造成体内自由基大量生成的因素有几个方面

造成体内自由基大量生成的因素有几个方面

造成体内自由基大量生成的因素有几个方面。

1、细胞新陈代谢大约有2-3%的氧被酶所催化形成

2、日光紫外线和各种辐射

3、吸烟、酗酒

4、情绪变化、工作压力

5、生活不规律,特别是熬夜

6、组织器官损伤后的缺血,如心肌梗死、脑血栓、外伤等

7、肠道系统异常发酵产生自由基

8、暴饮暴食

9、滥服西药

10、过量运动

每个人的身体内都会产生自由基

每个人的身体内都会产生自由基(人类衰老疾病的元凶!) 关心健康的人,对于“自由基”这个名词一定不会感到陌生。因为它是引发许多疾病和加速衰老的主要罪魁祸首之一。那么,什么是自由基呢?我们在中学化学课本中就学过,所有的物质都是由原子或分子组成,分子又是由原子或原子团组成:这些原子或分子中的电子要配成对才能保持稳定。如果这些化学物质中的原子和原子团的电子有一个或多个不成对时,它们就只得靠“掠夺”别的化学物质的电子来保持稳定,所以它们的化学性质特别活泼,容易和别的化学物质发生化学反应,并引发多米诺骨牌倒塌一样的链式反应。这些具有不成对的原子或原子团被称为“自由基”。 为什么自由基会引发链式反应呢?这是因为自由基掠夺了别的分子中原子或原子团的电子后,那些原子或原子团因为缺乏电子而成为新的自由基,这个新的自由基又会去“掠夺”别的分子中的电子,这样的反应像链子一样不断地“传染”下去,而使得破坏的后果越来越严重。医学研究指出,自由基可以引发100多种疾病,其中包括我们常见的动脉硬化、中风、心脏病、白内障、糖尿病、癌症等。自由基之所以对人体有害,是因为它具有活泼的化学性质,会和体内细胞中的有机物质发生链式反应,使得体内过氧化合物大量堆积,让细胞失去正常的生理功能,从而导致疾病的产生。 自由基甚至会破坏细胞内的DNA,加速人体的衰老,并导致癌症的产生。自由基导致衰老的加速,衰老又使得人体在“消灭”自由基方面的功能减弱,自由基和衰老使得人体的健康陷入了一个恶性循环。科学研究表明,人类的潜在寿命通常长于百岁。然而,很少有人能活到他的潜在的最长寿命,人们总是因各种疾病而早亡。许多疾病可称之为“自由基”疾病,所以,目前不少医药公司正根据科学家对自由基的研究。努力开发称之为“抗氧化剂”的一类抑制自由基的药物或保健食品。 每个人的身体内都免不了会产生自由基,因为人体要新陈代谢,就需要由氧化反应产生的能量,这些氧化反应就是自由基的重要来源。人体运动时需要更多的能量,机体对氧的摄取和消耗都会增加,体内自由基也将成比例增加。人类在极端不良情绪下,如愤怒、紧张、恐惧等,也会产生自由基。另外,一些外来因素,如紫外线、X射线、电磁波、致癌物质、酒精、一些药物和污染物质等,也会导致自由基的产生。 人体内有一套抗氧化的免疫系统与物质可以消除自由基,借助充足的营养,这套系统可以维持正常运转。但是,随着年龄的增长,人体抗氧化的功能开始减退,所以应适量补充一些抗氧化剂,如抗氧化维生素,其中包括β-胡萝卜素、番茄红素、维生素C、维生素E和维生素B2等。另外。摄入适量的硒、锌、铜、锰、铁等微量元素对清除体内多余的自由基也大有帮助。 萬寿之露,是一种高抗氧化剂,可有效清除人体自由基,抵消化疗及药物的副作用,抑制肿瘤细胞生长及减缓病人疼痛,如果有兴趣可以在百度和淘宝中搜索相关信息。

自由基

自由基 自由基是指能够独立存在的,含有一个或多个未成对电子的分子或分子的一部分。由于自由基中含有未成对电子,具有配对的倾向。因此大多数自由基都很活泼,具有高度的化学活性。自由基的配对反应过程,又会形成新的自由基。在正常情况下,人体内的自由基是处于不断产生与清除的动态平衡之中。自由基是机体有效的防御系统,如不能维持一定水平的自由基则会对机体的生命活动带来不利影响。但自由基产生过多或清除过慢,它通过攻击生命大分子物质及各种细胞,会造成机体在分子水平、细胞水平及组织器官水平的各种损伤,加速机体的衰老进程并诱发各种疾病。 自由基过量产生的原因 1、人体非正常代谢产物 2、有毒化学品接触 3、毒品、吸烟、酗酒 4、长时间的日晒 5、长期生活在富氧/缺氧环境 6、环境污染因素 7、过量运动 8、疾病 9、不健康的饮食习惯(营养过剩以及脂肪摄入过量)10、辐射污染11、心理因素 自由基对生命大分子的损害 ★由于自由基高度的活泼性与极强的氧化反应能力,能通过氧化作用来攻击其所遇到的任何分子,使机体内大分子物质产生过氧化变性,交联或断裂,从而引起细胞结构和功能的破坏,导致机体组织损害和器官退行性变化。 ★自由基作用于核酸类物质会引起一系列的化学变化,诸如氨基或羟基的脱除、碱基与核糖连接键的断裂、核糖的氧化和磷酸酯键的断裂等。 在体内以水分为介质环境中通过电离辐射诱导自由基的研究表明,大剂量辐射可直接使DNA断裂,小剂量辐射可使DNA主链断裂。 ★自由基对蛋白质的损害 自由基可直接作用于蛋白质,也可通过脂类过氧化产物间接与蛋白质产生破坏作用。 ★自由基对糖类的损害 自由基通过氧化性降解使多糖断裂,如影响脑脊液中的多糖,从而影响大脑的正常功能。自由基使核糖、脱氧核糖形成脱氢自由基,导致DNA主链断裂或碱基破坏,还可使细胞膜寡糖链中糖分子羟基氧化生成不饱和的羰基或聚合成双聚物,从而破坏细胞膜上的多糖结构,影响细胞免疫功能的发挥。 ★自由基对脂质的损害 脂质中的多不饱和脂肪酸由于含有多个双键而化学性质活泼,最易受自由基的破坏发生氧化反应。磷脂是构成生物膜的重要部分,因富含多不饱和的脂肪酸故极易受自由基所破坏。这将严重影响膜的各种生理功能,自由基对生物膜组织的破坏很严重,会引起细胞功能的极大紊乱。 自由基与疾病 (一)自由基与衰老 从古至今,依据对衰老机理的不同理解,人们提出各种各样的衰老学说多达300余种。自由基学说就是其中之一。反映出衰老本质的部分机理。 英国Harman于1956年率先提出自由基与机体衰老和疾病有关,接着在1957年发表了第一篇研究报告,阐述用含0.5%-1%自由基清除剂的的饲料喂养小鼠可延长寿命。由于自由基学说能比较清楚地解释机体衰老过程中出现的种种症状,如老年斑、皱纹及免疫力下降等,因此倍受关注,已为人们所普遍接受。自由基衰老理论的中心内容认为,衰老来自机体正常代谢过程中产生自由基随机而破坏性的作用结果,由自由基引起机体衰老的主要机制可以概括为以下三个方面。

自由基氧化理论

一、自由基氧化理论 从古至今,人类一直在探索、研究,希望可以找出什么方法使人青春长驻、长生不老。人是否可以长生不老?人的寿命到底有多长呢?现在最新的国际公认的人的平均寿命是120岁,而现在全世界人类的平均寿命还不到70岁,主要原因是疾病,许多人30多岁的时候就已经患有心血管病、糖尿病、肾病、脂肪肝等等,有的甚至是同时身患好几种疾病,绝大多数人是病死的,自然老死的人很少。 现在越来越多的科学家相信衰老是一种疾病,而不是因时间流失而产生的必然结果。衰老既然是一种疾病,那么人类就一样可以延缓衰老或逆转衰老。衰老是如何产生的呢?1956年,英国的哈曼博士率先提出自由基与机体衰老和疾病有关,接着在1957年发表了第一篇研究报告,阐述用含0.5%-1%自由基清除剂的的饲料喂养小鼠可延长寿命。当时这一理论并不被人重视,人们接受这一理论是在20多年后,由于自由基学说能比较清楚地解释机体衰老过程中出现的种种症状,如老年斑、皱纹及免疫力下降等,现在这一理论是科学界最为一致认同的老化理论。 我们可以几天不喝水,十几天不吃饭,但缺乏氧的供应几分钟就会死亡,氧气进入体内,在细胞中被利用产生能量,所以氧气对人体是至关重要的。但我们也会经常注意到一个现象:铁块生锈,我们知道是氧化了;一个已经切开的苹果,放置几分钟就会发黄,这也是因为被氧化了。如果把苹果放入水中,使苹果与氧气隔开,苹果的切面就不会变色。同样,氧气也会氧化人的身体。自由基 一、自由基氧化理论 同时,细胞在利用氧气产生能量的过程中,会产生一种副产品,即自由基,就像碳在燃烧时会产生二氧化碳,而在不充分氧化时会产生一氧化碳一样。自由基不像病毒、细菌是有生命的微生物,而是一个原子。简单的说,在我们这个由原子组成的世界中,有一个特别的法则,这就是,只要有两个以上的原子组合在一起,它的外围电子就一定要配对,如果不配对,它们就要去寻找另一个电子,使自己变成稳定的元素。科学家们把这种有着不成对的电子的原子或分子叫做自由基。 自由基非常活跃,非常不安分。为了使自己的结构稳定下来,它会攻击细胞内其他正常的原子,抢夺它们的电子,使细胞死亡或者发生变异。 这种缺少了一个电子,而又非常活跃的原子或分子的自由基,存在空间相当广泛。 科学家在二十世纪初从烟囱和汽车尾气中发现了这种十分活跃的物质。随后的研究表明,自由基的生成过程复杂多样,比如,加热、燃烧、光照,一种物质与另一种物质的接触或任何一种化学反应都会产生自由基。在日常生活中与您最亲密接触的渠道便是您烹制美味的菜肴时或您点燃一只醉心于吞云吐雾时,您精心使用化妆打扮时,自由基就悄悄地蔓延开来了。 自由基的种类非常多,,自由基的存在的空间也是无处不在。它们以不同的结构特征,在与其他元素结合时,发挥着不同的作用。 人体里也有自由基,他们既可以帮助传递维持生命活力的能量,也可以被用来杀灭细菌和寄生虫,还能参与排除毒素。受控的自由基对人体是有益的。但当人体中的自由基超过一定的量,并失去控制时,这种自由基就会给我们的生命带来伤害。

自由基的形成

自由基的形成 自由基又称游离基,是具有非偶电子的基团或原子,它有两个主要特性:一是化学反应活性高;二是具有磁矩。 在一个化学反应中,或在外界(光、热等)影响下,分子中共价键分裂的结果,使共用电子对变为一方所独占,则形成离子;若分裂的结果使共用电子对分属于两个原子(或基团),则形成自由基。 有机化合物(Organic compounds)发生化学反应时,总是伴随着一部分共价键(covalent bond)的断裂和新的共价键的生成。例如酪氨酸自由基(tyrosine radical),共价键的断裂可以有两种方式:均裂(homolytic bond cleavage)和异裂(heterolyticcleavage)。键的断裂方式是两个成键电子在两个参与原子或碎片间平均分配的过程称为键的均裂(homolyticbondcleavage)。两个成键电子的分离可以表示为从键出发的两个单箭头。所形成的碎片有一个未成对电子,如H·,CH·,Cl·等。若是由一个以上的原子组成时,称为自由基(radical)。因为它有未成对电子,自由基和自由原子非常的活泼,通常无法分离得到。不过在许多反应中,自由基和自由原子以中间体的形式存在,尽管浓度很低,存留时间很短。这样的反应称为自由基反应(radical reactions)。自由基,化学上也称为“游离基”,是含有一个不成对电子的原子团。由于原子形成分子时,化学键中电子必须成对出现,因此自由基就到处夺取其它物质的一个电子,使自己形成稳定的物质。在化学中,这种现象称为“氧化”。我们生物体系主要遇到的是氧自由基,例如超氧阴离子自由基、羟自由基、脂氧自由基、二氧化氮和一氧化氮自由基。加上过氧化氢、单线态氧和臭氧,通称活性氧。体内活性氧自由基具有一定的功能,如免疫和信号传导过程。但过多的活性氧自由基就会有破坏作用,导致人体正常细胞和组织的损坏,从而引起多种疾病。如心脏病、老年痴呆症、帕金森病和肿瘤。此外,外界环境中的阳光辐射、空气污染、吸烟、农药等都会使人体产生更多活性氧自由基,使核酸突变,这是人类衰老和患病的根源。 产生自由基的方法 ①引发剂引发,通过引发剂分解产生自由基 ②热引发,通过直接对单体进行加热,打开乙烯基单体的双键生成自由基 ③光引发,在光的激发下,使许多烯类单体形成自由基而聚合 ④辐射引发,通过高能辐射线,使单体吸收辐射能而分解成自由基 ⑤等离子体引发,等离子体可以引发单体形成自由基进行聚合,也可以使杂环开环聚合 ⑥微波引发,微波可以直接引发有些烯类单体进行自由基聚合。

认识自由基

什么是自由基 我们需要氧气才能维持生命。离开氧气我们的生命就不能存在,但是氧气也有对人体有害的一面,有时候它能杀死健康细胞甚至致人于死地。当然,直接杀死细胞的并不是氧气本身,而是由它产生的一种叫氧自由基的有害物质,人体进行新陈代谢时,体内的氧会转化成极不稳定的物质——自由基(Free radical)。它是人体的代谢产物,可以造成生物膜系统损伤以及细胞内氧化磷酸化障碍,是人体疾病、衰老和死亡的直接参与者,对人体的健康和长寿危害非常之大。 细胞经呼吸获取氧,其中98%与细胞器内的葡萄糖和脂肪相结合,转化为能量,满足细胞活动的需要,另外2%的氧则转化成氧自由基。由于这种物质及其不稳定,非常活跃,可以与各种物质发生作用,引起一系列对细胞具有破坏性的连锁反应。 自由基对人体的危害 自由基攻击正常细胞加速细胞的衰老和死亡。自由基像尘粒在人体内部到处游荡,当人体自身的抗氧化系统不能及时消灭过多的自由基,人体的器官和细胞就像裸露在空气的金属一样会被氧化侵蚀,进而导致一些身体不适并加速衰老,如出现皱纹、老年斑、动脉硬化、以及老年痴呆等。 自由基是身体细胞在代谢过程中利用氧气产生的自然产物。自由基主要是指含有活性氧的氧自由基,它会干扰正常细胞的正常功能,破坏细胞膜、溶酶体、线粒体、DNA、RNA、蛋白质结构,使酶失去活性,使激素破坏失去作用,使免疫系统受损,抵抗力下降,促进细胞老化,加速人的衰老,诱发多种疾病甚至引起死亡。 氧自由基的过氧化杀伤,主要是破坏细胞膜的结构和功能,破坏线粒体,断绝细胞的能源,毁坏溶酶体,使细胞自溶。同时它对人体的非细胞结构也有危害作用,可以使血管壁上的粘合剂遭受破坏,使完整密封的血管变得千疮百孔,发生漏血、渗液,进而导致水肿和紫癜等等。同样,当供应心脏血液的冠状动脉突然发生痉挛的时候,心肌细胞由于缺氧而发生一系列的代谢改变,心肌细胞内抗氧化剂含量减少,使生成氧自由基的化学反应由于缺氧而相对加快,在冠状动脉痉挛消除的一刹那,心肌细胞突然重新得到血液的灌注,随之而来有大量的氧转化成氧自由基,而同时由于抗氧化剂的相对不足,不能够清除氧自由基,结果使具有高度杀伤性的氧自由基严重损伤心肌细胞膜,大量离子由心肌细胞内溢出,而后者可以扰乱控制心脏搏动的电流信号,引起心室颤动,从而导致死亡。

自由基的致病和花青素在机体内抗氧化去除自由基机理

自由基的致病和花青素在机体内抗氧化去除自由基机理 天然色素应用技术推广实验室aingw@https://www.360docs.net/doc/2412659851.html, 花青素是机体内抗氧化,还原自由基的重要成分。自由基的作用及危害:自由基是一些具有不配对电子的氧分子,它们在机体内漫游,损伤任何与其接触的细胞和组织,摧毁细胞膜,导致细胞膜发生变性,使细胞不能从外部吸收营养,也排泄不出细胞内的代谢废物,并走失了对细菌和病毒的抵御能力;自由基攻击正在复制中的基因,造成基因突变诱发癌症发生;自由基激活人体的免疫系统,使人体表现出过敏反应,或出现如红斑狼疮等的自体免疫疾病;自由基作用于人体内酶系统,导致胶原蛋白酶和硬弹性蛋白酶的释放,这些酶作用于皮肤中的胶原蛋白和硬弹性蛋白并使这两种蛋白产生过度交联并降解,结果使皮肤失去弹性,出现皱纹及囊泡;类似的作用使体内毛驯血管脆性增加,使血管容易破裂,这可导致静脉曲张、水肿等与血管通透性升高有关疾病的发生;自由基侵蚀机体组织,可激发人体释放各种炎症因子,导致出各种非菌性炎症;自由基侵蚀脑细胞,使人得早老性痴呆的疾病;自由基氧化血液中的脂蛋白造成胆固醇向血管壁的沉积,引起心脏病和中风;自由基引起关节膜及关节滑液的降解,从而导致关节炎;自由基侵蚀眼睛晶状体约织引起白内障;自由基侵蚀胰脏细胞引起糖尿病。自由基破坏胶原蛋白及其它结缔组织,干扰重要的生理过程,引起细胞的DNA突变,自由基与70多种疾病有关包括心脏病、动脉硬化、静脉炎、关节炎、过敏、早老性痴呆、冠心病及癌症。

自由基和体内细胞中的有机物质发生链式反应,使得体内过氧化合物大量堆积,让细胞失去正常的生理功能,从而导致疾病的产生。 花青素的发现及清除自由基的机理:1986年,法国波尔多大学的玛斯魁勒博士发现花青素(原花青素)具有强烈的自由基清除功效。花青素属于酚类化合物中的类黄酮(flavonoids)的一种,类黄酮则为水溶性色素,存在于细胞的液泡中,易受细胞内化学环境所影响,酸度、温度及其他在液泡中的新陈代谢,都会使其分子结构改变,造成颜色的变化,而能产生粉红色、红色、紫色及蓝色的颜色。花青素是迄今为止所发现的最强效的自由基清除剂,其抗自由基氧化能力是维生素C的20倍、维生素E的50倍,尤其是体内活性,更是其他抗氧化剂无法比拟的。 花青素的应用范围:花青素作为一种抗氧化功能食品由于不受作为药物需有明确适应症的限制,花青素基于清除体内自由基的功效,其应用范围越来越大。目前已发现花青素对近70多种疾病具有直接或间接的预防和治疗作用。花青素在国外的应用非常广泛。作为一种抗氧化功能食品,它具有非常强大的清除自由基的能力,花青素的防病保健功效的基础就是其清除自由基的能力。 另外花青素还有一些其它特点,如很好的生物利用度,易与胶原蛋白结合,稳定细胞膜以及抗酶活性(组胺脱羧酶),这些特点与抗氧化能力协作,使花青素成为一种基于清晰理论基础和严格实验结果之上的保健功能食品。

自由基聚合与离子型聚合特征区别

引发剂种类> 自由基聚合: 采用受热易产生自由基的物质作为引发剂<偶氮类 过氧类 氧化还原体系 引发剂的性质只影响引发反应,用量影响Rp和 > 离子聚合: 采用容易产生活性离子的物质作为引发剂 * 阳离子聚合:亲电试剂,主要是Lewis酸,需共引发剂 * 阴离子聚合:亲核试剂,主要是碱金属及其有机化合物 引发剂中的一部分,在活性中心近旁成为反离子 其形态影响聚合速率、分子量、产物的立构规整性单体结构 自由基聚合<带有弱吸电子基的乙烯基单体 共轭烯烃 离子聚合:对单体有较高的选择性 <阳离子聚合:阳离子聚合:带有强推电子取代基的烯类单体 共轭烯烃(活性较小)阴离子聚合:带有强吸电子取代基的烯类单体 共轭烯烃 环状化合物、羰基化合物 溶剂的影响 自由基聚合<向溶剂链转移,降低分子量 笼蔽效应,降低引发剂效率 f 溶剂加入,降低了[M],Rp略有降低 水也可作溶剂,进行悬浮、乳液聚合 离子聚合<溶剂的极性和溶剂化能力,对活性种的形态有较大影响:离子对、自由离子影响到RRp、Xn 和产物的立构规整性 溶剂种类:阳:卤代烃、CS2、液态SO2、CO2;阴:液氨、醚类(THF、二氧六环) 反应温度自由基聚合:取决于引发剂的分解温度,50 ~80 ℃ 离子聚合:引发活化能很小 为防止链转移、重排等副反应,在低温聚合,阳离子聚合常在-70 ~-100 ℃进行。聚合机理 自由基聚合:多为双基终止<双基偶合 双基歧化 离子聚合:具有相同电荷,不能双基终止<无自加速现象

阳:向单体、反离子、链转移剂终止 阴:往往无终止,活性聚合物,添加其它试剂终止 机理特征:自由基聚合:慢引发、快增长、速终止、可转移阳离子聚合:快引发、快增长、易转移、难终止 阴离子聚合:快引发、慢增长、无终止 阻聚剂种类自由基聚合:氧、DPPH、苯醌 阳离子聚合:极性物质水、醇,碱性物质,苯醌 阴离子聚合:极性物质水、醇,酸性物质,CO2 问题:有DPPH和苯醌两种试剂,如何区别三种反应?

自由基

来源 1.自动氧化(体内一些分子,例如儿茶酚胺、血红蛋白、肌红蛋白、细胞色素C和巯基在氧化的过程中会产生自由基。) 2.酶促氧化(一些经由酶催化的氧化过程会产生自由基。) 3.呼吸带入(吞噬细胞在清除外来微生物时会产生自由基。) 4.药物(例如某些抗生素、抗癌药物会在体内产生自由基,特别是在高氧状态。) 5.辐射(电磁辐射和粒子辐射会在体内产生自由基。) 6.吸食烟草(吸烟会产生大量的自由基。) 7.非有机微粒(吸入石棉、石英、或矽尘,吞噬细胞会在肺部产生自由基。) 8.气体(臭氧会产生自由基。) 9.其它(发烧、使用大量类固醇、或甲状腺机能亢进等情况会提高体内的代谢速率而产生较多的自由基。空气中的工业废气、杀虫剂、麻醉气体、有机溶剂也会在体内产生自由基。) 总结:外界环境中的阳光辐射、空气污染、吸烟、农药等都会使人体产生更多活性氧自由基,使核酸突变,这是人类衰老和患病的根源。体内活性氧自由基具有一定的功能,如免疫和信号传导过程。但过多的活性氧自由基就会有破坏作用,导致人体正常细胞和组织的损坏,从而引起多种疾病。如心脏病、老年痴呆症、帕金森病和肿瘤, 简单的说,在我们这个由原子组成的世界中,有一个特别的法则,这就是,只要有两个以上的原子组合在一起,它的外围电子就一定要配对,如果不配对,它们就要去寻找另一个电子,使自己变成稳定的物质。科学家们把这种有着不成对的电子的原子或分子叫做自由基。自由基非常活跃,非常不安分。就象我们人类社会中的不甘寂寞的单身汉一样,如果总也找不到理想的伴侣,可能就会成为社会不安定的因素。那它是如何产生的呢?又如何对人的身体产生危害的呢?早在上个世纪末90年代初期,中国大陆对自由基的认知来自于北京卷烟厂在出口产品定单中外方产品的要求,外方,犹其是日本提出,吸烟危害人体健康,不仅仅是尼古丁、焦油,还有一种更厉害的物质是自由基。 当一个稳定的原子的原有结构被外力打破,而导致这个原子缺少了一个电子时,自由基就产生了。于是它就会马上去寻找能与自己结合的另一半。它活泼,很容易与其他物质发生化学反应。当它与其他物质结合的过程中得到或失去一个电子时,就会恢复平衡,变成稳定结构。这种电子得失的活动对人类可能是有益的,也可能是有害的。 一般情况下,生命是离不开自由基活动的。我们的身体每时每刻都从里到外的运动,每一瞬间都在燃烧着能量,而负责传递能量的搬运工就是自由基。当这些帮助能量转换的自由基被封闭在细胞里不能乱跑乱窜时,它们对生命是无害的。但如果自由基的活动失去控制,超过一定的量,生命的正常秩序就会被破坏,疾病可能就会随之而来。 生命体内的自由基是与生俱来的,既然生命能力历经35亿年沧桑而延续至今,就说明生命本身具有平衡自由基,或者说,清除多余自由基的能力。然而,随着人类文明的飞速发展,在科学技术给人类创造了巨大生产力的同时也带来了大量的副产品,其中就有与日俱增的自由基。化学制剂的大量使用、汽车尾气和工业生产废气的增加、还有核爆炸……这些活动都会导致自由基的产生。人类文明活动还在不断破坏着生态环境,制造着更多的自由基。

如何降低自由基对人体的危害

如何降低自由基对人体的危害 自由基是客观存在的,对人类来说,无论是体内的还是体外的,自由基还在不断地,以前所未有的速度被制造出来。与自由基有关的疾病发病率也呈加速上升的趋势。既然人类无法逃避自由基的包围和夹击,那么就只有想方设法降低自由基对我们的危害。 随着科学家们对自由基研究的日渐深入,清除自由基,以减少自由基对人体的危害的方法也逐渐被揭示出来。 研究表明,自由基从产生到衰亡的过程就是电子转移的过程。在生命体系中,电子的转移是一种最基本的运动,而氧的的电子能力很强,因此,生物体内许多化学反映都与氧有关。科学家们发现损害人体健康的自由基几乎都与那些活性较强的含氧物质有关,他们把与这些物质相结合的自由基叫作活性氧自由基。活性氧自由基对人体的损害实际上是一种氧化过程。因此,要降低自由基的损害,就要从抗氧化做起。 既然自由基不仅存在于人体内,也来自于人体外,那么,降低自由基危害的途径也有两条:一是,利用内源性自由基清除系统清除体内多余自由基;二是发掘外源性抗氧化剂--自由基清除剂,阻断自由基对人体的入侵。 大量研究已经证实,人体内本身就具有清除多余自由基的能力,这主要是靠内源性自由基清除系统,它包括超氧化物歧化酶(SOD)、过氧化氢酶、谷胱甘肽过氧化酶等一些酶和维生素C、维生素E、还原性谷胱甘肽、胡萝卜素和硒等一些抗氧化剂。酶类物质可以使体内的活性氧自由基变为活性较低的物质,从而削弱它们对肌体的攻击力。酶的防御作用仅限于细胞内,而抗氧化剂有些作用于细胞膜,有些则是在细胞外就可起到防御作用。这些物质就深藏于我们体内,只要保持它们的量和活力它们就会发挥清除多余自由基的能力,使我们体内的自由基保持平衡。 要降低自由基对人体的危害,除了依靠体内自由基清除系统外,还要寻找和发掘外源性自由基清除剂,利用这些物质作为替身,让它们在自由基进入人体之前就先与自由基结合,以阻断外界自由基的攻击,使人体免受伤害。 在自然界中,可以作用于自由基的抗氧化剂范围很广,种类极多。目前,国内外已陆续发现许多有价值的天然抗氧化剂。在这方面的研究中,中国的科学家们已经走在世界的前列。他们已经发现并证明了,我国一些特有的食用和药用植物中,含有大量的酚类物质,这些物质的特点是,有着很容易被自由基夺走的电子,而它们在失去电子后就会成为一种对人没有伤害的稳定物质。 中国科学院生物物理研究所的专家历经八年时间从这些植物中研制出了天然抗氧化剂--自由基清除剂配方。在与卷烟厂技术人员合作的对动物的急性毒性实验中证明,在高浓度香烟的毒害下,使用了自由基清除剂

自由基生物学

第一章自由基的产生及其化学性质 一、什么是自由基 如方程式(1)、(2)所示,当A与B两个分子或原子间形成共价键时,可以看作它们共享一对电子,这两个电子既可以是一个分子所提供的,也可以是每个分子各贡献出一个电子,前者称为配位作用,后者称为共价结合。 A:- + B+A:B (配位作用)(1) A.+ B. A:B (共价结合)(2) 其逆过程,即当一个共价键离解时,必须要供给能量(自由能)。反应式(1)的逆过程称为异裂,反应式(2)的逆过程称为均裂。在均裂时所产生的分子或原子含有一个不配对电子,这种分子常具有高度化学活性——氧化活性。正因为如此,它们的寿命也极短暂。这些可以单独存在的具有一个或几个不配对电子的分子或原子就称为自由基(free radical),用R·表示,即在分子式的右上角加一个黑点作为自由基的特征标记,以表示存在着不配对电子。根据这个定义,我们可知道氯原子(Cl·)、氧原子(O:)和OH.等都是自由基。 有些自由基即使在室温的溶液中也是稳定的,如氧原子(一个稳定的双基)。有些自由基带有负电荷或正电荷,所以叫做离子自由基或离子基。这种自由基往往又是氧化还原反应的中间产物。在氧化还原反应过程中,中性分子接受一个电子而变成负离子基,或失去一个电子而成为正离子基。 二、自由基的产生 一般而言,自由基是通过共价键的均裂而产生的,但也可通过电子俘获而产生。 R + e-R. 天然存在的自由基一般都是有用的自由基(如氧原子),或者是半衰期比较短的自由基(如氯原子)。但是,由于某些分子,尤其是共价结合的有机分子吸收外部能量而产生均裂时,所形成的自由基是非常有害的。共价分子发生均裂而形成自由基的机制有:热解、光解和氧化还原反应。 (1)热解 很多化合物,特别是含有弱键的有机化合物可以发生热均裂反应,生成活泼的自由基。典型的例子是热锅炒菜时,脂肪、蛋白质和糖类等有机营养物发生的热均裂反应;抽烟时,烟草的不完全燃烧也产生大量的自由基。 (2)光解 电磁辐射(可见光、紫外线、X射线)或粒子轰击(如高能电子)都可提供使共价键裂解的能量而形成自由基。如紫外线照射可使水发生均裂而生成羟自由基(OH.): H2O 紫外线H.+ OH. 羟自由基可与机体内的有机物发生一系列的氧化还原反应,导致机体损伤,突变,甚至死亡。这就是紫外线杀菌的原理。

第二章_自由基聚合-习题

第二章自由基聚合-习题 1.举例说明自由基聚合时取代基的位阻效应、共轭效应、电负性、氢键和溶剂化对单体聚合热的影响。 2.什么是聚合上限温度、平衡单体浓度?根据表3-3数据计算丁二烯、苯乙烯40、80℃自由基聚合时的平衡单体浓度。 3.什么是自由基聚合、阳离子聚合和阴离子聚合? 4.下列单体适合于何种机理聚合:自由基聚合,阳离子聚合或阴离子聚合?并说明理由。 CH 2=CHCl,CH 2 =CCl 2 ,CH 2 =CHCN,CH 2 =C(CN) 2 ,CH 2 =CHCH 3 ,CH 2 =C(CH 3 ) 2 , CH 2=CHC 6 H 5 ,CF 2 =CF 2 ,CH 2 =C(CN)COOR, CH 2=C(CH 3 )-CH=CH 2 。 5.判断下列烯类单体能否进行自由基聚合,并说明理由。 CH 2=C(C 6 H 5 ) 2 ,ClCH=CHCl,CH 2 =C(CH 3 )C 2 H 5 ,CH 3 CH=CHCH 3 , CH 2=C(CH 3 )CO℃H 3 ,CH 2 =CH℃℃H 3 ,CH 3 CH=CHCO℃H 3 。 6.对下列实验现象进行讨论: (1)乙烯、乙烯的一元取代物、乙烯的1,1-二元取代物一般都能聚合,但乙烯的1,2-取代物除个别外一般不能聚合。 (2)大部分烯类单体能按自由基机理聚合,只有少部分单体能按离子型机理聚合。 (3)带有π-π共轭体系的单体可以按自由基、阳离子和阴离子机理进行聚合。 7.以偶氮二异丁腈为引发剂,写出苯乙烯、醋酸乙烯酯和甲基丙烯酸甲酯自由基聚合历程中各基元反应。 8.对于双基终止的自由基聚合反应,每一大分子含有1.30个引发剂残基。假定无链转移反应,试计算歧化终止与偶合终止的相对量。 9.在自由基聚合中,为什么聚合物链中单体单元大部分按头尾方式连接? 10.自由基聚合时,单体转化率与聚合物相对分子质量随时间的变化有何特征?与聚合机理有何关系? 11.自由基聚合常用的引发方式有几种?举例说明其特点。 12.写出下列常用引发剂的分子式和分解反应式。其中哪些是水溶性引发剂,哪些是油溶性引发剂,使用场所有何不同? (1)偶氮二异丁腈,偶氮二异庚腈。 (2)过氧化二苯甲酰,过氧化二碳酸二乙基己酯,异丙苯过氧化氢。 (3)过氧化氢-亚铁盐体系,过硫酸钾-亚硫酸盐体系,过氧化二苯甲酰-N,N二甲基苯胺。 13.60℃下用碘量法测定过氧化二碳酸二环己酯(DCPD)的分解速率,数据列于下 表,求分解速率常数k d (s -1 )和半衰期t 1/2 (hr)。

如何清除体内自由基

如何清除体内自由基 消除体内自由基,应该要了解自由基的来源,从外界到身体内部的代谢一起中和性的描叙不要单方面的讲叙体内各种酶与自由基之间的关系 人体内的自由基有两个来源:其一是来自环境,如环境污染、食品污染、过度的紫外线照射和各种辐射、杀虫剂、室内外废气、吸烟、二手烟、酗酒、工作压力、生活不规律等等,都会直接导致人体内产生过多的自由基(活性氧);食品添加剂、食用脂肪和熏炸烤肉、某些抗癌药物、安眠药、抗生素、有机物腐烂物、塑料用品制造过程、油漆干燥挥发、石棉粉尘、空气污染、化学致癌物、大气中的臭氧等也都能诱发人体内产生自由基。 其二是来自体内,人体内组织细胞的新陈代谢也会产生自由基,这是人体代谢过程的正常产物,十分活跃又极不稳定,它们会附着于健康细胞之上,再慢慢瓦解健康细胞,而被破坏的细胞则又再转而侵害更多健康的细胞,如此恶性循环从而导致人体的衰老和疾病的发生。另外,组织器官损伤后的缺血一段时间后又突然恢复供血(即重灌流),如心肌梗塞、脑血栓、外伤、外科手术后,自由基会大量生成。正常人体有一套清除自由基的系统,但这个系统的力量会因人的年龄增长及体质改变而减弱,致使自由基的负面效应大大增强,引起多种疾病发病率的提高。活性氧自由基对人体的损害实际上是一种氧化过程。因此,要降低自由基的损害,就要从抗氧化做起。 听说过抗氧化剂吗?它对人体的健康可是有着密切的关系。既然自由基不仅存在于人体内,也来自于人体外,那么,降低自由基危害的途径也有两条:一是,利用内源性自由基清除系统清除体内多余自由基;二是发掘外源性抗氧化剂——自由基清除剂,阻断自由基对人体的入侵。 大量研究已经证实,人体内本身就具有清除多余自由基的能力,这主要是靠内源性自由基清除系统,它包括超氧化物歧化酶(SOD)、过氧化氢酶、谷胱甘肽过氧化物酶等一些酶和维生素C、维生素E、还原型谷胱甘肽、β-胡萝卜素和硒等一些抗氧化剂。酶类物质可以使体内的活性氧自由基变为活性较低的物质,从而削弱它们对肌体的攻击力。酶的防御作用仅限于细胞内,而抗氧化剂有些作用于细胞膜,有些则是在细胞外就可起到防御作用。这些物质就深藏于我们体内,只要保持它们的量和活力它们就会发挥清除多余自由基的能力,使我们体内的自由基保持平衡。 要降低自由基对人体的危害,除了依靠体内自由基清除系统外,还要寻找和发掘外源性自由基清除剂,利用这些物质作为替身,让它们在自由基进入人体之前就先与自由基结合,以阻断外界是自由基的攻击,使人体免受伤害。在自然界中,可以作用于自由基的抗氧化剂范围很广,种类极多。目前,国内外已陆续发现许多有价值的天然抗氧化剂。如β-胡萝卜素(维生素A)、维生素C、维生素E、番茄红素、辅酶q10、等等。此外,我国很多中草药植物中的有效成分都是天然抗氧化剂,例如,银杏黄酮、甘草黄酮等,另外还有巴西菇、灰树花、茯苓、黄芪、丹参、银杏、枸杞、灵芝、人参......。 吃什么可以减少体内自由基 在正常的生命过程中,自由基为维持生命所必需。体内自由基不断产生,也不断地被清除,两者 处于动态平衡之中,使之维持在一个正常的生理水平上。自由基在生物体内具有参与吞噬病原体,参 与前列腺素和凝血酶原的合成、解毒,参与体内部分生化反应和胶原蛋白的合成,调节细胞增殖与分化,参与机体免疫和环核苷酸的生物合成,以及生殖和胚胎发育等重要的生理功能。但是当自由基过 量时,自由基在机体内损伤蛋白质、核酸和生物膜,导致细胞凋亡,并参与许多疾病的发病过程。 由基清除剂即抗氧化剂清除机体自由基,保护机体免受氧化损害中起重要作用。因此,近年来对 自由基清除剂的研究备受关注。多吃点抗氧化剂食物有利于减少体内多余自由基。 方法/步骤 1.全面复方自由基清除剂:葡茶多酚胶囊。适当吃葡茶多酚可以全面清除体内多余自由

自由基生物环化学

利用SmI2-H2O体系进行的内酯还原环化串联反应摘要拥有双烯或者烯炔的内酯,在SmI2-H2O体系下进行的还原环化串联反应,可以以很高的产率和非对映选择性得到修饰的甘菊环结构单元。 如果可以改变基本的合成反应途径得到非传统的中间体,新的选择性或者反应活性,那么就可以发现新的合成反应空间。比如,我们最近利用SmI2作为酯羰基的还原试剂进行研究的过程中,发现SmI2-H2O体系在内酯或者1,3-双内酯还原到醇的过程中有着出其不意的选择性。在这里,我们报道了在上述条件下,不饱和内酯进行自由基串联一步构筑甘菊环结构单元。此环化串联反应是由经电子转移的酯羰基形成的非一般的自由基离子引发的。 最近,我们首次报道了利用H2O作为活化助溶剂,SmI2作为还原剂来还原非活化的,环状的,脂肪族性的的酯。并且,我们也是第一次证明通过电子转移的酯羰基自由基离子可以应用在与烯加成上。我们推测5位具有烯烃支链的内酯结构单元1可以通过自由基离子2环化得到七元碳环3,进一步存在于2位的烯可以再次进行经过自由基离子4环化得到双环醇5(Scheme 1)。 具有甘菊环的5环系可以形成众多具有生物活性的天然产物,同时也是一种新的方法得到重要的目标结构。例如,包括phorbol, prostratin, and 12-deoxyphorbol-13-phenylacetate (DPP)在内的tigliane 家族,此外抗癌化合物pseudo- laric acid B and englerin A近年也受到有机合成化学家的重点关注。 为了证明串联反应第一步的合理性,我们选择内酯6在SmI2-H2O体系中进行研究,幸运的是我们以很好的产率拿到了非对映消旋化合物8(Scheme 2)。5位具有烷基取代的的内酯也具有很好的环化。粗品化合物进一步氧化得到9,同时也使得C-C键的形成时非对映选择化合物的比率得以确定。 带有芳基取代的烯在环化过程中以3:1到6:1非对映选择比率得到环化产物。主要产物9j 9l的相对构型用X单晶衍射得以进行确定。6n到8n就是通过巯基自由基的消除进行环化的。

自由基聚合反应的特征教案

自由基聚合反应的特征教案 生命科学学院 03091115 朱孙燕 一、教学目标 1、根据机理分析,重点掌握自由基聚合机理的特征。 2、根据自由基聚合反应中各基元反应的速率和活化能大小,将其概括为慢反应、快增长 和速终止。 3、利用图象的关系直观地了解聚合度、单体转化率和时间的关系。 4、了解自由基聚合反应的有利条件。 二、教学重点与难点 1、将自由基聚合反应概括为慢引发、快增长和速终止。 2、利用图象的关系直观地了解聚合度、单体转化率和时间的关系。区分聚合度和转化率 与时间的关系。 三、教学方式 利用多媒体教学 四、教学过程 1、引言 通过以上几位同学的分析,大家应该对自由基聚合反应的机理有了定性的理解,接下来让我和大家一起来学习一下自由基聚合反应的特征。 (多媒体课件展示5条特征,让同学对整体先有一个了解,接下来逐个进行分析。)2、提问:通过以上学习,我们可以得出自由基聚合反应在微观上可以明显地区分为哪些 基元反应? 回答:链的引发、增长、终止和转移等。 3、特征①讲解分析:在前面的链引发、增长、终止的学习中,我们已经知道链的引发速 率是最小的,而活化能是最高的;链的增长速率极高,而活化能很低;链的终止速率极高,而活化能很低,甚至为零。从中我们可以很明显地根据瓶颈效应得出,链的引发速率是控制整个聚合速率的关键。因此我们还可以将自由基聚合反应特征概括为:慢引发、快增长和速终止。 4、特征②(只有链增长反应才使聚合度增加)、③(延长聚合时间主要提高转化率)。 讲解分析:在学习链引发、增长、终止时我们很明显可以知道只有链增长反应才使聚合度增加。一个单体分子从引发、经增长和终止,转变成大分子,时间极短,不能停留在中间聚合度阶段,反应混合物紧由单体和聚合物组成。在学习链增长时我们已经

3、自由基与疾病

自由基与疾病【自由基是万病之源】 大家在日常生活中都非常了解,铁在空气中会生锈、钢在空气中会变绿色,银器在空气中会变黑,这就是氧化作用。大自然中氧化作用是破坏性,如铁生锈若不及时处理、保护,很快就会被腐蚀掉,而人的新陈代谢也是一种氧化,还原过程,自由基就是在这一过程中产生的,也如同人体生锈,如不及时预防处理也会构成对人体损害。 人体本身有一种能力称为“抗氧化能力”来清除多余的自由基,但人随年龄增大或患疾病时清除自由基的能力也随之降低。所以自由基开始对人的细胞攻击,诱发多种疾病,医学研究证明与自由基有关的疾病有100多种。 脑梗塞、脑出血、颅脑外伤、蛛网膜下腔出血、脑膜炎、脑水肿、老年性痴呆、帕金斯症、多发性硬化,甚至精神分裂症,都应当注意自由基的损伤。 氧自由基不但与衰老有关,而且还和许多衰老有关的疾病有关系,比如动脉硬化症、高血压、骨关节炎、白内障以及帕金森氏病等等。正常人体内有一套清除自由基的系统,即便如此,这个系统的力量会因人的年龄增长及体质改变而减弱,随着时间的推移,自由基会在细胞内不断积累。这会致使自由基的负面效应大大增强,从而引起多种疾病发病率的提高。 自由基与疾病的连锁反应 自由基与衰老有明显的关系,一些科学家认为自由基是引起衰老的主要原因。自由基能促使体内脂褐素生成,脂褐素在皮肤细胞中堆积即形成老年斑,在脑细胞中堆积,会引起记忆力减退或智力障碍,甚至出现老年痴呆症。自由基还可导致老年人皮肤松弛、皱纹增多、骨质再生能力减弱等,还会引起视网膜病变,诱发老年性视力障碍(如眼花、白内障)。而且,自由基还可引起器官组织细胞老化和死亡。老年人感觉与记忆力下降、动作迟钝及智力障碍的一个重要原因,就是由于过多的自由基导致了神经细胞数量大量减少。另外,自由基和脂质过氧化还与肺损伤、艾滋病、癌症、肾病、糖尿病的发生有密切关系,所以寻找消除自由基及抗氧化药物对于保护人类健康具有重大意义。 衰老与自由基1 自由基有两个来源:一是来自体外,如环境污染、紫外线照射、室内外废气、烟尘、细菌等等,它们会直接导致自由基的产生;二是来自体内,人体内也会自然形成自由基,它是人体代谢过程的正常产物,十分活跃又极不稳定,它们会附着于健康细胞之上,再慢慢瓦解健康细胞。 人体细胞遭受到自由基攻击,就好比铁暴露在空气中久了会生锈一样,这个过程叫做氧化。铁生锈了,就表示开始耗损,渐渐就会被腐蚀,人体衰老的过程就好像是铁被氧化的过程一样,实际上,生命衰老和病变的过程也就是氧化的速度超过还原的速度,而让我们体内细胞“生锈”的物质就是自由基。如果受损“生

自由基生物抗氧化与疾病_崔剑

ISSN 1000-0054CN 11-2223/N 清华大学学报(自然科学版)J T singh ua Un iv (Sci &Tech ),2000年第40卷第6期 2000,V o l.40,N o.64/34 912   自由基生物抗氧化与疾病 崔 剑, 李兆陇, 洪啸吟 (清华大学化学系,北京100084) 收稿日期:1999-06-30 作者简介:崔剑(1976),女(汉),天津,博士研究生 *基金项目:教育部博士学科重点科研基金 文 摘:针对生物抗氧化剂这一近年来化学、生物学与医学交叉学科研究的热点,综述了生物体内自由基等活性氧(R OS )的产生及其引起生物细胞氧化性损伤所造成的危害,抗氧化剂的种类和作用,抗氧化剂在预防和治疗癌症、冠心病、衰老、白内障等慢性疾病中的作用,不同类型抗氧化剂间的协同作用,以及抗氧化剂研究领域的一些新动态。关键词:生物抗氧化剂;活性氧;自由基;疾病;防治中图分类号:O 621.14 文献标识码:A 文章编号:1000-0054(2000)06-0009-04 氧在生物体内通过单电子还原产生化学性质 活泼的物质称活性氧(ROS ),它们包括超氧负离子自由基(O ?-2 )、过氧化氢(H 2O 2)和羟基自由基 (? OH )等。存在于生物体内活跃的ROS 可用电子自旋共振仪(ESR)测定。尽管活性氧的半衰期很短, 它们可以与DNA 、蛋白质和多元不饱和脂肪酸(PU FA )作用,造成DNA 链断裂和氧化性损伤、蛋白—蛋白交联、蛋白—DNA 交联和脂质过氧化。脂质过氧化是造成生物体氧化损伤的主要原因[1] 。PU FA 是生物膜的基本组成,极易被ROS 引发的脂质过氧化所损伤,造成生物膜结构和功能的破坏,从而引起癌症、衰老、心血管疾病等慢性病[2~5] 。因此,抑制脂质过氧化已成为生命科学领域的一项重要课题[6],并形成了自由基治疗学。 1 生物抗氧化剂的种类 凡能干扰自由基链反应中链引发和链增长过程,清除ROS 的化合物统称为自由基捕获剂(scaveng er)或抗氧化剂(antiox idant)。从不同角度对生物抗氧化剂进行分类,可分为水溶性[如维生素 C (VC)、谷胱苷肽(GSH )、吲哚类化合物(indoles)、 尿酸(UA )和儿茶酚类(catechols )等]和脂溶性抗氧化剂[如维生素E (VE )、B -胡萝卜素(B -C )和生物黄酮类化合物(bio flavo noids)等];分为捕获型(preventive antiox idants )[如超氧化物歧化酶(SOD )、过氧化氢酶(CAT ),GSH -Px 等]和断链型生物抗氧化剂(chain -breaking antioxidants )[如VC,VE 和多元酚类化合物等];又可分为酶类[如SOD,CAT 、过氧化物酶(POD)等]和非酶类抗氧化剂[如(GSH )、抗坏血酸盐(A sA 或VC )、VE 、类胡萝卜素(CAR )等];也可分为生物体内新陈代谢过程中产生的内源性抗氧化剂[如GSH-Px ,CAT ,SOD 等]和从体外摄入的外源性抗氧化剂[如多羟基蒽醌、抗坏血酸乙酸盐等],这些抗氧化剂主要从深色水果、蔬菜和果汁中获得,也有一小部分可以从牛奶和日常食用的脂肪、蛋黄和海鱼中获得。 2 生物抗氧化剂的作用和研究方法 自1960年发现了清除超氧化物自由基的SOD 以来,已经证实,氧的某些代谢产物如O ?- 2,H 2O 2和?OH 等引起的细胞损伤过程是微粒体脂质过氧化和PU FA 氧化变性的主要原因[7,8]。当PUFA 遭受到氧化损伤时细胞失去了完整性,破坏了镶嵌于膜系统上的许多酶的空间构型,以至酶的孔隙扩大、通透性增加、出现退行性变化,从而使内质网膜、线粒体膜、溶酶体膜等生物膜系统的液体镶嵌状态发生变化,导致广泛性损伤和病变[9] 。占当前医学研究领域前三位的肿瘤、冠心病和衰老均与自由基引起的膜脂质氧化性损伤有关[10~12]。 生物体内抗氧化剂通过捕获或猝灭过氧自由基,抑制微粒体脂质过氧化和PU FA 的氧化变性,从而维持生物膜的结构和功能的完整性,预防和治疗一些疾病。其反应为: ROO ? +A rOH ROOH +ArO ? ,

相关文档
最新文档