氰酸酯改性环氧树脂及其在覆铜板中的应用

氰酸酯改性环氧树脂及其在覆铜板中的应用
氰酸酯改性环氧树脂及其在覆铜板中的应用

高性能、易分散水性多异氰酸酯固化剂的合成与应用研究

高性能、易分散水性多异氰酸酯固化剂的合成与应用研究前言 水分散多聚异氰酸酯可以大致分为两类:非离子型和离子型。非离子型改性聚异氰酸酯采用聚醚进行亲水改性,虽然这种固化剂在大多数应用领域得到了市场的广泛认可,但是其也存在很多缺点:由于聚醚带来的亲水性有限,需要使用大量的聚醚才能赋予聚异氰酸酯较好的水分散性能,这极大地降低了聚异氰酸酯体系中的异氰酸根的浓度,其次改性的聚异氰酸酯需要借助较大的剪切力才能够在水中完全分散,并且大量的聚醚会一直存在体系中,这将永远影响涂膜的耐水性能[1]。 H · 舍费尔[2]等提出了使用4-氨基甲苯-2-磺酸来改性聚异氰酸酯的方法,这类改性聚异氰酸酯中和以后能够非常容易地溶解在水中。但是此方法需要同时使用一定量的聚醚,造成涂膜耐水性能的降低,此外使用的磺酸含有苯环,这将使涂膜耐黄性能降低。Hans-Josef Laas[3]等使用环己胺基丙磺酸和环己氨基乙磺酸来制备改性聚异氰酸酯,取得了巨大成功,磺酸改性的聚异氰酸酯不需要高剪切力就能够在水中均匀分散,叔胺中和的磺酸改性聚异氰酸酯体系具有很好的贮存稳定性。但是专利指出适用于此体系的磺酸单体种类只有两种,甚至指出其他与环己胺基丙磺酸结构类似的磺酸单体即使在更高的条件下也不能参与反应。 本文通过对市售磺酸单体与多异氰酸酯的反应进行研究,发现目前市售的磺酸单体除了环己胺基丙磺酸和环己氨基乙磺酸以外,未找到可以与多异氰酸酯反应的磺酸单体。于是试验室合成了一些新型的磺酸单体,研究发现这些新型磺酸单体在一定条件下可以与多异氰酸酯反应,来制备高性能、易分散的水性多异氰酸酯固化剂,从而为行业研究者提供了理论参考。通过对试验室合成的磺酸改性多异氰酸酯固化剂与市场化某跨国公司的同类产品的比较,发现试验室合成的固化剂性能与跨国公司产品性能基本一致,从而为行业提供了更多的磺酸改性固化剂选择。 1 试验部分 1.1 试验主要原料 聚氨酯合成: HDI三聚体[HT100, w(—NCO)= 21.9%]、羟基丙烯酸树脂[Antkote? 2033,w(—OH)= 3.3%]、固化剂B,万华化学;磺酸固化剂A,市售;氨基磺酸,试验室自制;N,N-二甲基环己胺,阿拉丁试剂。 1.2 水分散多异氰酸酯的制备 在装有机械搅拌器、回流管、温度计和氮气进出口的四口圆底烧瓶中,将氨基磺酸和二甲基环己胺加入到HDI三聚体中,加热到100 ℃反应,测试体系中—NCO含量达到理论值时,停止反应,冷却体系至40 ℃,出料。通过改变氨基磺酸的加入量来研究不同磺酸含量的改性聚异氰酸酯的水分散关系。通过改变二甲基环己胺的加入量来研究中和剂使用量对整个反应进程的影响。

氰酸酯与改性环氧树脂的共固化反应及固化物的性能研究

第30卷第6期2003年11月 浙 江 大 学 学 报(理学版) Journa l of Zhej i ang Un iversity (Sc ience Ed ition ) V o l .30N o .6N ov .2003 氰酸酯与改性环氧树脂的共固化反应 及固化物的性能研究 纪 丽,阎红强,戚国荣 (浙江大学高分子系,浙江杭州310027) 收稿日期:2002212230. 作者简介:纪丽(1978—),女,硕士,主要从事材料改性方面的研究. 摘 要:用热机械曲线法(TM A )、傅立叶变换红外光谱(FT I R )研究了氰酸酯 低溴环氧树脂(1∶1)的共固化反应行为、历程,研究了氰酸酯改性不同环氧树脂体系层压板的耐热性能、介电性能和力学性能,同时用动态的T GA 研究了共固化体系的热稳定性.结果表明,当低溴环氧树脂 氰酸酯质量比为1 1时,固化反应首先是氰酸酯发生自聚形成三聚体(三嗪环),然后三嗪环很快与环氧基反应形成异氰脲酸酯,异氰尿酸酯再与环氧树基反应生成 唑烷酮.同时,氰酸酯单体直接与环氧基反应生成 唑啉进而转变成 唑烷酮.随着氰酸酯质量分数的增加,共固化物的玻璃化转变温度T g 和介电性能增加,抗弯强度减少,残碳量增加.关 键 词:氰酸酯;环氧树脂;层压板 中图分类号:O 633.13 文献标识码:A 文章编号:1008-9497(2003)06-657-06 J I 2L i ,YAN Hong 2qiang ,Q I Guo 2rong (D ep a rt m en t of P olym er S cience ,Z hej iang U n iversity ,H ang z hou 310027,Ch ina ) Study on the properties and reaction of cured co m pound i n cyana te ester m od if ied epoxy co -cur i ng syste m .Jou rnal of Zhejiang U n iversity (Science Editi on ),2003,30(6):657-662 Abstract :T he co 2cu ring behavi o r and reacti on m echan is m of low b rom inated epoxy (LBE ) cyanate (1 1)w ere studied by TM A and FT 2I R .D ielectric and m echan ical p roperties of lam inate m ade up of vari ou s cyanate 2modified epoxy resin w ere studied .In additi on ,thermo stab ility of co 2cu ring system w as also studied by TM A and dynam ic T GA .T he reacti on m echan is m (W low b rom inated epoxy W cyanate =1∶1)can be discribed as fo llow s :A t first it happen s cyclo tri m erizati on of cyanate .T hen ,the so fo rm ed tri m er react w ith epoxy group to give isocyanu rate ,and finally oxazo lidinone w as p roduced .A t the sam eti m e ,cyanate react w ith epoxy group directly to p roduce oxa 2zo line ,then it tran sfo rm s in to oxazo lidinone .Glass tran siti on temperatu re (T g )and char yield increase w ith in 2creasing con ten t of cyanate ,dielectric perfo rm ance is i m p roved .Key words :cyanate ester ;epoxy ;lam inate 环氧树脂是一种在复合材料中应用极广泛的热固性树脂,尤其是在电子行业中.如环氧基覆铜板具有优良的综合性能和适中的价格,目前已成为生产量大、用途广的一类基板材料.但近年来,随着航空航天、电子电气等事业的迅速发展,对所用热固性树脂基体提出了更高的要求.通用环氧树脂固化后含有部分羟基等极性基团,存在吸湿性大,尺寸稳定性和介电性能不足等缺点[1],从而使它在耐湿热性及介电性能,特别是高频介电性能方面存在不足,限制 了它在高性能覆铜板领域的应用.氰酸酯(CE )是一类高性能的树脂,用其改性环氧树脂将大大地提高固化树脂的耐湿热性能和高频电性能,从而可制得适合于高频传输印制电路基板等高性能覆铜板[2].本文主要研究了氰酸酯固化低溴环氧树脂的机理和氰酸酯改性环氧树脂层压板性能的影响.

环氧树脂的增韧改性研究

环氧树脂的增韧改性研究 环氧树脂是由具有环氧基的化合物与多元羟基化合物(双酚A、多元醇、多元酸、多元胺) 进行缩聚反应而制得的产品。环氧树脂具有高强度和优良的粘接性能,可用作涂料、电绝缘材料、增强材料和胶粘剂等。但因其固化物质脆,耐开裂性能、抗冲击性能较低,而且耐热性差,使其应用受到了一定的限制。为此国内外学者对环氧树脂进行了大量的改性研究工作,以改善环氧树脂的韧性。 目前环氧树脂的增韧研究已取得了显著的成果,其增韧途径主要有三种: ①在环氧基体中加入橡胶弹性体、热塑性树脂或液晶聚合物等分散相来增韧。②用热固性树脂连续贯穿于环氧树脂网络中形成互穿、半互穿网络结构来增韧。③用含有“柔性链段”的固化剂固化环氧,在交联网络中引入柔性链段,提高网链分子的柔顺性,达到增韧的目的。 1 橡胶弹性体增韧环氧树脂 橡胶弹性体通过其活性端基(如羧基、羟基、氨基) 与环氧树脂中的活性基团(如环氧基、羟基等)反应形成嵌段;正确控制反应性橡胶在环氧树脂体系中的相分离过程是增韧成功的关键。自Mc Garry发现端羧基丁腈橡胶(CTBN) 能使环氧树脂显著提高断裂韧性后的几十年间,人们在这一领域进行了大量基聚醚、聚氨酯液体橡胶、聚的研究。据文献报道,已经研究过的或应用的对环氧树脂增韧改性的橡胶有端羧硫橡胶、含氟弹性体、氯丁橡胶、丁腈橡胶、丙烯酸丁酯橡胶等。通过调节橡胶和环氧树脂的溶解度参数,控制凝胶化过程中相分离形成的海岛结构,以分散相存在的橡胶粒子中止裂纹、分枝裂纹、诱导剪切变形,从而提高环氧树脂的断裂韧性。 目前用液体橡胶增韧环氧树脂的研究有两种趋势。一种是继续采用CTBN 增韧环氧树脂体系,重点放在增韧机理的深入探讨;另一种是采用其它的合适的液体橡胶,如硅橡胶、聚丁二烯橡胶等。D1 Verchere[1 ] 等研究端环氧基丁腈橡胶(ETBN) 对双酚A 型环氧树脂的增韧效果, 当ETBN 含量为20wt %时, 树脂的断裂韧性GIC 由01163kJ / m2 提高到01588kJ / m2 ,比增韧前提高了3倍多。韩孝族[2 ]等用端羟基丁腈橡胶(HTBN) 增韧环氧/ 六氢邻苯二甲酸酐体系, 当HTBN 含量达20phr 时,增韧树脂的冲击强度达900kJ / cm2 ,较改性前(340kJ / cm2) 提高了2 倍多。孙军[3 ]等利用高 分子设计方法及控制反应工艺,制备出具有氨基封端的硅橡胶改性体,分析其红外光谱,证实其产物具有预想结构,即改性后的硅橡胶为氨基封端。用改性硅橡胶对环氧树脂进行增韧改性,通过对增韧体的冲击强度测试结果表明,在改性硅橡胶加入量为0~15 份的范围内,增 韧体的冲击强度有了大幅度提高,加入量超过15 份以后,增韧体的冲击强度增势缓慢,实验证明改性硅橡胶对环氧树脂具有良好的增韧效果。此外,还有活性端基液体橡胶增韧环氧树脂、聚硫橡胶改性环氧树脂等方面的研究也有很大进展。如王德武[4 ]等人研制的聚硫橡胶改性环氧防水防腐防霉涂料,是由聚硫橡胶改性环氧溶液为成膜物质,加入金属氧化物填料,添加有机胺固化剂所组成的双组分涂料。该涂料对金属、非金属的附着力强(对钢铁附着力为3~4MPa ,对混凝土附着力为4~5MPa) 、涂膜坚硬、光滑、丰满,不吸附污浊和藻类,具有韧性好、高弹性、耐候、耐霉菌、耐磨、耐酸碱和耐多种溶剂等特点。 近年来,核2壳乳液胶粒增容技术的应用使橡胶弹性体改性环氧树脂又有了新进展。核壳粒子大小及其环氧树脂的界面性能可以用乳液聚合技术来设计和改变。Lin K F[5 ]等研究了以丙烯酸丁酯为核、甲基丙烯酸甲酯和缩水甘油醚基丙烯酸甲酯共聚物为壳的核壳粒子增韧双酚A 型环氧树脂体系,并探讨了增韧机理。 Ashida Tadashi[6 ]等研究了在环氧树脂中分别加入聚丙烯酸丁酯橡胶粒子和PBA/ PMMA (聚丙烯酸丁酯/ 聚甲基丙烯酸甲酯) 核壳胶粒,以双氰胺为固化剂所得固化物的结构形态和性能。结果表明,用丙烯酸橡胶粒子可提高环氧树脂的断裂韧性,但远远低于核壳粒子(PBA/ PMMA) 的增韧效果;在环氧树脂固化过程中,由于PMMA 与环氧树脂的相容性好,环氧

丙烯酸酯液体改性环氧树脂胶粘剂

丙烯酸酯液体改性环氧树脂胶粘剂 3.2 胶粘剂力学性能 采用环氧基含量为1.2 mmol·g-1的丙烯酸酯液体橡胶增韧环氧树脂胶粘剂,其力学性能见表3。由表3可见,环氧树脂胶粘剂对不同材料有不同的粘接性,但加入丙烯酸酯液体橡胶后拉伸剪切强度都有不同程度的提高,铝合金试片的拉剪强度提高了133%,复合材料试片提高了124%,45#钢试片提高了84%。这是因为加入丙烯酸酯液体橡胶,改善了体系的韧性,降低了固化过程中产生的内应力,胶粘剂拉剪强度增大。下面分别讨论液体橡胶添加量和环氧基含量对拉剪强度的影响。 表3 环氧树脂胶粘剂拉剪强度 拉剪强度每百份环氧树脂中液体橡胶的加入份数 /MPa 0 5 10 15 20 铝合金试片 12.1 20.1 28.2 26.1 22.3 玻璃钢试片 7.2 12.0 16.1 14.0(试片破坏) 14.1(试片破坏) 45#钢试片 9.2 11.2 16.8 16.6 13.2 由表3可见,随液体橡胶添加量的增加,胶粘剂的拉剪强度逐渐增大,当添加量为每百份环氧树脂加10份时,拉剪强度提高幅度最大,分别提高了约133%和124%。这是因为加入液体橡胶,体系成两相结构,由于橡胶相变形和撕裂的阻力对基体开裂有阻碍和钉扎作用,消耗大量的能量,提高了韧性。而这种阻碍作用与橡胶相的体积分数成线性关系,故随液体橡胶添加量的增加,基体的韧性增大,拉伸剪切强度逐渐增大。又由于胶结件在受拉剪载荷时,胶粘剂与胶接件表面粘接作用和胶粘剂本身的强度不同,胶接件的破坏形式也不同。但是若橡胶含量过大,胶粘剂内聚强度降低,试件呈内聚破坏,拉剪强度反而降低。 3.2.1 丙烯酸酯液体橡胶环氧基含量的影响 丙烯酸酯液体橡胶含有的反应性官能团为环氧基,不同环氧基含量的液体橡胶对胶粘剂拉剪强度的影响不同。图4(图略)是体系中分别加入不同环氧基含量(每百份环氧树脂加入10份)的液体橡胶后,胶粘剂拉剪强度与液体橡胶环氧基含量的关系曲线。 由图4(图略)可见,在相同工艺条件下,随着液体橡胶环氧基含量的增加,拉剪强度增加,环氧基含量到一定程度后,拉剪强度又有减小的趋势。环氧基含量为1.2 mmol·g-1的液体橡胶增韧效果最好,拉剪强度提高了133%。由橡胶增韧环氧树脂的机理可知,要使丙烯酸酯液体橡胶有良好的增韧效果,橡胶和环氧树脂在反应前应有良好的相容性,在固化过程中,由于反应的进行分子量变大相容性变差产生分相,形成两相复合体系。不同环氧基含量的丙烯酸酯液体橡胶与环氧树脂的相容性也不同。环氧基含量过低,丙烯酸酯液体橡胶不易溶于环氧基体中;环氧基含量过高,橡胶与基体的的相容性太好,在反应的过程中不易分相,Tomio M.的研究也得出了这一结论。由于相容性的不同,直接导致橡胶在反应分相过程中形成颗粒的粒径及分布的差异,而不同粒径的橡胶粒子,对环氧树脂增韧效果也有区别。Riew的理论表明:小的颗粒主要对剪切变形起作用,大的颗粒能阻止裂纹的增长。因此丙烯酸酯液体橡胶要有良好的增韧效果,环氧基含量要适当。

异氰酸酯胶粘剂在木材加工中的应用

异氰酸酯胶粘剂在木材加工中的应用 目前,木材加工行业仍主要使用传统的甲醛系列胶粘剂,这己无法满足新形势下原料体系的胶接要求。伴随环境保护要求的日益加强,人们环保意识的提高,开发和使用无公害的高效木材加工用合成树脂胶粘剂己成为人们普遍关注的问题。异氰酸酯胶粘剂中不含有甲醛类有害物质且其分子设计灵活,从化学结构和原料组合出发,可实现异氰酸酯树脂不同的使用性能,在众多领域被广泛应用。 异氰酸酯胶粘剂是由分子链中含有异氰酸基(-NCO)及少量氨酯基(-NHCOO),具有很高极性和活泼性的一类胶粘剂。1848年Wurtz首先用硫酸二乙酯和氰酸钾合成异氰酸酯。19世纪Hofmann和Curtius等著名的化学家都对其性质进行过研究。1869年Gentier初步确定了异氰酸酯的结构。1940年德国法本公司的研究人员发现异氰酸酯具有特殊的胶接性能。并在第二次世界大战期间将4,4一二苯基甲烷二异氰酸酯(MDI)应用于战车的履带胶接上。第二次世界大战以后,拜尔公司开发了DesmodurR系列的多异氰酸酯和Desmocoll系列的端羟基聚酯多元醇,至今仍被广泛应用。 异氰酸酯胶粘剂开发于20世纪50年代,80年代以来发展较快,至今己成为一个品种繁多、应用广泛的行业。1951年Deppe首先将异氰酸酯胶粘剂应用在刨花板的制备上。1973年美国Ellingson Lumber公司试制了用于室外的两面贴单板的MDI刨花板。Wilson J.B和富田文一郎分别对异氰酸酯胶粘剂制造人造板的胶合强度、湿强度、粘弹性等性质进行了较深入的研究。随着异氰酸酯胶粘剂的优点逐渐被发现,其在木材中的应用也越来越广泛。我国已经开发出刨花板用异氰酸酯树脂胶粘剂;人造板用可乳化异氰酸酯树脂胶粘剂;胶接木材用异氰酸酯树脂胶粘剂等系列产品。国内的其它科研工作者也对异氰酸酯胶粘剂在木材中的应用做了大量的工作,北华大学时君友等人将玉米淀粉的酚化产物处理成乳液,在一定酸碱度条件下,与无毒无公害的合成橡胶胶乳共聚制成API胶的主剂,将多异氰酸酯化合物的异氰酸酯基封闭处理后,作为API胶的固化剂,制成双组分无醛耐水的API胶。用该胶压制的三层复合实木地板、机拼细木工板、胶合板及集成材等胶合制品,其理化性能指标完全达到有关标准要求。东北林业大学艾军等人1311用荧光显微技术和Dsc分析方法研究了人造板用异氰酸酯胶粘剂牢固的化学胶接,尤其用于农作物秸杆(麦草、稻草)的胶接可得到符合我国木质A类优等品标准的刨花板。唐朝发等人研究了低成本水

环氧树脂与氰酸酯共聚反应研究

高分子学报 ACTA POLYMERICA SINICA 1999年 第2期 NO.2 1999 环氧树脂与氰酸酯共聚反应研究 包建文 唐邦铭 陈祥宝 摘 要 研究了催化剂对环氧树脂与氰酸酯树脂的共聚固化反应行为的影响,并初步探索氰酸酯/环氧固化的反应历程.研究表明,催化剂能明显地促进其固化反应,降低固化温度,缩短固化时间;氰酸酯与环氧共聚反应历程是首先氰酸酯三聚反应生成三嗪环结构,然后三嗪环开环与环氧共聚反应,最后是未能参与共聚反应的环氧官能团在唑啉结构和三嗪环的催化下发生聚醚化反应;在氰酸酯官能团欠量的条件下,固化树脂中主要是唑啉和聚醚结构,而三嗪环结构的含量很少. 关键词 环氧树脂,氰酸酯,催化剂,共聚,反应历程 COPOLYMERIZATION OF EPOXY AND CYANATE BAO Jianwen,TANG Bangming,CHEN Xiangbao (National Key Laboratory of Advanced Composites,Institute of Aeronautical Materials,Beijing 100095) Abstract The influence of catalyst on the copolymerization of epoxy and cyanate was investigated,and the mechanism of their copolymerization was discussed.The catalyst can obviously accelerate the curing of the resin to decrease the curing temperature.The three kinds of reactions(cyclotrimerization,co-reaction and polyetherification) in their copolymerization are not simultneous and independent to each other.In the lack of cyanate functional group,the main structures are oxazoine and polyether structure in the cured resin,and the triazine ring structure is of miner importance. Key words Epoxy,Cyanate,Catalyst,Copolymerization,Mechanism of reaction 环氧树脂是一类综合性能优良的复合材料树脂基体,在航空航天工业中得到较为广泛的应用,但是由于环氧树脂基体的耐湿热和抗冲击性能的不足,使之在承力结构件中的应用受到很大的限制.尤其是通常的环氧树脂基体中的分子结构中含有大量的反应生成的羟基等极性基团,吸湿率高,使其复合材料在湿热条件下的力学性能显著下降.应用氰酸酯树脂固化环氧树脂,将大大地提高固化树脂的湿热性能,明显地提高其抗冲击性能等.通常,加入30wt%以上的氰酸酯就能在180℃下固化环氧树脂,并且其碳纤维预浸料的工艺性能优良[2].因此,应用氰酸酯树脂改性环氧树脂等热固性树脂,将赋予以其为基体的复合材料以优异的耐湿热性能、抗冲击性能等,这类复合材料的研究对先进树脂基复合材料的发展具有重要的意义. 氰酸脂改性环氧树脂作为一种新的先进复合材料树脂基体,国外氰酸脂改性环氧的反应过程进行过许多有意义的工作,对其共聚反应历程有不同的见解.一般认为[1~5],

聚氨酯改性环氧树脂胶黏剂的研究

聚氨酯改性环氧树脂胶黏剂的研究 一. 选题的目的及意义: 聚氨酯(PU)是一类常用的高分子材料,以甲苯-2,4-二异氰酸酯(TDI)和二醇类为原料合成,结构中既有柔性的C-C链和C-O-C链,又有活性的酰胺基团,与环氧树脂相容性好。改性后的环氧树脂(EP)强度和韧度都得到提高,特别适用于环氧浇注、环氧涂料等方面,具有良好的应用前景。 二. 选题的国内外研究概况和趋势(设计只介绍相应产品的用途、作品的应 用等) 胶黏剂的一类古老而又年轻的材料,早在数千年前,人类的祖先就已经开始使用胶黏剂。到上个世纪初,合成酚醛树脂的发明,开创了胶黏剂的现代发展史。胶黏剂是具有良好粘结性能的物质,特别是合成胶黏剂强度高,对材质不同的重金属与非金属之间均可实现有效粘结,并且已经在越来越多的领域代替了机械粘结,从而为各行业简化工艺、节约能源、降低成本,提高经济效益提供了有效途径。全球胶黏剂、密封剂和表面处理剂市场总规模约500亿欧元(680亿美元),其中工业胶黏剂市场占44%的份额。 上世纪90年代,我国胶黏剂进入了一个高速发展的新阶段。本世纪前8年,随着我国改革开放的不断深入,胶黏剂工业整个发展势态越来越好。据中国胶黏剂工业协会统计,2004年、2005年和2006年我国胶黏剂产量分别为22.7万吨、251.7万吨和280.2万吨,年均增长率分别外14.32%、10.44%和11.32%,2007年和2008年产量为313.5万吨和344.8万吨,产量不断增加应用领域不断扩展。去年下半年,由于遭受美国、系,西欧和世界金融危机的影响,今年一季度开始,我国合成材料工业及其胶黏剂工业也受到一定影响。据预测今年胶黏剂产量可望达到372.38万吨,增长速度比去年有所下降。 如上所述,由于受国际金融危机的影响,今年我国采取了一系列产业结构调整政策和财政支持政策,进一步扩大内需,保增长,渡难关,上水平,如果没有受到其他影响,2012年后我国又将以崭新姿态出现在世人面前,2015年,即“十二五”计划末,我国胶黏剂产量将突破600万吨大关。据不完全统计,目前我国胶黏剂和密封剂生产厂家又3500多家,但上规模企业不足100家,品种牌号约3000多个。 从应用情况看,胶合板和木工用胶量最大,约点总胶量的46.97%,建筑材料用胶黏剂占26.12%,包装及商标用胶黏剂约占12.14%,制鞋及皮革用胶黏剂占6.07%,其他胶黏剂使用量占8.7%。 随着工业的发展,胶黏剂的应用市场越来越广泛,品种也日益增多,水溶性胶黏剂主要用于建筑、包装、运输、刚性粘合、非刚性粘合、胶带等方面。其中在包装方面的应用最为广泛,同时也用于标签、书包、杯子、信封等制造。目前世界合成胶黏剂发展的趋势表现为以下三方面:第一,环保型合成胶黏剂发展迅速。随着环保法规的日益严格,各发达国家大力研制水基和热熔型等无溶剂胶黏剂。1998年发达国家的合成胶黏剂的市场上水基胶黏剂占50%,热熔胶约占20%,溶剂类胶黏剂仅占20%。未来合成胶黏剂将由低污染的水基胶和热熔胶唱“主角”,环保型合成胶黏剂将是市场的抢手货。第二,高性能胶黏剂异军突起。高性能合成胶黏剂包括环氧、有机硅、聚氨酯及新型改性丙烯酸粘合剂等。第三,施工工艺和施胶设备不断更新。

异氰酸酯计算

聚氨酯计算公式中有关术语及计算方法 1.官能度 官能度是指有机化合物结构中反映出特殊性质(即反应活性)的原子团数目。对聚醚或聚酯多元醇来说,官能度为起始剂含活泼氢的原子数。 2.羟值 在聚酯或聚醚多元醇的产品规格中,通常会提供产品的羟值数据。 从分析角度来说,羟值的定义为:一克样品中的羟值所相当的氢氧化钾的毫克数。 在我们进行化学计算时,一定要注意,计算公式中的羟值系指校正羟值,即 羟值校正= 羟值分析测得数据+ 酸值 羟值校正= 羟值分析测得数据-碱值 对聚醚来说,因酸值通常很小,故羟值是否校正对化学计算没有什么影响。 但对聚酯多元醇则影响较大,因聚酯多元醇一般酸值较高,在计算时,务必采用校正羟值。严格来说,计算聚酯羟值时,连聚酯中的水份也应考虑在内。 例,聚酯多元醇测得羟值为224.0,水份含量0.01%,酸值12,求聚酯羟值 羟值校正= 224.0 + 1.0 + 12.0 = 257.0

3. 羟基含量的重量百分率 在配方计算时,有时不提供羟值,只给定羟基含量的重量百分率,以OH%表示。 羟值 = 羟基含量的重量百分率×33 例,聚酯多元醇的OH%为5,求羟值 羟值 = OH% × 33 = 5 × 33 = 165 4. 分子量 分子量是指单质或化合物分子的相对重量,它等于分子中各原子的原子量总和。 (56.1为氢氧化钾的分子量) 例,聚氧化丙烯甘油醚羟值为50,求其分子量。 对简单化合物来说,分子量为分子中各原子量总和。 如二乙醇胺,其结构式如下: 羟值 官能度分子量1000 1.56??=336650 100031.56=??=分子量

缩水甘油封端聚氨酯的合成及其改性环氧树脂的粘合性能

第18卷第3期 青 岛 化 工 学 院 学 报 Journal of Q ingdao Institute of Chem ical T echno logy V o l.18 N o.3 1997缩水甘油封端聚氨酯的合成及其 改性环氧树脂的粘合性能 α姚 微 牟润强 邢 政 马宏利 于艳君 张志俊 (青岛化工学院橡胶新技术研究所,青岛266042) 摘 要:详细介绍了用缩水甘油将端异氰酸酯预聚物转变为环氧封端聚氨 酯的合成方法,考察了温度对反应速度的影响,并利用付利叶变换红外光谱仪 快速跟踪技术,证实了反应主要发生在预聚物的异氰酸酯基与缩水甘油的羟基 上;在80℃反应前期环氧峰略有降低,说明有少量环氧基发生反应。环氧封端聚 氨酯加热到100℃发现有凝胶出现,在贮存中粘度略有增加。另外还考察了缩 水甘油封端聚氨酯与E251环氧树脂及三乙烯四胺固化体系的粘合性能。当软段 含量<25%时,剪切强度和剥离强度均提高;当软段含量>30时,剥离强度提高 而剪切强度降低;当软段含量在25%~30%之间时,强度变化较复杂。 关键词:缩水甘油封端聚氨酯;改性环氧树脂;粘合性能 中图法分类号:TQ323.8 众所周知,环氧树脂对许多材料具有很好的粘合性,但它的玻璃化温度高,是一种硬而脆,冲击强度低的材料[1],为了克服这一缺点曾做了大量的研究工作,主要集中在将橡胶相引入到环氧树脂中,从而形成微相分离体系[2,3]。聚氨酯具有高抗冲强度和优异的低温性能,曾有人将聚氨酯引入环氧树脂中,以弥补环氧树脂材料韧性差的缺陷。 尽管聚氨酯具有优异的性能,但端异氰酸酯基(-N CO)活性过高,不便直接使用[4];另一种办法是将异氰酸酯用活泼氢化合物封端[5,6],它们在室温下是稳定的,其缺点是需要高温下解封,并难于除去封端试剂。 缩水甘油封端聚氨酯将克服上述缺点,储存稳定,因其端基为环氧基能与环氧树脂同步固化,形成链段分布为无规分布的环氧树脂改性结构,能有效地提高环氧树脂的冲击强度和低温下的粘合性能[7]。 本研究考察了对缩水甘油封端聚氨酯合成中的几个关键问题,以及缩水甘油封端聚氨酯-环氧树脂-三乙烯四胺固化体系粘合性能,扩大了聚氨酯加入量范围,综合考察了剪切强度和剥离强度的变化规律。 1 实验部分 1.1 原料 甲苯二异氰酸酯(TD I),2,4-和2,6-异构体比为80 20,意大利进口工业品。 聚醚为端羟基聚环氧丙烷,平均官能度为2,平均分子量为1000。 α收稿日期:1996205224

丙烯酸酯环氧树脂乳液的合成和性能探讨

丙烯酸酯环氧树脂乳液的合成和性能探讨 将环氧树脂加入到预乳化单体中,采用预乳化半连续种子乳液聚合法合成水性丙烯酸酯环氧树脂乳液,选择合适的催化剂,增加环氧树脂的接枝率,研究了环氧树脂用量、催化剂用量对乳液及其漆膜性能的影响。实验结果表明,当环氧树脂用量为单体量的7%,催化剂用量为单体量的0.3%时,漆膜的附着力和硬度有很大提高,配制涂料的耐盐雾性可达到300h以上。 标签:乳液聚合;环氧树脂;杂化聚合;大分子络合剂 中国分类号:TQ436+.5 文献标识码:A 文章编号:1001-5922(2016)09-0047-05 随着我国对涂料VOC排放标准的严苛,针对涂料使用过程VOC超标收取消费税,加速了工业漆水性化的发展。高性能工业防护漆的市场需求日益增加,以聚合物乳液为成膜物的水性工业漆,以其优越的耐候性、便捷的使用性能、很低的VOC排放等性能,在许多领域广泛使用。 目前水性工业漆丙烯酸聚合物乳液,通过在乳液聚合物体系中加入增加附着力的单体,如丙烯酸、丙烯酸羟乙酯等Ⅲ,来提高聚合物在基材上附着力,但往往给乳液聚合物膜带来较高的吸水性,从而导致在潮湿条件下的附着力下降,还会引起工业漆耐盐雾性变差。 为了提高水性工业漆乳液聚合物性能,可通过在丙烯酸酯乳液合成过程中引入环氧树脂,给予漆膜良好的附着力和致密性,提高漆膜的耐盐雾性能。但是加入环氧树脂容易导致聚合物乳液的稳定性下降,尤其是热稳定性下降,易发生聚合物乳液凝胶,同时由于环氧树脂的分子质量较低,不能有效提高粘接强度,必须增加环氧树脂与乳液粒子内部聚合物的接枝反应,才能充分利用环氧树脂的优点。本实验通过采用催化剂,使丙烯酸聚合物与环氧树脂中的环氧加成,提高环氧树脂在丙烯酸聚合物中的接枝率。通过测定在不同环氧树脂和催化剂用量下的乳液性能,确定催化剂和环氧树脂的最佳用量。 1 实验部分 1.1 原料及仪器 实验原料及仪器见表1~3。 1.2环氧改性丙烯酸酯乳液的合成 向2000mL三口烧瓶中加入计量的去离子水,开启搅拌,加入计量的乳化剂,15min后开始滴加计量好的单体、环氧树脂和催化剂,继续高速搅拌乳化约1h 制得预乳化液;向带有回流冷凝器的3000mL四口烧瓶中加入去离子水,开启搅

异氰酸酯胶(PMDI)

异氰酸酯胶(PMDI) 异氰酸酯胶粘剂开发于20世纪50年代,80年代以来发展较快,至今己成为一个品种繁多、应用广泛的行业。1951年Deppe首先将异氰酸酯胶粘剂应用在刨花板的制备上。1973年美国Ellingson Lumber公司试制了用于室外的两面贴单板的MDI刨花板。Wilson J.B 和富田文一郎分别对异氰酸酯胶粘剂制造人造板的胶合强度、湿强度、粘弹性等性质进行了较深入的研究。随着异氰酸酯胶粘剂的优点逐渐被发现,其在木材中的应用也越来越广泛。我国已经开发出刨花板用异氰酸酯树脂胶粘剂;人造板用可乳化异氰酸酯树脂胶粘剂;胶接木材用异氰酸酯树脂胶粘剂等系列产品。国内的其它科研工作者也对异氰酸酯胶粘剂在木材中的应用做了大量的工作,北华大学时君友等人将玉米淀粉的酚化产物处理成乳液,在一定酸碱度条件下,与无毒无公害的合成橡胶胶乳共聚制成API胶的主剂,将多异氰酸酯化合物的异氰酸酯基封闭处理后,作为API胶的固化剂,制成双组分无醛耐水的API胶。用该胶压制的三层复合实木地板、机拼细木工板、胶合板及集成材等胶合制品,其理化性能指标完全达到有关标准要求。东北林业大学艾军等人1311用荧光显微技术和Dsc分析方法研究了人造板用异氰酸酯胶粘剂牢固的化学胶接,尤其用于农作物秸杆(麦草、稻草)的胶接可得到符合我国木质A类优等品标准的刨花板。唐朝发等人研究了低成本水性高分子异氰酸酯胶粘剂,将交联剂所用异氰酸酯用低温亚硫酸氢钠法进行封闭处理,使-NCO封闭率达到50%以上,同时加入一定量的DBP结果表明低成本API胶粘剂能够适应胶合板、细木工板的生产要求,所生产出的胶合板、细木工板性能满足国标要求。徐信武等研究了改性异氰酸酯对于稻草刨花板性能的影响。当密度超过0.75g/cm3时,稻草刨花板抗弯性能达到美国ASTM A208.1标准中M3级木质刨花板的要求。目前研究者们正在研究新型热塑性聚氨酯弹性树脂,干式复合用聚氨酯胶粘剂的研制,反应型阻燃聚氨酯改性酚醛胶粘剂,水基型聚氨酯改性丙烯酸酯系列胶粘剂等。 目前异氰酸酯胶粘剂在木材工业中的应用主要有如下几种形式:水性高分子异氰酸酯胶粘剂(API);异氰酸酯预聚体胶粘剂;异氰酸酯共混复合胶粘剂、最常见的是异氰酸酯与脲醛树脂、单宁等的共混、多异氰酸酯单体直接做为胶粘剂使用,其中以水性高分子一异氰酸酯胶粘剂(API)、异氰酸酯预聚体胶粘剂应用最为广泛。 (l)、水性高分子一异氰酸酯胶粘剂(API)水性高分子一异氰酸酯胶粘剂(API)是以水溶性高分子(通常为醋酸乙烯酯乳液:PVAc),乳液(通常为苯乙烯一丁二烯胶乳:SBR,聚丙烯酸酚乳液,乙酸乙酯一乙烯共聚乳液:EVA等),填料(通常为碳酸钙粉末:CaCO3)为主要成分的主剂,和多官能团的异氰酸酯化合物(通常为P-MDI)为主要成分的交联剂所构成。两者混合产生的三维交联使其胶接耐水性大为提高,因此可将其作为高耐水性木材胶粘剂使用。API 胶粘剂在我国的应用开发较晚,起步于20世纪90年代,目前有生产厂家将其用于拼板胶的

丙烯酸酯嵌段共聚物合成及其改性环氧树脂的研究

丙烯酸酯嵌段共聚物合成及其改性环氧树脂的研究 王小兵1,2 何尚锦2 张保龙2 郑 威1 金子明1 (1.中国兵器工业集团第五三研究所,济南 250031; 2.南开大学化学系,天津 300071) 摘要 通过原子转移自由基聚合反应合成了以丙烯酸正丁酯(n BA)、甲基丙烯酸甲酯(MMA)及甲基丙烯酸缩水甘油酯(G MA)为单体的嵌段共聚物,采用凝胶渗透色谱仪、核磁共振波谱仪和傅立叶红外光谱仪对嵌段共聚物的结构与组成进行了确定。然后用合成的嵌段共聚物对环氧树脂(EP)/4,4′2二氨基二苯甲烷体系进行增韧改性,采用动态热机械分析仪、冲击试验机和扫描电子显微镜对增韧效果进行了表征并对增韧机理做了初步分析。结果表明,嵌段共聚物的加入对体系的主转变温度和模量影响不大;在嵌段共聚物中MMA与n BA的物质的量之比为1∶1时,嵌段共聚物在EP固化时发生微相分离,缺口冲击强度明显提高。 关键词 环氧树脂 增韧 嵌段共聚物 原子转移自由基聚合 环氧树脂(EP)具有优良的热性能、耐化学腐蚀 性、尺寸稳定性及高强度、高模量等性能,在航天、汽 车制造等行业被广泛用作粘合剂、金属底漆、防腐涂 料等。但是,EP本身的脆性大大限制了它的应用, 所以EP的增韧一直是高分子科学领域的重要课题 [1-4]。其中,具有核壳结构的聚丙烯酸酯弹性粒子 增韧EP是一个重要研究方向[5]。一般采用具有橡 胶特性的聚丙烯酸正丁酯(Pn BA)作为核,采用与 EP具有一定相容性的聚甲基丙烯酸甲酯(P MMA)、 聚丙烯腈等作为壳。为了增加粒子与EP基体的界 面结合力,壳层中有时还加入带有环氧基团的甲基 丙烯酸缩水甘油酯(G MA),以实现粒子与EP基体 的化学键合。 嵌段共聚物分子链中的不同链段往往具有不同 的热力学性质,这就导致嵌段共聚物在成型、共混、 溶解时发生相分离,但由于不同链段间有化学键相 连,故相分离又受到限制[6],嵌段共聚物的物理行 为是通过嵌段共聚物的分子自组装实现的。近些年 来,大分子自组装概念的提出和发展为EP改性开 辟了一条新的途径[7]。 笔者采用原子转移自由基聚合反应(AT RP)合 成了甲基丙烯酸甲酯(MMA)、G MA和丙烯酸正丁 酯(n BA)的嵌段共聚物(BMG)。然后以合成的嵌 段共聚物为改性剂,对EP/4,4’2二氨基二苯甲烷 (DDM)固化体系进行增韧改性,并对其冲击性能等 做了系统研究。 1 实验部分 1.1 原材料 MMA、n BA:分析纯,使用前经5%的Na OH溶 液洗涤3次,蒸馏水洗涤3次,无水CaCl 2浸泡, CaH2除水,减压蒸馏纯化,低温密封保存,天津化学 试剂一厂; G MA:分析纯,在适量对苯二酚、沉降硫及少量 铜丝存在下,减压蒸馏,低温密封保存,天津化学试 剂研究所; 苯甲醚:分析纯,CaH 2 除水,搅拌12h后,减压蒸馏纯化,天津化学试剂一厂; CuB r、CuCl:自制; α2溴代丙酸乙酯:分析纯,美国Acr os公司; α,α′2联吡啶(bpy):分析纯,上海化学试剂公司; EP:E-51,工业级,岳阳化工厂; DDM:化学纯,北京医药集团公司。 1.2 仪器、设备 核磁共振波谱(1HNMR)仪:Mercury-Vx300型,美国Varian公司; 傅立叶红外光谱(FTI R)仪:B i o-Rad FTS135型,美国伯乐公司; 凝胶渗透色谱(GPC)仪:W aters208型,美国W aters公司; 冲击实验机:Char py XCJ-500型,河北承德材料实验机厂; 动态热机械分析(DMA)仪:DMA242型,德国Netzsch公司; 扫描电子显微镜(SE M):XL30ESE M型,荷兰Phili p s公司。 1.3 试样制备 (1)端溴基Pn BA(PnBA2B r)大分子引发剂的 收稿日期:2007209210

异氰酸酯计算

聚氨酯计算公式中有关术语及计算方法 1. 官能度 官能度是指有机化合物结构中反映出特殊性质(即反应活性)的原子团数目。对聚醚或聚酯多元醇来说,官能度为起始剂含活泼氢的原子数。 2. 羟值 在聚酯或聚醚多元醇的产品规格中,通常会提供产品的羟值数据。 从分析角度来说,羟值的定义为:一克样品中的羟值所相当的氢氧化钾的毫克数。 在我们进行化学计算时,一定要注意,计算公式中的羟值系指校正羟值,即 羟值校正 = 羟值分析测得数据 + 酸值 羟值校正 = 羟值分析测得数据 - 碱值 对聚醚来说,因酸值通常很小,故羟值是否校正对化学计算没有什么影响。 但对聚酯多元醇则影响较大,因聚酯多元醇一般酸值较高,在计算时,务必采用校正羟值。 严格来说,计算聚酯羟值时,连聚酯中的水份也应考虑在内。 例,聚酯多元醇测得羟值为224.0,水份含量0.01%,酸值12,求聚酯羟值 羟值校正 = 224.0 + 1.0 + 12.0 = 257.0 3. 羟基含量的重量百分率 在配方计算时,有时不提供羟值,只给定羟基含量的重量百分率,以OH%表示。 羟值 = 羟基含量的重量百分率×33 例,聚酯多元醇的OH%为5,求羟值 羟值 = OH% × 33 = 5 × 33 = 165 4. 分子量 分子量是指单质或化合物分子的相对重量,它等于分子中各原子的原子量总和。 (56.1为氢氧化钾的分子量) 例,聚氧化丙烯甘油醚羟值为50,求其分子量。 对简单化合物来说,分子量为分子中各原子量总和。 羟值 官能度分子量1000 1.56??= 3366 50 1000 31.56=??= 分子量

如二乙醇胺,其结构式如下: CH 2CH 2OH HN < CH 2CH 2OH 分子式中,N 原子量为14,C 原子量为12,O 原子量为16,H 原子量为1,则二乙醇胺分子量为:14+4×12+2×16+11×1=105 5. 异氰酸基百分含量 异氰酸基百分含量通常以NCO%表示,对纯TDI 、MDI 来说,可通过分子式算出。 式中42为NCO 的分子量 对预聚体及各种改性TDI 、MDI ,则是通过化学分析方法测得。 有时异氰酸基含量也用胺当量表示,胺当量的定义为:在生成相应的脲时,1克分子胺消耗的异氰酸酯的克数。 胺当量和异氰酸酯百分含量的关系是: 6. 当量值和当量数 当量值是指每一个化合物分子中单位官能度所相应的分子量。 如聚氧化丙烯甘油醚的数均分子量为3000,则其当量值 在聚醚或聚酯产品规格中,羟值是厂方提供的指标,因此,以羟值的数据直接计算当量值比较方便。 %48174 2 42%=?=NCO TDI 的%6.33250 2 42%=?= NCO MDI 的% 4200NCO = 胺当量官能度 数均分子量当量值= 10003 3000 == 聚醚三元醇当量值羟值 当量值56100=

聚氨酯改性环氧树脂的研究_胡家朋

[收稿日期] 2005-08-26 [基金项目] 南昌航空工业学院重点科研基金,EC200302077 [作者简介] 胡家朋(1980-),男,在读硕士研究生,从事高分子材料改性研究。 聚氨酯改性环氧树脂的研究 胡家朋,熊联明,沈震,周韦 (南昌航空工业学院环境与化学工程系,江西南昌 330034) [关键词] 聚氨酯;环氧树脂;改性 [摘 要] 用原位聚合法制备了聚氨酯/环氧树脂复合材料,考察了不同因素对刚性聚氨酯/环氧树脂复合材料力学性能的影响。结果表明,在所得复合材料中,当聚氨酯含量不高时,其冲击强度、拉伸强度和耐热稳定性能同时得到提高;若刚性聚氨酯含量超过一定范围,材料的拉伸强度逐渐降低。比较了聚酰胺、咪唑、三乙胺、三乙烯二胺四种固化剂的固化效果,结果表明,聚酰胺固化效果最好,咪唑的固化效果次之,三乙胺固化改性后的力学性能较差,而三乙烯二胺不能完全固化聚氨酯/环氧树脂复合材料。制得了拉伸强度为54.6MPa,冲击强度为12.025KJ m -2的高韧性聚氨酯/环氧树脂复合材料。[中图分类号] O633.13 [文献标识码] A [文章编号]1001-4926(2005)04-0020-07 Study on the modification of epoxy resin with polyurethane HU Jia-peng,XIONG Lian-ming,SHE N Zhen,ZHOU Wei (Department o f Environment and Chemistry En gineering ,Nanchan g I nstitute O f Aeronautical Technology ,N anchang,Jian gxi 330034)Key words:polyurethane;epoxy resin;modification Abstract:In this paper,the PU /EP compound material has been prepared with the method of the si tu-polymerization.And the influence of different factors has been examined on the properties of the PU/EP comp ound material.T he results show that when the amount of polyurethane was lower,the resistance to impact strength,tensile strength and thermal stability were better.But when the amount of polyurethane exceeds a certain scope,the tensile strength decreases with the i ncrease of impact strength.By comparing the solidification effects among four kinds of curing agents which are polyamide,i midazole,triethamine,trithlenediamine,the results show that the polyamide s solidification effects is best,the mechanics properties are not good after being modi fied by using triethylamine as solidification agent and the triethlenediamine can t completely solidify the compound material.The s trong tenacity PU/EP compound materials whose ensile strength and impact strength are 54.6MPa and 12.025KJ m -2respectively have been prepared. 环氧树脂是一种热固性树脂,因其有优异的粘结性、机械强度、电绝缘性及良好的工艺性等特性,而广泛应用于胶粘剂、涂料、复合材料基体等方面,但其质脆、耐热性、抗冲击韧性差等缺点限制了其更大的用途[1 2]。因此对它进行改性是一个非常活跃的研究领域。人们已分别采用聚硫橡胶、丁氰橡胶、氯丁橡胶、尼龙等来改性环氧树脂。其中以端羧基丁氰橡胶对环氧树脂进行增韧的研究为最多,增韧效果也较好,并且在工业上已得到广泛应用[3.4.5]。聚氨酯(PU)是一类常用的高分子材料,广泛应用于国民经济各领域。以甲苯 2,4 二异氰酸酯(TDI)和多元醇为原料合成的聚氨酯结构中,既有柔性的C C 链和C O C 链,又有活性的酰胺基团,且与环氧树脂相容性好,这些是聚氨酯改性环氧树脂的有利因素[6.7.8]。用聚氨酯改性环氧树脂,可以改善环氧树脂的力学性能,使其得到更广泛的应用。 1 实验部分 1.1 实验试剂及仪器1.1.1 化学试剂 2005年12月第20卷 第4期南昌航空工业学院学报(自然科学版) Journal of Nanchang Institute of Aeronautical Technology(Natural Science)Dec.,2005Vol.20 No.4

相关文档
最新文档