反渗透膜技术

反渗透膜技术
反渗透膜技术

反渗透膜技术

膜分离技术作为新型、高效、节能的分离技术在水及其他液体分离域逐步占有重要的位置。1953年美国佛罗里达大学的Reid等人首次提出用反渗透技术淡化海水的构想,1960年美国加利福尼亚大学的Loeb和Sourirajan研制出第一张可实用的反渗透膜,标志着现代膜科学技术的诞生。从此以后,反渗透膜开发有了重大突破,膜材料从初期单一的醋酸纤维素非对称膜发展到表面聚合技术制成的交联芳香族聚酰胺复合膜等新型材料与高效膜。操作压力也扩展到高压(海水淡化)膜,中压(醋酸纤维素)膜,低压(复合)膜和超低压(复合)膜。80年代以来,又开发出多种材质的纳滤膜。膜组件的形式近年来也呈现出多样化的趋势。除了传统的中空纤维式、卷式、管式及板框以外,又开发出回转平膜、浸渍平式膜等。在工业上应用最多的是卷式膜,它占据了绝大多数陆地水脱盐和越来越多的海水淡化市场。中空纤维膜在海水淡化应用中仍占有一定的份额。

今天世界上反渗透、纳滤膜水处理装置的能力已达到每天数百万吨。目前世界最大的反渗透苦咸水淡化装置在美国日产水量为28万吨的运河水处理厂;最大的反渗透海水淡化装置是位于沙特阿拉伯的日产水量为12.8万吨的淡化厂;最大的纳滤脱盐软化装置位于美国佛罗里达州,日产水量3.8万吨。中国台湾除半导体、电子工业外,小型饮用水需求量也很大。美国除大量使用中、小型及家用反渗透系统外,还建有许多大型公共供水系统。1996年美国国立研究所发表了美国21个州以饮用水为目的的179家脱盐水厂的调查数据。结果表明这些装置的总产水量为140万吨/日,各种脱盐方法在总装置产水能力中所占比重分别为:陆地水(苦咸水)反渗透47%,纳滤膜软化31%,海水淡化8%。值得注意的是,纳滤膜软化装置的增长速度最快,大大高于其他方法。这是因为纳滤膜不仅可在低压下水源软化和适度脱盐,而且可脱除三卤甲烷生成能(THMFP)、色度、细菌、病毒和溶解性有机物,因而日益受到青睐。目前国外反渗透膜的主要生产厂商均为美国和日本公司,其中美国杜邦公司和日本东洋纺公司垄断了中空纤维反渗透膜的世界市场。卷式反渗透膜的主要生产厂商为七家,他们是:Filmtec公司、美国Hydranautics公司、日本日东电工(NittoDenko)公司、美国Fluidsystem公司、日本东丽(Toray)公司、美国Desel公司、美国Trisep

公司。

美国、欧洲反渗透装置主要用于各种工业用水及饮饮用水,中东、西班牙的海水淡化应用较多,日本则主要用于半导体、电子工业,韩国、中国台湾除半导体、电子工业外,小型饮用水需求量也很大。美国除大量使用中、小型及家用反渗透系统外,还建有许多大型公共供水系统。1996年美国国立研究所发表了美国21个州以饮用水为目的的179家脱盐水厂的调查数据。结果表明这些装置的总产水量为140万吨/日,各种脱盐方法在总装置产水能力中所占比重分别为:陆地水(苦咸水)反渗透47%,纳滤膜软化31%,海水淡化8%。值得注意的是,纳滤膜软化装置的增长速度最快,大大高于其他方法。这是因为纳滤膜不仅可在低压下水源软化和适度脱盐,而且可脱除三卤甲烷生成能(THMFP)、色度、细菌、病毒和溶解性有机物,因而日益受到青睐。

反渗透膜技术的特点是:

反渗透法具有设备构型紧凑,占地面积小、单位体积产水量及能量消耗少等优点,已应用于几乎所以行业。如前所述,它是在没有相变的情况下,依靠大于渗透压的压力推动,通过膜的毛细管作用流出淡化的水,而且它还具有膜的筛分作用,能除去极小的细菌、病毒和热原。因此自从开发以来发展迅速,不仅用于海水或苦咸水的淡化,也作为锅炉补给水的预除盐和制取超纯水,离子交换前的预除盐,受到需要既能除盐又要求除去细菌、微粒等行业的欢迎。近年来,国外开始认为饮用水主要要纯而不需要靠饮用矿泉水来提供矿物质,所以它又被广泛用来处理一般的自来水从而提供优质的饮用水(俗称太空水)

总之,由于反渗透应用广泛,优点多,而且开发以来膜的品种不断增加,质量不断提高,设备也不断改进,应用范围不断扩大,受到电力、电子、医药、食品等各方面的重视,反渗透技术将有更广阔的发展前景,特别是与近年来发展起来的EDI技术组合,使纯水制造进入了一个出水品质好、无再生化学品、连续稳定运行的新水处理时期.

反渗透系统的原理:

反渗透膜的孔径大都10×10-10m,它的分离对象是溶解中的离子和分子量几百以上的有机物,只能透过溶剂而不能透过溶质的膜一般称之为理想的半透膜。当把溶剂和溶液(或把两种不同浓度的溶液)分别置于此膜的两侧时,纯溶剂将自然穿过半透膜而自发地向溶液(或从低溶液向高浓度溶液)一侧流动。这种现象叫渗透(Osmosis)。当渗透过程进行到溶液的液面产生一个压力,以抵销溶剂向溶液方向流动的趋势,即达到平衡,此压力称为该溶液

的渗透压。渗透压的大小取决于溶液的种类、浓度和温度,而与膜本身无关。在这种情况下,若在溶液的液面上再施加一个大于渗透压的外加压力时,溶剂将与原来的渗透方向相反,开始从溶液向溶剂一侧流动,这就是所谓反渗透(Reverse Osmosis),凡基于此原理所进行的浓缩或净化溶液的分离方法,一般称之为反渗透工艺。反渗透是渗透的一种反向迁移运动,它主要是在压力推动下,借助半透膜的截留作用,迫使溶液中的溶剂与溶质分开。溶液浓度越高,渗透压值越大。在反渗透过程中所要施加的压力,在系统和膜强度允许的范围内,必需远大于溶液渗透压值,一般为渗透压值的几倍到近几十倍。

当盐的水溶液与多孔的半透膜表面接触时,则在膜的溶液界面上选择吸附一层水分子,在反渗透压力的作用下,通过膜的毛细管作用流出纯水。并连续地流出形成界面纯水层。

至于对有机物的去除,属筛分机理。因此,这与有机物的分子量大小和形状有关。孔径较大的膜,一般应用在超滤范围,称为超滤膜。超滤膜的孔为2nm-10nm,而反渗透膜的孔径为0.3nm-2nm。

所以,反渗透膜过滤能够更好的除去各种细菌,如最小的细菌“绿脓杆菌“(3000×10-10M):也能滤除各种病毒,如流感病毒(800×10-10M),还能滤除热原(10-500×10-10M)。

反渗透膜分离设备的技术优势

反渗透膜分离设备的技术优势 2020年8月27日

为保证我国经济的可持续发展,缓解当代水资源短缺,大力发展海水淡化技术产业来解决淡水资源问题已迫在眉睫。传统的方法具有很多劣势。而膜分离具有高效节能、选择性好、无相态和化学变化及可以在常温下操作等优点,是继蒸馏法后的又一项重要技术。主要包括反渗透膜法、电渗析法和纳滤膜法。这里主要介绍目前使用广泛的反渗透膜法。 反渗透膜分离设备法是一种高效节能技术,它是利用选择性半透膜,孔径为0.1—1nm,通常运行切割的分子量<500,能截留盐或小分子量有机物,使水通过。较之传统的蒸馏法,具有起动产水迅速、尺寸紧凑、重量轻、全电力操作能耗少、性能稳定、不用防结垢化学剂,操作过程中,无需相变、无需热液等优点。更加节能,工程造价和运行成本持续降低,其发展速度远远快于蒸馏法。但其缺点是操作压力大,膜组件易受到污染,进料液浓度有限制以及浓缩液的二次污染等问题。 德兰梅勒反渗透膜分离技术,简称RO技术。反渗透技术是近几年来才在我国发展起来的一项现代高新技术。按各种物料的不同渗透压,对某种溶液使用大于渗透压的反渗透方法,达到对溶液进行分离提取、纯化和浓缩的目的。反渗透设备技术是当今节能、效率高的膜分离技术。 德兰梅勒利用膜分离技术为生物制药、食品饮料、发酵行业、农产品深加工、植物提取、石油石化、环保水处理、空气除尘、化工等行业提供分离、纯化、浓缩的综合解决方案,满足不同客户的高度差

异化需求。帮助客户进行生产工艺的上下游技术整合与创新,帮助企业节省投资、降低运行费用、减少单位消耗、提供产品质量、清洁生产环境,助力企业产业升级。

复合膜制备技术发展

反渗透膜的制备技术发展 反渗透是利用反渗透膜只透过溶剂而截留离子或小分子物质的选择透过性,以膜两侧的静压差为推动力,实现对混合物分离的膜过程。 在一定温度下,用一个只能使溶剂透过而不能使溶质透过的半透膜把稀溶液与浓溶液隔开,由于浓溶液中水的化学势小于稀溶液中水的化学势,水就会自发地通过半透膜从稀溶液进入到浓溶液中,使浓溶液液面上升,直到浓溶液液面升到一定高度后达到平衡状态。这种现象称为渗透(osmosis)或正渗透。如图1所示,半透膜两侧液面高度差所产生的压差称为浓溶液和稀溶液的渗透压差Δπ,如果稀溶液的浓度为零,渗透压差即为(浓)溶液的渗透压π;如果在浓溶液上方施加压力ΔP,如果ΔP大于Δπ,则浓溶液中的水便会透过半透膜向稀溶液方向流动,这一与渗透相反的过程称为反渗透(reverse osmosis,RO)[1]。 由于反渗透膜的截留尺寸为0.1-1nm左右,因此能够有效地去除水中的溶解盐类、胶体、微生物、有机物等(去除率达97~98%),系统具有水质好、能耗低、无污染、工艺简单、操作方便等优点,其已广泛应用在苦咸水脱盐、海水淡化、废水处理、纯水制备、食品和医药等方面,被称为“2l世纪的水净化技术”。[2] 1.1 反渗透复合膜发展概括 人类发现渗透现象至今已有260多年历史。1748年,法国的Abble Nollet

发现水能自发地扩散进入装有酒精溶液的猪膀胱内,并首创osmosis一词用来描述水通过半透膜的现象,成为第一例有记载的描述膜分离的试验。在接下来的100多年里,渗透作用引起了科学家们极大的兴趣。最初实验用膜都是动物或植物膜,直到1864年,Traube才成功研制了人类历史上第一张人造膜—亚铁氰化铜膜。该膜对稀电解质溶液表现出显著的选择通过性,尤其渗透压现象引起了极大的关注。Preffer用这种膜以蔗糖和其他溶液进行实验,把渗透压和温度及溶液浓度联系起来,给出了计算渗透压的关联式。1887年Van't Hoot依据Preffer的结论。 Sollner进行了反渗透的初步研究,当时人们称之为“反常渗透”。1949年,美国加利福尼亚州立大学洛杉矶分校(UCLA)的Gerald Hassler教授开始了“将海水作为饮用水的水源’’的研究,描述了“阻挡盐分渗透的膜”和“选择性渗透膜层",最早提出了膜法脱盐的概念。尽管Hassler教授的研究未取得理想的结果,但这为后来的反渗透研究工作奠定了基础。1953年,美国的C.E Reid教授首先发现醋酸纤维素类具有良好的半透性;同年,反渗透在Reid教授的建议下被列入美国国家计划。1960年UCLA的Samuel Yuster,Sidney Loeb和Srinivasa Sourirajan等在对膜材料进行了大量的筛选工作后,以醋酸纤维素(E-398-3,乙酰含量39.8%)为原料,采用高氯酸镁水溶液为添加剂,经反复研究和试验,终于首次制成了世界上具有历史意义的高脱盐(98.6%)、高通量(10.1MPa下水透过速度为O.3×10-3cm3/s,合259L/d*m2)的不对称反渗透膜。该膜由一层很薄的致密层(厚度约15~25nm)和一个多孔支撑层(>100um)组成。不对称膜的制备成功成为膜发展史上的第一个里程碑,极大地促进了反渗透膜技术的发

RO反渗透膜介绍,RO反渗透膜优点

RO是英文Reverse Osmosis membrane的缩写,中文意思是逆渗透。一般水的流动方式是由低浓度流向高浓度,水一旦加压之后,将由高浓度流向低浓度,亦即所谓逆渗透原理:由于RO反渗透膜的孔径是头发丝的一百万分之五(0.0001微米),一般肉眼无法看到,细菌、病毒是它的5000倍,因此,只有水分子及部分有益人体的矿物离子能够通过,其它杂质及重金属均由废水管排出。所有海水淡化的过程,以及太空人废水回收处理均采用此方法,因此RO膜又称体外的高科技“人工肾脏”。 RO反渗透膜 RO反渗透膜介绍--反渗透膜优点 RO反渗透膜用于反渗透法中制备纯水的半透膜。 RO反渗透膜一般用高分子材料制成。如醋酸纤维素膜、芳香族聚酰肼膜、芳香族聚酰胺膜。表面微孔的直径一般在0.5~10nm之间,透过性的大小与膜本身的化学结构有关。有的高分子材料对盐的排斥性好,而水的透过速度并不好。有的高分子材料化学结构具有较多亲水基团,因而水的透过速度相对较快。因此一种满意的反渗透膜应具有适当的渗透量或脱盐率。 RO反渗透膜应具有以下特征:(1)在高流速下应具有高效脱盐率;(2)具有较高机械强度和使用寿命;(3)能在较低操作压力下发挥功能;(4)能

耐受化学或生化作用的影响;(5)受pH值、温度等因素影响较小;(6)制膜原料来源容易,加工简便,成本低廉。 反渗透膜的结构,有非对称膜和复合膜两类。当前使用的膜材料主要为三醋酸纤维素和芳香聚酰胺类。其组件有中空纤维式、卷式、板框式和管式。可用于分离、浓缩、纯化等化工单元操作,主要用于纯水制备和水处理行业中。 “反渗透法” 是目前海水淡化中最有效、最节能的技术。它的装置包括去除浑浊物质的前处理设备、高压泵、反渗透装置、后处理设备、浓缩水能量回收器等。反渗透装置是其关键,而它的核心则是RO反渗透膜。 RO反渗透膜原理 反渗透指的是沿与溶液自然渗透方向相反的方向进行的渗透,即溶剂从高浓度向低浓度溶液进行渗透。生物体内,膜是不同组织间的屏障。物质交换时,它只允许其中的某些通过,而排斥其他。这种对物质具有一定选择能力的膜叫做半透膜。假设有一张膜只允许淡水通过,把它放在淡水和盐水中间,在自然状态下,淡水会透过半透膜稀释盐水来减小浓度差,当高度相差一定程度时,渗透会自动停止(这个高度差产生的压强称为“渗透压”)。如果在盐水一边施加压强,使它大于渗透压,

反渗透膜技术

反渗透膜技术 膜分离技术作为新型、高效、节能的分离技术在水及其他液体分离域逐步占有重要的位置。1953年美国佛罗里达大学的Reid等人首次提出用反渗透技术淡化海水的构想,1960年美国加利福尼亚大学的Loeb和Sourirajan研制出第一张可实用的反渗透膜,标志着现代膜科学技术的诞生。从此以后,反渗透膜开发有了重大突破,膜材料从初期单一的醋酸纤维素非对称膜发展到表面聚合技术制成的交联芳香族聚酰胺复合膜等新型材料与高效膜。操作压力也扩展到高压(海水淡化)膜,中压(醋酸纤维素)膜,低压(复合)膜和超低压(复合)膜。80年代以来,又开发出多种材质的纳滤膜。膜组件的形式近年来也呈现出多样化的趋势。除了传统的中空纤维式、卷式、管式及板框以外,又开发出回转平膜、浸渍平式膜等。在工业上应用最多的是卷式膜,它占据了绝大多数陆地水脱盐和越来越多的海水淡化市场。中空纤维膜在海水淡化应用中仍占有一定的份额。 今天世界上反渗透、纳滤膜水处理装置的能力已达到每天数百万吨。目前世界最大的反渗透苦咸水淡化装置在美国日产水量为28万吨的运河水处理厂;最大的反渗透海水淡化装置是位于沙特阿拉伯的日产水量为12.8万吨的淡化厂;最大的纳滤脱盐软化装置位于美国佛罗里达州,日产水量3.8万吨。中国台湾除半导体、电子工业外,小型饮用水需求量也很大。美国除大量使用中、小型及家用反渗透系统外,还建有许多大型公共供水系统。1996年美国国立研究所发表了美国21个州以饮用水为目的的179家脱盐水厂的调查数据。结果表明这些装置的总产水量为140万吨/日,各种脱盐方法在总装置产水能力中所占比重分别为:陆地水(苦咸水)反渗透47%,纳滤膜软化31%,海水淡化8%。值得注意的是,纳滤膜软化装置的增长速度最快,大大高于其他方法。这是因为纳滤膜不仅可在低压下水源软化和适度脱盐,而且可脱除三卤甲烷生成能(THMFP)、色度、细菌、病毒和溶解性有机物,因而日益受到青睐。目前国外反渗透膜的主要生产厂商均为美国和日本公司,其中美国杜邦公司和日本东洋纺公司垄断了中空纤维反渗透膜的世界市场。卷式反渗透膜的主要生产厂商为七家,他们是:Filmtec公司、美国Hydranautics公司、日本日东电工(NittoDenko)公司、美国Fluidsystem公司、日本东丽(Toray)公司、美国Desel公司、美国Trisep 公司。

反渗透膜的制备技术

反渗透膜的制备技术内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

反渗透膜的制备技术 反渗透是利用反渗透膜只透过溶剂而截留离子或小分子物质的选择透过性,以膜两侧的静压差为推动力,实现对混合物分离的膜过程。 在一定温度下,用一个只能使溶剂透过而不能使溶质透过的半透膜把稀溶液与浓溶液隔开,由于浓溶液中水的化学势小于稀溶液中水的化学势,水就会自发地通过半透膜从稀溶液进入到浓溶液中,使浓溶液液面上升,直到浓溶液液面升到一定高度后达到平衡状态。这种现象称为渗透(osmosis)或正渗透。如图1所示,半透膜两侧液面高度差所产生的压差称为浓溶液和稀溶液的渗透压差Δπ,如果稀溶液的浓度为零,渗透压差即为(浓)溶液的渗透压π;如果在浓溶液上方施加压力ΔP,如果ΔP大于Δπ,则浓溶液中的水便会透过半透膜向稀溶液方向流动,这一与渗透相反的过程称为反渗透(reverse osmosis,RO)[1]。 (a)渗透(b)反渗透 图1 渗透与反渗透 由于反渗透膜的截留尺寸为左右,因此能够有效地去除水中的溶解盐类、胶体、微生物、有机物等(去除率达97~98%),系统具有水质好、能耗低、无污染、工艺简单、操作方便等优点,其已广泛应用在苦咸水脱盐、海水淡化、废水处理、纯水制备、食品和医药等方面,被称为“2l世纪的水净化技术”。[2] 1.1 反渗透复合膜发展概括 人类发现渗透现象至今已有260多年历史。1748年,法国的Abble Nollet发现水能自发地扩散进入装有酒精溶液的猪膀胱内,并首创osmosis一词用来描述水通

过半透膜的现象,成为第一例有记载的描述膜分离的试验。在接下来的100多年里,渗透作用引起了科学家们极大的兴趣。最初实验用膜都是动物或植物膜,直到1864年,Traube才成功研制了人类历史上第一张人造膜—亚铁氰化铜膜。该膜对稀电解质溶液表现出显着的选择通过性,尤其渗透压现象引起了极大的关注。Preffer用这种膜以蔗糖和其他溶液进行实验,把渗透压和温度及溶液浓度联系起来,给出了计算渗透压的关联式。1887年Van't Hoot依据Preffer的结论建立了完整的稀溶液的理论,其后J.W.Gills提供了认识渗透压及它与其他热力学性能关系的理论,为渗透现象的研究工作奠定了坚实的理论基础。在对渗透现象进行了一系列的研究后,富于创造性的科学家们并未止步于此。1930年,Sollner进行了反渗透的初步研究,当时人们称之为“反常渗透”。1949年,美国加利福尼亚州立大学洛杉矶分校(UCLA)的Gerald Hassler教授开始了“将海水作为饮用水的水源’’的研究,描述了“阻挡盐分渗透的膜”和“选择性渗透膜层",最早提出了膜法脱盐的概念。尽管Hassler教授的研究未取得理想的结果,但这为后来的反渗透研究工作奠定了基础。1953年,美国的C.E Reid教授首先发现醋酸纤维素类具有良好的半透性;同年,反渗透在Reid教授的建议下被列入美国国家计划。1960年UCLA的Samuel Yuster,Sidney Loeb和Srinivasa Sourirajan等在对膜材料进行了大量的筛选工作后,以醋酸纤维素(E-398-3,乙酰含量39.8%)为原料,采用高氯酸镁水溶液为添加剂,经反复研究和试验,终于首次制成了世界上具有历史意义的高脱盐(98.6%)、高通量下水透过速度为O.3×10-3cm3/s,合259L/d*m2)的不对称反渗透膜。该膜由一层很薄的致密层(厚度约15~25nm)和一个多孔支撑层(>100um)组成。不对称膜的制备成功成为膜发展史上的第一个里程碑,极大地促进了反渗透膜技术的发展。膜科学技术的发展并没有因为第一张实用反渗透膜的发明而停止。1963年Manjikion对CA膜进行了改性,1968年Saltonstall研

纳滤反渗透膜分离实验上课讲义

纳滤反渗透膜分离实 验

化工原理实验报告学院:专业:班级:

三、实验装置 本实验装置均为科研用膜,透过液通量和最大工作压力均低于工业现场实际使用情况,实验中不可将膜组件在超压状态下工作。主要工艺参数如表1-1 膜组件膜材料膜面积/m2最大工作压力/Mpa 纳滤(NF)芳香聚纤胺0.4 0.7 反渗透(RO) 芳香聚纤胺0.4 0.7 表1-1膜分离装置主要工艺参数 反渗透可分离分子量为100级别的离子,学生实验常取0.5%浓度的硫酸钠水溶液为料液,浓度分析采用电导率仪,即分别取各样品测取电导率值,然后比较相对数值即可(也可根据实验前做得的浓度-电导率值标准曲线获取浓度值)。 图1-1膜分离流程示意图 1-料液灌;2-低压泵;3-高压泵;4-预过滤器;5-预过滤液灌;6-配液灌;7-清液灌; 8-浓液灌;9-清液流量计;10-浓液流量计;11-膜组件;12-压力表;13-排水阀

图1 电导率与溶液浓度关系曲线 电导率与溶液浓度模型:C= 0.6253k - 0.0195 式中k为电导率,单位ms/cm;C为溶液浓度,单位×10-3g/cm3。 ① 原料液浓度C0=0.6253*6.07-0.0195=3.776071*10-3(g/cm3)=0.026584561 kmol/m3 透过液浓度C P=0.6253*0.13-0.0195=0.061789*10-3(g/cm3)=0.000435011 kmol/m3 浓缩液浓度C R=0.6253*6.99-0.0195= 4.351347*10-3(g/cm3)= 0.030634659 kmol/m3 ② 原料液浓度C0=0.6253*5.95-0.0195= 3.701035*10-3(g/cm3) =0.026056287 kmol/m3 透过液浓度C P=0.6253*0.07-0.0195=0.024271*10-3(g/cm3) =0.000170874 kmol/m3 浓缩液浓度C R=0.6253*7.26-0.0195= 4.520178*10-3(g/cm3) =0.031823275 kmol/m3 (2)膜组件性能表征: 利用公式:

反渗透膜技术在制药行业的应用

反渗透膜技术在制药行业的应用 随着医药行业的发展,制药用水的水质要求也在逐步提高,传统的制水工艺如离子交换法已远远不能满足其要求,为了适应这一发展的需要,先进、有效的水质净化技术——反渗透膜制药行业水处理系统中。1反渗透膜分离原理及性能自然界有这样一种自然现象,当将一张半透膜将稀薄溶液(如纯水)与纯厚溶液(如盐水)隔开,稀薄溶液会向浓厚溶液渗透并保持相应的渗透压(见图1), 此现象称为渗透现象,如在浓厚溶液处施压大于该渗透压的压力,则浓厚溶液会向稀薄溶液一侧渗透(见图2), 此现象称为逆(反)渗透现象,该技半透膜术是目前国际上公认的高新技术,它借助外加压力的作用使溶液的溶剂透过半透膜而阻留某些溶质,它是一种分离,浓缩和提纯的有效手段。反渗透膜表面微孔尺寸一般在10A左右,它能有效去除微粒、胶体、细菌、热原及有机物和绝大部分离子。目前反渗透膜材质主要为醋纤膜,芳香族聚酰胺系低压复合膜及先进的超低压复合膜,它们的主要性能见表1。 醋纤膜是最早应用的反渗透膜,但是由于容易被细菌吞蚀,pH使用范围窄,脱盐率低,目前该材质膜已逐渐被淘汰,取而代之是高脱盐率、低压、稳定性好的复合膜广泛被使用。 2制药用纯水的制取工艺 2.1全离子交换(IE)法离子交换系统制取纯水是我国传统的制水工

艺,其工艺流程如下: 2.2电渗析(ED)+离子交换(IE)法电渗析是利用阴阳离子交换膜对水溶液中阴阳离子的选择透过性而达到物质分离的处理方法,其工艺流程如下: 2.3反渗透(RO)+离子交换(IE)法反渗透是利用反渗透膜只能透过水而不能透过溶质的特性,从含有各种无机物、有机物和微生物的水体中提取纯水的处理方法,其工艺流程如下: 3反渗透膜法水处理工艺与传统工艺的比较 3.1 三种处理工艺优缺点比较见表2 3.2 三种处理工艺生产It纯水所需费用见表3 说明:以上费用包括: (1)酸碱费(其中酸采用工业纯盐酸,碱采用化学纯片碱); (2) 反渗透膜、电渗析膜、阳、阴树脂更换费及滤芯、药剂消耗费; (3)水、电动力费,其中水已按利用率折算(反渗透法按70%,电渗折法按45%,全离交法按80%); (4)人工费未计入内。 4结语综上所述,反渗透是水处理中高新技术,90年代中期在我国的医药行业开始得到了广泛的应用,它的使用极大地延长了传统的离子交换设备的再生周期,减少了酸碱排放量,有力地保护了生态环境。随着《药品生产质量管理规范》(GMP)技术标准的深入贯彻与实施。

陶氏反渗透膜型 技术手册 版

陶氏反渗透膜型号技术手册2014最新版 一、造成RO使用寿命缩短的原因 1 反渗透设备的操作不当引起陶氏膜型号性能的损坏 1.1 反渗透设备中有残余气体在高压下运行,形成气锤会损坏陶氏反渗透膜 常有两种情况发生: A、设备排空后,重新运行时,气体没有排尽就快速升压运行。应在2~4bar的压力下将余下的空气排尽后,再逐步升压运行。 B、在预处理设备与高压泵之间的接头密封不好或漏水时(尤其是微滤器及其后的管路漏水)当预处理供水不很足时,如微滤发生堵塞,在密封不好的地方由于真空会吸进部分空气。应清洗或更换微滤器,保证管路不漏。总之,应在流量计中没有气泡的情况下逐步升压运行,运行中发现气泡应逐渐降压检查原因。 1.2 反渗透设备关机时的方法不正确 A、关机时快速降压没有进行彻底冲洗。由于膜浓水侧的无机盐的浓度高于原水,易结垢而污染膜。 B、用投加化学试剂的预处理水冲洗。因含化学试剂的水在设备停运期间可能引起膜污染。 反渗透设备在准备关机时,应停止投加化学试剂,逐步降压至3bar左右用预处理好的水冲洗10min,直至浓缩水的TDS与原水的TDS很接近为止。 1.3 反渗透设备消毒和保养不力导致微生物的污染 这是复合聚酰胺膜使用中普遍存在的问题,因为聚酰胺膜耐余氯性差,在使用中没有正确投加氯等消毒剂,加上用户对微生物的预防重视不够,容易导致微生物的污染。目前许多厂家生产的纯水微生物超标,就是消毒、保养不力造成的。 主要表现为:出厂时,RO设备没有采用消毒液保养;设备安装好后没有对整个管路和预处理设备消毒;间断运行不采取消毒和保养措施;没有定期对预处理设备和反渗透设备消毒;保养液失效或浓度不够。 1.4 反渗透设备余氯监测不力 如投加NaHSO3的泵失灵或药液失效,或活性炭饱和时因余氯损坏膜。

反渗透膜分离技术在城市污水处理中的应用

反渗透膜分离技术在城市污 水处理中的应用 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

摘要 国内外反渗透膜技术的发展概况,然后详细论述了反渗透膜分离技术。通过介绍反渗透的基本原理、反渗透装置型式、基本流程,以美国和日本采用反渗透处理生活污水为例,探讨了反渗透膜分离技术在城市污水处理中的应用情况,最后就其发展方向作出了初步地归纳和展望。 关键词:城市污水处理,膜分离技术,反渗透膜,实际应用,前景展望

引言 近来,物理化学处理技术、光照射技术及膜过滤技术已形成三大水处理技术。在这些技术中引人注目的是膜分离法污水处理技术[1]。膜分离是通过膜对混合物中各组分的选择渗透作用的差异,以外界能量或化学位差为推动力对双组分或多组分混合物的气体或液体进行分离、分级、提纯和富集的方法。而反渗透膜分离技术作为当今世界水处理先进的技术,具有清洁、高效、无污染等优点,已在海水淡化、城市给水处理、纯水和超纯水制备、城市污水处理及利用、工业废水处理、放射性废水处理等方面得到广泛的应用。 膜分离技术作为新的分离净化和浓缩方法,与传统分离操作(如蒸发、萃取、沉淀、混凝和离子交换树脂等)相比较,过程中大多无相变化,可以在常温下操作,具有能耗低、效率高、工艺简单、投资小等特点。膜分离技术应用到污水处理领域,形成了新的污水处理方法,它包含微滤(MF)、超滤(UF)、渗析(D)、电渗析(ED)、纳滤(NF)、和反渗透(RO)等,本文仅对反渗透(RO)膜法对城市污水处理技术进行探讨。

一、反渗透膜发展概况 膜广泛的存在于自然界中,特别是生物体内。人类对于膜现象的研究源于1748年,但是人类对它的认识和研究则较晚。1748年,Abbe Nollet观察到水可以通过覆盖在装有酒精溶液瓶口的猪膀肌进入瓶中时,发现了渗透现象。然而认识到膜的功能并用于为人类服务,却经历了200多年的漫长过程。人们对膜进行科学研究则是近几十年来的事。其发展的历史大致为;30年代微孔过滤;40年代透析;50年代电渗析;60年代反渗透;70年代超滤和液膜;80年代气体分离;90年代渗透汽化[2]。 在国外,其发展概况为:1953年美国的Reid 提出从海水和苦盐水中获得廉价的淡水的反渗透研究方案,1960年美国的Sourirajan 和Leob 教授研制出新的不对称膜,从此RO作为经济的淡化技术进入了实用和装置的研究阶段。20世纪70年代初期开始用RO法处理电镀污水,首先用于镀镍污水的回收处理,此后又应用于处理镀铬、镀铜、镀锌等漂洗水以及混合电镀污水。1965年英国首先发表了用半透膜处理电泳涂料污水的专利。此后美国P.P.G公司提出用UF和RO的组合技术处理电泳涂料污水,并且实现了工业化。1972-1975年J J .Porter 等人用动态膜进行染色污水处理和再利用实验。1983年L.Tinghuis等人发表了用RO法处理染料溶液的研究结果。30年来,反渗透(RO)技术先后在含油、脱脂废水、纤维工业废水、造纸工业废水、放射性废水等工业水处理、苦咸水淡化、纯水和高纯水制备、医药工业和特殊的化工过程和高层建筑废水等各类污水处理中得到了广泛的应用。尤其是近几年,一些新型的膜法污水处理技术逐一问世,如膜蒸馏、液膜、膜生化反应器、控制释放膜、膜分相、膜萃取等[3]。 在我国,膜技术的发展是从1958年离子交换膜研究开始的。1958年开始进行离子交换膜的研究,并对电渗析法淡化海水展开了试验研究;1965年开始对反渗透膜进行探索,1966年上海化工厂聚乙烯异相离子交换膜正式投产,为电渗析工业应用奠定了基础。1967年海水淡化会战对我国膜科学技术的进步起了积极的推动作用。1970年代相继对电渗析、反渗透、超滤和微滤膜及组件进行研究开发,1980年代进入推广应用阶段。1980年代中期我国气体分离膜的研究取得长足进步,1985年中国科学院

新版反渗透膜技术资料模板

反渗透技术基础篇 本文引自美国海德能公司反渗透技术资料, 供管理人员和操作人员参考。 一、反渗透膜及其发展: 以高分子分离膜为代表的膜分离技术作为一种新型的流体分离单元操作技术, 三十年来取得了令人瞩目的巨大发展。据有关文献估计, 今天的分离膜世界市场规模已达到每年20亿美元以上。表1和图1分别给出了按分离原理和按被分离物质的大小区分的分离膜种类, 从中能够看出, 除了透析膜主要用于医疗用途以外, 几乎所有的分离膜技术均可应用到石油、天然气及石油化工行业中去。反渗透膜作为主要的水及其它液体分离膜之一, 在分离膜领域内占有重要地位。 1953年美国佛罗里达大学的Reid等人最早提出反渗透海水淡化, 1960年美国加利福尼亚大学的Loeb和Sourirajan研制出第一张可实用的反渗透膜。从此以后, 反渗透膜开发有了重大突破。膜材料从初期单一的醋酸纤维素非对称膜发展到用表面聚合技术制成的交联芳香族聚酰胺复合膜。操作压力也扩展到高压( 海水淡化) 膜, 中压( 醋酸纤维素) 膜, 低压( 复合) 膜和超低压( 复合) 膜。80年代以来, 又开发出多种材质的纳滤膜。 膜组件的形式近年来也呈现出多样化的趋势。除了传统的中空纤维式、卷式、管式及板框式以外, 又开发出回转平膜、浸渍平膜式等。工业上应用最多的是卷式膜, 它占据了绝大多数陆地水脱盐和越来越多的海水淡化市场。中空纤维膜在海水淡化应用中仍占有很高的份额。今天世界上反渗透、纳滤膜

水处理装置的能力已达到每天数百万吨。当前世界最大的反渗透苦咸水淡化装置为位于美国亚利桑拿州的日产水量为28万吨的运河水处理厂, 最大的反渗透海水淡化装置, 位于沙特阿拉伯, 日产水量为12.8万吨。最大的纳滤脱盐软化装置位于美国佛罗里达州, 日产水量为3.8万吨。

反渗透系统的技术原理及流程

反渗透系统的设计流程 反渗透也成为逆渗透,英文名称为:REVERSE OSMASIS(RO).。反渗透技术室当今最先进、最节能、效率最高的分离技术。其技术以压力差为推动力,从溶液中分离出容易的膜分离操作。对膜一侧的料液施加压力,当压力超过他的渗透压时,溶剂会逆着自然渗透的方向作反向渗透。从而在膜的低压侧得到透过的溶剂,即浓缩液。若用反渗透处理海水,在膜的低压侧得到淡水,在高压侧得到卤水。它已广泛应用于太空水、纯净水、蒸馏水等制备;酒类制造及降度用水;医药、电子灯行业用水的前期制备;化工工艺的浓缩、分离、提纯及配水制备;锅炉补给水除盐软水;海水、苦咸水淡化;造纸、电镀、印染等行业用水及废水处理。 反渗透原理 反渗透原理是在高于溶液渗透压的压力下,借助于只允许水分子透过的反渗透膜的选择截留作用,将溶液中的溶质与溶剂分离,从而达到纯净水的目的。当纯水和盐水被理想半透膜隔开,理想半透膜只允许水通过而阻止盐通过,此时膜纯水侧的水会自发地通过半透膜流入盐水一侧,这种现象称为渗透,若在膜的盐水侧施加压力,那么水的自发流动将受到抑制而减慢,当施加的压力达到某一数值的时候,水通过膜的净流量等于零,这个压力称为渗透压力,当施加在膜盐水侧的压力大于渗透压力时,水的流向就会逆转,此时,盐水中的水将流入纯水侧,上述现象就是谁的反渗透(RO)处理的基本原理。 反渗透膜是由具有高度有序矩阵结构的聚合纤维素组成的。他的孔径为0.1纳米-1纳米,即一百亿分之一米(相当于大肠杆菌大小的千分之一,病毒的百分之一)。其孔径很小可以去除滤液中的离子范围和分子量很小的重金属、农药、细菌、病毒、杂质等彻底分离。整个工作原理均采用物理法,不添加任何杀菌剂和化学物质,所以不会发生化学变相。并且反渗透膜并不分离溶解氧,所以通过此法生产得出的纯水是活水,喝起来清甜可口。 反渗透膜 对透过的物质具有选择性的薄膜称之为半透膜。一般将只能渗透溶剂而不能透过溶质的薄膜视为理想的半透膜。当把相同体积的稀溶液,如淡水河浓液,比如海水或盐水分别置于一容器的两侧,中间用半透膜阻隔,稀溶液中的溶剂将自然的穿过半透膜,向浓溶液侧流动,浓溶液侧的液面会比稀溶液的液面高出一定高度,形成一个压力差,达到渗透平衡状态,此种压力差即为渗透压。渗透压的大小决定于浓液的种类,浓度和温度与半透膜的性质无关。若在浓溶液侧施加一个大于渗透压的压力时,浓溶液中的溶剂会向稀溶液流动,此种溶剂的流动方向与原来渗透的方向相反,这一过程成为反渗透。 反渗透系统参数定义 回收率:膜系统中的回收率指的是给水/进水流量转化成为产水/透过液的百分率比值。通常膜系统的设计是依照预设的进水水质而定,因此在浓水管道上设置浓水阀可以调节并设定回收率。回收率常常希望最大化以便获得最大的产水量,但是应该以膜系统内不会因盐类杂质的过饱和发生沉淀为它的极限值。 脱盐率:通过反渗透膜从系统进水中除去总可溶性的杂质浓度的百分率,或通过纳滤膜脱出特定组分如二价例子或有机物的百分数。 透盐率:脱盐率的相反值,它是进水中溶解性的杂质成分透过膜的百分率。 渗透液:经过膜系统产生的净化产水。 流量:流量是指进入膜元件的进水流率,常以每小时立方米(m3/h)或者每分钟加仑(gpm)表示。浓水流量是指离开膜元件系统的未透过膜的那部分的进水流量。这部分浓水含有从原水水源带入的可溶性的组分,常以每小时立方米(m3/h)或者每分钟加仑(gpm)表示。 通量:以单位膜面积透过液的流率,通常以每小时每平方升(l/m2h)或每天每平方英尺加

8040反渗透膜技术要求复习进程

精品文档 精品文档 8040反渗透膜元件性能参数要求 8040反渗透膜元件适用于含盐量低于 10000ppm 的地表水、地下水、自来水及市政用水等水源的脱盐处理,主要应用于各种规模的工业用纯水、发电厂锅炉补给水等领域,也可适用于高浓度含盐废水、 饮料水制造等苦咸水应用领域。 有效膜面积 平均产水量 最低脱盐率 % 膜元件型号 ft 2(m 2 ) 稳定脱盐率 % GPD(m 3 /d) 8040 400(37.2) 10500(39.7) 99.5 99.3 测试 测试压力 225 psi (1.55MPa) 测试液温度 25 ℃ 测试液浓度(NaCl) 2000ppm 测试液pH 值 7.5 条件 单支膜元件回收率 15% 极限 最高操作压力 600psi (4.14MPa ) 最高进水流量 75gpm (17 m 3 /h ) 最高进水温度 45℃ 使用 最大进水 SDI 15 5 进水自由氯浓度 <0.1ppm 条件 正常运行时进水pH 范围 2~11 单支膜元件最大压力降 15psi (0.1MPa ) 化学清洗时进水pH 范围 1~13 单支6芯膜壳最大压力降 50psi (0.34MPa ) 膜元件尺寸如下图:1.0 inch (英寸)=25.4 mm(毫米) A/mm(inch) B/mm(inch) C/mm(inch) 1016.0(40) 201.9(7.95) 28.6(1.125) 注意事项: 1. 表中所列的产水量为平均值,单支膜元件产水量误差为±15%。 2. 膜元件出厂前,干式膜元件无保护液,湿式膜元件使用1.0%的亚硫酸氢钠(冬天时添加10%的丙三醇防冻液)溶液进行 储藏处理并采用真空包装。 3. 干式膜元件润湿后应始终保持湿润;湿式膜元件长期不使用时,为了防止微生物的滋长,推荐用含1.0%亚硫酸氢钠(食 品级)的保护液(用RO 产水配制)浸泡膜元件。 4. 膜元件的初次使用时,建议首先低压冲洗15~25分钟(不宜浸泡或浸泡过夜),然后高压冲洗60~90分钟(产水量不 低于系统设计产水量的50%)。膜元件运行初期第一个小时内的产水和浓水应全部排放。 5. 在储存和运行中禁止添加任何对膜元件有影响的化学药剂,如违反使用这类化学药剂,将不承担由此产生的一切后果。 6. 由于技术进步及产品的更新换代,产品资料可能随时改变,事先予以通知。

8040反渗透膜技术要求

8040反渗透膜元件性能参数要求 8040反渗透膜元件适用于含盐量低于 10000ppm 的地表水、地下水、自来水及市政用水等水源的脱盐处理,主要应用于各种规模的工业用纯水、发电厂锅炉补给水等领域,也可适用于高浓度含盐废水、 饮料水制造等苦咸水应用领域。 有效膜面积 平均产水量 最低脱盐率 % 膜元件型号 ft 2(m 2 ) 稳定脱盐率 % GPD(m 3 /d) 8040 400(37.2) 10500(39.7) 99.5 99.3 测试 测试压力 225 psi (1.55MPa) 测试液温度 25 ℃ 测试液浓度(NaCl) 2000ppm 测试液pH 值 7.5 条件 单支膜元件回收率 15% 极限 最高操作压力 600psi (4.14MPa ) 最高进水流量 75gpm (17 m 3 /h ) 最高进水温度 45℃ 使用 最大进水 SDI 15 5 进水自由氯浓度 <0.1ppm 条件 正常运行时进水pH 范围 2~11 单支膜元件最大压力降 15psi (0.1MPa ) 化学清洗时进水pH 范围 1~13 单支6芯膜壳最大压力降 50psi (0.34MPa ) 膜元件尺寸如下图:1.0 inch (英寸)=25.4 mm(毫米) A/mm(inch) B/mm(inch) C/mm(inch) 1016.0(40) 201.9(7.95) 28.6(1.125) 注意事项: 1. 表中所列的产水量为平均值,单支膜元件产水量误差为±15%。 2. 膜元件出厂前,干式膜元件无保护液,湿式膜元件使用1.0%的亚硫酸氢钠(冬天时添加10%的丙三醇防冻液)溶液进行 储藏处理并采用真空包装。 3. 干式膜元件润湿后应始终保持湿润;湿式膜元件长期不使用时,为了防止微生物的滋长,推荐用含1.0%亚硫酸氢钠(食 品级)的保护液(用RO 产水配制)浸泡膜元件。 4. 膜元件的初次使用时,建议首先低压冲洗15~25分钟(不宜浸泡或浸泡过夜),然后高压冲洗60~90分钟(产水量不 低于系统设计产水量的50%)。膜元件运行初期第一个小时内的产水和浓水应全部排放。 5. 在储存和运行中禁止添加任何对膜元件有影响的化学药剂,如违反使用这类化学药剂,将不承担由此产生的一切后果。 6. 由于技术进步及产品的更新换代,产品资料可能随时改变,事先予以通知。

反渗透膜技术在我国的应用与发展

反渗透膜技术在我国的应用与发展 给排水081班张宝 6002208038 【摘要】:反渗透水处理技术是当代先进的水处理脱盐技术,其应用领域越来越广泛。它应用于电力、化工、石油、饮料、钢铁、制药、电子、市政、环保等行业,即应用于生产锅炉补给水和引用水、淡化海水、制备电子级超纯水,也用于废水处理、物质回收与浓缩的分离过程等领域。反渗透低压膜、超压膜的使用,大大地降低率运行成本,尤其是电力费用,并更新了人们的观念,以至于认为对水中含盐量超过100mg/L,的原水采用反渗透作为预除盐也是经济合理的(DL/T 5068 《火力发电厂化学设计技术规格》条文说明中指出,在美国的价格条件下,原水总溶解固形物大于75mg/L时,采用反渗透除盐是经济的。)它的使用,极大地延长了传统的离子交换设备的再生周期,减少了酸碱的排放量,有利于当地的环境保护。它即可大大降低运行人员的劳动强度,又可以进一步提高整个水处理工艺的运行和自动化强度。是水处理工艺发展的方向之一。 【关键词】:反渗透膜 CA 反渗透预处理膜清洗低压膜超压膜近来,物理化学处理技术、光照射技术及膜过滤技术已形成三大水处理技术。在这些技术中引人注目的是膜分离法污水处理技术[1]。膜分离是通过膜对混合物中各组分的选择渗透作用的差异,以外界能量或化学位差为推动力对双组分或多组分混合物的气体或液体进行分离、分级、提纯和富集的方法。而反渗透膜分离技术作为当今世界水处理先进的技术,具有清洁、高效、无污染等优点,已在海水淡化、城市给水处理、纯水和超纯水制备、城市污水处理及利用、工业废水处理、放射性废水处理等方面得到广泛的应用。 膜分离技术作为新的分离净化和浓缩方法,与传统分离操作(如蒸发、萃取、沉淀、混凝和离子交换树脂等)相比较,过程中大多无相变化,可以在常温下操作,具有能耗低、效率高、工艺简单、投资小等特点。膜分离技术应用到污水处理领域,形成了新的污水处理方法,它包含微滤(MF)、超滤(UF)、渗析(D)、电渗析(ED)、纳滤(NF)、和反渗透(RO)等。 反渗透膜发展概况 渗透现象是法国人于250多年前发现的,自此以后人民开始围绕这种现象展开了广泛的研究,1867年美国佛罗里达大学提出了反渗透海水淡化的概念,1953年醋酸纤维素膜的脱盐能力被reid和bretom等人证实后,loed 和sourirajan 与1960年研制成功了世界上第一张高脱盐率、高通量的不对称醋酸纤维素(CA)

反渗透膜工作原理

反渗透膜工作原理 对透过的物质具有选择性的薄膜称为半透膜,一般将只能透过溶剂而不能透过溶质的薄膜称之为理想半透膜。当把相同体积的稀溶液(例如淡水)和浓溶液(例如盐水)分别置于半透膜的两侧时,稀溶液中的溶剂将自然穿过半透膜而自发地向浓溶液一侧流动,这一现象称为渗透。当渗透达到平衡时,浓溶液侧的液面会比稀溶液的液面高出一定高度,即形成一个压差,此压差即为渗透压。渗透压的大小取决于溶液的固有性质,即与浓溶液的种类、浓度和温度有关而与半透膜的性质无关。若在浓溶液一侧施加一个大于渗透压的压力时,溶剂的流动方向将与原来的渗透方向相反,开始从浓溶液向稀溶液一侧流动,这一过程称为反渗透。 反渗透是渗透的一种反向迁移运动,是一种在压力驱动下,借助于半透膜的选择截留作用将溶液中的溶质与溶剂分开的分离方法,它已广泛应用于各种液体的提纯与浓缩,其中最普遍的应用实例便是在水处理工艺中,用反渗透技术将原水中的无机离子、细菌、病毒、有机物及胶体等杂质去除,以获得高质量的纯净水。 反渗透亦称逆渗透(RO)。是用一定的压力使溶液中的溶剂通过反渗透膜(或称半透膜)分离出来。因为它和自然渗透的方向相反,故称反渗透。根据各种物料的不同渗透压,就可以使大于渗透压的反渗透法达到分离、提取、纯化和浓缩的目的。 特点:常温条件下,可以对溶质和水进行分离或浓缩,因而能耗低;杂质去除范围广,可去除无机盐和各类有机物杂质;较高的水回用率;分离装置简单,容易操作和维修。 应用范围: 太空水、纯净水、蒸馏水等制备;酒类制造及降度用水;医药、电子等行业用水的前期制备;化工工艺的浓缩、分离、提纯及配水制备;锅炉补给水除盐软水;海水、苦咸水淡化;造纸、电镀、印染等行业用水及废水处理。 以高分子分离膜为代表的膜分离技术作为一种新型、高效流体分离单元操作技术,30年来取得了令人瞩目的飞速发展,已广泛应用于国民经济的各个领域。 反渗透膜应用现状 在各种膜分离技术中,反渗透技术是近年来国内应用最成功、发展最快、普及最广的一种。估计自1995年以来,反渗透膜的使用量每年平均递增20%;据保守的统计,1999年工业反渗透膜元件的市场供应量为8英寸膜6000支,4英寸膜26000支。2000年和2010年的市场更为强劲,膜用量一年比一年有较大幅度的提高。据估算,反渗透技术的应用已创造水处理行业全年10亿人民币以上的产

反渗透膜技术与工艺流程说明

技术文件 一、反渗透膜技术简介 二、设计基础 三、工艺讲明 四、操纵系统和仪表 五、设备清单

六、设备技术规范书 附: 工艺流程图;

一、反渗透技术简介 反渗透简称RO,是六十年代进展起来的一种膜分离技术,其原理是原水在高压力的作用下通过反渗透膜,水中的溶剂由高浓度向底浓度扩散从而达到分离、提纯、浓缩的目的,由于它于自然界的渗透方向相反,因而称它位反渗透。反渗透能够去除水中的细菌、病毒、胶体、有机物和98%以上的溶解性盐类。该方法具有运行成本低,操作简单,自动化程度高,出水水质稳定等特点。与其他传统的水处理方法相比具有明显的优胜,广泛运用于水处理相关行业。 反渗透水处理工艺差不多上属于物理脱盐方法,它在诸多方面具有传统的水处理方法所没有的优异特点: 1、反渗透是在室温条件下,采纳无相变的物理方法将含盐水进行脱盐、纯化。目前,超薄复合膜元件的脱盐率可达到99.5%以上,并可同时去除水中的胶体、有机物、细菌、病毒等。 2、水的处理仅依靠水的压力作为推动力,其能耗在许多处理中最低。 3、不用大量的化学药剂和酸、碱再生处理,无化学费液排放,无环境污染。 4、反渗透能够连续运行制水,系统简单,操作方便,产品水质稳

定。 5、反渗透装置自动化程度高,运行维护和设备维护工作量专门少。 6、设备占地面积小,需要的空间也小。 7、适应于较大范围的原水水质,既适应于苦咸水、海水以至污水的处理,又适应于低含盐量的淡水处理。我公司集多年工业水处理系统的工艺设计、设备制造、系统成套及膜应用技术的经验,选取合理的工艺设置和设计参数,确保设备长期稳定运行。

二、设计基础 1、水源水质

反渗透膜的制备技术

反渗透膜的制备技术 反渗透是利用反渗透膜只透过溶剂而截留离子或小分子物质的选择透过性,以膜两侧的静压差为推动力,实现对混合物分离的膜过程。 在一定温度下,用一个只能使溶剂透过而不能使溶质透过的半透膜把稀溶液与浓溶液隔开,由于浓溶液中水的化学势小于稀溶液中水的化学势,水就会自发地通过半透膜从稀溶液进入到浓溶液中,使浓溶液液面上升,直到浓溶液液面升到一定高度后达到平衡状态。这种现象称为渗透(osmosis)或正渗透。如图1所示,半透膜两侧液面高度差所产生的压差称为浓溶液和稀溶液的渗透压差Δπ,如果稀溶液的浓度为零,渗透压差即为(浓)溶液的渗透压π;如果在浓溶液上方施加压力ΔP,如果ΔP大于Δπ,则浓溶液中的水便会透过半透膜向稀溶液方向流动,这一与渗透相反的过程称为反渗透(reverse osmosis,RO)[1]。 (a)渗透(b)反渗透 图1 渗透与反渗透 由于反渗透膜的截留尺寸为左右,因此能够有效地去除水中的溶解盐类、胶体、微生物、有机物等(去除率达97~98%),系统具有水质好、能耗低、无污染、工艺简单、操作方便等优点,其已广泛应用在苦咸水脱盐、海水淡化、废水处理、纯水制备、食品和医药等方面,被称为“2l世纪的水净化技术”。[2] 1.1 反渗透复合膜发展概括 人类发现渗透现象至今已有260多年历史。1748年,法国的Abble Nollet发现水能自发地扩散进入装有酒精溶液的猪膀胱内,并首创osmosis一词用来描述水通过半透膜的现象,成为第一例有记载的描述膜分离的试验。在接下来的100多年里,渗透作用引起了科学家们极大的兴趣。最初实验用膜都是动物或植物膜,直到1864年,Traube才成功研制了人类历史上第一张人造膜—亚铁氰化铜膜。该膜对稀电解质溶液表现出显着的选择通过性,尤其渗透压现象引起了极大的关注。Preffer用这种膜以蔗糖和其他溶液进行实验,把渗透压和温度及溶液浓度联系起来,给出了计算渗透压的关联式。1887年Van't Hoot依据Preffer的结论建立了完整的稀溶液的理论,其后J.W.Gills提供了认识渗透压及它与其他热力学性能关系的理论,为渗透现象的研究工作奠定了坚实的理论基础。在对渗透现象进行了一系列的研究后,富于创造性的科学家们并未止步于此。1930年,Sollner进行了反渗透的初步研究,当时人们称之为“反常渗透”。1949年,美国加利福尼亚州立大学洛杉矶分校(UCLA)的Gerald Hassler教授开始了“将海水作为饮用水的水源’’的研究,描述了“阻挡盐分渗透的膜”和“选择性渗透膜层",最早提出了膜法脱盐的概念。尽管Hassler教授的研究未取得理想的结果,但这为后来的反渗透研究工作奠定了基础。1953年,美国的C.E Reid教授首先发现醋酸纤维素类具有良好的半透性;同年,反渗透在Reid教授的建议下被列入美国国家计划。1960年UCLA的Samuel Yuster,Sidney Loeb和Srinivasa Sourirajan等在对膜材料进行了大量的筛选工作后,以醋酸纤维素(E-398-3,乙酰含量39.8%)为原料,采用高氯酸镁水溶液为添加剂,经反复研究和试验,终于首次制成了世界上具有历史意义的高脱盐(98.6%)、高通量下水透过速度为O.3×10-3cm3/s,合259L/d*m2)的不对称反渗透膜。该膜由一

相关文档
最新文档