的学习算法并进行理论上的分析,建立面向任务的具有特定应用的学习系统。这些研究目标相互影响相互促进。 机器学习是关于理解与研究学习的内在机制、建立能够通过学习自动提高自身水平的计算机程序的理论方法的学科。近年来机器学习理论在诸多应用领域得到成功的应用与发展,已成为计算机科学的基础及热点之一。 机器学习是继专家系统之后人工智能应用的又一重要研究领域,也是人工智能和神经计算的核心研究课题之一。现有的计算机系统和人工智能系统没有什么学习能力,至多也只有非常有限的学习能力,因而不能满足科技和生产提出的新要求。对机器学习的讨论和机器学习研究的进展,必将促使人工智能和整个科学技术的进一步发展。 一.机器学习的发展史 机器学习是人工智能研究较为年轻的分支,它的发展过程大体上可分为4个时期。 第一阶段是在50年代中叶到60年代中叶,属于热烈时期。…> 第二阶段是在60年代中叶至70年代中叶,被称为机器学习的冷静时期。 第三阶段是从70年代中叶至80年代中叶,称为复兴时期。 机器学习的最新阶段始于1986年。 机器学习进入新阶段的重要表现在下列诸方面: (1) 机器学习已成为新的边缘学科并在高校形成一门课程。它综合应用心理学、生物学和神经生理学以及数学、自动化和计算机科学形成机器学习理论基础。 (2) 结合各种学习方法,取长补短的多种形式的集成学习系统研究正在兴起。特别是连接学习符号学习的耦合可以更好地解决连续性信号处理中知识与技能的获取与求精问题而受到重视。 (3) 机器学习与人工智能各种基础问题的统一性观点正在形成。例如学习与问题求解结合进行、知识表达便于学习的观点产生了通用智能系统SOAR的组块学习。类比学习与问题求解结合的基于案例方法已成为经验学习的重要方向。 (4) 各种学习方法的应用范围不断扩大,一部分已形成商品。归纳学习的知识获取工具已在诊断分类型专家系统中广泛使用。连接学习在声图文识别中占优势。分析学习已用于设计综合型专家系统。遗传算法与强化学习在工程控制中有较好的应用前景。与符号系统耦合的神经网络连接学习将在企业的智能管理与智能机器人运动规划中发挥作用。 (5) 与机器学习有关的学术活动空前活跃。国际上除每年一次的机器学习研讨会外,还有计算机学习理论会议以及遗传算法会议。 二.机器学习分类 1、基于学习策略的分类 学习策略是指学习过程中系统所采用的推理策略。一个学习系统总是由学习和环境两部分组成。由环境(如书本或教师)提供信息,学习部分则实现信息转换,用能够理解的形

集成电路用电子材料的研究现状及发展

集成电路用电子材料的研究现状及发展由于集成电路的集成度迅猛增加,导致芯片发热量急剧上升,使得芯片寿命下降。据报道,温度每升高 10℃,因GaAs或 Si 半导体芯片寿命的缩短而产生的失效就为原来的3倍。其原因是因为在微电子集成电路以及大功率整流器件中,材料之间散热性能不佳而导致的热疲劳以及热膨胀系数不匹配而引起的热应力造成的。解决该问题的关键是进行合理的封装。电子封装材料主要包括基板、布线、框架、层间介质和密封材料,最早用于封装的材料是陶瓷和金属,随着电路密度和功能的不断提高,对封装技术提出了更多更高的要求,同时也促进了封装材料的发展。 封装材料起支撑和保护半导体芯片和电子电路的作用,以及辅助散失电路工作中产生的热量。作为理想的电子封装材料必须满足以下几个基本要求:①低的热膨胀系数;②导热性能好;③气密性好,能抵御高温、高湿、腐蚀和辐射等有害环境对电子器件的影响;④强度和刚度高,对芯片起到支撑和保护的作用;⑤良好的加工成型和焊接性能,以便于加工成各种复杂的形状;⑥对于应用于航空航天领域及其他便携式电子器件中的电子封装材料的密度要求尽可能的小,以减轻器件的质量。 能及焊接性能,同时它们的密度也很低(如铝和镁)。增强体应具有较低的 CTE、高的导热系数、良好的化学稳定性、

较低的成本,同时增强体应该与金属基体有较好的润湿性。金属基电子封装复合材料具有高的热物理性能、良好的封装性能,它具有以下特点:①改变增强体的种类、体积分数和排列方式或者通过改变复合材料的热处理工艺,可制备出不同 CTE 匹配的封装材料;②复合材料的 CTE 较低,可以与电子器件材料的 CTE 相匹配,同时具有高的导热性能,较低的密度;③材料的制备工艺成熟,净成型工艺的出现,减少了复合材料的后续加工,使生产成本不断降低。 现在的集成电路向小型化、高密度组装化、低成本、高性能和高可靠性发展,这就对基板、布线材料、密封材料、层间介质材料提出了更高的要求,需要性能好,低成本的电子封装材料的出现。这对金属基电子封装符合材料的发展提供了巨大的空间。通过改变金属基复合材料中增强体的形状、大小、体积分数,寻找一种不仅与基板的热性能相匹配,又具有良好力学性能,而且制造方法还经济适用的电子封装材料,是研究金属基电子封装复合材料的发展方向。

功能材料发展趋势

材料】功能材料发展趋势 功能材料发展趋势 功能材料是一大类具有特殊电、磁、光、声、热、力、化学以及生物功能的新型材料,是信息技术、生物技术、能源技术等高技术领域和国防建设的重要基础材料,同时也对改造某些传统产业,如农业、化工、建材等起着重要作用。功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。功能材料按使用性能分,可分为微电子材料、光电子材料、传感器材料、信息材料、生物医用材料、生态环境材料、能源材料和机敏(智能)材料。由于我们已把电子信息材料单独作为一类新材料领域,所以这里所指的新型功能材料是除电子信息材料以外的主要功能材料。 功能材料是新材料领域的核心,对高新技术的发展起着重要的推动和支撑作用,在全球新材料研究领域中,功能材料约占85%。随着信息社会的到来,特种功能材料对高新技术的发展起着重要的推动和支撑作用,是二十一世纪信息、生物、能源、环保、空间等高技术领域的关键材料,成为世界各国新材料领域研究发展的重点,也是世界各国高技术发展中战略竞争的热点。 鉴于功能材料的重要地位,世界各国均十分重视功能材料技术的研究。1989年美国200多位科学家撰写了《90年代的材料科学与材料工程》报告,建议政府支持的6类材料中有5类属于功能材料。从1995年至2001年每两年更新一次的《美国国家关键技术》报告中,特种功能材料和制品技术占了很大的比例。2001年日本文部省科学技术政策研究所发布的第七次技术预测研究报告中列出了影响未来的100项重要课题,一半以上的课题为新材料或依赖于新材料发展的课题,而其中绝大部分均为功能材料。欧盟的第六框架计划和韩国的国家计划等在他们的最新科技发展计划中,都把功能材料技术列为关键技术之一加以重点支持。各国都非常强调功能材料对发展本国国民经济、保卫国家安全、增进人民健康和提高人民生活质量等方面的突出作用。 1、新型功能材料国外发展现状 当前国际功能材料及其应用技术正面临新的突破,诸如超导材料、微电子材料、光子材料、信息材料、能源转换及储能材料、生态环境材料、生物医用材料及材料的分子、原子设计等

汽车车身新材料及其发展新趋势

泡沫合金板 泡沫合金板由粉末合金制成,其特点是密度小,仅为0.4~0.7g/cm3,弹性好,当受力压 缩变形后,可凭自身的弹性恢复原料形状。泡沫合金板种类繁多,除了泡沫铝合金板外,还 有泡沫锌合金、泡沫锡合金、泡沫钢等,可根据不同的需要进行选择。由于泡沫合金板的特 殊性能,特别是出众的低密度、良好的隔热吸振性能,深受汽车制造商的青睐。目前,用泡 沫铝合金制成的零部件有发动机罩、行李箱盖等。 蜂窝夹芯复合板 蜂窝夹芯复合板是两层薄面板中间夹一层厚而极轻的蜂窝组成。根据夹芯材料的不同,可分为纸蜂窝、玻璃布蜂窝、玻璃纤维增强树脂蜂窝、铝蜂窝等;面板可以采用玻璃钢、塑料、铝板和钢板等材料。由于蜂窝夹芯复合板具有轻质、比强度和比刚度高、抗振、隔热、隔音和阻燃等特点,故在汽车车身上获得较多应用,如车身外板、车门、车架、保险杠、座椅框架等。英国发明了一种以聚丙烯作芯,钢板为面板的薄夹层板用以替换钢制车身外板,使零件质量减轻了50%~60%,且易于冲压成型。 工程塑料 与通用塑料相比,工程塑料具有优良的机械性能、电性能、耐化学性、耐热性、耐磨性、尺寸稳定性等特点,且比要取代的金属材料轻、成型时能耗少。二十世纪七十年代起,以软质聚氯乙烯、聚氨酯为主的泡沫类、衬垫类、缓冲材料等塑料在汽车产业中被广泛采用。福特公司开发的LTD试验车,塑料化后的车身取得了轻量化方面的明显成果(见表2)。 中国工程塑料产业普遍存在工艺落后、设备陈旧、规模小、品种少、质量不稳定的状况,而且价格高,缺乏市场竞争力。工程塑料在汽车上的应用仅相当于国外上世纪八十年代的水平。如上海桑塔纳轿车塑料用量仅为2.86kg/辆,红旗CA7228型轿车为2.4kg/辆,而日本轿车均匀为14kg/辆,宝马则更高,为35.64kg/辆。但这种局面将很快被打破,由上海普利特复合材料有限公司投资新建、国内最大的汽车用高性能ABS工程塑料生产基地日前在上海建成投产。此项目引进了世界先进的工程塑料天生线和试验检测仪器等设备,形成了年产15,000吨高性能ABS工程塑料的能力。 高强度纤维复合材料 高强度纤维复合材料,特别是碳纤维复合材料(CFRP),因其质量小,而且具有高强度、高刚性,有良好的耐蠕变与耐腐蚀性,因而是很有前途的汽车用轻量化材料。碳纤维复合材料在汽车上的应用,美国开展的最好。 二十世纪八十年代后期,复合材料车身外覆件得到大量的应用和推广,如发动机罩、翼子板、车门、车顶板、导流罩、车厢后挡板等,甚至出现了全复合材料的卡车驾驶室和轿车车身。据统计,在欧美等国汽车复合材料的用量约占本国复合材料总产量的33%左右,并继续呈增长态势,复合材料作为汽车车身的外覆件来说,无论从设计还是生产制造、应用都已成熟,并已从车身外覆件的使用向汽车的内饰件和结构件方向发展。图2为法国SORA公司为雷诺汽车公司开发的全复合材料轿车车身和重型卡车驾驶室。上海通用柳州汽车公司和东风公司计划推出全复合材料车身的家庭用小轿车。

半导体材料的历史现状及研究进展(精)

半导体材料的历史现状及研究进展(精)

半导体材料的研究进展 摘要:随着全球科技的快速发展,当今世界已经进入了信息时代,作为信息领域的命脉,光电子技术和微电子技术无疑成为了科技发展的焦点。半导体材料凭借着自身的性能特点也在迅速地扩大着它的使用领域。本文重点对半导体材料的发展历程、性能、种类和主要的半导体材料进行了讨论,并对半导体硅材料应用概况及其发展趋势作了概述。 关键词:半导体材料、性能、种类、应用概况、发展趋势 一、半导体材料的发展历程 半导体材料从发现到发展,从使用到创新,拥有这一段长久的历史。宰二十世纪初,就曾出现过点接触矿石检波器。1930年,氧化亚铜整流器制造成功并得到广泛应用,是半导体材料开始受到重视。1947年锗点接触三极管制成,成为半导体的研究成果的重大突破。50年代末,薄膜生长激素的开发和集成电路的发明,是的微电子技术得到进一步发展。60年代,砷化镓材料制成半导体激光器,固溶体半导体此阿里奥在红外线方面的研究发展,半导体材料的应用得到扩展。1969年超晶格概念的提出和超晶格量子阱的研制成功,是的半导体器件的设计与制造从杂志工程发展到能带工程,将半导体材料的研究和应用推向了一个新的领域。90年代以来随着移动通信技术的飞速发展,砷化镓和磷化烟等半导体材料成为焦点,用于制作高速高频大功率激发光电子器件等;近些年,新型半导体材料的研究得到突破,以氮化镓为代表的先进半导体材料开始体现出超强优越性,被称为IT产业的新发动机。 新型半导体材料的研究和突破,常常导致新的技术革命和新兴产业的发展.以氮化镓为代表的第三代半导体材料,是继第一代半导体材料(以硅基半导体为代表和第二代半导体材料(以砷化镓和磷化铟为代表之后,在近10年发展起来的新型宽带半导体材料.作为第一代半导体材料,硅基半导体材料及其集成电路的发展导致了微型计算机的出现和整个计算机产业的飞跃,并广泛应用于信息处理、自动控制等领域,对人类社会的发展起了极大的促进作用.硅基半导体材料虽然在微电子领域得到广泛应用,但硅材料本身间接能带结构的特点限制了其在光电子领域的应用.随着以光通

机器人研究现状及发展趋势

机器人发展历史、现状、应用、及发展 趋势 院系:信息工程学院 专业:电子信息工程 姓名:王炳乾

机器人发展历史、现状、应用、及发展趋势 摘要:随着计算机技术不断向智能化方向发展,机器人应用领域的不断扩展和深化,机器人已成为一种高新技术产业,为工业自动化发挥了巨大作用,将对未来生产和社会发展起越来越重要的作用。文章介绍了机器人的国内国外的发展历史、状况、应用、并对机器人的发展趋势作了预测。 关键词:机器人;发展;现状;应用;发展趋势。 1.机器人的发展史 1662年,日本的竹田近江利用钟表技术发明了自动机器玩偶并公开表演。 1738年,法国技师杰克·戴·瓦克逊发明了机器鸭,它会嘎嘎叫、进食和游泳。 1773年,瑞士钟表匠杰克·道罗斯发明了能书写、演奏的玩偶,其体内全是齿轮和发条。它们手执画笔、颜料、墨水瓶,在欧洲很受青睐。 保存至今的、最早的机器人是瑞士的努萨蒂尔历史博物馆里少女形象的玩偶,有200年历史。她可以用风琴演奏。 1893年,在机械实物制造方面,发明家摩尔制造了“蒸汽人”,它靠蒸汽驱动行走。 20世纪以后,机器人的研究与开发情况更好,实用机器人问世。 1927年,美国西屋公司工程师温兹利制造了第一个机器人“电报箱”。它是电动机器人,装有无线电发报机。 1959年第一台可以编程、画坐标的工业机器人在美国诞生。 现代机器人 有关现代机器人的研究始于20世纪中期,计算机以及自动化技术的发展、原子能的开发利用是前提条件。1946年,第一台数字电子计算机问世。随后,计算机大批量生产的需要推动了自动化技术的发展。1952年,数控机床诞生,随后相关研究不断深入;同时,各国原子能实验室需要代替人类处理放射性物质的机械。

新材料技术的发展趋势

1 新材料技术的发展趋势和特点 纵观国际新材料研究发展的现状,西方主要工业发达国家正集中人力、物力,寻求突破,美国、欧共体、日本和韩国等在他们的最新国家科技计划中,都把新材料及其制备技术列为国家关键技术之一加以重点支持,非常强调新材料对发展国民经济、保卫国家安全、增进人民健康和提高人民生活质量等方面的突出作用。 我国对新材料及其制备技术历来非常重视,一直作为一个重要的领域被列入我国自1956年以来的历次国家科技发展规划之中。在我国863高技术中,新技术材料又是七大重点领域之一。经过40余年的努力,已在许多方面取得显著进展,一大批新材料已成功地应用于国防和民用工业领域,有些新材料的研究居国际领先水平,为我国新材料及其制备技术在21世纪初的持续发展奠定了较好的基础。 新材料及其制备技术的研究将对世界经济发展产生重大影响,其发展趋主要体现在: (1)功能材料向多功能化、集成化、小型化和智能化方向发展; (2)结构材料向高性能化、复合化、功能化和低成本化方向发展; (3)薄膜和低维材料研帛发展迅速,生物医用材料异军突起;(4)新材料制品的精加工技术和近净形成形技术受到高度重视; (5)材料及其制品与生态环境的协调性倍受重视,以满足社会可持续发展的要求; (6)材料的制备及评价表征技术日受重视,材料制备与评价表征新技术、新装备不断涌现; (7)材料在不同层次(微观、介观和宏观)上的设计发展迅速,已成为发展新材料的重要基础。 材料是人类用以制成用于生活和生产的物品、器件、构件、机器及其它产品的物质,是人类赖以生存和发展的物质基础。所谓新材料,指的是那些新出现或正在发展中的具有传统材料所具备的优异性能的材料。从人类科技发展史中可以看到,近代世界已经历了两次工业革命都是以新材料的发现和应用为先导的。钢铁工业的发展,为18世纪以蒸汽机的发明和应用为代表的第一次世界革命奠定了物质基础。本世纪中叶以来,以电子技术,特别是微电子技术的发明和应用为代表的第二次世界革命,硅单晶材料则起着先导和核心作用,加之随后的激光材料和光导纤维的问世,使人类社会进入了“信息时代”,因此,可以预料,谁掌握了新材料,谁就掌握了21世纪高新技术竞争的主动权! 综上所述,当今新材料及其制备技术的发展趋势具有以下几个特点: (1)新材料技术是现代工业和高技术发展中的共性关键技术,材料科学技术已成为当代和下世纪初最重要的、发展最快的科学技术之一。信息、能源、农业和先进制造等技术领域的发展都离不开新材料及其制备技术的发展; (2)综合利用现代先进科学技术成就,多学科交*,知识密集,导臻新材料及其制备技术的投资强度大、更新换代快,经济效益和社会效益巨大; (3)新材料的制备和质量的提高更加依赖于新技术、新工艺的发展和精确的检测控制技术的应用。对制备技术的重视与投入直线上升,极大地加速了基础材料的发展和传统产业的改造。

高导热低介电电子封装材料研究进展及实验方案

电子封装塑封材料研究进展及实验规划 1. 环氧树脂基体 1.1环氧树脂概念 环氧树脂是泛指分子中含有两个或两个以上环氧基团的有机高分子化合物,由于分子中含有活泼的环氧基团,使环氧树脂能够开环与多种固化剂发生交联反应而生成不溶不熔的三向网络结构的高聚物。 1.2环氧树脂的分类 根据分子结构的不同,环氧树脂大体可以分为五大类: a. 缩水甘油醚类环氧树脂 b.缩水甘油酯类环氧树脂 c.缩水甘油胺类环氧树脂 d.线型脂肪族类环氧树脂 e.脂环族类环氧树脂。 a. 缩水甘油醚类环氧树脂是由含活泼氢的酚类或醇类与环氧氯丙烷缩聚而 成。缩水甘油醚类环氧树脂根据含活泼氢基团的不同又分为二酚基丙烷型环氧树脂、酚醛多环氧树脂、其他多羟基酚类缩水甘油醚型环氧树脂、脂肪多元醇缩水甘油醚型环氧树脂。目前比较常用的缩水甘油醚类环氧树脂有双酚A型环氧树 脂(简称DGEBA树脂)、氢化双酚A型环氧树脂、线型酚醛型环氧树脂、脂肪族缩水甘油醚环氧树脂、四溴双酚A型环氧树脂。 b. 缩水甘油酯类环氧树脂是由有机酸或酸酐与环氧氯丙烷缩聚而成。常用的有邻苯二甲酸二缩水甘油酯、四氯邻苯二甲酸缩水甘油酯、六氯邻苯二甲酸缩水甘油酯。分子中含有苯环及酯键使得该类环氧树脂具有粘度小、工艺性好、反应活性大、相容性好、粘结强度高、电绝缘性好、耐候性好等优点。但是,以苯酐 为原料合成的环氧树脂产品存在略带黄色,存在无机氯含量及产品中可水解氯含量较高等缺点。 c. 缩水甘油胺类环氧树脂是由多元胺与环氧氯丙烷缩聚而成。此类环氧树脂的特点是多官能度、黏度低、活性高、环氧当量小、交联密度大、耐热性高、粘接力强、力学性能和耐腐蚀性好。 d. 线型脂肪族类环氧树脂是由脂环族烯烃的双键经环化而制得。此类环氧树脂固化物具有较高的压缩与拉伸强度、耐高温、耐电弧性、耐紫外光老化性、耐气候性等优良性能。 e. 脂环族类环氧树脂是含有两个脂环环氧基的低分子化合物。其本身不是聚 合物,但是与固化剂作用后能形成性能优异的三维体型结构聚合物。此类树脂分 子中不含苯环和羟基,依靠分子中的脂环与环氧基反应固化。脂环族环氧树脂的反应活性小于双酚A型环氧树脂,用酸酐固化时,二者反应活性相差不大,用胺类固化剂固化时,脂环族环氧树脂反应速度要慢得多。 1.3封装用环氧树脂 封装材料用环氧树脂要求具有快速固化、耐热、低应力、低吸湿性和低成本。此外还要求树脂品质高,其主要表现在:(1)色泽浅,液体树脂无色透明,固体树脂纯白色;(2)环氧当量变化幅度小;(3)纯度高,挥发物质杂质含量低,树脂中几乎没有离子性杂质,尤其是钠离子和氯离子;(4)相当低的水解性氯(有机氯

新材料产业发展规划纲要经典

【最新资料,Word版,可自由编辑!】

江苏省新材料产业发展规划纲要 (2009-2012年) 为应对全球高技术产业发展的变化和挑战,全面落实省委、省政府发展创新型经济的要求,发挥我省新材料产业优势,抢占新材料技术制高点,推动新材料产业健康快速发展,特制定本规划纲要。规划期为2009-2012年。 一、发展背景和现状 (一)产业界定与特点 新材料指满足下列条件之一的材料:一是新出现或正在发展中的具有传统材料所不具备的优异性能的材料;二是高技术发展所需要的具有特殊性能的材料;三是由于采用新技术(工艺、装备),使新材料性能比原有性能有明显提高,或出现新功能的材料。新材料具有应用领域宽广,知识与技术密集度高,与其他产业关联度强等特点。鉴于新材料种类纷繁,涉及面广,结合我省新材料产业发展实际,本纲要针对我省具有特色的微电子材料、光电子材料、新型显示材料、纳米材料、高性能纤维复合材料、新型化工材料、新能源材料、功能陶瓷材料、新型金属材料和新型建筑材料等10类材料产业作出规划。 (二)发展背景与趋势 新材料产业是国民经济和国防现代化的重要支撑,是现代高新技术产业的基础。20世纪90年代以来,纳米材料、生物医用材料、环境友好材料、光电子材料、微电子材料和新型平板显示材料等蓬勃发展,各类新型化工新材料等层出不穷,为经济发展和社会文明进步提供了不竭动力。世界各国均把大力研究和开发新材料作为21世纪的重大战略决策。美国提出在纳米材料、生物材料、光电子材料、微电子材料、极端环境材料及材料科学等新材料产业保持全球领先地位,日本、欧盟、韩国等也制订了

促进新材料产业快速发展的战略计划。我国新材料产业正处于强劲发展的阶段,有关资料表明,未来我国新材料产业市场年增长速度将保持在20%以上。随着新能源、光电子、微电子、航空、汽车等产业的发展,纳米材料、光电子材料、微电子材料、新型平板显示材料、新型化工材料等新材料产业将迎来高速发展阶段。 (三)发展现状 1.产业规模不断壮大 2008年,全省新材料产业销售收入达4881亿元,占全省高新技术产业比重由2004年的15.09%提高到2008年的24.03%,其中,10类重点发展的新材料产业销售收入达2000亿元,拥有国家级新材料特色产业基地18个,销售收入过亿元的企业近80家。 2.产业结构不断优化 目前,我省已在金属材料、纺织材料、化工材料等传统材料产业方面形成了较好的产业基础,新型电子信息材料、新能源材料、高性能纤维复合材料、功能陶瓷材料和纳米材料等新材料产业迅猛发展。苏州南大光电是国内唯一一家实现金属有机源(MO 源)产业化的企业,市场占有率达70%。我省纳米技术研究和应用总体发展已达全国先进水平,骨干企业近20家。东海县是我国最大的石英材料集散中心,已初步形成具有鲜明区域特色的硅材料产业集群。中复神鹰是国内最大的碳纤维生产企业。2008年,我省已形成年产4000吨原丝和1320吨T300碳纤维的生产能力,实现了碳纤维生产的完全国产化。我省玻璃纤维总量居全国第4位,年收入超亿元的玻璃纤维企业有8家,江苏九鼎是全国最大的纺织型玻璃纤维企业。特纤、电子布、增强基材、织物等产品全国领先,全国玻璃纤维名牌产品中我省占38%。 3.企业支撑不断增强

国内外公路研究现状与发展趋势

第1章绪论 1.1我国公路现状 交通运输业是国民经济中从事运送货物和旅客的社会生产部门,是国民经济和社会发展的动脉,是经济社会发展的基础行业、先行产业。交通运输主要包括铁路、公路、水运、航空、管道五种运输方式,其中,铁路、水运、航空、管道起着“线”的作用,公路则起着“面”的作用,各种运输方式之间通过公路路网联结起来,形成四通八达、遍布城乡的运输网络。改革开放以来,灵活、快捷的公路运输发展迅速,目前,在综合运输体系中,公路运输客运量、货运量所占比重分别达90%以上和近80%。高速公路是经济发展的必然产物,在交通运输业中有着举足轻重的地位。在设计和建设上,高速公路采取限制出入、分向分车道行驶、汽车专用、全封闭、全立交等较高的技术标准和完善的交通基础设施,为汽车快速、安全、经济、舒适运行创造了条件。与普通公路相比,高速公路具有行车速度快、通行能力大、运输成本低、行车安全、舒适等突出优势,其行车速度比普通公路高出50%以上,通行能力提高了2~6倍,并可降低30%以上的燃油消耗、减少1/3的汽车尾气排放、降低1/3的交通事故率。 新中国成立以来,经过60多年的建设,公路建设有了长足发展。2011年初正值“十一五”规划结束,“十二五”规划伊始。“十一五”时期是我国公路交通发展速度最快、发展质量最好、服务水平提升最为显著的时期。经过4年多的发展,公路交通运输紧张状况已实现总体缓解,基础设施规模迅速扩大,运输服务水平稳步提升,安全保障能力明显增强,为应对国际金融危机、保持经济平稳较快发展、加快经济发展方式转变、促进城乡区域协调发展、保障社会和谐稳定、进一步提高我国的综合国力和国际竞争力作出了重要贡献。 “十一五”前4年,全国累计完成公路建设投资2.93万亿元,年均增长近16%,约为“十一五”预计总投资的1.2倍,也超过了“九五”和“十五”的投资总和。公路建设投资的快速增长,极大地拉动和促进了国民经济的迅猛发展。从公路建设投资占同期全社会固定资产总投资的比重来看,“十一五”期间基本保持在4.5%左右。 在投资带动下,公路网规模不断扩大,截至2009年底,全国公路网总里程达到386万公里,其中高速公路6.51万公里,二级及以上公路42.52万公里,分别较"十五"末增加36.4万公里、2.5万公里和9.4万公里;全国公路网密度由“十五”末的每百平方公里34.8公里提升至40.2公里。预计到2010年底,全国公路网总里程将达到395万公里,高速公路超过7万公里,分别较“十五”末增加45.3万公里与3万公里。农村公路投资规模年均增长30%,总里程将达到345万公里,实现全国96%的乡镇通沥青(水泥)路。 “十一五”期间公路的快速发展,为扩大内需、拉动经济增长作出了突出贡献。特别是2008年以来,为应对国际金融危机,以高速公路为重点,建设步伐进一步加快,“十一五”末高速公路里程将达到"十五"末的1.78倍。“十一五”期间全社会高速公路建设累计投资达2万亿元,直接拉动GDP增长约3万亿元,拉动相关行业产出

电子封装材料研究进展

微电子封装与其材料的研究进展 微电子集成电路中,高度密集的微小元件在工作中产生大量热量,由于芯片和封 装材料之间的热膨胀系数不匹配将引起热应力疲劳,封装材料的散热性能不佳也会导 致芯片过热,这二者已成为电力电子器件的主要失效形式[2]。 从根本上说,电子封装的性能、制作工艺、应用及发展等决定于构成封装的各类材料,包括半导体材料、封装基板材料、绝缘材料、导体材料、键合连接材料、封接 封装材料等。它涉及这些材料的可加工成型性,包括热膨胀系数、热导率、介电常数、电阻率等性能在内的材料物性,相容性及价格等等。 新世纪的微电子封装概念已从传统的面向器件转为面向系统,即在封装的信号传递、支持载体、热传导、芯片保护等传统功能的基础上进一步扩展,利用薄膜、厚膜 工艺以及嵌入工艺将系统的信号传输电路及大部分有源、无源元件进行集成,并与芯 片的高密度封装和元器件外贴工艺相结合,从而实现对系统的封装集成,达到最高密 度的封装。从器件的发展水平看,今后封装技术的发展趋势为: (1)单芯片向多芯片发展; (2)平面型封装向立体封装发展; (3)独立芯片封装向系统集成封装发展。 焊球阵列封装(BGA) BGA封装的I/O端子以圆形或柱状焊点按阵列形式分布在封装下面,BGA技术的优点是I/O引脚数虽然增加了,但引脚间距并没有减小反而增加了,从而提高了组装成 品率;虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,从而可以改善它的电热 性能;厚度和重量都较以前的封装技术有所减少;寄生参数减小,信号传输延迟小, 使用频率大大提高;组装可用共面焊接,可靠性高。③BGA的节距为1.5mm、 1.27mm、1.0mm、0.8mm、0.65mm和0.5mm,与现有的表面安装工艺和设备完全 相容,安装更可靠;④由于焊料熔化时的表面张力具有"自对准"效应,避免了传统封 装引线变形的损失,大大提高了组装成品率;⑤BGA引脚牢固,转运方便;⑥焊球引 出形式同样适用于多芯片组件和系统封装。 这种BGA的突出的优点:①电性能更好:BGA用焊球代替引线,引出路径短,减少了引脚延迟、电阻、电容和电感;②封装密度更高;由于焊球是整个平面排列, 因此对于同样面积,引脚数更高。 芯片尺寸封装(CSP)

相关文档
最新文档