行波法求解振动方程

行波法求解振动方程
行波法求解振动方程

行波法(求解振动方程) 2016年9月4日22:09

波动方程的求解(补充)20110517

波动方程的求解方法 《高电压技术》第七章补充内容 20110517 一.求解算例:(暂态算例,与作业P93页7-3类似) 如图1所示,直流电源在t=0时刻合闸于无损单导线,已知电源电压E=1V,电源内阻为0,无损单导线单位长度的电感为L0、单位长度的对地电容为C0,线路长度为1m,且末端开路。(注:设线路末端为x=0的起始点,x正方向从线路末端指向电源端) 图1 直流电源合闸于有限长线路 1)写出无损单导线的时域波动方程。 2)写出无损单导线的频域波动方程。 3)根据频域方程和边界条件求线路上任意一点的电压的频域表达式。

二、求解过程 1.均匀传输线的波动方程: 00 00 u i ir L x t i u ug C x t ???-=+????????-=+???? 2.忽略损耗,上式的解耦形式为: 2200 222 2 00 22u u L C x t i i L C x t ??? =???????? =???? 3.应用拉普拉斯变换到频域得: 2 2 2 22 2 d u u d d i i d x x γγ = =, γ,p 为拉普拉斯算子 4.写出电压方程和电流方程的通解形式: u(x)=Aexp(-x)+Bexp(x) γγ A B i(x)= exp(-x)+ exp(x) z z γγ- 其中z 为线路波阻抗,且

5.代入边界条件 电源端:x=1,u=1/p; 线路末端:x=0,i=0,求出A 和B ,得到: 1cosh x u(x)=p cosh γγ ?

三、作业(稳态算例,选作,参见§11-1空载长线电容效应P297-298) 如图2所示,已知无损空载长线长为L ,末端开路,该线单位长度的电感为L 0、单位长度的对地电容为C 0, 电源电压为E ,且X L =0,求U X 的关于E 频域表达式。 图2 空载电路的沿线电压分布曲线 1() cos cos x U E U x L αα? ? ? = (P298页式11-1-8) 提示:1.应用正弦稳态变换,即p =j ω变换到频域求解。 2.应用欧拉公式有: cos sin cos sin j L j L e L j L e L j L αααααα-=+=- 即cos sin ch L L sh L j L γγ=α=α 这里有0000 j j ;j j Z L Y C γωωω= ==α == 2

基本波动方程的求解方法

关于弦振动的求解方法 李航 一、无界弦振动 1、一维齐次波动方程 达朗贝尔方程解无界的定解问题 ?+-+-++=at x at x d a at x at x t x u ξξ?φ?)(21)]()([21),( <达朗贝尔公式> 在常微分方程的定解问题中,通常是先求方程的通解,然后利用定解条件确定通解所含的任意常数,从而得到定解问题的解。考虑无界的定解问题一般方程为 ??? ????=??=>+∞<<∞-??=??==)(|),(|0, ,0022222x t u x u t x x u a t u t t φ? 由达郎贝尔公式,解在点),(t x 的值由初始条件在区间],[at x at x +-内的值决定,称区间],[at x at x +-为点),(t x 的依赖区域,在t x -平面上,它可看作是过点),(t x ,斜率分别a 1± 为的两条直线在x 轴上截得的区间。 2、一维非齐次波动方程的柯西问题 达朗贝尔方程解非齐次定解问题 ???????=??=>+∞<<∞-+??=??==)2()(|),(|)1(0,),(0022222 , x t u x u t x t x f x u a t u t x φ? 令),(),(),(t x V t x U t x u +=,可将此定解分解成下面两个定解问题:

(I) ??? ????=??=>+∞<<∞-??=??== , )(|),(|0,0022222x t u x u t x x u a t u t x φ? (II) ??? ????=??=>+∞<<∞-+??=??== , 0|,0|0,),(0022222t x t u u t x t x f x u a t u 其中问题(I)的解可由达朗贝尔公式给出: ?+-+-++=at x at x d a at x at x t x U ξξ???)(21)]()([21),(。 对于问题(II),有下面重要的定理。 定理(齐次化原理)设),,(τωt x 是柯西问题 ??? ????=??=>??=??== , ),(|,0|22222τωωτωωττx f t t x a t t x 的解)0(≥τ,则?=t d t x t x V 0),,(),(ττω是问题(II)的解。 二、有界的弦振动方程 1、分离变量法 齐次条件的分离变量法 (1) (2) (3) 设)()(),(t T x X t x u =,代入方程(1)得: ) ()()()('''t aT t T x X x X = ?????????====><

大学物理A第九章 简谐振动

第九章 简谐振动 填空题(每空3分) 质点作简谐振动,当位移等于振幅一半时,动能与势能的比值为 ,位移等于 时,动能与势能相等。(3:1,2A ) 9-2两个谐振动方程为()120.03cos (),0.04cos 2()x t m x t m ωωπ==+则它们的合振幅为 。(0.05m ) 9-3两个同方向同频率的简谐振动的表达式分别为X 1=×10-2cos(T π2t+4 π ) (SI) , X 2=×10-2cos(T π2t -43π) (SI) ,则其合振动的表达式为______(SI).( X=×10-2cos(T π2t+4 π ) (SI)) 9-4一质点作周期为T 、振幅为A 的简谐振动,质点由平衡位置运动到2 A 处所需要的最短时间为_________。( 12 T ) 9-5 有两个同方向同频率的简谐振动,其表达式分别为 )4 cos(1π ω+ =t A x m 、 )4 3 cos(32πω+=t A x m ,则合振动的振幅为 。(2 A) 9-6 已知一质点作周期为T 、振幅为A 的简谐振动,质点由正向最大位移处运动到2 A 处所需要的最短时间为_________。 ( 6 T ) 9-7有两个同方向同频率的简谐振动,其表达式分别为 )75.010cos(03.01π+=t x m 、)25.010cos(04.02π-=t x m ,则合振动的振幅为 。 (0.01m ) 质量0.10m kg =的物体,以振幅21.010m -?作简谐振动,其最大加速度为2 4.0m s -?,通过平衡 位置时的动能为 ;振动周期是 。(-3 2.010,10s J π?) 9-9一物体作简谐振动,当它处于正向位移一半处,且向平衡位置运动,则在该位置时的相位为 ;在该位置,势能和动能的比值为 。(3π) 9-10质量为0.1kg 的物体,以振幅21.010m -?作谐振动,其最大加速度为14.0m s -?,则通过最大位移处的势能为 。(3210J -?) 9-11一质点做谐振动,其振动方程为6cos(4)x t ππ=+(SI ),则其周期为 。

基本波动方程的求解方法

基本波动方程的求解方法 This model paper was revised by the Standardization Office on December 10, 2020

关于弦振动的求解方法 李航 一、无界弦振动 1、一维齐次波动方程 达朗贝尔方程解无界的定解问题 ?+-+-++=at x at x d a at x at x t x u ξξ?φ?)(21)]()([21),( <达朗贝尔公式> 在常微分方程的定解问题中,通常是先求方程的通解,然后利用定解条件确定通解所含的任意常数,从而得到定解问题的解。考虑无界的定解问题一般方程为 由达郎贝尔公式,解在点),(t x 的值由初始条件在区间],[at x at x +-内的值决定,称区间 ],[at x at x +-为点),(t x 的依赖区域,在t x -平面上,它可看作是过点),(t x ,斜率分别a 1± 为的两条直线在x 轴上截得的区间。 2、一维非齐次波动方程的柯西问题 达朗贝尔方程解非齐次定解问题 令),(),(),(t x V t x U t x u +=,可将此定解分解成下面两个定解问题: (I) ??? ????=??=>+∞<<∞-??=??== , )(|),(|0,0022222x t u x u t x x u a t u t x φ?

(II) ??? ????=??=>+∞<<∞-+??=??== , 0|,0|0,),(0022222t x t u u t x t x f x u a t u 其中问题(I)的解可由达朗贝尔公式给出: ?+-+-++=at x at x d a at x at x t x U ξξ???)(21)]()([21),(。 对于问题(II),有下面重要的定理。 定理(齐次化原理)设),,(τωt x 是柯西问题 的解)0(≥τ,则?=t d t x t x V 0 ),,(),(ττω是问题(II)的解。 二、有界的弦振动方程 1、分离变量法 齐次条件的分离变量法 (1) (2) (3) 设)()(),(t T x X t x u =,代入方程(1)得: 上式右端不含x ,左端不含t ,所以只有当两端均为常数时才能相等。令此常数为λ-,则有: ?????????====><

大学物理习题解答8第八章振动与波动(1)

第八章 振动与波动 本章提要 1. 简谐振动 · 物体在一定位置附近所作的周期性往复运动称为机械振动。 · 简谐振动运动方程 ()cos x A t ω?=+ 其中A 为振幅,ω 为角频率,(ωt+?)称为谐振动的相位,t =0时的相位? 称为初相位。 · 简谐振动速度方程 d ()d sin x v A t t ωω?= =-+ · 简谐振动加速度方程 222d ()d cos x a A t t ωω?==-+ · 简谐振动可用旋转矢量法表示。 2. 简谐振动的能量 · 若弹簧振子劲度系数为k ,振动物体质量为m ,在某一时刻m 的位移为x ,振动速度为v ,则振动物体m 动能为 212 k E mv = · 弹簧的势能为 212 p E kx = · 振子总能量为 P 22222211 ()+()221=2sin cos k E E E m A t kA t kA ωω?ω?=+= ++ 3. 阻尼振动

· 如果一个振动质点,除了受弹性力之外,还受到一个与速度成正比的阻尼作用,那么它将作振幅逐渐衰减的振动,也就是阻尼振动。 · 阻尼振动的动力学方程为 22 2d d 20d d x x x t t βω++= 其中,γ是阻尼系数,2m γ β= 。 (1) 当22ωβ>时,振子的运动一个振幅随时间衰减的振动,称阻尼振动。 (2) 当22ωβ=时,不再出现振荡,称临界阻尼。 (3) 当22ωβ<时,不出现振荡,称过阻尼。 4. 受迫振动 · 振子在周期性外力作用下发生的振动叫受迫振动,周期性外力称驱动力 · 受迫振动的运动方程为 22 P 2d d 2d d cos x x F x t t t m βωω++= 其中,2k m ω=,为振动系统的固有频率;2C m β=;F 为驱动力振幅。 · 当驱动力振动的频率p ω等于ω时,振幅出现最大值,称为共振。 5. 简谐振动的合成与分解 (1) 一维同频率的简谐振动的合成 若任一时刻t 两个振动的位移分别为 111()cos x A t ω?=+ 222()cos x A t ω?=+ 合振动方程可表示为 ()cos x A t ω?=+ 其中,A 和? 分别为合振动的振幅与初相位 221112212()cos A A A A A ??=++-

Matlab线性方程组求解(Gauss消去法)

Matlab线性方程组求解 1. Gauss消元法: function x=DelGauss(a,b) % Gauss消去法 [n,m]=size(a); nb=length(b); det=1; %存储行列式值 x=zeros(n,1); for k=1:n-1 for i=k+1:n if a(k,k)==0 return end m=a(i,k)/a(k,k); for j=k+1:n a(i,j)=a(i,j)-m*a(k,j); end b(i)=b(i)-m*b(k); end det=det*a(k,k); %计算行列式 end det=det*a(n,n); for k=n:-1:1 %回代求解 for j=k+1:n b(k)=b(k)-a(k,j)*x(j); end x(k)=b(k)/a(k,k);

end Example: >> A=[1.0170 -0.0092 0.0095;-0.0092 0.9903 0.0136;0.0095 0.0136 0.9898]; >> b=[1 0 1]'; >> x=DelGauss(A,b) x = 0.9739 -0.0047 1.0010 2. 列主元Gauss消去法: function x=detGauss(a,b) % Gauss列主元消去法 [n,m]=size(a); nb=length(b); det=1; %存储行列式值 x=zeros(n,1); for k=1:n-1 amax=0; %选主元 for i=k:n if abs(a(i,k))>amax amax=abs(a(i,k));r=i; end end if amax<1e-10 return; end if r>k %交换两行 for j=k:n

第七章 一维波动方程的解题方法及习题答案

第二篇 数学物理方程 ——物理问题中的二阶线性偏微分方程及其解法 Abstracts:1、根据物理问题导出数理方程—偏微分方程; 2、给定数理方程的附加条件:初始条件、边界条件、物理条件 (自然条件,连接条件),从而与数理方程一起构成定解问题; 3、方程齐次化; 4、数理方程的线性导致解的叠加。 一、数理方程的来源和分类(状态描述、变化规律) 1、来源 I .质点力学:牛顿第二定律F mr =r r && 连续体力学222 2() (,)(,)0(()0; v 1()0(Euler eq.).u r t a u r t t v t v v p f t ρρρ ?????-?=??????? ?? +??=????-?+??=+=????? r r r r r r r r &弹性定律弦弹性体力学杆 振动:波动方程);膜 流体力学:质量守恒律:热力学物态方程: II.麦克斯韦方程 ;;00;().,,,D D E l B s E B B B H l j D s H j D E u B A u A σρτρσ??=???=?=????=????=???=?=+????=+??=-?=????????????????????r r r r r r r r r &&r r r r r r r r r r r &&r r r r 已已d d d d d d d 满足波动方程。Lorenz 力公式力学方程;Maxwell eqs.+电导定律电报方程。 III. 热力学统计物理 220;0.T k T t D t ρρ?? -?=??????-?=??? 热传导方程:扩 散方程:特别: 稳态(0t ρ?=?):20ρ?= (Laplace equation). IV. 量子力学的薛定谔方程: 22 .2u i u Vu t m ?=-?+?h h 2. 分类

线性方程组的解法

线性方程组的解法 1 引言 在科学研究和大型工程设计中出现了越来越多的数学问题,而这些问题往往需要求数值解。在进行数值求解时,经离散后,常常归结为求解形如Ax= b的大型线性方程组。而如插值公式,拟合公式等的建立,微分方程差分格式的构造等,均可归结为求解线性方程组的问题.在工程技术的科学计算中,线性方程组的求解也是最基本的工作之一.因此,线性方程组的解法一直是科学和工程计算中研究最为普遍的问题,它在数值分析中占有极其重要的地位。20世纪50年代至70年代,由于电子计算机的发展,人们开始考虑和研究在计算机上用迭代法求线性方程组Ax =b的近似解,用某种极限过程去逐渐逼近精确解,并发展了许多非常有效的迭代方法,迭代法具有需要计算机存储单元少、程序设计简单、原始系数矩阵在计算过程中始终不变等优点。例如Jacobi方法、Gauss—Seidel 方法、SOR方法、SSOR 方法,这几种迭代方法是最常用的一阶线性定常迭代法。 2 主要算法 20世纪50年代至70年代,人们开始考虑和研究用迭代法求解线性方程组。 Ax = b (1) 的近似解,发展了许多有效的方法,其中有Jacobi方法、Gauss—Seidel方法,SOR方法、SSOR方法,这几种迭代方法均属一阶线性定常迭代法,即若系数矩阵A的一个分裂:A =M-N ;M 为可逆矩阵,线性方程组(1)化为: (M-N)X =b; →M X = NX + b; →X= M -1NX+ M-1b 得到迭代方法的一般公式: X(k+1)=HX(k)+d (2) 其中:H =MN-1,d=M-1b,对任意初始向量X(0) 一阶定常迭代法收敛的充分必要条件是: 迭代矩H的谱半径小于1,即ρ(H) < 1;又因为对于任何矩阵范数恒有ρ(H)≤‖H‖,故又可得到收敛的一个充分条件为:‖H‖< 1。 2.1 Jacobi迭代法 若D为A的对角素构成的对角矩阵,且对角线元素全不为零。系数矩阵A的一个分解:A =

一维波动方程的有限差分法

学生实验报告实验课程名称偏微分方程数值解 开课实验室数统学院 学院数统年级2013 专业班信计02班 学生姓名______________ 学号 开课时间2015 至2016 学年第 2 学期

数学与统计学院制 开课学院、实验室:数统学院实验时间:2016年6月20日

1、三层显格式建立 由于题中h 0.1, 0.1h,x 0,1 ,t 0,2,取N 10, M 200,故令网比r 0.1,h X j j h, j 0,1,2,L 10,t k k ,k O,1L ,200 ,在内网个点处,利用二阶中心差商得到如下格式: k 1 k U J 2U J 2- k 1 U j k k U j 1 2U j h2 k U j 1 o h2 略去误差项得到: k 1 U j 其中j 1,2丄9,k 对于初始条件 2 k r U J1 1,2,L ,199,局部截断误差为 U x,0 sin U J k U j k r U j 2 o k 1 U J h2。 (3) 对于初始条件-u x,0 t x,建立差分格式为: sin x j sin Jh , J 利用中心差商,建立差分格式为: 0,1,2,L 10 (4) 对于边界条件将差分格式延拓使综上(3 )、 (4 )、 k 1 u j 其中r山o.1 1 U J 2 1 U j 0,即U1二U j1, J 0,1,2,L 10 (5) 0,t 0,2 ,建立差分格式为: U N 0,k 0,1,L ,200 k 0为内点,代入(3)得到的式子再与(5)联立消去 1 1 2 0 ’ 2 0 1 5 r U, 1 1 r U, r J 2 J J 2 (7 )得到三层显格式如下: U 0,t U 1,t k U0 (6 ) 、 2 k r U j 1 2 1 r2k 2 k U J r U J 1 k 1? U j , J U j (6) 1后整理得到: U j 1 (7) (局部截断误差为 1,2,L 9,k 1,2,L ,199 h2) 1 U j U J sin 1 2 0 2r U J 1 k U o X j k U N sin 2 0 r U j 0,k 0,1,2,L 10 Jh ,J 1 2r2u01, J 1,2,L 9 0,1L ,200 (8) 四?实验环境(所用软件、硬件等)及实验数据文件Matlab

简谐振动的运动学

简谐振动的运动学 本节主要讲解:根据简谐振动的动力学方程求其运动学方程,并讨论简谐运动的运动学特征。 一 . 简谐振动的运动学方程 方程的解为:⑴ ⑴式就是简谐振动的运动学方程,该式又是周期函数,故简谐振动是围绕平衡位置的周期运动。 二 . 描述简谐振动的物理量 1 . 周期(T ) 完成一次全振动所用的时间: 对弹簧振子: 2. 频率() 单位时间内完成的全振动的次数: 的含义:个单位时间内完成的全振动的次数,即圆频率。 3. 振幅

物体离开平衡位置的最大位移。 振幅可以由初始条件决定。如:t=0 时刻,, 由⑴式可得:, ∴⑵ 4. 位相和初位相 振动系统的状态指:任意瞬时的位移和速度。但仅知振幅频率还不够,还须知道 才能完全决定系统的运动状态。 叫简谐振动的相位。 当时,叫初相位。 由:⑶ 若:已知初始条件:,则⑶式有: ⑷ ⑸ ⑷,⑸式中的任意二个即可确定初位相。 相位差:两振动相位之差。 讨论:

⑴若 是 的整数倍,则振动同相位; ⑵若 是 奇数倍,则振动相位相反; ⑶若 ,则称 超前 ; ⑷若 ,则称 落后 。 相位差的不同,表明二振动有不同程度的参差错落,振动步调不同。 例 1 :一弹簧振子, 时, 求振动的初位相 。 解 : ∴ 在第一象限, 例 2 :讨论振动的位移,速度和加速度之间的关系。 解 : 设: , 则:

所以:速度的位相比位移的位相超前 加速度的位相比速度的位相超前; 加速度的位相比位移的位相超前。 理解:加速度对时间的积累才获得速度,速度对时间的积累获得位移。 总结: ⑴简谐振动是周期性运动; ⑵简谐振动各瞬时的运动状态由振幅 A 频率及初相位决定,或者说,由振幅和相位决定。 ⑶简谐振动的频率是由振动系统本身固有性质决定的,而振幅和初相位不仅决定于系统本身性质,而且取决于初始条件。 三 . 简谐振动的图象:图线 描述:质点在各个时刻的偏离平衡位置的位移。 中学里经常做正弦、余弦函数的图象,故不再多讲,请看书。 四 . 简谐振动的矢量表示法: 用旋转矢量的投影表示简谐振动。 如图示:

解线性方程组的直接解法

解线性方程组的直接解法 一、实验目的及要求 关于线性方程组的数值解法一般分为两大类:直接法与迭代法。直接法是在没有舍入误差的情况下,通过有限步运算来求方程组解的方法。通过本次试验的学习,应该掌握各种直接法,如:高斯列主元消去法,LU分解法和平方根法等算法的基本思想和原理,了解它们各自的优缺点及适用范围。 二、相关理论知识 求解线性方程组的直接方法有以下几种: 1、利用左除运算符直接求解 线性方程组为b x\ =即可。 A Ax=,则输入b 2、列主元的高斯消元法 程序流程图: 输入系数矩阵A,向量b,输出线性方程组的解x。 根据矩阵的秩判断是否有解,若无解停止;否则,顺序进行; 对于1 p :1- =n 选择第p列中最大元,并且交换行; 消元计算; 回代求解。(此部分可以参看课本第150页相关算法) 3、利用矩阵的分解求解线性方程组 (1)LU分解 调用matlab中的函数lu即可,调用格式如下: [L,U]=lu(A) 注意:L往往不是一个下三角,但是可以经过行的变换化为单位下三角。 (2)平方根法

调用matlab 中的函数chol 即可,调用格式如下: R=chol (A ) 输出的是一个上三角矩阵R ,使得R R A T =。 三、研究、解答以下问题 问题1、先将矩阵A 进行楚列斯基分解,然后解方程组b Ax =(即利用平方根法求解线性方程组,直接调用函数): ??????? ??--------=19631699723723312312A ,?????? ? ??-=71636b 解答: 程序: A=[12 -3 2 1;-3 23 -7 -3;2 -7 99 -6;1 -3 -6 19]; R=chol(A) b=[6 3 -16 7]'; y=inv(R')*b %y=R'\b x=inv(R)*y %x=R\y 结果: R =3.4641 -0.8660 0.5774 0.2887 0 4.7170 -1.3780 -0.5830 0 0 9.8371 -0.7085 0 0 0 4.2514 y =1.7321 0.9540 -1.5945 1.3940 x =0.5463 0.2023 -0.1385 0.3279 问题 2、先将矩阵A 进行LU 分解,然后解方程组b Ax =(直接调用函数): ?????????? ??----=8162517623158765211331056897031354376231A ,????????? ? ??-=715513252b

基本波动方程的求解方法

关于弦振动得求解方法 李航 一、无界弦振动 1、一维齐次波动方程 达朗贝尔方程解无界得定解问题 ?+-+-++=at x at x d a at x at x t x u ξξ?φ?)(21)]()([21),( <达朗贝尔公式> 在常微分方程得定解问题中,通常就是先求方程得通解,然后利用定解条件确定通解所含得任意常数,从而得到定解问题得解。考虑无界得定解问题一般方程为 ??? ????=??=>+∞<<∞-??=??==)(|),(|0, ,0022222x t u x u t x x u a t u t t φ? 由达郎贝尔公式,解在点),(t x 得值由初始条件在区间],[at x at x +-内得值决定,称区间],[at x at x +-为点),(t x 得依赖区域,在t x -平面上,它可瞧作就是过点),(t x ,斜率分别a 1± 为得两条直线在x 轴上截得得区间。 2、一维非齐次波动方程得柯西问题 达朗贝尔方程解非齐次定解问题 ???????=??=>+∞<<∞-+??=??==)2()(|),(|)1(0,),(0022222 , x t u x u t x t x f x u a t u t x φ?

令),(),(),(t x V t x U t x u +=,可将此定解分解成下面两个定解问题: (I) ??? ????=??=>+∞<<∞-??=??== , )(|),(|0,0022222x t u x u t x x u a t u t x φ? (II) ??? ????=??=>+∞<<∞-+??=??== , 0|,0|0,),(0022222t x t u u t x t x f x u a t u 其中问题(I)得解可由达朗贝尔公式给出: ?+-+-++=at x at x d a at x at x t x U ξξ???)(21)]()([21),(。 对于问题(II),有下面重要得定理。 定理(齐次化原理)设),,(τωt x 就是柯西问题 ??? ????=??=>??=??== , ),(|,0|22222τωωτωωττx f t t x a t t x 得解)0(≥τ,则?=t d t x t x V 0),,(),(ττω就是问题(II)得解。 二、有界得弦振动方程 1、分离变量法 齐次条件得分离变量法 (1) (2) (3) 设)()(),(t T x X t x u =,代入方程(1)得: ) ()()()('''t aT t T x X x X = ?????????====><

基本波动方程的求解方法

精心整理 关于弦振动的求解方法 李航 一、无界弦振动 1、一维齐次波动方程 达朗贝尔方程解无界的定解问题 t x u ,([x -a 1 ±2令(u (I)(II)??? ????=??=>+∞<<∞-+??=??== , 0|,0|0,),(00222t x t u u t x t x f x u a t u 其中问题(I)的解可由达朗贝尔公式给出: ?+-+-++=at x at x d a at x at x t x U ξξ???)(21)]()([21),(。 对于问题(II),有下面重要的定理。

定理(齐次化原理)设),,(τωt x 是柯西问题 的解)0(≥τ,则?=t d t x t x V 0),,(),(ττω是问题(II)的解。 二、有界的弦振动方程 1、分离变量法 齐次条件的分离变量法 λ-,则有:)(''+x X )('+a t T 0)0(=X 对λ用叠加原理。类似于常微分方程通解的求法先求出其所有线性无关的特解,通过叠加求定解问题的解。 非齐次条件分离变量法 分离变量法要求方程是齐次、边界条件也为齐次,如果上述条件之一破坏,则不能采用分离变量法解。 ?????????==??=|),0(0222u t u t u t

分离变量法要求定解问题的边界条件是齐次的,这是因为用分离变量法要将特征函数叠加起来,如果边界条件非齐次,则通过叠加后的函数就不可能满足原边界条件。所以当边界条件是非齐次时,必须设法将边界条件化成齐次的。如: 设),(),(),(t x W t x V t x u +=,通过适当选取),(t x W 使新的未知函数满足齐次边界条件,这只须使),(t x W 满足: 即可。a , b , c , d , e , f , 设),(),(),(t x W t x V t x U +=(4),其中构造) ()(t t ),(B A t x V +=让其满足(2)则: 所以对),(t x W 有:?????????====><<+??=??==)()()( 8)(|),(|70),(),0(60,0,t sin t 0102 22222Λ ΛΛx u x u t l W t W t l x A x W a t W t t φ?ωω 令)()(9t kx sin t ),(0k k Λ∑∞==πT t x W

大学物理A第九章简谐振动

第九章 简谐振动 一、填空题(每空3分) 9-1 质点作简谐振动,当位移等于振幅一半时,动能与势能的比值为 ,位移等于 时,动能与势能相等。(3:1,A ) 9-2两个谐振动方程为()120.03cos (),0.04cos 2()x t m x t m ωωπ==+则它们的合振幅为 。(0.05m ) 9-3两个同方向同频率的简谐振动的表达式分别为X 1=6.0×10-2cos( T π2t+4 π ) (SI) , X 2=4.0×10-2cos(T π 2t -43π) (SI) ,则其合振动的表达式为______(SI).( X=2.0×10-2cos( T π2t+4 π ) (SI)) 9-4一质点作周期为T 、振幅为A 的简谐振动,质点由平衡位置运动到2 A 处所需要的最短时间为_________。( 12 T ) 9-5 有两个同方向同频率的简谐振动,其表达式分别为 )4 cos(1π ω+ =t A x m 、 )4 3 cos(32πω+=t A x m ,则合振动的振幅为 。(2 A) 9-6 已知一质点作周期为T 、振幅为A 的简谐振动,质点由正向最大位移处运动到2 A 处所需要的最短时间为_________。 ( 6 T ) 9-7有两个同方向同频率的简谐振动,其表达式分别为 )75.010cos(03.01π+=t x m 、 )25.010cos(04.02π-=t x m ,则合振动的振幅为 。 (0.01m ) 9-8 质量0.10m kg =的物体,以振幅2 1.010m -?作简谐振动,其最大加速度为2 4.0m s -?,通 过平衡位置时的动能为 ;振动周期是 。(-3 2.010,10s J π?) 9-9一物体作简谐振动,当它处于正向位移一半处,且向平衡位置运动,则在该位置时的相位为 ;在该位置,势能和动能的比值为 。(π) 9-10质量为0.1kg 的物体,以振幅21.010m -?作谐振动,其最大加速度为14.0m s -?,则通过最大位移处的势能为 。(3210J -?)

线性方程组的解法及其应用

线性方程组的解法及其应用 The solution of linear equation and its application 专业:测控技术与仪器 班级: 2010-1班 作者:刘颖 学号: 20100310110105

摘要 线性方程组是线性代数的一个重要组成部分,也在现实生产生活中有着广泛的运用,在电子工程、软件开发、人员管理、交通运输等领域都起着重要的作用。在一些学科领域的研究中,线性方程组也有着不可撼动的辅助性作用,在实验和调查后期利用线性方程组对大量的数据进行处理是很方便简捷的选择。本文主要围绕如何解线性方程组来进行讲解,对于不同类型的线性方程组的不同方法,并简述线性方程组的一些实际应用。 关键词: 齐次线性方程组,非齐次线性方程组,克莱姆法则,消元法,矩阵,矩阵的秩,特解,通解。

Abstract Linear equations linear algebra is one of the important component parts, and in real life has extensive production use,and it plays an important role in electronic engineering, software development, personnel management, transportation, etc. In some discipline study, it also has the reigns of linear equations of the auxiliary function.In experiment and survey using the linear equations of the late on the data processing is very convenient simple choice. This article, focusing on how to solve linear equations to explain, for different types of linear equations of different methods, and briefly introduces some of the practical application of linear equations. Keywords: Homogeneous linear equations, Non homogeneous linear equation,Clem’s law,Elimination method,Matrix,Rank of matrix,Special solution,General solution.

线性方程组的直接解法

第2章线性方程组的直接解法 2.1实验目的 理解线性方程组计算机解法中的直接解法的求解过程和特点,学习科学计算的方法和简单的编程技术。 2.2概念与结论 1. n阶线性方程组 如果未知量的个数为 n ,而且关于这些未知量x1,x2, …,x n的幂次都是一次的(线性的)那末, n 个方程 a11x1+a12x2+ … +a1n x n=b1 ┆┆┆ (1) a n1x1+a n2x2+ … +a nn x n= b n 构成一个含n个未知量的线性方程组,称为n阶线性方程组。其中,系数a11,…,a1n,a21, …,a2n, …,a n1, …,a nn 和b1, …,b n都是给定的常数。 方程组(1)也常用矩阵的形式表示,写为 Ax=b 其中,A是由系数按次序排列构成的一个n阶矩阵,称为方程组的系数矩阵,x和b都是n维向量,b称为方程组的右端向量。 2. n阶线性方程组的解 使方程组(1)中每一个方程都成立的一组数x1*,x2*, …,x n*称为式(1)的解,把它记为向量的形式,称为解向量. 3.一些特殊的线性方程组 1) 上三角方程组 2) 三对角方程组 ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - - - n n nn n n n n n n n n b b b x x x a a a a a a a a a a a a 2 1 2 1 1 1 1 2 1 2 23 22 1 1 1 13 12 11

4.矩阵的Doolittle 分解 5.Doolittle 分解的紧凑格式 6.矩阵的Crout 分解 ????????? ? ??=?????????? ???????????? ? ?--n n n n n n d d d x x x b a c b c b a c b a c b 21 2111333 22211???? ?? ? ? ???????? ??=??????? ??nn n n n n nn n n n n u u u u u u l l l a a a a a a a a a 222 11211 2 1 21 2 1 2222111211111 ???? ?? ? ? ???????? ??=??????? ??11 1 21122 1 2221 11 2 1 2222111211 n n nn n n nn n n n n u u u l l l l l l a a a a a a a a a ????? ?? ? ??nn n n n n n n u l l l u u l l u u u l u u u u 3 2 1 333323122322211131211

线性方程组的求解方法与应用

湖北民族学院理学院2016届 本科毕业论文(设计) 线性方程组的求解方法及应用 学生姓名:付世辉学号: 0 专业:数学与应用数学指导老师:刘先平 答辩时间:装订时间:

A Graduation Thesis (Project) Submitted to School of Science, Hubei University for Nationalities In Partial Fulfillment of the Requiring for BS Degree In the Year of 2016 The calculation method and application of the system of linear equations Student Name: Fu Shihui Student No.: 0 Specialty:Mathematics And Applied Mathematics Supervisor: Liu Xianping Date of Thesis Defense:Date of Bookbinding:

摘要 线性方程组在数学领域中的应用非常广泛,是线性代数的主要内容之一. 矩阵及其基本理论是学习线性代数的一种基本工具,矩阵的初等变换则是线性方程组求解的工具. 线性方程组常用的求解方法有一般消元法、克拉默法则、LU分解法等一系列方法,根据问题的不同,我们在求解的过程中选择的方法也就多种多样. 这些方法可以很好地解决线性方程组的求解问题,在求解过程中,向量和矩阵起着一个不可或缺的作用. 在线性方程组的应用方面,除了跟数学理论知识有着密不可分的联系,还和我们的实际生活联系的极其紧密. 关键词:线性方程组,矩阵,初等变换,克拉默法则,LU分解法

第七章一维波动方程的解题方法与习题答案

第七章一维波动方程的傅里叶解小结及习题答案 第二篇数学物理方程 ——物理问题中的二阶线性偏微分方程及其解法Abstracts:1、根据物理问题导出数理方程—偏微分方程; 2、给定数理方程的附加条件:初始条件、边界条件、物理条件 (自然条件,连接条件),从而与数理方程一起构成定解问题; 3、方程齐次化; 4、数理方程的线性导致解的叠加。 一、数理方程的来源和分类(状态描述、变化规律) 1、来源 I.质点力学:牛顿第二定律Fmr 连续体力学 弦 2 u(r,t) 弹性体力学杆振动:22波动方程); au(r,t)0( 2 t (弹性定律) 膜 流体力学:质量守恒律:(v)0; t 热力学物态方 程: v1 (v)vpf0(Eulereq.). t II.麦克斯韦方程 DddD;EdlBdsEB; Bd0B0;Hdl(jD)dsHjD. Eu,BA,u,A 满足波动方程。 Lorenz力公式力学方程;Maxwelleqs.+电导定律电报方程。III.热力学统计物理 热传导方程: 扩散方程:T t t 2 kT 2 D 0; 0. 特别:稳态(0 t ) : 20(Laplaceequation). IV.量子力学的薛定谔方程: 2 u 2.iuVu t2m 2.分类 物理过程方程数学分类

振动与波波动方程2 u 1 2 u 22 at 双曲线 输运方程能量:热传导 质量:扩散u t 20 ku 抛物线 1

稳态方程Laplaceequation 2u0椭圆型 二、数理方程的导出 推导泛定方程的原则性步骤: (1)定变量:找出表征物理过程的物理量作为未知数(特征量),并确定影响未知函数的自变量。 (2)立假设:抓主要因素,舍弃次要因素,将问题“理想化” ---“无理取闹”(物理趣乐)。 (3)取局部:从对象中找出微小的局部(微元),相对于此局部一切高阶无穷小均可忽略---线性化。 (4)找作用:根据已知物理规律或定律,找出局部和邻近部分的作用关系。 (5)列方程:根据物理规律在局部上的表现,联系局部作用列出微分方程。 Chapter7一维波动方程的傅里叶解 第一节一维波动方程-弦振动方程的建立 1.弦横振动方程的建立 (一根张紧的柔软弦的微小振动问题) (1)定变量:取弦的平衡位置为x轴。表征振动的物理量为各点的横向位移u(x,t),从而速度为u t,加速度为u tt. (2)立假设:①弦振动是微小的,1,因此,sintan,cos1,又 u x tan u;②弦是柔软的,即在它的横截面内不产生应,1 x 力,则在拉紧的情况下弦上相互间的拉力即张力T(x,t)始终是沿弦的切向 2

线性方程组的几种求解方法

线性方程组的几种解法 线性方程组形式如下: 常记为矩阵形式 其中 一、高斯消元法 高斯(Gauss)消元法的基本思想是:通过一系列的加减消元运算,也就是代数中的加减消去法,将方程组化为上三角矩阵;然后,再逐一回代求解出x 向量。现举例说明如下: (一)消元过程 第一步:将(1)/3使x 1的系数化为1 得 再将(2)、(3)式中x 1的系数都化为零,即由(2)-2×(1)(1) 得 )1(32)2( (03) 4 32=+x x )1(321)1(......23132=++ x x x

由(3)-4×(1)(1) 得 第二步:将(2)(1) 除以2/3,使x 2系数化为1,得 再将(3)(1) 式中x 2系数化为零,即 由(3)(1) -(-14/3)*(2)(2) ,得 第三步:将(3)(2) 除以18/3,使x 3系数化为1,得 经消元后,得到如下三角代数方程组: (二)回代过程 由(3)(3) 得 x 3=1, 将x 3代入(2)(2) 得x 2=-2, 将x 2 、x 3代入(1)(1) 得x 2=1 所以,本题解为[x]=[1,2,-1]T (三)、用矩阵演示进行消元过程 第一步: 先将方程写成增广矩阵的形式 第二步:然后对矩阵进行初等行变换 初等行变换包含如下操作 (1) 将某行同乘或同除一个非零实数 ) 3(3)3(......1-=x )2(3)3( (63) 18-=x ) 2(32) 2(......02=+x x ) 1(32)3( (63) 10 314-=-- x x

(2)将某行加入到另一行 (3)将任意两行互换 第三步:将增广矩阵变换成上三角矩阵,即主对角线全为1,左下三角矩阵全为0,形式如下: 示例: (四)高斯消元的公式 综合以上讨论,不难看出,高斯消元法解方程组的公式为 1.消元 (1)令 a ij(1) = a ij , (i,j=1,2,3,…,n) b i(1) =b i , (i=1,2,3,…,n) (2)对k=1到n-1,若a kk(k)≠0,进行 l ik = a ik(k) / a kk(k) , (i=k+1,k+2,…,n) a ij(k+1) = a ij(k) - l ik * a kj(k), (i,j= k+1,k+2,…,n) b i(k+1) = b i(k) - l ik * b k(k), (i= k+1,k+2,…,n) 2.回代 若a nn(n) ≠0 x n = b n(n) / a nn(n) x i = (b i(i) – sgm(a ij(i) * x j)/- a ii(i),(i = n-1,n-2,…,1),( j = i+1,i+2,…,n ) (五)高斯消元法的条件 消元过程要求a ii(i) ≠0 (i=1,2,…,n),回代过程则进一步要求a nn(n) ≠0,但就方程组Ax=b 讲,a ii(i)是否等于0时无法事先看出来的。 注意A的顺序主子式D i(i=1,2,…,n),在消元的过程中不变,这是因为消元所作的变换是“将某行的若干倍加到另一行”。若高斯消元法的过程进行了k-1步(a ii(i) ≠0,i

相关文档
最新文档