知识发现与数据挖掘

知识发现与数据挖掘
知识发现与数据挖掘

知识发现与数据挖掘

https://www.360docs.net/doc/2413794632.html,

2007-6-12

宋利

【摘要】本文介绍了知识发现及其数据挖掘的发展历史,数据挖掘常用技术及应用。

【关键词】知识发现,数据挖掘

1、引言

随着数据库技术的成熟和数据应用的普及,人类积累的数据量正在以指数速度迅速增长。进入九十年代,伴随着因特网(Internet)的出现和发展,以及随之而来的企业内部网(Intranet)和企业外部网(Extranet)以及虚拟私有网(VPNVirtualPrivatenetwork)的产生和应用,将整个世界联成一个小小的地球村,人们可以跨越时空地在网上交换数据信息和协同工作。这样,展现在人们面前的已不是局限于本部门,本单位和本行业的庞大数据库,而是浩瀚无垠的信息海洋,数据洪水正向人们滚滚涌来。当数据量极度增长时,如果没有有效的方法,由计算机及信息技术来提取有用信息和知识,人们也会感到面对信息海洋像大海捞针一样束手无策。据估计,一个大型企业数据库中数据,只有百分之七得到很好应用。这样,相对于“数据过剩”和“信息爆炸”,人们又感到“信息贫乏”(Informationpoor)和数据关在牢笼中”(datainjail),奈斯伯特(JohnNaisbett)惊呼“Wearedrowningininformation,butstarvingforknowledge”(人类正被数据淹没,却饥渴于知识)。

面临浩渺无际的数据,人们呼唤从数据汪洋中来一个去粗存精、去伪存真的技术。从数据库中发现知识(KDD)及其核心技术——数据采掘(DM)便应运而生了。

2、知识发现过程

知识发现(KDD)是从数据中发现有用知识的整个过程;数据开采(DM)是KDD过程中的一个特定步骤,它用专门算法从数据中抽取模式(patterns)。1996年,Fayyad、PiatetskyShapiror和Smyth将KDD过程定义为:从数据中鉴别出有效模式的非平凡过程,该模式是新的、可能有用的和最终可理解的。

KDD过程是多个步骤相互连接、反复进行人机交互的过程。具体包括:

①学习某个应用领域:包括应用中的预先知识和目标。

②建立目标数据集:选择一个数据集或在多数据集的子集上聚焦。

③数据预处理:去除噪声或无关数据,去除空白数据域,考虑时间顺序和数据变化等。

④数据转换:找到数据的特征表示,用维变换或转换方法减少有效变量的数目或找到数据的不变式。

⑤选定数据挖掘功能:决定数据挖掘的目的。

⑥选定数据挖掘算法:用KDD过程中的准则,选择某个特定数据挖掘算法(如汇总、分类、回归、聚类等)用于搜索数据中的模式。

⑦数据挖掘:搜索或产生一个特定的感兴趣的模式或一个特定的数据集。

⑧解释:解释某个发现的模式,去掉多余的不切题意的模式,转换某个有用的模式,以使用户明白。

⑨发现知识:把这些知识结合到运行系统中,获得这些知识的作用或证明这些知识。用预先、可信的知识检查和解决知识中可能的矛盾。

3、知识发现的核心――数据挖掘

所谓数据挖掘,就是从数据库中抽取隐含的、以前未知的、具有潜在应用价值的信息的过程。数据挖掘是KDD最核心的部分。数据挖掘与传统分析工具不同的是数据挖掘使用的是基于发现的方法,运用模式匹配和其它算法决定数据之间的重要联系。

数据挖掘算法的好坏将直接影响到所发现知识的好坏。目前大多数的研究都集中在数据挖掘算法和应用上。需要说明的是,有的学者认为,数据开采和知识发现含义相同,表示成KDD/DM。它是一个反复的过程,通常包含多个相互联系的步骤:预处理、提出假设、选取算法、提取规则、评价和解释结果、将模式构成知识,最后是应用。在实际,人们往往不严格区分数据挖掘和数据库中的知识发现,把两者混淆使用。一般在科研领域中称为KDD,而在工程领域则称为数据挖掘。

4、数据挖掘中常用技术

目前市面数据挖掘应用方面有着种类繁多的商品工具和软件,大致可以归纳为下列主要类型:

[1]传统主观导向系统:这是针对专业领域应用的系统。如基于技术分析方法对金融市场进行分析。采用的方法从简单的走向分析直到基于高深数学基础的分形理论和谱分析。这种技术需要有经验模型为前提.属于这类商品有美国的Metastak,SuperCharts,CandlestickForecaster和WallStreetMoney等

[2]传统统计分析:这类技术包括相关分析、回归分析及因子分析等。一般先由用户提

供假设,再由系统利用数据进行验证。缺点是需经培训后才能使用,同时在数据探索过程中,用户需要重复进行一系列操作。属于这类商品有美国的SAS,SPSS和Stargraphis等。由于近年来更先进的DM方法的出现和使用,这些厂商在原有系统中综合一些DM部件,以获得更完善的功能。以上两种技术主要基于传统的数理统计等数学的基础上,一般早已开始用于数据分析方面。

[3]神经元网络(NN)技术:神经元网络技术是属于软计算(SoftComputing)领域内一种重要方法,它是多年来科研人员进行人脑神经学习机能模拟的成果,已成功地应用于各工业部门。在DM(KDD)的应用方面,当需要复杂或不精确数据中导出概念和确定走向比较困难时,利用神经网络技术特别有效。经过训练后的NN可以想像具有某种专门知识的“专家”,因此可以像人一样从经验中学习。NN有多种结构,但最常用的是多层BP (backpropagation)模型。它已广泛地应用于各种DM(KDD)工具和软件中。有些是以NN 为主导技术,例如俄罗斯的PolyAnalyst,美国的BrainMaker,Neurosell和OWL等。NN技术也已广泛地做为一种方法嵌入各种DM成套软件中。其缺点是用它来分析复杂的系统诸如金融市场,NN就需要复杂的结构为数众多神经元以及连接数,从而使现有的事例数(不同的纪录数)无法满足训练的需要。另外由受训后的NN所代表的预测模型的非透明性也是其缺点,尽管如此,它还是广泛而成功地为各种金融应用分析系统所采用。

[4]决策树:在知识工程领域,决策树是一种简单的知识表示方法,它将事例逐步分类成代表不同的类别。由于分类规则是比较直观的,因而比较易于理解,。这种方法一般限于分类任务。在系统中采用这种方法的有美国的IDIS,法国的SIPINA。英国的Clementinc 和澳大利亚的C5.0。

[5]进化式程序设计(Evolutionaryprogramming):这种方法的独特思路是:系统自动生成有关目标变量对其他多种变量依赖关系的务种假设,并形成以内部编程语言表示的程序。内部程序(假设)的产生过程是进化式的,类似于遗传算法过程。当系统找到较好地描述依赖关系的一个假设时,就对这程序进行各种不同的微小修正,生成子程序组,再在其中选择能更好地改进预测精度的子程序,如此依次进行,最后获得达到所需精度的最好程序时,由系统的专有模块将所找到的依赖关系由内部语言形式转换成易于为人们理解的显式形式,如数学公式,预测表等。由于采用通用编程语言,这种主法在原则上能保证任何一种依赖关系和算法都能用这种语言来描述。这种方法的商用产品还只见诸俄罗斯的PolyAnalyst。据报导,它用于金融到医疗方面军的各种应用于,能获得者很好的结果。

[6]基于事例的推理方法(CBR—Casebasedreasoning):这种方法的思路非常简单,当

预测未来情况或进行正确决策时,系统寻找与现有情况相类似的事例,并选择最佳的相同的解决方案,这种方法能用于很多问题求解,并获得好的结果,其缺点是系统不能生成汇总过去经验的模块或规则。采用这种方法的系统有美国的PatternRecognitionWorkbench和法国的KATEtools.

[7]遗传算法(GA—GeneticAlgorithms):严格说来,DA不是GA应用的主要领域,它是解决各种组合或优化问题的强有力的手段,但它在现代标准仪器表中也用来完成DA任务。这种方法的不足之处是:这种问题的生成方式使估计所得解答的统计意义的任何一种机会不再存在。另外一方面,只有专业人员才能提出染色体选择的准则和有效地进行问题描述与生成。在系统中包含遗传算法的有美国的GeneHunter.

[8]非线性回归方法:这种方法的基础是,在预定的函数的基础上,寻找目标度量对其它多种变量的依赖关系。这种方法在金融市场或医疗诊断的应用场合,比较好的提供可信赖的结果。在俄罗斯的PalyAnalyst以及美国的Neuroshell系统中包括了这种技术。

上面所列DM技术不可能是详尽的囊括,因为多年来数理统计分析以及AI与KE的研究提供了种类繁多特点各异的手段,DM开发人员完全可以根据不同任务加以选择使用,另外近年来在软计算(SoftComputing)和不确定信息处理(dealingwithUncertaintyofinformation)方法的研究,促使DM(KDD)技术向更深层次发展。

需要说明的,上面所说的DM中的数据是指数据库中表格形式中的记录和条目,这种数据称作结构型数据(Structureddata)。在一个企业中,还有一类像文本和网页形式的数据,称作非结构型数据(unstructureddata)。它来自不同的信息源,如文本图像影视和音响等,当然文本是最主要的一种非结构数据。1995年分析家已预言,像文本这样非结构型数据将是在线存贮方面占支配地位的数据形式。到1998年初,在Internet上的信息网页数,已超过5亿。随着Internet的扩展和大量在线文本的出现,将标志这巨大的非结构型数据海洋中,蕴藏着极其丰富的有用信息即知识。人们从书本中获取知识方法是阅读和理解。开发一种工具能协助用户从非结构数据中抽取关键概念以及快速而有效地检索到关心的信息,这将是一个非常引人入胜的研究领域。目前,基于图书索引检索以及超文本技术的各类搜索引擎,能协助用户寻找所需信息,但要深入发掘这类数据中的有用用信息,尚需要更高层次的技术支持,人工智能领域有关知识表示及获取的方法(如语义网络概念映射等),和自然语言理解的研究成果,可望被采用。还可能要涉及到语言学心理学等领域。最近已出现针对文本的DM工具的报导。如IBM公司的TexMiner,NetQuestion,WedCawler和megaputer公司的

TextAnalyst等。

5、数据挖掘实际应用

DM(KDD)工具和软件已在各个部门得到很好的应用,并收到明显的效益。

[1]金融方面:银行信用卡和保险行业,预测存/贷款趋势,优化存/贷款策略,用DM将市场分成有意义的群组和部门,从而协助市场经理和业务执行人员更好地集中于有促进作用的活动和设计新的市场运动。

[2]在客户关系管理方面:DM能找出产品使用模式或协助了解客户行为,从而可以改进通道管理(如银行分支和ATM等)。又如正确时间销售(RightTimeMarKeting)就是基于顾客生活周期模型来实施的。

[3]在零售业/市场营销方面:是数据挖掘技术应用最早也是最重要的领域,DM用于顾客购货篮的分析可以协助货架布置,促销活动时间,促销商品组合以及了解滞销和畅销商品状况等商业活动。通过对一种厂家商品在各连锁店的市场共享分析,客户统计以及历史状况的分析,可以确定销售和广告业务的有效性。

[4]在过程控制/质量监督保证方面:DM协助管理大数量变量之间的相互作用,DM能自动发现出某些不正常的数据分布,暴露制造和装配操作过程中变化情况和各种因素,从而协助质量工程师很快地注意到问题发生范围和采取改正措施。

[5]在远程通讯部门:基于DM的分析协助组织策略变更以适应外部世界的变化,确定市场变化模式以指导销售计划.在网络容量利用方面,DM能提供对客户组类服务使用的结构和模式的了解,从而指导容量计划人员对网络设施作出最佳投资决策。

[6]化学/制药行业:从各种文献资料总自动抽取有关化学反应的信息,发现新的有用化学成分。在遥感领域针对每天从卫星上及其它方面来的巨额数据,对气象预报,臭氧层监测等能起很大作用。

[7]军事方面:使用DM进行军事信息系统中的目标特征提取、态势关联规则挖掘等。

总之,DM可广泛应用于银行金融、零售与批发、制造、保险、公共设施、政府、教育、远程通讯、软件开发、运输等各个企事业单位及国防科研上。据报导,DM的投资回报率有达400%甚至10倍的事例。

《数据挖掘》试题与标准答案

一、解答题(满分30分,每小题5分) 1. 怎样理解数据挖掘和知识发现的关系?请详细阐述之 首先从数据源中抽取感兴趣的数据,并把它组织成适合挖掘的数据组织形式;然后,调用相应的算法生成所需的知识;最后对生成的知识模式进行评估,并把有价值的知识集成到企业的智能系统中。 知识发现是一个指出数据中有效、崭新、潜在的、有价值的、一个不可忽视的流程,其最终目标是掌握数据的模式。流程步骤:先理解要应用的领域、熟悉相关知识,接着建立目标数据集,并专注所选择的数据子集;再作数据预处理,剔除错误或不一致的数据;然后进行数据简化与转换工作;再通过数据挖掘的技术程序成为模式、做回归分析或找出分类模型;最后经过解释和评价成为有用的信息。 2.时间序列数据挖掘的方法有哪些,请详细阐述之 时间序列数据挖掘的方法有: 1)、确定性时间序列预测方法:对于平稳变化特征的时间序列来说,假设未来行为与现在的行为有关,利用属性现在的值预测将来的值是可行的。例如,要预测下周某种商品的销售额,可以用最近一段时间的实际销售量来建立预测模型。 2)、随机时间序列预测方法:通过建立随机模型,对随机时间序列进行分析,可以预测未来值。若时间序列是平稳的,可以用自回归(Auto Regressive,简称AR)模型、移动回归模型(Moving Average,简称MA)或自回归移动平均(Auto Regressive Moving Average,简称ARMA)模型进行分析预测。 3)、其他方法:可用于时间序列预测的方法很多,其中比较成功的是神经网络。由于大量的时间序列是非平稳的,因此特征参数和数据分布随着时间的推移而变化。假如通过对某段历史数据的训练,通过数学统计模型估计神经网络的各层权重参数初值,就可能建立神经网络预测模型,用于时间序列的预测。

数据挖掘试题与答案

一、解答题(满分30分,每小题5分) 1. 怎样理解数据挖掘和知识发现的关系?请详细阐述之 首先从数据源中抽取感兴趣的数据,并把它组织成适合挖掘的数据组织形式;然后,调用相应的算法生成所需的知识;最后对生成的知识模式进行评估,并把有价值的知识集成到企业的智能系统中。 知识发现是一个指出数据中有效、崭新、潜在的、有价值的、一个不可忽视的流程,其最终目标是掌握数据的模式。流程步骤:先理解要应用的领域、熟悉相关知识,接着建立目标数据集,并专注所选择的数据子集;再作数据预处理,剔除错误或不一致的数据;然后进行数据简化与转换工作;再通过数据挖掘的技术程序成为模式、做回归分析或找出分类模型;最后经过解释和评价成为有用的信息。 2. 时间序列数据挖掘的方法有哪些,请详细阐述之 时间序列数据挖掘的方法有: 1)、确定性时间序列预测方法:对于平稳变化特征的时间序列来说,假设未来行为与现在的行为有关,利用属性现在的值预测将来的值是可行的。例如,要预测下周某种商品的销售额,可以用最近一段时间的实际销售量来建立预测模型。 2)、随机时间序列预测方法:通过建立随机模型,对随机时间序列进行分析,可以预测未来值。若时间序列是平稳的,可以用自回归(Auto Regressive,简称AR)模型、移动回归模型(Moving Average,简称MA)或自回归移动平均(Auto Regressive Moving Average,简称ARMA)模型进行分析预测。 3)、其他方法:可用于时间序列预测的方法很多,其中比较成功的是神经网络。由于大量的时间序列是非平稳的,因此特征参数和数据分布随着时间的推移而变化。假如通过对某段历史数据的训练,通过数学统计模型估计神经网络的各层权重参数初值,就可能建立神经网络预测模型,用于时间序列的预测。

数据挖掘简介

数据挖掘综述

数据挖掘综述 摘要:数据挖掘是一项较新的数据库技术,它基于由日常积累的大量数据所构成的数据库,从中发现潜在的、有价值的信息——称为知识,用于支持决策。数据挖掘是一项数据库应用技术,本文首先对数据挖掘进行概述,阐明数据挖掘产生的背景,数据挖掘的步骤和基本技术是什么,然后介绍数据挖掘的算法和主要应用领域、国内外发展现状以及发展趋势。 关键词:数据挖掘,算法,数据库 ABSTRACT:Data mining is a relatively new database technology, it is based on database, which is constituted by a large number of data coming from daily accumulation, and find potential, valuable information - called knowledge from it, used to support decision-making. Data mining is a database application technology, this article first outlines, expounds the background of data mining , the steps and basic technology, then data mining algorithm and main application fields, the domestic and foreign development status and development trend. KEY WORDS: data mining ,algorithm, database 数据挖掘产生的背景 上世纪九十年代.随着数据库系统的广泛应用和网络技术的高速发展,数据库技术也进入一个全新的阶段,即从过去仅管理一些简单数据发展到管理由各种计算机所产生的图形、图像、音频、视频、电子档案、Web页面等多种类型的复杂数据,并且数据量也越来越大。在给我们提供丰富信息的同时,也体现出明显的海量信息特征。信息爆炸时代.海量信息给人们带来许多负面影响,最主要的就是有效信息难以提炼。过多无用的信息必然会产生信息距离(the Distance of Information-state Transition,信息状态转移距离,是对一个事物信息状态转移所遇到障碍的测度。简称DIST或DIT)和有用知识的丢失。这也就是约翰·内斯伯特(John Nalsbert)称为的“信息丰富而知识贫乏”窘境。因此,人们迫切希望能对海量数据进行深入分析,发现并提取隐藏在其中的信息.以更好地利用这些数据。但仅以数据库系统的录入、查询、统计等功能,无法发现数据中存在的关系和规则,无法根据现有的数据预测未来的发展趋势。更缺乏挖掘数据背后隐藏知识的手段。正是在这样的条件下,数据挖掘技术应运而生。 数据挖掘的步骤 在实施数据挖掘之前,先制定采取什么样的步骤,每一步都做什么,达到什么样的目标是必要的,有了好的计划才能保证数据挖掘有条不紊的实施并取得成功。很多软件供应商和数据挖掘顾问公司投提供了一些数据挖掘过程模型,来指导他们的用户一步步的进行数据挖掘工作。比如SPSS公司的5A和SAS公司的SEMMA。 数据挖掘过程模型步骤主要包括:1定义商业问题;2建立数据挖掘模型;3分析数据;4准备数据;5建立模型;6评价模型;7实施。 1定义商业问题。在开始知识发现之前最先的同时也是最重要的要求就是了

数据挖掘与预测分析

数据挖掘是一个多学科交叉研究领域,它融合了数据库技术、人工智能、机器学习、统计学、知识工程、面向对象方法、信息检索、高性能计算以及数据可视化等最新技术的研究成果。数据挖掘是目前人工智能和数据库领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程。数据挖掘是一种决策支持过程,高度自动化地分析企业的数据,做出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。预测分析是一种统计或数据挖掘解决方案,包含可在结构化和非结构化数据中使用以确定未来结果的算法和技术。可为预测、优化、预报和模拟等许多其他用途而部署。预测分析可帮助用户评审和权衡潜在决策的影响力。可用来分析历史模式和概率,预测未来业绩并采取预防措施。 数据挖掘的含义是广泛的,每个人有每个人不同的体会,每个人有每个人的见解。但这些体会、见解是有许多共通之处的,从而可以归纳出数据挖掘的技术定义以及商业定义:从技术角度,数据挖掘(Data Mining)就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的但又是潜在有用的信息和知识的过程。它是涉及机器学习、模式识别、统计学、人工智能、数据库管理及数据可视化等学科的边缘学科。由于每个人的思维方式不同,这个定义可以被解读为以下几个层次:①数据源必须是真实的、大量的、含噪声的;②发现的是用户感兴趣的知识;③发现的知识要可接受、可理解、可运用;④这些知识是相对的,是有特定前提和约束条件的,在特定领域中具有实际应用价值。 预测是大数据的核心,数据挖掘之后的预测分析无疑成为开拓市场的重要环节。预测分析是一种统计或数据挖掘解决方案,包含可在结构化和非结构化数据中使用以确定未来结果的算法和技术。可为预测、优化、预报和模拟等许多其他用途而部署。预测分析和假设情况分析可帮助用户评审和权衡潜在决策的影响力。可用来分析历史模式和概率,以预测未来业绩并采取预防措施。这种级别的分析可以为规划流程提供各种信息,并对企业未来提供关键洞察。不仅可提供预测分析,使用户可以执行高级分析、发布并与更广泛的用户群交流。还可以提供

机器学习_KDD Cup 1999 Data Data Set(知识发现和数据挖掘杯1999数据集)

KDD Cup 1999 Data Data Set(知识发现和数据挖掘 杯1999数据集) 数据摘要: This is the data set used for The Third International Knowledge Discovery and Data Mining Tools Competition, which was held in conjunction with KDD-99 中文关键词: 多变量,分类,知识发现和数据挖掘,UCI, 英文关键词: Multivariate,Classification,KDD,UCI, 数据格式: TEXT 数据用途: This data set is used for classification. 数据详细介绍:

KDD Cup 1999 Data Data Set Abstract: This is the data set used for The Third International Knowledge Discovery and Data Mining Tools Competition, which was held in conjunction Data Set Information: Please see task description. Relevant Papers: Salvatore J. Stolfo, Wei Fan, Wenke Lee, Andreas Prodromidis, and Philip K. Chan. Cost-based Modeling and Evaluation for Data Mining With Application to Fraud and Intrusion Detection: Results from the JAM Project. [Web Link] 数据预览:

数据挖掘论文

数据挖掘课程论文 ——————数据挖掘技术及其应用的实现 数据挖掘技术及其应用的实现 摘要:随着网络、数据库技术的迅速发展以及数据库管理系统的广泛应用,人们积累的数据越来越多。数据挖掘(Data Mining)就是从大量的实际应用数据中提取隐含信息和知识,它利用了数据库、人工智能和数理统计等多方面的技术,是一类深层次的数据分析方法。本文介绍了数据库技术的现状、效据挖掘的方法以及它在Bayesian网建网技术中的应用:通过散据挖掘解决Bayesian网络建模过程中所遇到的具体问题,即如何从太规模效据库中寻找各变量之间的关系以及如何确定条件概率问题。 关键字:数据挖掘、知识获取、数据库、函数依赖、条件概率 一、引言: 数据是知识的源泉。但是,拥有大量的数据与拥有许多有用的知识完全是两回事。过去几年中,从数据库中发现知识这一领域发展的很快。广阔的市场和研究利益促使这一领域的飞速发展。计算机技术和数据收集技术的进步使人们可以从更加广泛的范围和几年前不可想象的速度收集和存储信息。收集数据是为了得到信息,然而大量的数据本身并不意味信息。尽管现代的数据库技术使我们很容易存储大量的数据流,但现在还没有一种成熟的技术帮助我们分析、理解并使数据以可理解的信息表示出来。在过去,我们常用的知识获取方法是由知识工程师把专家经验知识经过分析、筛选、比较、综合、再提取出知识和规则。然而,由于知识工程师所拥有知识的有局限性,所以对于获得知识的可信度就应该打个 折扣。目前,传统的知识获取技术面对巨型数据仓库无能为力,数据挖掘技术就应运而生。 数据的迅速增加与数据分析方法的滞后之间的矛盾越来越突出,人们希望在对已有的大量数据分析的基础上进行科学研究、商业决策或者企业管理,但是目前所拥有的数据分析工具很难对数据进行深层次的处理,使得人们只能望“数”兴叹。数据挖掘正是为了解决传统分析方法的不足,并针对大规模数据的分析处理而出现的。数据挖掘通过在大量数据的基础上对各种学习算法的训练,得到数据对象间的关系模式,这些模式反映了数据的内在特性,是对数据包含信息的更高层次的抽象[1]。目前,在需要处理大数据量的科研领域中,数据挖掘受到越来越多的关注,同时,在实际问题中,大量成功运用数据挖掘的实例说明了数据挖掘对科学研究具有很大的促进作用。数据挖掘可以帮助人们对大规模数据进行高效的分

数据挖掘复习章节知识点整理

数据挖掘:是从大量数据中发现有趣(非平凡的、隐含的、先前未知、潜在有用)模式,这些数据可以存放在数据库,数据仓库或其他信息存储中。 挖掘流程: 1.学习应用域 2.目标数据创建集 3.数据清洗和预处理 4.数据规约和转换 5.选择数据挖掘函数(总结、分类、回归、关联、分类) 6.选择挖掘算法 7.找寻兴趣度模式 8.模式评估和知识展示 9.使用挖掘的知识 概念/类描述:一种数据泛化形式,用汇总的、简洁的和精确的方法描述各个类和概念,通过(1)数据特征化:目标类数据的一般特性或特征的汇总; (2)数据区分:将目标类数据的一般特性与一个或多个可比较类进行比较; (3)数据特征化和比较来得到。 关联分析:发现关联规则,这些规则展示属性-值频繁地在给定数据集中一起出现的条件,通常要满足最小支持度阈值和最小置信度阈值。 分类:找出能够描述和区分数据类或概念的模型,以便能够使用模型预测类标号未知的对象类,导出的模型是基于训练集的分析。导出模型的算法:决策树、神经网络、贝叶斯、(遗传、粗糙集、模糊集)。 预测:建立连续值函数模型,预测空缺的或不知道的数值数据集。 孤立点:与数据的一般行为或模型不一致的数据对象。 聚类:分析数据对象,而不考虑已知的类标记。训练数据中不提供类标记,对象根据最大化类内的相似性和最小化类间的原则进行聚类或分组,从而产生类标号。 第二章数据仓库 数据仓库是一个面向主题的、集成的、时变的、非易失的数据集合,支持管理部门的决策过程。从一个或多个数据源收集信息,存放在一个一致的模式下,并且通常驻留在单个站点。数据仓库通过数据清理、变换、继承、装入和定期刷新过程来构造。面向主题:排除无用数据,提供特定主题的简明视图。集成的:多个异构数据源。时变的:从历史角度提供信息,隐含时间信息。非易失的:和操作数据的分离,只提供初始装入和访问。 联机事务处理OLTP:主要任务是执行联机事务和查询处理。 联系分析处理OLAP:数据仓库系统在数据分析和决策方面为用户或‘知识工人’提供服务。这种系统可以用不同的格式和组织提供数据。OLAP是一种分析技术,具有汇总、合并和聚集功能,以及从不同的角度观察信息的能力。

数据挖掘

一、数据挖掘概述 1、数据挖掘 定义:通过自动或半自动化的工具对大量的数据进行探索和分析的过程,其目的是发现其中有意义的模式和规律。 ——数据挖掘是一门技能,不是一种现成的产品。 2、数据挖掘能做什么 6种方法:分类(classification)、估计(estimation)、预测(prediction)、组合或关联法则(affinity grouping or association rules)、聚类(clustering)、描述与可视化(description and visualization) 前三种方法属于直接的数据挖掘,目标是应用可得到的数据建立模型,用其他可得到的数据来描述我们感兴趣某一变量。 后三种方法属于间接的数据挖掘,没有单一的目标变量,目标是在所有变量中发现某些联系。 1)分类:其特点是先对不同的类别加以定义,并由预先分类的样本构成训练集。任务是建立一个模型并应用这一模型对未分类数据进行分类。分类处理的是离散的结果。 2)估计处理的是连续的结果。 3)组合法的任务是确认哪些事物会一起出现。 4)聚类的任务是将相似的事物分成一类,差异较大的事物分在不同的类中。聚类与分类的区别是聚类并不依赖于事先确定好的组别。 3、技术层面的数据挖掘 1)算法与技巧 2)数据 3)建模实践 二、数据挖掘方法论:互动循环系统 1、数据挖掘的两种类型 一种是自上而下的方法,称之为有监督的数据挖掘方法,当明确知道要搜索的目标时,可以是用这种方法。 一种是自下而上的方法,称之为无监督的数据挖掘方法,实际就是让数据解释自己。此方法是在数据中寻找模式,然后把产生的结果留给使用者去判断其中哪些模式重要。 数据挖掘的结果通常是这两种方法的结合。 1)有监督的数据挖掘 黑匣子模型:使用一个或多个输入值产生一个输出的模型。我们并不关心模型如何运作,那只是黑盒子,我们只关心可能的最优结果。 我们根据已知事例,分析其相关资料,将分析结果用在从未联络的潜在客户,这样的模型称之为预测模型。预测模型使用历史记录来计算某些相应结果中的得分。成功预测的要领之一是拥有足够支持结果的数据来训练模型。 2)无监督的数据挖掘 半透明模型:有时需要使用模型能够得到与数据相关的重要信息,我们也需要了解模型的运作细节,这就好比一组半透明的盒子。 2、数据挖掘的互动循环过程 数据挖掘的互动过程是一种高层次的流程,由四个重要的业务过程所构成: 理解业务问题; 将数据转换成可执行的结果;

知识发现与数据挖掘

知识发现与数据挖掘 https://www.360docs.net/doc/2413794632.html, 2007-6-12 宋利 【摘要】本文介绍了知识发现及其数据挖掘的发展历史,数据挖掘常用技术及应用。 【关键词】知识发现,数据挖掘 1、引言 随着数据库技术的成熟和数据应用的普及,人类积累的数据量正在以指数速度迅速增长。进入九十年代,伴随着因特网(Internet)的出现和发展,以及随之而来的企业内部网(Intranet)和企业外部网(Extranet)以及虚拟私有网(VPNVirtualPrivatenetwork)的产生和应用,将整个世界联成一个小小的地球村,人们可以跨越时空地在网上交换数据信息和协同工作。这样,展现在人们面前的已不是局限于本部门,本单位和本行业的庞大数据库,而是浩瀚无垠的信息海洋,数据洪水正向人们滚滚涌来。当数据量极度增长时,如果没有有效的方法,由计算机及信息技术来提取有用信息和知识,人们也会感到面对信息海洋像大海捞针一样束手无策。据估计,一个大型企业数据库中数据,只有百分之七得到很好应用。这样,相对于“数据过剩”和“信息爆炸”,人们又感到“信息贫乏”(Informationpoor)和数据关在牢笼中”(datainjail),奈斯伯特(JohnNaisbett)惊呼“Wearedrowningininformation,butstarvingforknowledge”(人类正被数据淹没,却饥渴于知识)。 面临浩渺无际的数据,人们呼唤从数据汪洋中来一个去粗存精、去伪存真的技术。从数据库中发现知识(KDD)及其核心技术——数据采掘(DM)便应运而生了。 2、知识发现过程 知识发现(KDD)是从数据中发现有用知识的整个过程;数据开采(DM)是KDD过程中的一个特定步骤,它用专门算法从数据中抽取模式(patterns)。1996年,Fayyad、PiatetskyShapiror和Smyth将KDD过程定义为:从数据中鉴别出有效模式的非平凡过程,该模式是新的、可能有用的和最终可理解的。 KDD过程是多个步骤相互连接、反复进行人机交互的过程。具体包括: ①学习某个应用领域:包括应用中的预先知识和目标。

数据挖掘研究现状及发展趋势

数据挖掘研究现状及发展趋势摘要:从数据挖掘的定义出发,介绍了数据挖掘的神经网络法、决策树法、遗传算法、粗糙集法、模糊集法和关联规则法等概念及其各自的优缺点;详细总结了国内外数据挖掘的研究现状及研究热点,指出了数据挖掘的发展趋势。 关键词:数据挖掘;挖掘算法;神经网络;决策树;粗糙集;模糊集;研究现状;发展趋势 Abstract:From the definition of data mining,the paper introduced concepts and advantages and disadvantages of neural network algorithm,decision tree algorithm,genetic algorithm,rough set method,fuzzy set method and association rule method of data mining,summarized domestic and international research situation and focus of data mining in details,and pointed out the development trend of data mining. Key words:data mining,algorithm of data mining,neural network,decision tree,rough set,fuzzy set,research situation,development tendency 1引言 随着信息技术的迅猛发展,许多行业如商业、企业、科研机构和政府部门等都积累了海量的、不同形式存储的数据资料[1]。这些海量数据中往往隐含着各种各样有用的信息,仅仅依靠数据库的查询检索机制和统计学方法很难获得这些信息,迫切需要能自动地、智能地将待处理的数据转化为有价值的信息,从而达到为决策服务的目的。在这种情况下,一个新的技术———数据挖掘(Data Mining,DM)技术应运而生[2]。 数据挖掘是一个多学科领域,它融合了数据库技术、人工智能、机器学习、统计学、知识工程、信息检索等最新技术的研究成果,其应用非常广泛。只要是有分析价值的数据库,都可以利用数据挖掘工具来挖掘有用的信息。数据挖掘典型的应用领域包括市场、工业生产、金融、医学、科学研究、工程诊断等。本文主要介绍数据挖掘的主要算法及其各自的优缺点,并对国内外的研究现状及研究热点进行了详细的总结,最后指出其发展趋势及问题所在。 江西理工大学

大数据及数据挖掘方法

山东科技大学本科毕业设计(论文) 题目大数据及数据挖掘方法 学院名称数学与系统科学学院专业班级统计学10 学生姓名周广军 学号201001051633 指导教师高井贵 二0一四年六月

大数据及数据挖掘方法 摘要 随着计算机技术的革新,互联网新媒体的快速发展,人们的生活已经进入高速信息时代。我们每天的生活都要产生大量数据,因此我们获取数据的速度和规模不断增长,大量数据不断的被存入存储介质中形成海量数据。海量数据的存储、应用及挖掘已成为人们研究的重要命题。 数据挖掘是从存放在数据库、数据仓库或者其他信息库中大量的不完全的有噪声的模糊的随机的数据中提取隐含在其中的人们事先未知、但潜在有用的信息和知识过程。表现形式为:规则、概念、规律及模式等。数据挖掘是一门广义的交叉学科,从一个新的角度把数据库技术、人工智能、统计学等领域结合起来,从更深层次发掘存在于数据内部新颖、有效、具有潜在效用的乃至最终可理解的模式。在数据挖掘中,数据分为训练数据、测试数据、和应用数据。数据挖掘的关键是在训练数据中发现事实,以测试数据作为检验和修正理论的依据,把知识应用到数据中去。 本文首先说明了大数据的概念及兴起与发展历程,然后介绍各种主流的数据分析挖掘方法。 关键词:大数据数据挖掘数据分析方法

Abstract With the development of computer technology, the rapid development of Internet and new media, people's life has entered the information era. Our everyday life is to have a large amount of data, so we get the growing data speed and scale, a large amount of data have been stored in the form of mass data storage medium.The storage, application and mining massive data has become an important proposition that people study. Data mining is stored in the database from the data warehouse, or other information in the library a lot of incomplete, noise fuzzy random data in which the extraction of implicit previously unknown, but potentially useful information and knowledge process. Manifestation: the rules, concepts, rules and patterns. Data mining is a crossed subject, database technology, artificial intelligence, statistics and other fields together to from a new point of view, from a more deep excavation in data within a novel, effective, with potentially useful and ultimately understandable patterns. In data mining, data is divided into training data, test data, and the application of data. The key to data mining is fact finding in the training data, the test data as test and modify the theory basis, the application of knowledge to the data. This paper firstly illustrates the concept and the rise and development of large data, and then introduce various mainstream data mining method. Keywords: large data data mining method of data analysis

数据挖掘总结

1.【p26 1.3】 假设你是BigUniversity的软件工程师,任务是设计一个数据挖掘系统,分析学校课程数据库。该数据库包括如下信息:每个学生的姓名、地址和状态(例如本科生或研究生)所修课程以及他们的GPA(平均积分点)。描述你要选取的结构。该结构的每个成分的作用是什么。 答:该数据挖掘结构应该包括以下几个主要成分: (1)一个数据库、数据仓库或其它信息库,它由一系列包含学生和课程信息的数据库、数据仓库、电子表格、或其它信息库组成。 (2)一个数据库或数据仓库服务器,它根据用户的数据挖掘请求获取相关的数据。 (3)一个知识库,它包含领域知识,用于指导搜索或评估结果模式的兴趣度。例如,知识库可能包含概念层次结构和元数据(例如,描述来自多个异构数据源的数据)。 (4)一个数据挖掘引擎,它由一系列负责分类、关联、聚类分析、演变和偏差分析的功能模块组成。 (5)一个模式评估模块,它与数据挖掘模块串联工作,采用兴趣度的方法,将搜索重心投注在兴趣模式上。 (6)一个图形用户界面,它为用户提供对数据挖掘系统的交互式途径。 2.【p63 2.4】 中列数是最大值和最小值的平均数。 五数概括就是中位数、四分位数Q1和Q3、最小值和最大值 箱线图(盒图)在p35 分位数图是一种观察单变量数据分布的简单有效方法,他显示给定属性的所有数据(允许用户评估总的情况和不寻常的出现)。其次它绘出了分位数信息 3.【p63 2.5】 问:以计数、标准差和中位数为例说明分布的或代数的度量有利于有效的增量计算,而整体度量不行。 答:计数:当前的计数count可以作为一个值来保存,当有x个新值加进来时,可以很容易地更新count值为(count+x)。这就是分布式度量,可以很容易地进行增量计算。 标准差:如果我们之前存储了已有数据平方的和sum和它们的计数count,就可以很容易地利用公式得到新的标准差,只需要计算新加入数据平方的和并将其加入sum中,同时更新count值,随后将它们插入计

数据挖掘与数据仓库知识点总结

1、数据仓库定义:数据仓库是一种新的数据处理体系结构,它与组织机构的操作数据库分别维护,允许将各种应用系统一起,为统一的历史数据分析提供坚实的平台,对信息处理提供支持。数据仓库是面向主题的、集成的、相对稳定的、反映历史变化的数据集合,为企业决策支持系统提供所需的集成信息。设计和构造步骤:1)选取待建模的商务处理;2)选取商务处理的粒变;3)选取用于每个事实表记录的维;4)选取事实表中每条记录的变量 系统结构:(1)底层是仓库数据服务器,总是关系数据库系统。(2)中间层是OLAP服务器,有ROLAP 和MOLAP,它将对多维数据的操作映射为标准的关系操作(3)顶层是前端客户端,它包括查询和报表工具、分析工具和数据挖掘工具 2、数据仓库的多维数据模型:(1)星形模式:在此模型下,数据仓库包括一个大的包含大批数据并且不含冗余的中心表,一组小的附属表,维表围绕中心事实表显示的射线上。特征:星型模型四周的实体是维度实体,其作用是限制和过滤用户的查询结果,缩小访问围。每个维表都有自己的属性,维表和事实表通过关键字相关联。【例子:sales数据仓库的星形模式,此模式包含一个中心事实表sales,它包含四个维time, item, branch和location。 (2)雪花型模式:它是星形模式的变种,其中某些维表是规化的,因而把数据进一步分解到附加的表中。特征:雪花模型通过最大限度地减少数据存储量和联合较小的维表来改善查询性能,增加了用户必须处理的表数量和某些查询的复杂性,但同时提高了处理的灵活性,可以回答更多的商业问题,特别适合系统的逐步建设要求。【例子同上,只不过把其中的某些维给扩展了。 (3)事实星座形:复杂的应用可能需要多个事实表共享维表,这种模式可看作星形模式的汇集。 特征:事实星座模型能对多个相关的主题建模。例子:有两个事实表sales和shipping,它们可以共享维表time, item和location。 3、OLAP:即联机分析处理,是在OLTP基础上发展起来的、以数据仓库基础上的、面向高层管理人员和专业分析人员、为企业决策支持服务。特点:1.实时性要求不是很高。2.数据量大。3.因为重点在于决策支持,所以查询一般是动态的,也就是说允许用户随机提出查询要求。 OLAP操作:上卷:通过沿一个维的概念分层向上攀登,或者通过维归约,对数据立方体进行类聚。下钻:是上卷的逆操作,它由不太详细的数据得到更详细的数据,下钻可以通过沿维的概念分层向下或引入附加的维来实现。切片:对给定方体的一个维进行进行选择,导致一个子立方体。切块:通过对两个或多个维执行选择,定义子立方体。转轴:是一种可视化操作,它转动数据的视角,提供数据的替代表示。 OLTP:即联机事务处理,是以传统数据库为基础、面向操作人员和低层管理人员、对基本数据进行查询和增、删、改等的日常事务处理。OLTP的特点有:a.实时性要求高;b.数据量不是很大。C.交易一般是确定的,是对确定性数据进行存取。d.并发性要求高且严格的要求事务的完整性,安全性。 OLTP和OLAP的区别:1)用户和系统的面向性:OLTP面向顾客,而OLAP面向市场;2)数据容:OLTP 系统管理当前数据,而OLAP管理历史的数据;3)数据库设计:OLTP系统采用实体-联系(ER)模型和面向应用的数据库设计,而OLAP系统通常采用星形和雪花模型;4)视图:OLTP系统主要关注一个企业或部门部的当前数据,而OLAP 系统主要关注汇总的统一的数据;5)访问模式:OLTP访问主要有短的原子事务组成,而OLAP系统的访问大部分是只读操作,尽管许多可能是复杂的查询。 7、PageRank算法原理:1)在初始阶段:构建Web图,每个页面初始设置相同的PageRank 值,通过迭代计算,会得到每个页面所获得的最终PageRank值。2)在一轮中更新页面 PageRank得分的计算方法:每个页面将其当前的PageRank值平均分配到本页面包含的出 链上。每个页面将所有指向本页面的入链所传入的权值求和,即可得到新的PageRank得分。 优点:是一个与查询无关的静态算法,所有网页的PageRank值通过离线计算获得;有效减 少在线查询时的计算量,极大降低了查询响应时间。 缺点:1)人们的查询具有主题特征,PageRank忽略了主题相关性,导致结果的相关性和主 题性降低。2)旧的页面等级会比新页面高。因为即使是非常好的新页面也不会有很多上游, 除非它是某个站点的子站点。

周志华:数据挖掘与机器学习

机器学习与数据挖掘 周志华 南京大学计算机软件新技术国家重点实验室,南京210093 “机器学习”是人工智能的核心研究领域之一,其最初的研究动机是为了让计算机系统具有人的学习能力以便实现人工智能,因为众所周知,没有学习能力的系统很难被认为是具有智能的。目前被广泛采用的机器学习的定义是“利用经验来改善计算机系统自身的性能”[1]。事实上,由于“经验”在计算机系统中主要是以数据的形式存在的,因此机器学习需要设法对数据进行分析,这就使得它逐渐成为智能数据分析技术的创新源之一,并且为此而受到越来越多的关注。 “数据挖掘”和“知识发现”通常被相提并论,并在许多场合被认为是可以相互替代的术语。对数据挖掘有多种文字不同但含义接近的定义,例如“识别出巨量数据中有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程”[2]。其实顾名思义,数据挖掘就是试图从海量数据中找出有用的知识。大体上看,数据挖掘可以视为 机器学习和数据库的交叉,它主要利用机器 学习界提供的技术来分析海量数据,利用数 据库界提供的技术来管理海量数据。 因为机器学习和数据挖掘有密切的联 系,受主编之邀,本文把它们放在一起做一 个粗浅的介绍。 1 无处不在 随着计算机技术的飞速发展,人类收集数据、存储数据的能力得到了极大的提高,无论是科学研究还是社会生活的各个领域中都积累了大量的数据,对这些数据进行分析以发掘数据中蕴含的有用信息,成为几乎所有领域的共同需求。正是在这样的大趋势下,机器学习和数据挖掘技术的作用日渐重要,受到了广泛的关注。 例如,网络安全是计算机界的一个热门研究领域, 特别是在入侵检测方面,不仅有很多理论成果,还出现 了不少实用系统。那么,人们如何进行入侵检测呢?首 先,人们可以通过检查服务器日志等手段来收集大量的 网络访问数据,这些数据中不仅包含正常访问模式还包 含入侵模式。然后,人们就可以利用这些数据建立一个 可以很好地把正常访问模式和入侵模式分开的模型。这 样,在今后接收到一个新的访问模式时,就可以利用这 个模型来判断这个模式是正常模式还是入侵模式,甚至 判断出具体是何种类型的入侵。显然,这里的关键问题是如何利用以往的网络访问数据来建立可以对今后的访问模式进行分类的模型,而这正是机器学习

数据挖掘复习知识点整理超详细

必考知识点: 信息增益算法/ ID3决策树(计算) (详细见教材) 使用朴素贝叶斯分类预测类标号(计算) FP-TREE(问答) (详细见教材) 数据仓库的设计(详见第二章)(问答) (见PPT) 数值规约Equi-depth、equi-width、v-optimal、maxdiff(问答) (详细见教材) BUC (这个也要考,但不记得怎么考的了) 后向传播神经网络(名词解释) K-平均,K-中心点,DBSCAN 解析特征化(这个也要考) 总论 数据挖掘:是从大量数据中发现有趣(非平凡的、隐含的、先前未知、潜在有用)模式,这些数据可以存放在数据库,数据仓库或其他信息存储中。 挖掘流程: (1)学习应用域(2)目标数据创建集(3)数据清洗和预处理(4)数据规约和转换(5)选择数据挖掘函数(总结、分类、回归、关联、分类)(6)选择挖掘算法(7)找寻兴趣度模式(8)模式评估和知识展示(9)使用挖掘的知识 概念/类描述:一种数据泛化形式,用汇总的、简洁的和精确的方法描述各个类和概念,通过(1)数据特征化:目标类数据的一般特性或特征的汇总;(2)数据区分:将目标类数据的一般特性与一个或多个可比较类进行比较;(3)数据特征化和比较来得到。 关联分析:发现关联规则,这些规则展示属性-值频繁地在给定数据集中一起出现的条件,通常要满足最小支持度阈值和最小置信度阈值。 分类:找出能够描述和区分数据类或概念的模型,以便能够使用模型预测类标号未知的对象类,导出的模型是基于训练集的分析。导出模型的算法:决策树、神经网络、贝叶斯、(遗传、粗糙集、模糊集)。 预测:建立连续值函数模型,预测空缺的或不知道的数值数据集。 孤立点:与数据的一般行为或模型不一致的数据对象。 聚类:分析数据对象,而不考虑已知的类标记。训练数据中不提供类标记,对象根据最大化类内的相似性和最小化类间的原则进行聚类或分组,从而产生类标号。 第二章数据仓库 数据仓库是一个面向主题的、集成的、时变的、非易失的数据集合,支持管理部门的决策过程。从一个或多个数据源收集信息,存放在一个一致的模式下,并且通常驻留在单个站点。数据仓库通过数据清理、变换、继承、装入和定期刷新过程来构造。面向主题:排除无用数据,提供特定主题的简明视图。集成的:多个异构数据源。时变的:从历史角度提供信息,隐含时间信息。非易失的:和操作数据的分离,只提供初始装入和访问。 联机事务处理OLTP:主要任务是执行联机事务和查询处理。 联系分析处理OLAP:数据仓库系统在数据分析和决策方面为用户或‘知识工人’提供服务。这种系统可以用不同的格式和组织提供数据。OLAP是一种分析技术,具有汇总、合并和聚集功能,以及从不同的角度观察信息的能力。

数据挖掘及其应用

数据挖掘及其应用 Revised by Jack on December 14,2020

《数据挖掘论文》 数据挖掘分类方法及其应用 课程名称:数据挖掘概念与技术 姓名 学号: 指导教师: 数据挖掘分类方法及其应用 作者:来煜 摘要:社会的发展进入了网络信息时代,各种形式的数据海量产生,在这些数据的背后隐藏这许多重要的信息,如何从这些数据中找出某种规律,发现有用信息,越来越受到关注。为了适应信息处理新需求和社会发展各方面的迫切需要而发展起来一种新的信息分析技术,这种局势称为数据挖掘。分类技术是数据挖掘中应用领域极其广泛的重要技术之一。各种分类算法有其自身的优劣,适合于不同的领域。目前随着新技术和新领域的不断出现,对分类方法提出了新的要求。 。 关键字:数据挖掘;分类方法;数据分析 引言 数据是知识的源泉。但是,拥有大量的数据与拥有许多有用的知识完全是两回事。过去几年中,从数据库中发现知识这一领域发展的很快。广阔的市场和研究利益促使这一领域的飞速发展。计算机技术和数据收集技术的进步使人们可以从更加广泛的范围和几年前不可想象的速度收集和存储信息。收集数据是为了得到信息,然而大量的数据本身并不意味信息。尽管现代的数据库技术使我们很容易存储大量的数据流,但现在还没有一种成熟的技术帮助我们分析、理解并使数据以可理解的信息表示出来。在过去,我

们常用的知识获取方法是由知识工程师把专家经验知识经过分析、筛选、比较、综合、再提取出知识和规则。然而,由于知识工程师所拥有知识的有局限性,所以对于获得知识的可信度就应该打个折扣。目前,传统的知识获取技术面对巨型数据仓库无能为力,数据挖掘技术就应运而生。 数据的迅速增加与数据分析方法的滞后之间的矛盾越来越突出,人们希望在对已有的大量数据分析的基础上进行科学研究、商业决策或者企业管理,但是目前所拥有的数据分析工具很难对数据进行深层次的处理,使得人们只能望“数”兴叹。数据挖掘正是为了解决传统分析方法的不足,并针对大规模数据的分析处理而出现的。数据挖掘通过在大量数据的基础上对各种学习算法的训练,得到数据对象间的关系模式,这些模式反映了数据的内在特性,是对数据包含信息的更高层次的抽象。目前,在需要处理大数据量的科研领域中,数据挖掘受到越来越多的关注,同时,在实际问题中,大量成功运用数据挖掘的实例说明了数据挖掘对科学研究具有很大的促进作用。数据挖掘可以帮助人们对大规模数据进行高效的分析处理,以节约时间,将更多的精力投入到更高层的研究中,从而提高科研工作的效率。 分类技术是数据挖掘中应用领域极其广泛的重要技术之一。至今已提出了多种分类算法,主要有决策树、关联规则、神经网络、支持向量机和贝叶斯、k-临近法、遗传算法、粗糙集以及模糊逻辑技术等。大部分技术都是使用学习算法确定分类模型,拟合输入数据中样本类别和属性集之间的联系,预测未知样本的类别。训练算法的主要目标是建立具有好的泛化能力的模型,该模型能够准确地预测未知样本的类别。 1.数据挖掘概述 数据挖掘又称库中的知识发现,是目前人工智能和领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平

数据挖掘 - 知识点

1、数据库与数据仓库的对比 数据库数据仓库 面向应用面向主题 数据是详细的数据是综合和历史的 保持当前数据保存过去和现在的数据 数据是可更新的数据不更新 对数据的操作是重复的对数据的操作是启发式的 操作需求是事先可知的操作需求是临时决定的 一个操作存取一个记录一个操作存取一个集合 数据非冗余数据时常冗余 操作比较频繁操作相对不频繁 查询基本是原始数据查询基本是经过加工的数据 事务处理需要的是当前数据决策分析需要过去和现在的数据 很少有复杂的计算有很多复杂的计算 支持事务处理支持决策分析 2、OLTP与OLAP 联机事物处理(On Line Transaction Processing,OLTP)是在网络环境下的事务处理工作,以快速的响应和频繁的数据修改为特征,使用户利用数据库能够快速地处理具体的业务。 OLTP OLAP 数据库数据数据仓库数据 细节性数据综合性数据 当前数据历史数据 经常更新不更新,但周期刷新 对响应时间要求高响应时间合理 用户数量大用户数量相对较小 面向操作人员,支持日常操作面向决策人员,支持决策需要 面向应用,事务驱动面向分析,分析驱动 3、数据字典和元数据: 数据字典:是数据库中各类数据描述的集合,它在数据库设计中具有很重要的地位。由:数据项;数据结构;数据流;数据存储;处理过程5部分组成。 元数据(metadata)定义为关于数据的数据(data about data),即元数据描述了数据仓库的数据和环境。数据仓库的元数据除对数据仓库中数据的描述(数据仓库字典)外,还有以下三类元数据:(1) 关于数据源的元数据(2) 关于抽取和转换的元数据(3) 关于最终用户的元数据

相关文档
最新文档