比例阀控制系统传递函数Word版

比例阀控制系统传递函数Word版
比例阀控制系统传递函数Word版

0 引言

最近10年来发展起来的电液比例控制技术新成员——伺服比例阀,实际上是电液比例技术与电液伺服阀的进一步的“取长补短”式的融合。伺服比例阀(闭环比例阀)内装放大器,具有伺服阀的各种特性:零遮盖、高精度、高频响,但其对油液的清洁度要求比伺服阀低,具有更高的工作可靠性。

电液伺服控制系统多数具有良好的控制性能,并具有一定的鲁棒性,有广泛的应用。电液伺服系统的动态特性是衡量一套电液伺服系统设计及调试水平的重要指标。电液伺服系统由电信号处理装置和若干液压元件组成,元件的动态性能相互影响,相互制约及系统本身所包含的非线性,致使其动态性能复杂,因此,电液伺服控制系统的仿真受到越来越多的重视。

电液技术的不断发展和人们对电液系统性能要求的不断提高,了解电液伺服系统过程中的动态性能和内部各参变量随时间的变化规律,已成为电液伺服系统设计和研究人员的首要任务在系统工作过程中,主要液压元件的动态响应、系统各部分的压力变化,执行元件的位移和速度等,都是人们非常关心的。

本文以电液伺服比例阀控液压缸为例,针对Matlab/Simulink 在电液伺服控制系统仿真分析中的局限性,采用AMESim 和Matlab/Simulink 联合仿真模型,取得了良好的效果。

1 系统组成及原理

电液伺服控制系统根据被控物理量(即输出量)分为电液位置伺服系统,电液速度伺服系统,电液力伺服系统三类。本文主要介绍电液位置伺服系统的仿真研究。其中四通阀伺服比例阀控液压缸的原理如图所示。

图1 阀控缸-负载原理图系统组成图

电液位置伺服控制系统是最为常见的液压控制系统,实际的伺服系统无论多么复杂,都是由一些基本元件组成的。控制系统结构框图见图2所示。

图2 电液伺服控制系统的结构框图

2 液压系统数学模型建立

活塞杆内径(直)d=45cm,活塞的行程H=40cm,油缸外径=80mm,查手册知内径D=63mm,从伺服阀到油缸的长度=1-2m,管径=22mm,壁厚=4mm,供油压力Ps恒定为7MPa,MOOGD-633伺服比例阀,d=7.9mm 阀额定电流为10mA质量块(负载)=250 Kg液压缸有效工作面积。

系统总压缩容积(液压缸和阀至液压缸两侧管路总容积)

因为位置系统动态分析经常在零位工作条件下,此时增量和变量相等,所以阀的线性化流量方程为

液压动力元件流量连续性方程为

Ctp为液压缸总泄漏系数。

液压缸的输出力与负载力的平衡方程为

式中Mt为活塞及负载总质量;BP为活塞及负载的黏性阻尼系数;K为负载弹簧刚度;FL为作用在活塞上的任意外负载力。

式(1)(2)(3)是阀控液压缸的三个基本方程,它们完全描述了阀控液压缸的动态特性。对(1)(2)(3)式作拉式变换并消去中间变量得液压缸活塞的总输出位移为

式中:Kce—总压力—流量系数,Xv为阀芯位移。

由于负载特性为惯性负载(K=0),Bp一般很小可简化为

对指令输入为v x 的传递函数为

则液压缸-负载的传递函数为:

,其中

总流量压力系数Kce=Kc+Ctp,液压缸总泄露系数Ctp较阀的流量-压力系数KC

小得多,所以ξh主要KC来决定。零位压力-系数,其中rc-阀芯与阀套间隙的行向间隙w-阀面积梯度,μ-油液的动粘度,取

,对于全开口阀阀W=πd 阀门。

而根据经验得知在位置伺服系统中,当伺服阀在零位区域工作时ξh=0.1~0.2。本论文取可得液压缸数学模型为:

伺服阀的传递函数为

根据D633伺服阀频率响应特性曲线图。可知Wsv=80 HZ额定流量40 nq=L/min 的取阀压降为PLS=2/3 PS时的流量增益为

所以伺服阀的传递函数为

确定系统的方框图:

3 基于Simulink的PID仿真

PID 控制器以其直观、实现简单等优点而得到广泛应用。本文在Matlab 软件中的动态仿真工具Simulink 环境下采用PID 控制策略进行仿真。

图4 PID 控制系统原理框图

当取KP=0.0002,KI=0,KD=0时,和当KP=0.007,KI=0.01,KD=0.0005时,得到如图5、图6所示液压缸实际位移曲线。

图5 液压缸位移与期望值的关系(KP=0.0002,KI =0 KD=0)

图6 液压缸位移与期望值的关系(KP =0.007,KI =0.01 KD =0.0005)

比较图5、图6发现KP 增大值时,系统的响应灵敏度增大,动态跟踪误差也减小了,在有静差的情况下有利于减少静差。但过大的比例系数会使系统有较大的超调,产生振荡,使稳定性破坏。增大积分系数KI 有利于减少超调,减少振荡,使系统更加稳定,但过大的积分系数会使系统变得不稳定。增大微分系数KD 有利于加快系统的响应,使超调量减少。

4 AMESim/Simulink联合仿真技术的优点

由于液压元件本身所包含的非线性,难以建立精确的数学模型。所以本文采用AMESim与Matlab/Simulink 联合仿真平台对电液伺服系统中的机械液压部分和控制部分别进行建模,充分利用两套软件各自在液压系统建模仿真与数据处理能力方面的优势对电液伺服系统进行联合仿真分析。

Simulink 借助于MATLAB 强大的数值计算能力,能够在MATLAB 下建立系统框图和仿真环境,在各个工程领域发挥着巨大的作用,是当今主流的仿真软件。但MATLAB 存在不能有效地处理代数环问题等缺点,使得Simulink 仿真效率往往不高。利用AMESim 对Simuhnk 的接口技术,把两个优秀的专业仿真工具联合起来使用,就能既发挥AMESim 突出的流体机械的仿真效能,又能借助MATLABlsimulink 强大的数值处理能力,取长补短,取得更加完美的互补效果。这种联合仿真的技术对多领域系统(如流体与控制结合系统等)的仿真效果更是无与伦比。

本文把位移作为输出量,在AMESim 中的界面菜单下的创建输出图标功能与Simulink中的S 函数实现连接。具体实现过程是在AMESim 中经过系统编译、参数设置等生成供Simulink 使用的S 函数,在Simulink 环境中,将建好的包含其它Simulink 模块的AMESim模型当作一个普通的S 函数对待,添加入系统的Simulink 模型中。从而实现AMESim 与Simulink 的联合建模与仿真。根据物理模型,把系统分为机械系统和控制系两部分,机械系统模型由AMEsim 建立,控制系模型由Simulink 建立。

图7 联合仿真AMESim 环境下的液压系统模型

图8 Simulink 环境下的电液伺服系统模型

联合仿真PID控制取Kp=1.5,KI=0.001,KD=0.002 系统输入一阶跃信号得到活塞杆的位移曲线,见图9。

图9 液压缸活塞实际输出位移与期望值曲线

联合仿真PID 控制取Kp=17,KI=0.3,KD=0 系统输入一正弦信号得到活塞杆的位移曲线,见图10。

图10 液压缸活塞实际输出位移与期望值曲线

由图9,图10可以看出,活塞杆位移曲线与系统输入的阶跃信号曲线和正弦信号曲线非常接近,系统稳定仿真效果是非常不错的。

求下图所示系统的传递函数

一、求下图所示系统的传递函数)(/)(0s U s U i 。 (10分) ) 1()()(3132320+++-=CS R R R R CS R R s U s U i 一、控制系统方块图如图所示: (1)当a =0时,求系统的阻尼比ξ,无阻尼自振频率n ω和单位斜坡函数输入时的稳态误差; (2)当ξ=时,试确定系统中的a 值和单位斜坡函数输入时系统的稳态误差; 系统的开环传函为 s a s s G )82(8)(2++=闭环传函为8)82(8)()(2+++=s a s s R s Y 25.0 83.2 36.0===ss n e ωξ 4 25.0==ss e a 设某控制系统的开环传递函数为 ) 22()(2++=s s s k s G 试绘制参量k 由0变至∞时的根轨迹图,并求开环增益临界值。 (15分) 1)j p j p p --=+-==110 321 2)πππ?σ3 5,,332=-=a a (10分) 3)ω=j 2±,c k =4,开环增益临界值为K=2 设某系统的特征方程为23)(234+--+=s s s s s D ,试求该系统的特征根。 列劳斯表如下 0000220112311 2 3 4 s s s s --- (4分) 得 辅助方程为0222=+-s ,解得1,121-==s s (4分)

最后得1,243=-=s s 设某控制系统的开环传递函数为 )()(s H s G =) 10016()12.0(752+++s s s s 试绘制该系统的Bode 图,并确定剪切频率c ω的值 剪切频率为s rad c /75.0=ω 某系统的结构图和Nyquist 图如图(a)和(b)所示,图中 2)1(1)(+=s s s G 23 ) 1()(+=s s s H 试判断闭环系统稳定性,并决定闭环特征方程正实部根的个数。 (16分) 解:由系统方框图求得内环传递函数为: s s s s s s s H s G s G +++++=+23452 474)1()()(1)( (3分) 内环的特征方程:04742345=++++s s s s s (1 分) 由Routh 稳定判据: 01: 03 10 :16 :044: 171: 01234s s s s s 七、设某二阶非线性系统方框图如图所示,其中 4 , 2.0 , 2.00===K M e 及s T 1=, 试画出输入信号)(12)(t t r ?=时系统相轨迹的大致图形,设系统原处于静止状态。 (16分) 解:根据饱和非线性特性,相平面可分成三个区域,运动方程分别为

阶变系统的开环传递函数

阶变系统的开环传递函数 clear all; Ap=1.68e-2; In=0.03; ps=4e6; pL=2*ps/3; Ki=188.6; Vt=2.873e-3; Kf=1; bate=6900e5; m=35000; Wh=sqrt(4*bate*Ap^2/(m*Vt)) zuni1=0.3; sys1=tf(1/Ap,[1/Wh^2 2*zuni1/Wh 1 0]) Wsv=157; zuni2=0.7; Ksv=1.96e-3; sys2=tf(Ksv,[1/Wsv^2 2*zuni1/Wsv 1]) %系统的开环传递函数

sys_open=Ki*sys1*sys2 sysclose=feedback(sys_open,1); figure; %绘制nyquist曲线 subplot(121);pzmap(sys_open); grid on; xlabel('实轴');ylabel('虚轴');title('零极点图'); subplot(122); nyquist(sys_open); grid on; xlabel('实轴');ylabel('虚轴');title('Nyquist图'); figure; %时域分析 subplot(121);step(sysclose); grid on; xlabel('时间');ylabel('振幅');title('阶跃响应'); subplot(122);impulse(sysclose); grid on; xlabel('时间');ylabel('振幅');title('脉冲图响应'); figure; %绘制Bode图及其参数求解 w=logspace(-1,2); grid on; margin(sys_open); xlabel('频率');title('Bode图');

求下图所示系统的传递函数

一、求下图所示系统的传递函数 ) (/)(0s U s U i 。 (10分) ) 1()()(313 2320+++-=CS R R R R CS R R s U s U i 一、控制系统方块图如图所示: (1)当a =0时,求系统的阻尼比ξ,无阻尼自振频率n ω和单位斜坡函数输入时的稳态误差; (2)当ξ=0.7时,试确定系统中的a 值和单位斜坡函数输入时系统的稳态误差; 系统的开环传函为 s a s s G )82(8)(2++= 闭环传函为8)82(8 )()(2 +++=s a s s R s Y 25.0 83.2 36.0===ss n e ωξ 4 25.0==ss e a 设某控制系统的开环传递函数为 ) 22()(2 ++= s s s k s G 试绘制参量k 由0变至∞时的根轨迹图,并求开环增益临界值。 (15分) 1)j p j p p --=+-==110321 2) πππ?σ3 5 ,,332=- =a a (10分) 3)ω=j 2±,c k =4,开环增益临界值为K=2 设某系统的特征方程为23)(2 3 4 +--+=s s s s s D ,试求该系统的特征根。 列劳斯表如下 022******* 2 34 s s s s ---

得辅 助 方 程 为 222=+-s ,解得 1,121-==s s (4分) 最后得1, 243=-=s s 设某控制系统的开环传递函数为 )()(s H s G = ) 10016() 12.0(752+++s s s s 试绘制该系统的Bode 图,并确定剪切频率c ω的值 剪切频率为s rad c /75.0=ω 某系统的结构图和Nyquist 图如图(a)和(b)所示,图中 2)1(1)(+=s s s G 2 3 ) 1()(+=s s s H 试判断闭环系统稳定性,并决定闭环特征方程正实部根的个数。 (16分) 解:由系统方框图求得内环传递函数为: s s s s s s s H s G s G +++++= +23452 474)1()()(1)(

自动控制原理开环传递函数

负反馈控制系统的开环传递函数为 (1)、)3)(1()()(++=s s s K s H s G (2)、)3)(1() 2()()(+++=s s s s K s H s G 做系统根轨迹图。 解(1):传递函数已为标准零极点令 0)3)(1(=++s s s 可得开环极点为 00=p 11-=p 32-=p 则3=n ,0=m ,有3=-m n 条根轨迹终止于无穷远处 极点将实轴分为四个区间,仅有区间)3,(--∞和)0,1(-有根轨迹因为)0,1(-两端均为极点,则存在分离点为: 0]) ()(1[=ds s H s G d 03832=++s s 解出 45.01-=s 22.22-=s 根据实轴上根轨迹确定方法可知2s 不在根轨迹上,1s 为该系统的分离点。 与实轴的交点为3 4 3310321-=--=-++= m n p p p a σ 与实轴正方向的夹角为: 0=h , 6031801801==-= m n ? 1=h , 180180)12(2=-+= m n ? 2=h , 300180)122(3=-+?= m n ? 根轨迹与虚轴的焦点w 和对应的临界增益c k 值,由开环传递函数可 知,系统的闭环特征方程为 034)3)(1(23=+++=+++k s s s k s s s 令jw s =,上式变为 0)(3)(4)(23=+++k jw jw jw

实部与虚部分别为零,即 042=+-k w 033=+-w w 解得 3±=w 12=k 根据以上结果。绘制出大概的根轨迹图形如下 Mutlab 绘根轨迹图 G=tf(1,[conv([1,1],[1,3]),0]); rlocus (G); grid

阶变系统的开环传递函数

阶变系统的开环传递函数阶变系统的开环传递函数 clear all; Ap=1.68e-2; In=0.03; ps=4e6; pL=2*ps/3; Ki=188.6; Vt=2.873e-3; Kf=1; bate=6900e5; m=35000; Wh=sqrt(4*bate*Ap /(m*Vt))

zuni1=0.3; sys1=tf(1/Ap,[1/Wh 2*zuni1/Wh 1 0]) Wsv=157; zuni2=0.7; Ksv=1.96e-3; sys2=tf(Ksv,[1/Wsv 2*zuni1/Wsv 1]) %系统的开环传递函数 sys_open=Ki*sys1*sys2 sysclose=feedback(sys_open,1); figure; %绘制nyquist曲线 subplot(121);pzmap(sys_open);

grid on; xlabel(‘实轴’);ylabel(‘虚轴’);title(‘零极点图’); subplot(122); nyquist(sys_open); grid on; xlabel(‘实轴’);ylabel(‘虚轴’);title(‘Nyquist图’); figure; %时域分析 subplot(121);step(sysclose); grid on; xlabel(‘时间’);ylabel(‘振幅’);title(‘阶跃响应’); subplot(122);impulse(sysclose); grid on; xlabel(‘时间’);ylabel(‘振幅’);title(‘脉冲图响应’); figure; %绘制Bode 图及其参数求解 w=logspace(-1,2); grid on;

开环传递函数

五、(共15分)已知某单位反馈系统的开环传递函数为 (1)()()(3) r K s GS HS s s += -,试: 1、绘制该系统以根轨迹增益K r 为变量的根轨迹(求出:分离点、与虚轴的交点等);(8分) 2、求系统稳定且为欠阻尼状态时开环增益K 的取值范围。(7分) 五、(共15分) (1)系统有有2个开环极点(起点):0、3,1个开环零点(终点)为:-1; (2分) (2)实轴上的轨迹:(-∞,-1)及(0,3); (2分) (3)求分离点坐标 111 13 d d d =+ +-,得 121, 3d d ==- ; (2分) 分别对应的根轨迹增益为 1, 9r r K K == (4)求与虚轴的交点 系统的闭环特征方程为(3)(1)0r s s K s ++=-,即2 (3)0r r s K s K +-+= 令 2(3)0r r s j s K s K ω =+-+=,得 3, 3r K ω=±= (2分) 根轨迹如图1所示。 图1 2、求系统稳定且为欠阻尼状态时开环增益K 的取值范围 系统稳定时根轨迹增益K r 的取值范围: 3r K ≥, (2分) 系统稳定且为欠阻尼状态时根轨迹增益K r 的取值范围: 3~9r K =, (3分) 开环增益K 与根轨迹增益K r 的关系: 3 r K K = (1

分) 系统稳定且为欠阻尼状态时开环增益K 的取值范围: 1~3K = (1分) 六、(共22分)已知反馈系统的开环传递函数为()()(1) K G s H s s s =+ ,试: 1、用奈奎斯特判据判断系统的稳定性;(10分) 2、若给定输入r(t) = 2t +2时,要求系统的稳态误差为0.25,问开环增益K 应取何值。 (7分) 3、求系统满足上面要求的相角裕度γ。(5分) 六、(共22分) 解:1、系统的开环频率特性为 ()()(1) K G j H j j j ωωωω= + (2分) 幅频特性:2 ()1K A ωωω = +, 相频特性:()90arctan ?ωω=--(2分) 起点: 00, (0),(0)90A ω?+++ ==∞=-;(1分) 终点: ,()0,()A ω?→∞∞=∞=-;(1分) 0~:()90~180 ω?ω=∞=--, 曲线位于第3象限与实轴无交点。(1分) 开环频率幅相特性图如图2所示。 判断稳定性: 开环传函无右半平面的极点,则0P =, 极坐标图不包围(-1,j0)点,则0N = 根据奈氏判据,Z =P -2N =0 系统稳定。(3分) 2、若给定输入r(t) = 2t +2时,要求系统的稳态误差为0.25,求开环增益K : 系统为1型,位置误差系数K P =∞,速度误差系数K V =K , (2分) 图2

比例阀控制系统传递函数Word版

0 引言 最近10年来发展起来的电液比例控制技术新成员——伺服比例阀,实际上是电液比例技术与电液伺服阀的进一步的“取长补短”式的融合。伺服比例阀(闭环比例阀)内装放大器,具有伺服阀的各种特性:零遮盖、高精度、高频响,但其对油液的清洁度要求比伺服阀低,具有更高的工作可靠性。 电液伺服控制系统多数具有良好的控制性能,并具有一定的鲁棒性,有广泛的应用。电液伺服系统的动态特性是衡量一套电液伺服系统设计及调试水平的重要指标。电液伺服系统由电信号处理装置和若干液压元件组成,元件的动态性能相互影响,相互制约及系统本身所包含的非线性,致使其动态性能复杂,因此,电液伺服控制系统的仿真受到越来越多的重视。 电液技术的不断发展和人们对电液系统性能要求的不断提高,了解电液伺服系统过程中的动态性能和内部各参变量随时间的变化规律,已成为电液伺服系统设计和研究人员的首要任务在系统工作过程中,主要液压元件的动态响应、系统各部分的压力变化,执行元件的位移和速度等,都是人们非常关心的。 本文以电液伺服比例阀控液压缸为例,针对Matlab/Simulink 在电液伺服控制系统仿真分析中的局限性,采用AMESim 和Matlab/Simulink 联合仿真模型,取得了良好的效果。 1 系统组成及原理 电液伺服控制系统根据被控物理量(即输出量)分为电液位置伺服系统,电液速度伺服系统,电液力伺服系统三类。本文主要介绍电液位置伺服系统的仿真研究。其中四通阀伺服比例阀控液压缸的原理如图所示。

图1 阀控缸-负载原理图系统组成图 电液位置伺服控制系统是最为常见的液压控制系统,实际的伺服系统无论多么复杂,都是由一些基本元件组成的。控制系统结构框图见图2所示。 图2 电液伺服控制系统的结构框图

实验一 MATLAB系统的传递函数和状态空间表达式的转换

实验一 MATLAB 系统的传递函数和状态空间表达式的转换 一、 实验目的 1、学习多变量系统状态空间表达式的建立方法; 2、通过编程、上机调试,掌握多变量系统状态空间表达式与传递函数之间相互转换的方法; 3、掌握相应的MATLAB 函数。 二、 实验原理 设系统的模型如式(1.1)所示: ?? ?+=+=D Cx y Bu Ax x ' x ''R ∈ u ∈R ’’’ y ∈R P (1.1) 其中A 为nXn 维系统矩阵、B 为nXm 维输入矩阵、C 为pXn 维输出矩阵,D 为直接传递函数。系统的传递函数和状态空间表达式之间的关系如式(1.2)所示 G(s)=num(s)/den(s)=C (SI-A)-1 B+D (1.2) 式(1.2)中,num(s)表示传递函数的分子阵,其维数是pXm ,den(s)表示传递函数的按s 降幂排列的分母。 表示状态空间模型和传递函数的MATLAB 函数如下: 函数ss (state space 的首字母)给出了状态空间模型,其一般形式是: sys=ss(A,B,C,D) 函数tf (transfer function 的首字母)给出了传递函数,其一般形式是: G=tf(num ,den) 其中num 表示传递函数中分子多项式的系数向量(单输入单输出系统),den 表示传递函数中分母多项式的系数向量。 函数tf2ss 给出了传递函数的一个状态空间实现,其一般形式是: [A,B,C,D]=tf2ss(num,den) 函数ss2tf 给出了状态空间模型所描述系统的传递函数,其一般形式是: [num,den]=ss2tf(A,B,C,D,iu)

自控复习题

一、单项选择题 1.设某系统开环传递函数为G(s)=) 1s )(10s s (102+++,则其频率特性奈氏图起点坐标为( C ) A .(-10,j0) B .(-1,j0) C .(1,j0) D .(10,j0) 2.在串联校正中,校正装置通常( B ) A .串联在前向通道的高能量段 B .串联在前向通道的低能量段 C .串联在反馈通道的高能量段 D .串联在反馈通道的低能量段 3.已知单位反馈控制系统在阶跃函数作用下,稳态误差e ss 为常数,则此系统为(A ) A .0型系统 B .I 型系统 C .Ⅱ型系统 D .Ⅲ型系统 4.设某环节的传递函数为G(s)=121 +s ,当ω=0.5rad /s 时, 其频率特性相位移θ(0.5)=( A ) A .-4π B .-6π C .6π D .4π 5.线性定常系统的传递函数,是在零初始条件下( D ) A .系统输出信号与输入信号之比 B .系统输入信号与输出信号之比 C .系统输入信号的拉氏变换与输出信号的拉氏变换之比 D .系统输出信号的拉氏变换与输入信号的拉氏变换之比 6.控制系统中,基本环节的划分,是根据( D ) A .元件或设备的形式 B .系统的物理结构 C .环节的连接方式 D .环节的数学模型 7.比例微分控制器中,微分时间常数越大,则系统的( A ) A .动态偏差越小 B .动态偏差越大 C .振荡越小 D .过渡过程缩短 8.同一系统,不同输入信号和输出信号之间传递函数的特征方程( A ) A .相同 B .不同 C .不存在 D .不定 9.2型系统对数幅频特性的低频段渐近线斜率为( B ) A .-60d B /dec B .-40dB /dec C .-20dB /dec D .0dB /dec 10.已知某单位负反馈系统的开环传递函数为G(s)=)1(1 +s s ,则相位裕量γ的值为( B ) A .30° B .45° C .60° D .90° 11.单位抛物线输入函数r(t)的数学表达式是( D ) A .at 2 B .21Rt 2 C .t 2 D .21 t 2

试求图示电路的微分方程和传递函数

2-1 习 题 2-1 试求图示电路的微分方程和传递函数。 2-2 ur 为输入量,电动机的转速ω为输 出量,试绘制系统的方框图,并求系统的传递函数 ) () ( ,)( )(s M s s U s L r ΩΩ。(ML 为负载转矩,J 为电动机的转动惯量,f 为粘性摩擦系数,Ra 和La 分别为电枢回路的总电阻和总电感,Kf 为测速发动机的反馈系数)。 2-3 图示电路,二极管是一个非线性元件,其电流d i 和电压d u 之间的关系为)1(10026 .0/6-=-d u d e i ,假设系统 工作在u 0=2.39V ,i 0=2.19×10-3A 平衡点,试求在工作点 (u 0,i 0)附近d i =f (d u )的线性化方程。 2-4 试求图示网络的传递函数,并讨论负载效应问题。

2-2 2-5 求图示运算放大器构成的网络的传递函数。 2-6 已知系统方框图如图所示,试根据方框图简化规则,求闭环传递函数。 2-7 分别求图示系统的传递函数 )()(11s R s C 、)()(12s R s C 、)()(21s R s C 、) () (22s R s C 2-8 绘出图示系统的信号流图,并求传递函数)(/)()(s R s C s G

2-3 2-9 试绘出图示系统的信号流图,求系统输出C (s )。 2-10 求图示系统的传递函数C (s )/R (s )。 2-11 已知单位负反馈系统的开环传递函数 ] 4)4)[(1(2 34)(22 23++++++=s s s s s s s G 1. 试用MA TLAB 求取系统的闭环模型; 2. 试用MA TLAB 求取系统的开环模和闭环零极点。 2-12 如图所示系统 1. 试用MA TLAB 化简结构图,并计算系统的闭环传递函数;

自动控制19套试题及答案详解

第1页 一.填空题。(10分) 1.传递函数分母多项式的根,称为系统的 2. 微分环节的传递函数为 3.并联方框图的等效传递函数等于各并联传递函数之 4.单位冲击函数信号的拉氏变换式 5.系统开环传递函数中有一个积分环节则该系统为型系统。 6.比例环节的频率特性为。 7. 微分环节的相角为。 8.二阶系统的谐振峰值与有关。 9.高阶系统的超调量跟有关。 10.在零初始条件下输出量与输入量的拉氏变换之比,称该系统的传递函数。 二.试求下图的传第函数(7分) 三.设有一个由弹簧、物体和阻尼器组成的机械系统(如下图所示),设外作用力F(t)为输入量,位移为y(t)输出量,列写机械位移系统的微分方程(10分)

第2页 四.系统结构如图所示,其中K=8,T=0.25。(15分) (1)输入信号x i(t)=1(t),求系统的响应; (2)计算系统的性能指标t r、t p、t s(5%)、бp; (3)若要求将系统设计成二阶最佳ξ=0.707,应如何改变K值

第 3 页 )1001.0)(11.0()(++= s s s K s G 五.在系统的特征式为A (s )=6 s +25 s +84 s +123 s +202 s +16s+16=0,试判断系统的稳定性(8分) γ。(12分) 七.某控制系统的结构如图,其中 要求设计串联校正装置,使系统具有K ≥1000及υ≥45。 的性能指标。(13分)

s T s s s G 25.0,) 4(1 )(=+= . 八.设采样控制系统饿结构如图所示,其中 试判断系统的稳定性。 (10分) 九. 已知单位负反馈系统的开环传递函数为: 试绘制K 由0 ->+∞变化的闭环根轨迹图,系统稳定的K 值范围。(15分) ,)4()1()(22++=s s K s G

已知单位反馈系统的开环传递函数

5-1 已知单位反馈系统的开环传递函数 习题 5-1已知单位反馈系统的开环传递函数,试绘制其开环极坐标图和开环对数频率特性。(1) )11.0(10) (s s s G (2) ) 12)(12.0(1 ) (s s s G (3) ) 12)(1(1 ) (s s s s G (4) ) 11.0)(1(10 ) (2 s s s s G 5-2设单位反馈系统的开环传递函数 ) 2(10) (s s G 试求下列输入信号作用下,系统的稳态输出。 1. ) 30sin()(t t r 2. ) 452cos(2sin ) (t t t r 5-3已知单位反馈系统的开环传递函数 ) 10)(1(10 ) (s s s s G 试绘制系统的极坐标图Bode 图,并求系统的相角裕量和幅值裕量。 5-4已知图示RLC 网络,当ω=10rad/s 时,系统的幅值A=1相角 =-90°,试求其传 递函数。 5-5已知最小相位系统的开环对数幅频特性的渐近线如图所示,试求系统的开环传递函 数,并计算系统的相角裕量。 习题5-4图

5-2 5-6设系统开环传递函数为 (1)) 02.01)(2.01 () ()(s s K s H s G (2)) 11.0)(1() ()(1.0s s s Ke s H s G s 试绘制系统的 Bode 图,并确定使开环截止频率 ωc =5rad/s 时的K 值。 5-7设系统开环频率特性极坐标图如图所示,试判断闭环系统的稳定性。(其中υ表示 积分环节个数,P 为开环右极点个数 )。 习题5-5图

5-3 5-8图示系统的极坐标图,开环增益K=500,且开环无右极点,,试确定使闭环系统稳 定的K 值范围。 5-9设系统的开环传递函数为 ) 1() ()(s s Ke s H s G s 1.试确定使系统稳定时 K 的临界值与纯时延 τ的关系; 2.若τ=0.2,试确定使系统稳定的K 的最大值。 5-10已知单位反馈系统的开环传递函数 ) 10)(1() (s s s K s G 求:1.当K=10 2.要求系统相角裕量为30,K 值应为多少? 3.要求增益裕量为 20dB ,求K 值应为多少? 习题5-11图 习题5-7图 习题5-8图

试求图示电路的微分方程和传递函数

2-1 习 题 2-1 试求图示电路的微分方程和传递函数。 2-2 ur 为输入量,电动机的转速ω为输 出量,试绘制系统的方框图,并求系统的传递函数) () ( ,)( )(s M s s U s L r ΩΩ。(ML 为负载转矩,J 为电动机的转动惯量,f 为粘性摩擦系数,Ra 和La 分别为电枢回路的总电阻和总电感,Kf 为测速发动机的反馈系数)。 2-3 图示电路,二极管是一个非线性元件,其电流d i 和电压d u 之间的关系为)1(10026.0/6-=-d u d e i ,假设系统 工作在u 0=2.39V ,i 0=2.19×10-3A 平衡点,试求在工作点 (u 0,i 0)附近d i =f (d u )的线性化方程。 2-4 试求图示网络的传递函数,并讨论负载效应问题。

2-2 2-5 求图示运算放大器构成的网络的传递函数。 2-6 已知系统方框图如图所示,试根据方框图简化规则,求闭环传递函数。 2-7 分别求图示系统的传递函数)()(11s R s C 、)()(12s R s C 、)()(21s R s C 、)()(22s R s C 2-8 绘出图示系统的信号流图,并求传递函数)(/)()(s R s C s G

2-3 2-9 试绘出图示系统的信号流图,求系统输出C (s )。 2-10 求图示系统的传递函数C (s )/R (s )。 2-11 已知单位负反馈系统的开环传递函数 ] 4)4)[(1(234)(2223++++++=s s s s s s s G 1. 试用MA TLAB 求取系统的闭环模型; 2. 试用MA TLAB 求取系统的开环模和闭环零极点。 2-12 如图所示系统 1. 试用MA TLAB 化简结构图,并计算系统的闭环传递函数;

几个开环与闭环自动控制系统的例子

2-1 试求出图P2-1中各电路的传递函数。 图P2-1 2-2 试求出图P2-2中各有源网络的传递函数。 图P2-2 2-3 求图P2-3所示各机械运动系统的传递函数。 (1)求图(a )的 ()()?=s X s X r c (2)求图(b )的() () ?=s X s X r c (3)求图(c )的 ()()?12=s X s X (4)求图(d )的 ()() ?1=s F s X 图P2-3 2-4 图P2-4所示为一齿轮传动机构。设此机构无间隙、无变形,求折算到传动轴上的等效转动惯量、等效粘性摩擦系数和()()() s M s s W 2θ= 。

图P2-4 图P2-5 2-5 图P2-5所示为一磁场控制的直流电动机。设工作时电枢电流不变,控制电压加在励磁绕组上,输出为电机角位移,求传递函数()()() s u s s W r θ=。 2-6 图P2-6所示为一用作放大器的直流发电机,原电机以恒定转速运行。试确定传递函数 () () ()s W s U s U r c =,设不计发电机的电枢电感和电阻。 图P2-6 2-7 已知一系统由如下方程组组成,试绘制系统方框图,并求出闭环传递函数。 ()()()()()()[]()s X s W s W s W s W s X s X c r 87111--= ()()()()()[]s X s W s X s W s X 36122-= ()()()()[]()s W s W s X s X s X c 3523-= ()()()s X s W s X c 34= 2-8 试分别化简图P2-7和图P2-8所示的结构图,并求出相应的传递函数。

自动控制原理课后习题答案第二章

第二章 2-3试证明图2-5(a)的电网络与(b)的机械系统有相同的数学模型。 分析首先需要对两个不同的系统分别求解各自的微分表达式,然后两者进行对比,找出两者之间系数的对应关系。对于电网络,在求微分方程时,关键就是将元件利用复阻抗表示,然后利用电压、电阻和电流之间的关系推导系统的传递函数,然后变换成微分方程的形式,对于机械系统,关键就是系统的力学分析,然后利用牛顿定律列出系统的方程,最后联立求微分方程。 证明:(a)根据复阻抗概念可得: 即取A、B两点进行受力分析,可得: 整理可得: 经比较可以看出,电网络(a)和机械系统(b)两者参数的相似关系为 2-5 设初始条件均为零,试用拉氏变换法求解下列微分方程式,并概略绘制x(t)曲线,指出各方程式的模态。 (1) (2) 2-7 由运算放大器组成的控制系统模拟电路如图2-6所示,试求闭环传递函数Uc(s)/Ur(s)。 图2-6 控制系统模拟电路 解:由图可得 联立上式消去中间变量U1和U2,可得: 2-8 某位置随动系统原理方块图如图2-7所示。已知电位器最大工作角度,功率放大级放大系数为K3,要求: (1) 分别求出电位器传递系数K0、第一级和第二级放大器的比例系数K1和K2; (2) 画出系统结构图; (3) 简化结构图,求系统传递函数。 图2-7 位置随动系统原理图 分析:利用机械原理和放大器原理求解放大系数,然后求解电动机的传递函数,从而画出系统结构图,求出系统的传递函数。 解:(1) (2)假设电动机时间常数为Tm,忽略电枢电感的影响,可得直流电动机的传递函数为

式中Km为电动机的传递系数,单位为。 又设测速发电机的斜率为,则其传递函数为 由此可画出系统的结构图如下: -- (3)简化后可得系统的传递函数为 2-9 若某系统在阶跃输入r(t)=1(t)时,零初始条件下的输出响应,试求系统的传递函数和脉冲响应。 分析:利用拉普拉斯变换将输入和输出的时间域表示变成频域表示,进而求解出系统的传递函数,然后对传递函数进行反变换求出系统的脉冲响应函数。 解:(1),则系统的传递函数 (2)系统的脉冲响应 2-10 试简化图2-9中的系统结构图,并求传递函数C(s)/R(s )和C(s)/N(s)。 图2-9 题2-10系统结构图 分析:分别假定R(s)=0和N(s)=0,画出各自的结构图,然后对系统结构图进行等效变换,将其化成最简单的形式,从而求解系统的传递函数。 解:(a)令N(s)=0,简化结构图如图所示: 可求出: 令R(s)=0,简化结构图如图所示:

自动控制理论复习题

1.根轨迹起始于开环极点,终止于开环零点和无穷远处 2.系统开环传递函数有3个极点,2个零点,则有3条根轨迹 3.根轨迹是连续的且关于实轴对称 4.已知系统的开环传递函数为G(S)=K/S+3,则(-2,j0)点不在更轨迹上 5.已知(-2,j0)点在开环传递函数为G(S)=K/(S+4)(S+1)的系统的更轨迹上,则改点对应的k值为2 6.开环传递函数为G(S)=K/S+1,则实轴上的更轨迹为(-∞,-1] 7.已知系统的开环传递函数为G(S)=K/(S+0.5)(S+0.1),则该闭环系统的稳定状况为稳定 8.开环传递函数为G(S)=K/(S+1)(S+2)(S+3),当K增大时,该闭环系统由稳定到不稳定 9.系统开环传递函数为G(S)=K/(S+1)(S+3),则实轴上的根轨迹为[-3,-1] 10.设开环传递函数为为G(S)=K/S(S+2),在根轨迹的分离处,其对应的k值为 1 11.单位反馈系统开环传递函数为两个“S”多项式之比G(S)=M(s)/N(s),则闭环特征方程为 M(S)+N(S)=0 1.适合于应用传递函数描述的系统是线性定常系统 2.某0型单位反馈系统的开环增益K,则在r(t)=1t2/2输入下的稳态误差为∞ 3.动态系统0初始条件是指t

Matlab控制系统传递函数模型

MATLAB及控制系统 仿真实验 班级:智能0702 姓名:刘保卫 学号:06074053(18)

实验四控制系统数学模型转换及MATLA实现 一、实验目的 熟悉MATLAB的实验环境。 掌握MATLAB建立系统数学模型的方法。 二、实验内容 (注:实验报告只提交第2题) 1、复习并验证相关示例。 (1)系统数学模型的建立 包括多项式模型(TranSfer FunCtiOn,TF),零极点增益模型(ZerO-POIe,ZP), 状态空间模型 (State-SPace,SS ); (2)模型间的相互转换 系统多项式模型到零极点模型(tf2zp ),零极点增益模型到多项式模型(zp2tf ), 状态空间模 型与多项式模型和零极点模型之间的转换(tf2ss,ss2tf,zp2ss …); (3)模型的连接 模型串联(SerieS ),模型并联(parallel ),反馈连接(feedback) 2、用MATLAB故如下练习。 x+2 :6{J?=——;----- (1)用2种方法建立系统?-的多项式模型。 程序如下: %?立系统的多项式模型(传递函数) %方法一,直接写表达式 s=tf('s') GSI=(S+2)∕(s^2+5*s+10) %方法二,由分子分母构造 num=[1 2]; den=[1 5 10]; Gs2=tf( nu m,de n) figure PZmaP(GS1) figure PZmaP(GS1) grid On 运行结果: 易知两种方法结果一样 Tran Sfer fun Cti on: Tran Sfer fun Cti on:

S + 2 s^2 + 5 S + 10 Tran Sfer fun Cti on: S + 2 s^2 + 5 S + 10 ^)=1°

自动控制系统传递函数稳定性分析--奈氏图分享汇总

中北大学 课程设计说明书 学生姓名:学号: 学院:软件学院 专业:软件工程 题目:自动控制系统传递函数稳定性分析 指导教师:史媛媛职称: 讲师 2014年6月27日

中北大学 课程设计任务书 2013~2014 学年第二学期 学院:软件学院 专业:软件工程 学生姓名:张永春学号:1121010633 课程设计题目:自动控制系统传递函数稳定性分析起迄日期:6月16日~6 月27 日 课程设计地点:旧光电楼 指导教师:史源源 负责人:赵俊生 下达任务书日期: 2014年6月16日

课程设计任务书

课程设计任务书

目录 1、关于软件matlab6.5----------------------------------1 2、利用matlab6.5绘制奈氏图----------------------------3 3、实验原始数据、技术参数、条件、设计要求---------------------3 4、程序源码、相关截图及解释------------------------------------------4 5、总结与展望---------------------------------------------------------------7

1、关于软件matlab6.5 1980年前后,美国的Cleve Moler教授利用自己研制的基于特征值计算和线性代数软件包,构思并开发了MATLAB (MATrix LABoratory,即矩阵实验室)。随后,Cleve Moler和John Little等人成立了The Mathworks公司,Cleve Moler一直任该公司的首席科学家。 MATLAB的第一个商业版本(DOS版本1.0)发行于1984年。1990年推出的MATLAB3.5i是第一个可以运行于Microsoft Windows 下的版本,它可以在两个窗口上分别显示命令行计算结果和图形结果。稍后推出的SimuLAB环境首次引入基于框图的仿真功能,该环境就是我们现在所知的Simulink,其模型输入的方式使得一个复杂的控制系统的数字仿真问题变得十分直观而且相当容易。2000年10月,MATLAB6.0问世,较之以前的版本在操作界面有了很大的改观,同时给出了程序窗口、历史信息窗口和变量管理窗口。2002年6月推出的MATLAB Release 13,即MATLAB6.5/Simulink5.0是目前的最新版本。 经过多年来版本的不断更新,MATLAB已集中了日常数学处理中的各种功能,包括高效的数值计算、矩阵运算、信号处理和图形生成等功能。新版本的MATLAB功能已经十分强大,速度变得更快,数值性能更好;用户图形界面设计更趋合理;与C语言接口及转换的兼容性更强;新的虚拟现实工具箱更给仿真结果三维视景下显示带来了新的解决方案。MATLAB由于其强大的功能,已经在数值型软件市场上

控制系统Matlab仿真 (传递函数)

控制系统仿真 [教学目的] 掌握数字仿真基本原理 控制系统的数学模型建立 掌握控制系统分析 [教学内容] 一、控制系统的数学模型 sys=tf(num,den)%多项式模型,num为分子多项式的系数向量,den为分母多项式的系%数向量,函数tf()创建一个TF模型对象。 sys=zpk(z,p,k)%z为系统的零点向量,p为系统的极点向量,k为增益值,函数zpk()创建一个ZPK模型对象。 (一)控制系统的参数模型 1、TF模型 传递函数 num=[b m b m-1b m-2…b1b0] den=[a m a m-1a m-2…a1a0] sys=tf(num,den) 【例1】系统的传递函数为。 >>num=[01124448]; >>den=[11686176105]; >>sys=tf(num,den); >>sys Transfer function: s^3+12s^2+44s+48 ------------------------------------- s^4+16s^3+86s^2+176s+105 >>get(sys) >>set(sys) >>set(sys,'num',[212])

>>sys Transfer function: 2s^2+s+2 ------------------------------------- s^4+16s^3+86s^2+176s+105 【例2】系统的传递函数为。 >>num=conv([20],[11]); >>num num= 2020 >>den=conv([100],conv([12],[1610])); >>sys=tf(num,den) Transfer function: 20s+20 ------------------------------- s^5+8s^4+22s^3+20s^2 【例3】系统的开环传递函数为,写出单位负反馈时闭环传递函数的TF模型。>>numo=conv([5],[11]); >>deno=conv([100],[13]); >>syso=tf(numo,deno); >>sysc=feedback(syso,1) Transfer function: 5s+5 ---------------------- s^3+3s^2+5s+5 【例4】反馈系统的结构图为: R

相关文档
最新文档