地震定位基本原理

地震定位基本原理
地震定位基本原理

1、Hypo2000定位方法的基本原理

1.1基本原理

Hypoinverse 算法是在Geiger 法的思想上发展起来的一种单事件绝对定位方法。设n 个台站的观测到时为t 1,t 2,…,t n 求震源位置 x o ,y o ,z o 及发震时刻t o ,使得目标函数最小。

? t 0,x 0,y 0,z 0 = r i 2n i=1 1

其中r i 为到时残差

r i =t i ?t o ?T i x o ,y o ,z o (2)

T i 为震源到第i 个台站的计算走时。

使目标函数取极小值,即

?θ? θ =0 3

其中θ= t o ,x o ,y o ,z o T ,?θ= ?

?t o ,??x o ,??y o ,??z o T

。 g θ =?θ? θ 4

在真解θ附近任意试探解θ?及其校正矢量δθ满足

g θ? + ?θg θ? T T δθ=0 5

即 ?θg θ? T T δθ=? g θ? 6

由?的定义可得公式(6)的具体表达式

?r i ?θj ?r i ?θk +r i ?2r i

?θj ?θk

θ?δθj =? r i ?r i ?θk θ?n i=1n i=1 7 若θ?偏离真解θ不大,则r i θ? 和 ?2T i ?θ

j ?θk θ?较小。可忽略二阶导数项,上式被简化为线性最小二乘解:

?r i ?θj ?r i

?θk n i=1δθj =? r i ?r i ?θk θ?

n i=1 8 以矩阵形式表示,上式为

A T A δθ=A T r

其中

A = 1?T 1?x 0 ?T 1?y 0 ???1?T n ?x 0 ?T n ?y 0 ?T

1?z 0??T n ?z 0 θ?

,r = r 1

?r n 9 若二阶导数项不可忽略。则式(7)给出的非线性最小二乘解

A T ?A ?θA T r δθ=A T r 10

通常各站台的到时数据具有不同的精度,若果不加以区别,则具有较低精度的数据将影响结果的精度,这一问题可以通过引入加权目标函数来解决。设各台站到时残差r i 的方差为σi 2,引入加权目标函数 ?r θ = r i 2n i=1 θ 1

σi 2 11

按照上述同样的步骤,得到如下加权线性最小二乘解

A T C r ?1A δθ=A T C r ?1r 12 其中C r 为加权方差矩阵:C r =diag σ12,…,σn 2 。

求得δθ后,以θ=θ?+δθ作为新的尝试点,再求解相应方程。如此反复迭代,直到?或?r 足够小,此时即得估计解θ

。[4]

GPS测量基本原理

1> 概述 测量学中有测距交会确定点位的方法。与其相似,无线电导航定位系统、卫星激光测距定位系统,其定位原理也是利用测距交会的原理定位。 就无线电导航定位来说,设想在地面上有三个无线电发射台,其坐标为已知,用户接收机在某一时刻采用无线电测距的方法分别测得了接收机至三个发射台的距离d1,d2,d3。只需以三个发射台为球心,以d1,d2,d3为半径作出三个定位球面,即可交会出用户接收机的空间位置。如果只有两个无线电发射台的话,则可根据用户接收机的概略位置交会出接收机的平面位置。这种无线电导航定位系统是迄今为止仍在使用的飞机船舶的的中导航定位方法。 近代卫星大地测量中的卫星激光测距定位也是应用了测距交会定位的原理和方法。虽然用于测距的卫星(表面安装有激光反射镜)是在不停的运动中,但总可以利用固定于地面上三个已知点上的卫星激光测距仪同时测定某一时刻至卫星的距离d1,d2,d3,应用测距交会的原理便可确定该时刻卫星的空间位置。如此,可以确定三可以上卫星的空间位置。如果第四个地面点上(坐标未知)也有一台卫星测距仪同时参与了测定改点到三颗卫星的空间距离,则利用所测定的三个空间距离可交会出该地面点的空间位置。 将无线电信号发射台从地面搬到卫星上,组成一颗卫星导航定位系统,应用无线电测距交会的原理,便可利用三个以上地面已知点(控制站)交会处卫星的位置,反之利用三颗以上的卫星的已知空间位置又可交会出地面未知点(用户接收机)的位置。这便是GPS卫星定位的基本原理。 GPS卫星发射测距信号和导航电文,导航电文中含有卫星的位置信息。用户用GPS接收机在某一时刻同时接收三个以上的GPS卫星信号,测量出测站点(接收机天线中心)P至三颗以上GPS卫星的距离并解算出该时刻GPS卫星的空间位置坐标,据此利用距离交会法解算出测站P的位置坐标,如下图所示,设在时刻t i在在测站P用GPS接收机同时测出P点至三颗GPS卫星的距离ρ1,ρ2,ρ3,通过GPS电文解释出该时刻三颗GPS卫星的三维坐标分别为(Xi,Yi,Zi),j=1,2,3。用距离交会的方法求解出P点的三维坐标(X,Y,Z)的观测方程为

偏移成像技术

1、偏移技术分类【叠前/后偏移】 可根据不同的标准对目前的地震偏移成像技术进行简单分类:按照所依据的理论基础,可以分为射、线类偏移成像和波动方程类偏移成像;根据输入数据类型,可以分为叠前偏移和叠后偏移;根据实现的时空域,可以分为时间偏移和深度偏移;按照维数,可以分为二维偏移以及三维偏移等; 1.1叠前偏移 使CSP道集记录或COF道集记录中的反射波归位,绕射波收敛。 ●叠前偏移有椭圆切线法【手工方法,不适用】、Rockwell偏移叠加法【波前模糊法的拓 展,计算量也很大】和Paturet-Tariel偏移叠加法【为了进行偏移,我们应当把的曲线上的地震能量(即采样点振幅)送到零炮检距绕射双曲线的顶点M上去叠加。这样, 把各个相同炮检距的剖面偏移后叠加在一起即得偏移叠加剖面】等 1.2叠后偏移 基于水平叠加剖面,采用爆炸反射面的概念实现倾斜反射层归位和绕射波收敛。 ●叠后偏移有波前模糊法、绕射曲线叠加法【两种方法原理简单,都是基于惠更斯原理提 出的,前者将一个道上的波场值送到各个道上去叠加—输出道法,后者把各个道上的相应值取来在一道上叠加—输入道法,但是计算量很大】 2、偏移成像特点 ●具有地震勘探本身的特征 ●计算机使其研究由地震波运动学特征过度到地震波动力学特征 ●提高地震空间分辨率和保真度 ●偏移成像是使反射界面最佳成像的一种技术 ●处理反射波,使之成为反映地下界面位置和反射系数值的反射界面的像

3、偏移成像原理图 偏移过程定量分析【Chun and Jacewitz ,1981】 2(tan )/4 t dx v t θ= 221/2{1[1(tan )/4]} t dt t v θ=-- 221/2 tan tan /[1(tan )/4]t t t v θθθ=-

论地震勘探中几种主要地震波

论地震勘探中的几种主要地震波 论文提要 地震勘探,就是通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下地质构造,为寻找油气田或其它勘探目的服务的一种方法。也可以理解为就是利用地震子波从地下地层界面反射回地面时带回来的旅行时间和形状变化的信息,用以推断地下的底层构造和岩性。地震勘探在勘探已有的各种物探方法中,是最有效地方法。在地震勘探中用炸药激发时,一声炮响之后会产生各种各样的地震波。按波在传播过程中质点震动的方向来区分,可以纵波和横波;根据波动所能传播的空间范围而言,地震波又可以分为体波和面波;按照波在传播过程中的传播路径的特点,又可以把地震波分为直达波、反射波、透射波、折射波,等等。地震勘探在石油勘探中除了能产生来自地层界面有用的反射波外,还会产生各种各样的干扰波。因此,我们要更好的了解各种波的产生、特点、用途,等等。下面简单介绍几种地震勘探中产生的地震波。 正文 一、反射波 (一)反射波的形成 1、几何地震学的观点 当炸药在井中爆炸激发地震波时,在雷管引爆几百微妙之内爆炸便完成了,在接近爆炸点的压强是一个延续时间很短的尖脉冲,爆炸脉冲向外传播,压强逐渐减少,地层开始产生弹性形变,形成地震波。地震波继续传播,由于介质对高频的吸收,地震波信号减小。当波入射到两种介质的分界面时(当上层介质波阻抗与下层介质波阻抗不等时,弹性地震波才会发生反射;上层介质波阻抗与下层介质波阻抗差别越大,反射波越强——反射波条件),一部分波回到第一种介质中,这就是所谓的反射波。如图所示 2、物理地震学观点 地震波从震源出发以球面波的方式向下传播,到达反射界面S,S可以就看成有许多

论偏移成像技术方法

论偏移成像 论文摘要 地震偏移成像技术是现代地震勘探数据处理的三大基本技术之一,主要包括射线偏移和波动方程偏移两大类,主要目的是实现反射界面的空间归为和恢复反射界面空间的波场特征、振幅变化和反射系数,提高地震空间分辨率和地震保真度。偏移技术具有地震勘探本身的特点,但是地震偏移方法本身由于使用计算机而引起了许多革命性的变化。这就使得它从研究简单的探测目标的几何图形进而发展成研究反射界面空间的波场特征、振幅变化和反射率等,在本论文中主要介绍地震偏移成像技术的基本原理,地震剖面的偏移和叠加偏移,叠前部分偏移。时间偏移和深度偏移等方面来介绍。 正文 一、偏移成像的基本原理 在水平叠加时间剖面上显示出来的反射点位置是沿地层下倾方向偏离了反射点的真实位置的,这种现象就称为偏移。 反射地震方法是根据在地面上以一定方式进行弹性波激发,并在地面的一定范围(孔径)内记录来自地下弹性分界面的反射波来研究地下地质岩层结构及其物性特征的一种方法。因此,也可以把它看作一种反散射问题。就反射地震观测方式的特点,它的成像问题要分作两步,第一步是按照一定的方式记录到达地面的反射波,第二步用计算机按一定的计算方法对观测数据进行处理,使之成为反映地下地质分层面位置及反射系数值的反射界面的像。而地震偏移技术就是在第二步过程使反射界面最佳地成像的一种技术。地震偏移可在叠前做也可在叠后做。叠前偏移是把共炮点道集记录或共偏移距道集记录中的反射波归位到产生它们的反射界面上并使绕射波收敛到产生它的绕射点上。在把反射波回投到反射界面上和绕射波收敛到绕射点上时要去掉传播过程的效应,如扩散与衰减等。最后得到能够反映界面反射系数特点的并正确归位了的地震波形剖面,即偏移剖面。叠后偏移是在水平叠加剖面的基础上进行的,针对水平叠加剖面上存在的倾斜反射层不能正确地归位和绕射波不能完全收敛的问题,采用了爆炸反射面的概念来实现倾斜反射层的正确归位和绕射波的完全收敛。地震偏移的部分类型见表1-1。

第1章地震偏移成像基础

第一章地震偏移成像基础 地震偏移技术是现代地震勘探数据处理的三大基本技术之一。它是在过去的古典技术上发展起来的,其它两大技术都是从其它相关学科引进到地震中来的。所以,偏移技术具有地震勘探本身的特征。但是,地震偏移方法本身由于使用计算机而引起了许多革命性的变化。这就是把它从研究简单的探测目标的几何图形进而发展成研究反射界面空间的波场特征、振幅变化和反射率等。本章主要介绍地震偏移成像技术的基础知识。首先给出偏移成像的概念;第二节介绍有限差分法的基础知识;第三节叙述基于波动方程的波场外推与地震成像原理;第四节讨论波场外推的Kirchhoff积分法;第五节简单分析Born近似和Rytov近似;最后阐述基于De Wolf近似、薄板近似、屏近似和相屏传播算子计算反向散射波场的方法。 §1.1 偏移成像的概念 反射地震方法是根据在地面上以一定方式进行弹性波激发,并在地面的一定范围(孔径)内记录来自地下弹性分界面的反射波来研究地下地质岩层结构及其物性特征的一种方法。因此,也可以把它看做是一种反散射问题。 就反射地震观测方式的特点,它的成像问题要分做两步,第一步是按照一定的方式记录到达地面的反射波,第二步用计算机按一定的计算方法对观测数据进行处理,使之成为反映地下地质分层面位置及反射系数值的反射界面的像。而地震偏移技术就是在第二步过程使反射界面最佳地成像的一种技术。 地震偏移可在叠前做也可在叠后做。叠前偏移是把共炮点道集记录或共偏移距道集记录中的反射波归位到产生它们的反射界面上并使绕射波收敛到产生它的绕射点上。在把反射波回投到反射界面上和绕射波收敛到绕射点上时要去掉传播过程的效应,如扩散与衰减等。最后得到能够反映界面反射系数特点的并正确归位了的地震波形剖面,即偏移剖面。叠后偏移是在水平叠加剖面的基础上进行的,针对水平叠加剖面上存在的倾斜反射层不能正确地归位和绕射波不能完全收敛的问题,采用了爆炸反射面的概念来实现倾斜反射层的正确归位和绕射波的完全收敛。地震偏移的效果见图1-1和图1-2。 地震偏移的类型见表1-1。 地震偏移技术在二十世纪六十年代以前是用手工操作的一种制图技术,只是用来求得反射点的空间位置,而不考虑反射波的特点。它是一种古典的偏移方法。早期的计算机偏移方法是在古典的偏移方法的基础上提出来的。其中有的成功了,有的失败了。成功的是那些符合波的传播特征的方法。尽管这些方法使用了波前、绕射等地震波传播的惠更斯原理,但只是定性的、概念性的。偏移剖面的质量虽然能够满足最基本的要求,但归位的精度和成像时的波形特征都不是很准确的。因此,研究更有效的地震偏移方法是很迫切的。二十世纪七十年代初J.Claerbout教授首先提出了用有限差分法解单程波动方程的近似式,用地面观测的地震数据重建地震波在地下传播过程中的波场,从这些传播过程的波场中提

三维地震勘探技术

三维地震勘探技术及其应用 [摘要] 本文应用三维地震勘探技术对某矿南三采区进行探测,探测区内解释断层71条,其中可靠断层61条,较可靠断层10条,31个无煤带。为煤矿安全生产提供了科学依据,节约了生产成本的投入。 [关键词] 三维地震采区 [abstract] this paper introduces the application of three dimensional seismic exploration method on the south third mining area of a certain coal mine. 71 faults were showed in this exploration area, in which there are 61 reliable faults, 10 relatively reliable faults and 31 areas without any coal. those information provides scientific foundation for the production safty of the coal mine and saves the cost. [key words] three dimensional seismic mining area 0.引言 随着煤炭地震勘探技术的提高,尤其是九十年代以来三维地震勘探在煤炭系统的应用与推广,三维地震勘探技术在煤矿采区进行小构造勘探成为现实,给煤矿建设和生产带来了巨大的效益。 近年来,随着我国煤炭资源勘查理论和技术的不断发展,已形成了中国煤炭地质综合勘查理论与技术新体系,其中三维地震勘探技术是五大关键技术之一。[1]

地震定位基本原理

1、Hypo2000定位方法的基本原理 1.1基本原理 Hypoinverse 算法是在Geiger 法的思想上发展起来的一种单事件绝对定位方法。设n 个台站的观测到时为t 1,t 2,…,t n 求震源位置 x o ,y o ,z o 及发震时刻t o ,使得目标函数最小。 ? t 0,x 0,y 0,z 0 = r i 2n i=1 1 其中r i 为到时残差 r i =t i ?t o ?T i x o ,y o ,z o (2) T i 为震源到第i 个台站的计算走时。 使目标函数取极小值,即 ?θ? θ =0 3 其中θ= t o ,x o ,y o ,z o T ,?θ= ? ?t o ,??x o ,??y o ,??z o T 。 g θ =?θ? θ 4 在真解θ附近任意试探解θ?及其校正矢量δθ满足 g θ? + ?θg θ? T T δθ=0 5 即 ?θg θ? T T δθ=? g θ? 6 由?的定义可得公式(6)的具体表达式 ?r i ?θj ?r i ?θk +r i ?2r i ?θj ?θk θ?δθj =? r i ?r i ?θk θ?n i=1n i=1 7 若θ?偏离真解θ不大,则r i θ? 和 ?2T i ?θ j ?θk θ?较小。可忽略二阶导数项,上式被简化为线性最小二乘解: ?r i ?θj ?r i ?θk n i=1δθj =? r i ?r i ?θk θ? n i=1 8 以矩阵形式表示,上式为 A T A δθ=A T r 其中 A = 1?T 1?x 0 ?T 1?y 0 ???1?T n ?x 0 ?T n ?y 0 ?T 1?z 0??T n ?z 0 θ? ,r = r 1 ?r n 9 若二阶导数项不可忽略。则式(7)给出的非线性最小二乘解 A T ?A ?θA T r δθ=A T r 10 通常各站台的到时数据具有不同的精度,若果不加以区别,则具有较低精度的数据将影响结果的精度,这一问题可以通过引入加权目标函数来解决。设各台站到时残差r i 的方差为σi 2,引入加权目标函数 ?r θ = r i 2n i=1 θ 1 σi 2 11 按照上述同样的步骤,得到如下加权线性最小二乘解 A T C r ?1A δθ=A T C r ?1r 12 其中C r 为加权方差矩阵:C r =diag σ12,…,σn 2 。 求得δθ后,以θ=θ?+δθ作为新的尝试点,再求解相应方程。如此反复迭代,直到?或?r 足够小,此时即得估计解θ 。[4]

第五章 GPS卫星定位基本原理

5.1 概述 测距交会确定点:无线电导航定位系统卫星激光测距定位系统 无线电导航定位:三已知点三维定位,两个已知点平面定位. 卫星大地测量中的卫星激光测距定位。利用地面上三个已知点上的卫星激光测距仪同时测定某一时刻至卫星的空间距离,从而来确定卫星的空间位置。 卫星定位的基本原理: 依据测距的原理:伪距法定位,载波相位测量定位,以及差分GPS定位。 根据待定点的状态分为:静态定位(绝对定位)和动态定位(至少有一台接收机处于运动状态)和相对定位。 利用测距码或载波相位均可进行静态定位,实际为减少误差,可利用载波相位观测值的各种线性组合(即差分)作为观测值,获得两点之间高精度的GPS基线向量(即坐标差)。 5.2伪距测量 伪距测量:由卫星发射的测距码信号到达GPS接收机的传播时间乘以光速所得出的量测距离。由于卫星钟、接收机钟的误差以及无线电信号经过电离层和对流层中的延迟,实际测出距离ρ'与卫星到接收机的几何距离ρ有一定差值,因此

一般称量测出的距离为伪距。C/A 码伪距,P 码伪距。伪距法定位测量定位精度不高(P 码定位误差约为10m ,C/A 码定位误差为20-30m ),但因其具有定位速度快,是GPS 定位系统中进行导航定位的基本方法。作为载波相位测量中解决整波数不确定(模糊度)的辅助资料。 5.2.1 伪距测量 伪距测量的基本原理: 为什么采用码相关技术来确定伪距? GPS 卫星发射的测距码是按照一定规律排列的,在一个周期内,每个码对应某一特定的时间。应该说识别出每个码的形状特征,即用每个码的某一标志即可推算出时延值τ进行伪距测量。但实际上每个码在产生过程中都带有随机误差,并且信号经过长距离传送后也会产生变形。所以根据码的某一标志来推算时延值τ就会产生很大的误差。因此采用码相关技术,在自相关系数MAX R =')(τ的情况下来确定信号的传播时间τ。由于测距码和信号在产生的过程中不可避免地带有误差,而且测距码在传播过程中还有变形,因而自相关系数往往不可能达到“1”,只能在自相关系数为最大的情况下确定伪距,此时基本对齐。 dt t t a t a T R T )()(1)(τττ'-?+-='?

震源深度确定

张晁军等:近震震源深度测定精度的理论分析 摘要震源深度是地震学中最难准确测定的参数之一,各种方法对于震源深度的估计都具相当程度的不确定性,影响着人们对震源过程的认识。各种因素对震源深度的影响是非线性的,本文从近震走时公式入手,分析了震中距、到时残差和速度模型(地壳模型)对震源深度的影响。当地震波传播速度一定时,震源深度的误差与随着震中距或台站位置的增大和走时残差的增大而增大。走时残差一定时,震源深度误差随着震中距的增大和地震波速度的增大而增大。研究也表明,当速度已知,走时残差一定时,越浅的地震,定位误差可能越大。定位精度产生的水平误差随着震中距、到时误差和地震波速度的增大,震源深度误差也将增大。关键词震源深度h 测定精度误差 引言 震源深度是描述震源的最基本参数之一,它给出了地震发生在地球内部的具体位置,对了解地震孕育和发生的物理化学条件,以及地震能量集结、释放的活动构造背景都有重要的意义。地震学家用它来估计岩石圈板块的厚度,描绘板块边缘和内部岩石圈的变温结构和力学结构,以了解构造过程的详情,探索地震发生的力学机制和过程,震源深度的准确测定关系到对震源过程、断层构造、壳幔结构、应力场作用、板块运动等一系列的重要问题的正确认识(高原等,1997)。研究任何地震事件时,从地震宏观作用的研究到地震和核爆炸的识别,实际上都必须知道震源深度。

震源深度的精度仍是个棘手的问题,在现代地震目录中,它几乎已经成为最不准确的参数之一(高原等,1997)。因为地震定位受震相识别的观测误差和地壳模型与真实地球模型误差的双重影响,在实际工作中人们很难把它们分了开来(Billings,et al.,1994)。 许多学者用不同的方法来求取震源深度,如1)利用走时曲线的慢度变化极为灵敏的特点,从中可以提取震源深度的信息(赵珠,1992),尽管用细分的多层地壳模型和多路径P、S波到时资料综合定位可提高震源深度的测定精度(王周元,1989),但是慢度变化的过于灵敏会使结果偏离真实,其自身的准确程度也与地区的速度结构有关;2)应用动力学的方法改善测定震源深度的准确性,即用反演方法确定描述震源的矩张量及震源时间函数的同时,通过合成地震图和对观测地震图的拟合来改善震源深度的准确性(Robert, 1973; Beck and Christensen,1991;Sileny, 1992)。表面上看来这似乎更可靠更准确,但事实上,在这种情况下,震源深度的准确性又取决于计算格林函数时所采用的介质模型对实际介质的逼近程度(许力生,陈运泰,1997)。Velasco等(1993)认为,速度模型及假设的震源位置都会对矩心深度、震源持续时间和地震矩的估计造成影响。所以,即使借助于波形反演等动力学方法,震源深度仍是一个难以准确测定的参数。事实上,由于方法和资料的不同,特别是震源深度的精度同震源深度、剪切波速度、断层倾角和滑动角有关(Anderson,et al.,2009)故不同的测定者得到的震源深度也不同(许力生,陈运泰,1997);3)一些学者使用深部震相(面反射震相pP and sP)来提高测定震源深度的精度(Stroujkova, 2009),认为这有助于减小因地震波速的不确定性引起的对震源深度的计算误差,然而,深部震相的识别是个困难的问题。国际数据中心(IDC)也只有11%的地震事件的震源深度是

地震勘探原理

中国科学院测量与地球物理研究所 博士研究生入学考试大纲 《地震勘探原理》 本《地震勘探原理》考试大纲适用于中国科学院大学勘探地球物理学专业的博士生入学考试。地震勘探是地球物理勘探的一种重要方法,也是目前使用最为广泛、解决油气勘探问题最有成效的方法,主要内容包括地震波的运动学、地震波的动力学、地震资料采集和地震资料处理等内容。要求考生深入理解基本概念,系统掌握基本理论和方法,具有综合分析问题和解决问题的能力。 考试内容 (一)地震波的运动学 1、地震波的基本概念 2、时间场与视速度定理 3、反射与折射地震波的运动学 4、垂直时距曲线方程 (二)地震波的动力学 1、地震波的波动方程 2、介质对地震波传播的影响 3、弹性波在介质分界面上的反射与透射 4、薄层效应与地震面波 5、波动地震学与几何地震学的关系 (三)地震资料采集 1、地震勘探中的有效波与干扰 2、地震波的激发与接收 3、地震观测系统 (四)地震资料处理 1、地震资料校正与叠加 2、地震信号数字滤波 3、地震资料反褶积 4、地震偏移成像 5、地震波的速度 6、地震多次波压制 考试要求 (一)地震波的运动学 1、理解波前面、波射线、直达波、反射波、透射波、折射波、绕射波、多次波、斯奈尔

定律、惠更斯原理、正常时差和倾角时差的物理意义。 2、理解时间场、费马原理、时距图和视速度的物理意义。 3、掌握直达波、反射波、绕射波、多次波与折射波的时距曲线。 4、理解垂直时距曲线的概念,掌握直达波、反射波、透射波和折射波的垂直时距曲线。(二)地震波的动力学 1、掌握弹性波波动方程、平面波、球面波和克希霍夫积分公式,理解地震子波、P波和 S波的偏振原理。 2、理解地震波能流密度、几何扩散、吸收和频散的物理意义。 3、掌握Zoeppritz方程简化公式和反射系数公式。 4、理解薄层的定义与调谐效应、面波的主要类型与物理意义。 5、理解波动地震学与几何地震学的物理意义,掌握波动方程向程函方程的过渡条件与推 导过程。 (三)地震资料采集 1、理解地震有效波与干扰波的概念、地震干扰波的类型与特征。 2、理解地震波的激发震源类型、道间距的选择、空间假频、震源组合和检波器组合的概 念。 3、理解简单连续观测系统和多次覆盖观测系统的原理。 (四)地震资料处理 1、理解动校正、野外静校正、剩余静校正、折射静校正和共中心点叠加的原理。 2、理解滤波器的分类、子波的相位延迟、理想滤波器、理想低通滤波器、理想带通滤波 器、理想高通滤波器、伪门现象、吉普斯现象和二维视速度滤波原理。 3、理解最小平方反褶积、脉冲反褶积、预测反褶积、同态反褶积和地表一致性反褶积的 原理,提高纵向分辨率存在的困难,提高纵向分辨率与提高信噪比的关系,用预测反褶积消除鸣震干扰。 4、理解偏移概念、叠后与叠前偏移、时间与深度偏移、二维与三维偏移、Kirchhoff积 分偏移、F-K域波动方程偏移和有限差分法波动方程偏移优缺点。 5、理解速度分析、速度谱、速度扫描、真速度、层速度、平均速度、均方根速度、射线 速度、叠加速度的概念,理解各种速度之间的关系和层速度的计算。 6、理解多次波分类和表面多次波的常用压制方法。 主要参考书目 何樵登,地震勘探,北京:地质出版社,2009 陆基孟,地震勘探原理,北京:石油大学出版社,2006 牟永光等,地震数据处理方法,北京:石油工业出版社,2007 考试大纲编写人: 2013年7月

JOPENS系统地震分析定位模块MSDP常用功能简介

JOPENS系统交互分析定位模块MSDP常用功能简介 段刚 (福建省地震局监测中心) 摘要:介绍JOPENS系统中交互分析软件MSDP常用功能 关键词:JOPENS MSDP 常用功能 0.引言 JOPENS系统是广东省地震局开发的数字化地震观测系统,地震交互分析软件MSDP 是其系统中的重要组成部分。地震交互分析软件是地震记录从模拟向数字化转变的产物,是数字化地震观测系统的重要组成部分,它与数字测震摆、数据采集器、实时记录系统一起构成数字化地震观测体系。随着技术的不断改进,功能的不断完善,现在已到了较成熟的阶段,被广泛应用于全国地震台网的地震观测中,主要功能有文件处理、震相标识、地震定位和报告的生成管理。福建测震台网从2008年10月1日起正式使用JOPENS系统的人机交互分析软件MSDP进行日常地震速报、地震编目等工作。 1.MSDP简介 1.1 运行环境 MSDP是用Java语言开发的,Java具有平台无关性、多线程、可靠安全的特点,它能在不同的平台下运行。因此, MSDP能在Unix 、Linux 以及Windows下运行,对系统硬件要求不高,目前大部分计算机配置足以满足需求 1.2 数据存储 在采用文件存储方式的软件系统中,数据以特定的文件名存放于硬盘,MSDP采用数据库的存储方式,文件名为事件发生时刻的时间命名,利用Mysql数据库的强大管理功能,轻松处理检索、删除等操作,克服了文件存储方式的种种问题,尤其在文件数目剧增时可使得用户在处理数据时感到轻松便捷。 1.3 数据管理 快速查询地震事件,可通过日期、分析人员、震级、震中位置、经纬度方式查询,同时还拥有事务日志功能,查看日志可清楚数据存储过程。利用备份与恢复功能,可自动对数据进行复制,以防止数据丢失;利用导入功能可恢复数据的完整性。Mysql数据库提供了网络服务,支持数据共享,其他计算机可按权限进行访问,第三方软件或Web页面可直接按需求进行查询。 2. 常用功能 任何一款软件都十分重视操作界面的设计,它是面对用户的直接窗口,它的设计是否合理关系到用户的体验和应用效率。交互分析软件是地震行业专用,像这种专业化程度较高的软件,不需要华丽的界面,而应该把更直观、更快捷、更方便视为设计目标,MSDP很好的把握了这一理念,在主界面安排了文件处理、震相标识、地震定位等常用快捷键,整体简洁

AGPS定位基本原理浅析

AGPS定位基本原理浅析 位置服务已经成为越来越热的一门技术,也将成为以后所有移动设备(智能手机、掌上电脑等)的标配。随着人们对BLS(Based Location Serices,基于位置的服务)需求的飞速增长,无线定位技术也越来越得到重视。AGPS(Assisted GPS,A-GPS,网络辅助GPS)定位技术结合了GPS定位和蜂窝基站定位的优势,借助蜂窝网络的数据传输功能,可以达到很高的定位精度和很快的定位速度,在移动设备尤其是手机中被越来越广泛的使用。本文以GSM网络辅助GPS定位为例对AGPS的定位原理进行简单介绍。 AGPS定位基本机制 根据定位媒介来分,定位技术基本包含基于GPS的定位和基于蜂窝基站的定位两类(阅读本文前,建议先阅读《GPS定位基本原理浅析》和《GSM蜂窝基站定位基本原理浅析》两篇文章)。GPS定位以其高精度得到更多的关注,但是其弱点也很明显:一是硬件初始化(首次搜索卫星)时间较长,需要几分钟至十几分钟;二是GPS卫星信号穿透力若,容易受到建筑物、树木等的阻挡而影响定位精度。AGPS定位技术通过网络的辅助,成功的解决或缓解了这两个问题。对于辅助网络,有多种可能性,以GSM蜂窝网络为例,一般是通过GPRS网络进行辅助。 如上图所示,直接通过GPS信号从GPS获取定位所需的信息,这是传统GPS定位的基本机制。AGPS 中,通过蜂窝基站的辅助来解决或缓解上文提到的两个问题: 对于第一个问题,首次搜星慢的问题,根据《GPS定位基本原理浅析》一文的介绍,我们知道是因为GPS卫星接收器需要进行全频段搜索以寻找GPS卫星而导致的。在AGPS中,通过从蜂窝网络下载当前地区的可用卫星信息(包含当地区可用的卫星频段、方位、仰角等信息),从而避免了全频段大范围搜索,使首次搜星速度大大提高,时间由原来的几分钟减小到几秒钟。

08262026-地震勘探数据处理与解释

吉林大学实验教学大纲 教学单位名称:吉林大学地球探测科学与技术学院 课程名称:地震勘探数据处理与解释 课程代码:08262026 课程类别:专业课 课程性质:必修课 学时/学分:32/2(其中实验8学时) 面向专业:勘查技术与工程 一.实验课程的教学任务、要求和教学目的 《地震数据处理与解释》课程是应用地球物理系列课程中的一个重要方向,是地球物理勘探中的重要方法之一,与地震勘探原理一起构成了地震勘探研究方向的一个完整体系。是勘查技术与方法专业中应用地球物理方向本科生的一门重要选修课。 本实验课是与理论课紧密联系在一起的。通过实验课的教学,使学生加深对理论理解和将理论知识应用于实践的能力,熟悉基本的数据处理流程,并进行实际的地震资料处理。本实验课实际上是地震勘探数据处理与解释课程的重要组成部分。 二.学生应掌握的实验技术及基本技能 1、掌握常用地震数据处理系统的基本操作方法 2、了解常用地震记录的数据格式及剖面显示方式; 3、掌握动、静校正及水平叠加处理的方法; 4、掌握地震信号的频谱分析和一维、二维滤波; 5、掌握预测反褶积处理技术; 6、了解速度分析的方法和步骤; 7、了解地震波场偏移处理的目的和方法; 8、掌握合成地震记录的制作和分析方法; 9、掌握波动方程地震记录的正演模拟; 10、能编写简单的地震数据处理程序。 三.实验项目内容、学时分配和每组人数

四.实验教材或指导书或主要参考资料 教材采用《应用地球物理教程—地震勘探》。另外可参考以下文献: 1.《地震资料分析—地震资料处理、反演和解释》,渥.伊尔马滋 2.CWP/SU:Seismic Un*x用户手册 五.考核要求、考核方式及成绩评定标准 实验成绩可通过写实验报告,或总结性考核而定,占学生学期总成绩的20%~30%。 六.制定人、审核人、日期 制定人:王德利 审核人:潘保芝 审核日期:2009年9

地震预防及避震知识

地震预防及避震知识

————————————————————————————————作者:————————————————————————————————日期: ?

地震预防及避震知识 一、地震形势 二、地震术语 三、地震灾害 四、监测预报 五、震害防御 六、创建防震减灾示范城市 七、应急避震 一、地震形势 (一)前言 (二)全球及我国地震带的分布 (三)概述 我国是一个多地震的国家,地震活动具有频度高、强度大、分布广、震源浅的特征。唐山地震死亡人数超过24万;汶川地震死亡69000多人,失踪17000多人,直接经济损失8451亿元。所有的省、自治区、直辖市在历史上都遭受过5级以上地震的袭击。 广东省位于东南沿海地震带较活跃地段,是华南地区地震相对多发,灾害最严重的省份。近百年来,广东及其附近海域有过9次6级以上地震(其中7级以上地震2次),死数千人,伤数千人,倒塌房屋数万间。近10年来就有5次地震造成灾害。 东南沿海地震带4次7级地震: 1600年南澳7级 1604年泉州7.5级 1605年海口7.5级 1918年南澳7.3级 深圳位于东南沿海地震带中段,具有发生破坏性地震的地质构造背景和潜在危险,地震基本烈度为七度,是国家确定的地震重点监视防御区。 (四)形势分析

全球地震活动包括我国、东南沿海已进入一个相对活跃时段,有必要强化监测预报,灾害预防,宣传教育,增强减灾意识,提高防震避险能力。 二、地震术语 (一)震级和烈度 震级:释放能量的大小 烈度:破坏或者影响的程度 我国将地震烈度划分为十二等级: 小于三度:人无感受,只有仪器能记录到?三度:夜深人静时人有感受?四-五度:睡觉的人惊醒,吊灯摆动 六度:器皿倾倒、房屋轻微损坏 七-八度:房屋破坏,地面裂缝 九-十度:房倒屋塌,地面破坏严重?十-十二度:山崩地裂,毁灭性的破坏 (二)二者关系 震源深度10-30公里 震级3 4 5 678-9 烈度三-四四-五六-七七-八九-十十一-十二三、地震灾害 (一)特征 突发性、瞬时性、连锁性 (二)分类 直接灾害: 次生灾害: 四、地震监测预报 (一)、地震监测 1、监测技术的发展(从模拟时代到数字时代) 2、地震监测的基础性作用 经济社会生活离不开(人工地震);为抗震救灾赢得时间;

地震定位研究综述概要

防灾科技学院毕业设计(论文、综合实践报告)结论从数学上讲,地震定位问题的实质在于求目标函数的极小值。各种定位方法产生于对目标函数的构造、处理,以及求极小值方法的不同。影响地震定位精度的主要因素有:台网布局,震相识别,到时读数,地壳结构等。在数值计算中,常遇到下列问题:走时的计 算,偏导数的计算,方程的反演求解等。由于台网分布在地表,给深度定位带来一定的困难。各种定位方法正是针对其中的某几个问题而设,各有优、缺点。相对 定位所得的震源相对位置精度较高。对于主事件,可以利用改进后的经典方法进 行单事件定位。二者结合将可以得到较好的定位结果。 JHD 方法中引入的台站校 正过于简单,不足以反映地壳的复杂结构;而 SSH 方法中的三维速度模型会带来巨大的运算量。如果我们能够构造一种介于二者之间的校正参数,比如将台站校 正作为有方向的矢量,进行联合反演,可能效果更好。在 DDA 方法中,当事件对i, j 相距较近时,可以将(23式化简,反演得到 i, j 的相对距离。同时我们可以选取较少的事件,用联合反演进行绝对定位。将二者结合可以减少运算量,提高定位 效率。致谢本文是在陈晓非老师的悉心指导下完成的。陈老师优秀的科学修养,深厚的数理功底,严谨的治学态度都给我留下了极其深刻的印象,也成了我努力 奋斗的榜样。本文同样凝聚了陈老师的心血,仅此向陈老师表示深深的谢意。周 仕勇博士后以其丰富的理论背景和实践经验,对本文提出了建设性意见并提供了 诸多及时的信息。张海明、张伟、邹最红、曹军等师兄师姐手把手地领我入门, 令我受益匪浅。均在此一并致谢! 参考文献 [1] 傅淑芳, 刘宝诚. 地震学教程[M]. 北京:地震出版社,1991,447-480. [2] Geiger L. Probability method for the determination of earthquake epicenters from arrival time only[J]. Bull.St.Louis.Univ, 1912, 8: 60-71. [3] Lee W H K, J C Lahr. HYPO71: A computer program for determining hypocenter, magnitude, and firs t motion pattern of local earthquakes[J]. U.S.Geol.Surv. Open-File Rept, 1975, 75-311. [4] Klein F W. Hypocenter location program HYPOINVERSE Part I: Users guide to versions 1,2,3 and 4[J]. U.S.Geol.Surv. Open-File Rept, 1978, 78-694. 防灾科技学院毕业设计(论文、综合实践报告) [5] Lienert B R,Berg E, Frazer L N. Hypocenter: An earthquake location method using centered, scaled, and adaptively damped least squares[J]. Bull.Seism.Soc.Am, 1986,76(3: 771-783 . [6] Nelson G D, John

地震勘探技术的发展与应用

地球探测与信息技术 读书报告 课题名称:地震勘探的发展与应用 班级:064091 姓名:吴浩 学号:20091004040 指导老师:胡祥云

地震勘探的发展与应用 吴浩 (地球物理与空间信息学院,地球科学与技术专业) 摘要地震勘探是地球物理勘探中发展最快的一项技术,近年来,高分辨率地震勘探仪器装备、处理软件升级换代速度明显加快,地震资料采集、处理与解释出现了一体化的趋势。从常规的地震勘探发展到二维地震、三维地震、高精度地震勘探等先进技术,应用于石油、煤炭、采空区调查、地热普查等重要领域,由陆地不断向海洋发展。本文着重针对地震勘探过程和技术的发展几个重要阶段及应用进行展开。 关键字地震勘探三维地震石油勘探煤矿发展与应用 1 引言 地震勘探是利用岩石的弹性性质研究地下矿床和解决工程地质,环境地质问题的一种地球物理方法。地震勘探应用领域广泛,与其他物探方法相比,具有精度高、分层详细和探测深度大等优点,近年来,随着电子技术、计算机技术的高速发展,地震勘探的仪器装备、处理软件升级换代的速度明显加快,地震资料采集、处理与解释的一体化趋势得到加强。从常规的地震勘探发展到二维地震、三维地震、高精度地震勘探等先进技术,通常用人工激发地震波,地震波通过不同路径传播后,被布置在井中或地面的地震检波器及专门仪器记录下来,这些地震拨携带有所经过地层的丰富地质信息,计算机对这些地震记录进行处理分析,并用计算机进行解释,便可知道地下不同地层的空间分布,构造形态,岩性特征,直至地层中是否有石油、天然气、煤等,并可解决大坝基础,港口,路,桥的地基,地下潜在的危险区等工程地质问题,以及环境保护,考古等问题。 2 地震勘探过程及发展 地震勘探过程由地震数据采集、数据处理和地震资料解释3个阶段组成。 1.地震数据采集 在野外观测作业中,一般是沿地震测线等间距布置多个检波器来接收地震波信号。常规的观测是沿直线测线进行,所得数据反映测线下方二维平面内的地震信息。一般地讲,地震野外数据采集成本占勘探成本的80%左右,因此世界各国为了降低勘探成本、提高勘探效果,

微地震检测技术简介

微地震监测技术及应用 随着非常规致密砂岩气、页岩气藏的开采开发,压裂技术在储层改造中起着举足轻重的作用,而微地震监测技术是评价压裂施工效果的关键且即时的技术之一。根据微地震监测处理高精度地反演微震位置,从而预测压裂裂缝的发展趋势及区域,对压裂施工效果进行跟踪及评判,同时也为后期油气藏的开采和开发提供技术指导。 第一节微地震监测技术原理与发展 微地震监测技术是通过观测、分析生产活动中所产生的微小地震事件来监测生产活动的影响、效果及地下状态的地球物理技术,其基础是声发射学和地震学。与地震勘探相反,微地震监测中震源的位置、发震时刻、震源强度都是未知的,确定这些因素恰恰是微地震监测的首要任务。微地震是一种小型的地震(mine tremor or microseismic)。在地下矿井深部开采过程中发生岩石破裂和地震活动,常常是不可避免的现象。由开采诱发的地震活动,通常定义为,在开采坑道附近的岩体内因应力场变化导致岩石破坏而引起的那些地震事件。开采坑道周围的总的应力状态。是开采引起的附加应力和岩体内的环境应力的总和。 一、技术背景 岩爆是岩石猛烈的破裂,造成开采坑道的破坏,只有那些能够引起矿区附近的地区都受到破坏的地震事件才叫做冲击地压或煤爆、“岩爆”。对地下开采诱发的地震活动性的研究表明,矿震不一定全都发生在开采的地点,且不同地区的最大震级也不相同,但矿震深度一般对应于开采挖掘的深度。每年在一些矿区的地震台网能记录到几千个地震事件,只有几个是岩爆。在由开采引起的地震事件的大的系列里,岩爆只是其中很小的一个分支。对矿山地震、微地震及冲击地压的观测具有一致性,但应用到实际生产中必须区别对待。 二、微地震技术的发展 基于微震监测的裂缝评价技术正发展成为油层压裂生产过程中直观而又可靠的技术。近几年来,国内众多油气田纷纷投入人力、物力和资金,积极开展该技术的应用与研究工作,广泛用于油气勘探开发工作。2011年,东方物探公司投入专项资金,积极开展压裂微地震监测技术研究,压裂微地震监测技术水平得

GPS定位原理介绍习题及答案解析(完整版)

14 全球定位系统(GPS)定位原理简介 一、填空题: 1、GPS接收机基本观测值有伪距观测值、载波相位观测值。 2、GPS接收机按用途分,可分为导航型接收机、测地型接收机、授时型接收机和姿态测量型接收机。其中测地型接收机,按载波频率又可分为单频接收机、双频接收机。 3、GPS接收机主要由GPS接收机天线、GPS接收机主机和电源三部分组成。 4、GPS定位是利用空间测距交会定点原理。 5、全球定位系统(GPS)主要由空间卫星部分、地面监控部分和用户设备三部分组成。 6、GPS卫星星座由 24颗卫星组成。其中21颗工作卫星, 3 颗备用卫星。工作卫星分布在 6 个近圆形的轨道面内,每个轨道上有 4 颗卫星。GPS工作卫星距离地面的平均高度是20200km。 7、地面监控部分按功能可分为监测站、主控站和注入站三种。 8、GPS接收机接收的卫星信号有:伪距观测值和载波相位观测值及卫星广播星历。 9、根据测距原理,GPS卫星定位方法有伪距定位法、载波相位测量定位和 G PS 差分定位。对于待定点位,根据接收机运动状态可分为静态定位和动态定位。根据获取定位结果的时间可分为实时定位和非实时定位。 10、在两个测站上分别安置接收机,同步观测相同的卫星,以确定两点间相对位置的定位方法称为相对定位。 11、载波相位相对定位普遍采用将相位观测值进行线性组合的方法。具体方法有三种,即单差法、双差法和三差法。 12、GPS差分定位系统由基准站、流动站和无线电通信链三部分组成。 13、GPS测量实施过程与常规测量一样包括方案设计、外业测量和内业数据处理三部分。 二、名词解释: 1、伪距单点定位----利用GPS接收机在某一时刻测定的四颗以上GPS卫星伪距及从卫星导航电文中获得的卫星位置,采用距离交会法求定天线所在的三维坐标. 2、载波相位相对定位----用两台GPS接收机,分别安置在测线两端(该测线称为基线),固定不动,同步接收GPS卫星信号。利用相同卫星的相位观测值进行解算,求定基线端点在WGS一84坐标系中的相对位置或基线向量。当其中一个端点坐标已知,则可推算另一个待定点的坐标。 3、整周跳变----当GPS接收机在跟踪卫星进行载波相位测量过程中,若因某种原因引起对卫星跟踪短暂失锁,如卫星和接收机天线之间视线方向有阻挡物或接收机受到外界电磁干扰等,将造成载波相位整周观测值的意外丢失现象。这种现象称为整周跳变。 4、静态定位---进行GPS定位时,接收机的天线始终处于静止状态,用GPS测定相对于地球不运动的点位。GPS接收机安置在该点上,接收数分钟乃至更长时间,以确定其三维坐标,又称为绝对定位。 5、动态定位----进行GPS定位时,接收机的天线始终处于运动过程中,动态定位

地震成像现状存在问题及发展趋势分解

地震成像技术的发展现状存在问题及发展趋势 (杜炳毅地球探测与信息技术S1*******) 随着地震勘探难度的逐渐的增加和油气藏复杂性的增加,油气勘探开发对地震勘探精度的要求越来越高。为了实现高精度的地震资料在油气勘探中的应用,近年来地震方法和技术重点发展了两个方向:一是地震成像技术,二是开发地震技术。 地震成像技术发展现状 地震成像是现代地震勘探数据处理中的重要组成部分,分为叠加成像和偏移成像。随着油气勘探难度的增加,地震成像技术得到了迅速的发展,并且成为高精度地震勘探数据处理的关键技术。地震偏移成像可以分为地震叠后偏移方法和地震叠前偏移方法。 叠后偏移是在共中心点叠加数据上进行零炮检距偏移,主要有叠后时间偏移和叠后深度偏移,叠后时间偏移主要包括射线偏移和波动方程偏移。而叠后深度偏移可以有效的结果构造不太复杂,横向速度变化比较大的地质体的地震成像问题,并且能够提高地震成像的计算效率,常用的叠后深度偏移有Kirchhoff积分法,分步傅里叶法,有限差分法以及逆时偏(RTM)法。 叠前偏移是把共炮点道集记录或者共偏移距道集记录中的反射波归位到产生他的反射界面上,并使绕射波收敛到产生它的的绕射点上。也分为叠前时间偏移和叠前深度偏移。叠前时间偏移是基于绕射

叠加或者Claerbout发射波成像原则,是一种成像射线,能够解决叠后时间偏移存在的问题,叠前时间偏移的方法主要有Kirchhoff积分法叠前时间偏移,波动方程法叠前时间偏移(包括平面波分解法叠前时间偏移和F-K域法叠前时间偏移);叠前深度偏移方法可以分为两类:第一类是基于射线理论的叠前深度偏移方法,另一类是基于波动方程理论的叠前深度偏移方法。射线法叠前深度偏移方法主要有Kirchhoff积分法叠前深度偏移,高斯波束叠前深度偏移;波动方程叠前深度偏移主要有F-X域有限差分叠前深度偏移,SSF法波动方程叠前深度偏移,Fourier有限差分(FFD)法波动方程叠前深度偏移,广义屏近似波动方程叠前深度偏移,基于双平方根方程的波动方程的叠前深度偏移,基于波动方程的真振幅偏移,逆时叠前深度偏移。 地震偏移是一种将地震信息进行重排的反演运算,以便使地震波能量归位到其空间的真实位置,获取地下真实构造图像。除了深度域构造成像外,地震偏移还为其它特殊处理提供振幅、相位等信息,用于速度估计和属性分析,建立在波动方程基础上的地震偏移成像技术代表了地震处理的极致。 地震偏移最初是在水平迭加基础上进行的,目的是使倾斜界面共深度映像聚焦,使绕射波归位,即将能量还原到它们正确位置上.早期人工偏移是按照偏移空间的时距关系作图;若将共深度点剖面看作一系列绕射点组成的源反射,可用计算机实现对这些绕射点的偏移,即建立在射线理论基础上的绕射扫描迭加方法以及后来的Kirchhoff 偏移.20 世纪70 年代初美国斯坦福大学以J. F. Claerbout 为首的

相关文档
最新文档