基于高斯模型的放射性物质扩散模型

基于高斯模型的放射性物质扩散模型
基于高斯模型的放射性物质扩散模型

放射性气体扩散浓度预估模型

【摘要】本文是以日本地震引起的福岛核电站的核泄漏为背景,并以给出的数据为基础,研究某一假设核电站的核泄漏问题。我们通过收集相关的资料,并结合题目给出的数据,建立了高斯模型、连续点源高斯扩散模型解决了题目提出的四个问题。

针对问题一:考虑到泄漏源是连续、均匀和稳定的,我们运用散度、梯度、流量等数学概念,通过“泄漏放射性物质质量守恒”、“气体泄漏连续性定理”、 Guass 公式及积分中值定理得到了无界区域的抛物线型偏微分方程,然后再通过电源函数解出空间任意一点的放射性物质浓度的表达式,把此表达式定为模型一的前身。鉴于放射性物质的扩散受到诸多因素的影响,如:泄漏源的实际高度、地面反射等。我们以泄漏口为坐标原点建立三维坐标系,通过“像源法”处理地面反射对放射性物质浓度的影响,并由此对模型一的前身进行修正完善,得到模型一:高斯模型,即放射性物质浓度的预测模型。最后我们模拟了放射性物质无风扩散仿真图。

针对问题二:当风速为k m/s 时,我们根据放射性核素云团在大气中迁移和扩散的数值计算的基本方法和步骤,并以泄漏点源在地面的投影点为坐标原点,以风向方向为x 轴,铅直方向为z 轴,与x 轴水平面垂直方向为y 轴建立三维坐标系,地面的反射作用同样利用“像源法”进行处理,得到连续点源高斯扩散模型。考虑到地面反射、烟云抬升、放射性物质自身的沉降及雨水的吸附等对浓度的影响,我们对连续点源高斯扩散模型进行了修正,建立了修正的连续点源高斯扩散模型。最后利用大气稳定度确定了扩散参数,进而求解了模型。

针对问题三:经分析,问题三的提出是以问题二为基础的,模型三的建立只需要将模型二加以调整即可。我们以风速方向为x 轴正方向,将风速与放射性物质的扩散速度进行矢量运算,此问题则转化为求(,0,)L z 和(,0,)L z -两点处的放射性物质浓度,由此建立模型三,即上风和下风L 公里处放射性物质浓度浓度的预测模型。

针对问题四:首先,我们通过网络收集了相关数据,然后,我们结合模型二、模型三对数据进行整理代入,算出了日本福岛核电站泄漏的放射性物质扩散到中国东海岸和美国西海岸的浓度分别为334.242910/g m -?、432.385410/g m -?。

关键词:高斯模型 连续点源高斯扩散模型 核泄漏

一问题的重述

1.1问题背景

目前,核电站的发展能带来巨大的经济效益和社会效益,但核电站一旦发生核泄漏,将会给人们的生命健康和周边环境带来巨大的危害性影响。2011年3月日本的福岛核电站的放射性气体的核泄漏事件更让我们关注放射性气体泄漏时的浓度问题。因此,正确的测出大气中放射性物质的浓度在环境监测和安全评估中具有重要意义

1.2问题提出

有一座核电站遇自然灾害发生泄漏,浓度为

p的放射性气体以速度m kg/s

匀速排出,在无风的情况下,以速度s m/s匀速在大气中向四周扩散.

1)在无风的情况下,建立一个描述核电站周边不同距离地区、不同时段放射性物质浓度的预测模型。

2)当风速为k m/s时,给出核电站周边放射性物质浓度的变化情况。

3)当风速为k m/s时,分别给出上风和下风L公里处,放射性物质浓度的预测模型。

二符号说明

三模型假设

1、扩散过程中浓度在y、z轴上的变化分布是高斯分布。

2、放射性物质的扩散看作是空间某一连续点源向四周等强度地瞬时释放放射性物质,放射性物质在无穷空间扩散过程中不发生性质变化,且不计地形影响。

3、放射性物质扩散服从扩散定律,即单位时间通过单位法向面积的流量与它的浓度梯度成正比。

4、放射性物质在穿过降雨区域时,其强度由于雨水的吸收而减少,减少比率为常数。

5、假设地面对放射性气体起全反射作用,地面和海面对放射性气体没有吸附,将海面视为平原地区

6、假设风向为水平风向,且风向风速不随时间变化。

7、扩散过程中不考虑泄漏点内部温度的变化对气体扩散的影响。

四问题的分析

4.1问题(1)的分析

一座核电站遇自然灾害发生核泄漏,浓度为

p放射性气体以速度m kg/s匀速

排除,这近似于放射性物质源是连续均匀稳定的。在无风情况下,放射性气体以速度s m/s匀速在大气中向四周扩散,放射性气体的扩散服从扩散定律,即单位时间通过单位法向面积的流量与它的浓度梯度成正比。在这些条件下,我们明确了要研究的问题是点源连续泄漏的扩散问题,为了使建立的模型更加贴近实际,需考虑地面反射、核泄漏源的实际高度、降雨等因素对浓度分布的影响。由“扩散定律”“放射性物质质量守恒定律”“气体泄漏连续性定理”可得出无界区域的抛物线型偏微分方程。再通过假设条件建立未考虑地面反射、核泄漏源的实际高度、降雨等浓度影响因素的初步模型,然后从这些影响因素对模型进行完善,最终得出核电站周边不同距离地区、不同时段放射性物质浓度的预测模型。

4.2 问题(2)的分析

本问是探究风速为/

km s时,核电站周边放射性物质浓度的变化情况。当环境中空气流动产生风力时,在均匀湍流场中,扩散参数与下风向距离的关系是明确的,核泄漏时间较长时,可认为扩散是稳定的。在下风向的湍流扩散相对于风力引起的移流相可忽略不计,在流动方向建立x轴,不考虑横向速度和垂直速度。根据假设,空间中放射性物质的浓度服从高斯分布,可利用连续点源放射性物质的高斯扩散模型。放射性物质在大气中扩散受诸多因素影响,考虑泄漏源有效高度、放射性物质自身重力产生的重力沉降、雨水的吸附等因素对放射性物质浓度的影响是必要的,通过这些影响因素对高斯模型进行修正,然后利用修正后的高斯模型探究核电站周边放射性物质浓度的变化情况。

4.3 问题(3)的分析

本问是要求当风速为/

km s时,建立上风和下风L公里处的放射性物质浓度的预测模型。经分析,此问是问题(2)的延伸,我们只需建立合适的坐标系,将此问题转化为求具体两处的放射性物质的浓度,便能得出上风和下风L公里处的放射性物质浓度预测模型。

五模型的建立与求解

5.1模型一的建立与求解

5.1.1模型一的初步建立

以核泄漏点正下方的地面为坐标原点(0,0,0),平均风向为X轴、指向下风方向,铅直方向为Z轴,水平垂直于风向轴(X轴)为Y向,建立空间坐标系,则核电站泄漏点O距有效地面的高度为H,则泄漏点位置坐标为(0,0,)

O H。

图一:空间坐标系示意图

将气体从泄漏源泄漏时刻记作t=0,时刻t 无穷空间中任意一点坐标为(x,y,z )的浓度记为C (x,y,z,t ),根据假设2,单位时间通过单位法向面积的流量与浓度梯度成正比,则:

i q gradC δ=-?

(1)

(,,)i i x y z δ=是扩散系数,grad 表示梯度,负号表示由浓度高向浓度低的地

方扩散。

考察空间域Ω,其体积为V ,包围Ω的曲面为S ,S 为一规则的球面,S 外

法线向量为(-,-,1)x y

n z z

= 。则在(,)t t t +?内通过Ω的流量为:

1t t

t

s

Q q nd dt σ+?=??

?? (2)

Ω内放射性物质的增量为:

2[(,,,)(,,,)]V

Q C x y z t t C x y z t dV =+?-??? (3)

从泄漏源泄漏的放射性物质的总量为:

00t t t

Q p dVdt +?Ω

=?

???

(4)

根据“质量守恒定律”和“气体泄漏连续性原理”,单位时间内通过所选曲面S 的向外扩散的放射性物质的量与S 曲面内放射性物质增量之和,等于泄漏源在单位时间内向外泄漏的放射性物质。则:

012Q Q Q =+ (5)

即:

0[(,,,)(,,,)]t t

t t

t t

V

s

C x y z t t C x y z t dV q nd dt p dVdt σ+?+?Ω

+?-+?=????

?????? (6)

又根据曲面积分的Gauss 公式:

s

V

q nd divqdV σ?=????? (其中div 是散度记号) (7) 0(,,,)(,,,)[]t t t t t t V V C x y z t t C x y z t t dV divqdVdt p dVdt

t +?+?Ω

+?-∴??+=????????????

00()(,,,)(,,,)lim lim t t

t

t t kdiv gradC dt

C C x y z t t C x y z t t t

t

+??→?→?+?-∴==????

由以上两式得:0[

]V

V C dV t divqdV t p dV t t Ω

???+??=????????????

即为:

0[

]V

V V

C dV divqdV p dV t ?+=??????????

(8)

由以上公式并利用积分中值定理得:

222222()(),0,,,i i y z C C C C

div gradC t x y z t x y z

δδδδ????==+?+?>-∞<<∞???? (9) 这是无界区域的抛物线型偏微分方程,根据假设1,初始条件为作用在坐标原点的电源函数,记作

0(,,,0)(,,)C x y z Q x y z δ= (10)

0(,,)Q x y z δ表示泄漏源漏泄释放的放射性物质总量,是单位强度的电源函数。 方程(9)满足方程(10)的解为:

222

40

3/2

(,,,),(,,)(4)i x y z t

i Q C x y z t e

i x y z t δπδ++-

==

此模型只是在不考虑风速的情况下建立的,但为了使模型具有更加的实用性,下面我们将考虑泄漏源的实际高度、地面反射、降雨等因素对浓度的影响,完善模型。

5.1.2 模型一的最终建立

1. 地面反射对模型的完善

泄漏源有一定的高度,且泄漏点源是连续点源,则泄漏点源可视为高架连续点源,考虑到地面对扩散来的放射性气体有反射作用,根据假设4,地面对到达地面的扩散气体完全反射。这儿可认为地面就像镜子一样,对放射性气体起全放射作用,可用“像源法”处理,如图3,建立三个坐标系,一是以泄漏源(实源)为坐标原点;二是以泄漏源在地面的投影点为原点,p 点是空间的任意一点,坐标为(,,)x y z ;三是以泄漏源关于地面的像对称源(像源)为原点。把p 点放射性气体浓度看成两部分(实源与像源)作用之和。

图二: 高架连续点源扩散示意图

从以上分析知,p 点放射性气体的浓度为实源和像源的放射性气体扩散至此点浓度的叠加。则实际泄漏源(实源)对p 点的浓度贡献部分可用()

2z

z H e σ--

来表示;因为地面对扩散物质完全反射,则像对称源(像源)对p 点的浓度贡献部分可用

()2z z H e

σ+-

来表示。于是对(11)式所修正完善的模型为:

2222

()()(

)4440

3/21/2

(,,,),(,,)

(4)x y z x y z H z H t t t

i mp C x y z t e i x y z t δδδπδ-++-+-== (12)

我们自己模拟一组数据,利用matlab 进行仿真模拟,可实现该模型的模拟图

像。假设扩散系数i

δ=0.00001,放射性物质的初始浓度C =100,扩散时间t=1000000,放射源总量Q =1000000。(程序见附录一)

图三:核泄漏无风扩散

5.2 模型二的建立与求解

5.2.1 模型二的建立

放射性核素云团在大气中迁移和扩散的数值计算基本上可分为二步。第一步根据大气动力学理论进行所关心区域中风场的计算,其理论基础是大气运动方程、连续性方程、状态方程、热力学方程和水汽方程构成的基本方程组。在大气科学研究领域中,已有多个实用的大气环流模式。第二步进行已知风场中放射性核素云团迁移和扩散的计算,可采用类似于处理大气污染的方法,假设放射性核素云团不影响大气流体速度和温度,求解放射性核素的连续性方程。

当风速为/k m s 时,利用连续点源高斯扩散模型分析核电站周边放射性物质浓度的变化情况。此泄漏点源是有边界点源,泄漏点源的实际高度为H 。以泄漏点源在地面的投影点为坐标原点,以风向方向为x 轴,铅直方向为z 轴,与x 轴水平面垂直方向为y 轴建立三维坐标系,由于扩散过程中浓度在y 、z 轴上的变化分布符合高斯分布,所以下风向的任意一点(,,)C x y z 的浓度函数为:

2

2

(,,)()ay bz C x y z A x e

e

--= (13)

根据概率统计我们可以得出方差的表达式为:

2

2

220

00

0(,,)(,,)(,,)(,,)y z

y C x y z dy

z C x y z dz C x y z dy

C x y z dz σσ∞

∞????==?????

?

?

??

? (14)

进而源强的积分公式可以根据假设得出:

(,,)Q uC x y z dydz ∞

-∞-∞

=?

?

(15)

把(13)式代入(14)积分可以得出:

2

21212y z a b σσ?=???

?=??

(16)

将(13)式和(16)式代入(15)式可以得出:

()2y z

Q

A x u πσσ=

(17)

最后再将把(16)、(17)式代入(13)式可以得出:

22(,,)exp 222y z y z Q y z C x y z u πσσσσ????=-+?? ??????

? (18)

上式为无界空间连续点源扩散的高斯模型,然而在实际中,由于地面的影响,烟羽是有界的。根据假设可以把地面看做一镜面,对泄漏的气体起反射作用,同样我们可以利用“像源法”进行处理,原理和示意图在模型一的修正中提到,因此我们得出:

实源的贡献为:

22

22

111()(,,)exp()exp()222y z y z

Q y z H C x y z u πσσσσ-=-- (19) 像源的贡献为:

22

22

211()(,,)exp()exp()222y z y z Q y z H C x y z u πσσσσ+=-- (20)

则该处的实际浓度为:

12(,,)(,,)(,,)C x y z C x y z C x y z =+ (21)

综合上面的公式得到连续点源高斯烟羽扩散模型:

222

222

()()(,,,,)exp(){exp[]exp[]}2222y z y y z Q y z H z H C x y z t H u πσσσσσ-+=--+- (22) 5.2.2 模型二的修正

连续点源高斯扩散模型虽然能分析风力对浓度的影响情况,但为了能更准确的探究风力对核电站周边放射性物质浓度的影响情况,我们将考虑泄漏源有效高度、放射性物质自身的沉降作用和雨水吸附作用对放射性物质浓度的影响,进而对连续点源高斯扩散模型进行修正。

5.2.2.1 泄漏源有效高度对模型的修正

如图2所示,泄漏源的有效高度h 是由两部分组成,一是核泄漏口距有效地面的高度H ;二是在实际核扩散中核泄漏气团从泄漏口排出时,由于受到热力抬升和本身动力抬升,进而产生的一个附加高度H ?。因而h H H =+?。

H

?

图四: 烟云抬升示意图

附加高度H ?,主要由核泄漏处泄漏气体的气流具有一初始动量(使他们继续垂直上升)和气流温度高于环境温度产生的静浮力决定,这两种动力引起的烟云浮力运动称烟云抬升,附加高度H ?即烟云抬升高度,烟云抬升有利于降低地面的污染物浓度。而且H ?还受到风速、地形地貌等多种因素的影响。 A :当大气稳定度为中性时,计算烟气抬升高度利用Holland 公式

31

(1.5 2.7)(1.59.610)s s a s H s v D T T H D v D Q u T u

--?=

+=+? (23) 式中: u :泄漏源出口处的平均风速,m/s ;

s v :放射性气体出口流速,已知为m m/s ;

D :泄漏源出口的有效内径;

H Q :泄漏源的热排放率,kw ;

s T :泄漏源出口处温度,K ;

a T :环境大气平均温度,K ,取当地近五年的平均值;

B :当大气条件为不稳定时,利用Briggs 公式计算烟气抬升高度 当21000H Q kw >时

10x H < 1/32/31

0.362()H

H Q x u -

?=?? 10x H > 1/32/3

11.55()H H Q H u

-

?=??

当21000H Q kw <时

*3x x < 1/31/31

0.362()H H Q x u -

?=?? *3x x > 3/52/0.332H

H Q H ?=? *3/53/56/50.33()H x Q H u -=??

综上所述,泄漏源的有效高度为:

h H H =+? (24) 5.2.2.2 考虑放射性物质自身的沉降作用对模型的修正

放射性物质的沉降速度取决于空气阻力和自身重力,利用斯托克斯公式表示沉降速度:

2

18s gd V ρα

= (25)

ρ:放射性物质粒子密度,3/kg m ;

g :重力加速度,9. 806 5/m s ;

d :放射性物质粒子直径,m ;

α:空气的动力粘性系数,可取51.810-?/()kg m s ?;

s V :沉降速度,/m s ,含碘放射性核素的沉降速度为s V = 1. 1 cm/ s ; 在扩散过程中重力沉降的位移叠加在羽流中心线上,使中心线向下倾斜,放射性物质粒子则相当于在下倾的中心线上扩散,放射性物质的扩散与沉降的叠加可认为是放射源以s V 的速度向下移动。在x 处向下移动的垂直距离为s s V x

V t α

=

,即泄

漏源的有效高度h 下降了s s V x

V t α

=

,泄漏源的有效高度成为s s V x

h V t h α

-=-

,考

虑到地面的全反射作用,反射项的有效高度也变成了s s V x

h V t h α

-=-。则修正后

的连续点源高斯扩散模型为:

2

22

22

2()()(,,,)exp(){exp[]exp[]}2222s s y z y

y

z

V x

V x

z h z h Q y

C x y z h u α

α

πσσσσ

σ

-+

+-

=

--

+-

5.2.2.3 考虑雨水的吸附作用对模型的修正

降雨对放射性物质的浓度有一定影响,即雨水对放射性物质有一定的吸附作

用。以吸附系数β来表示雨水对放射性物质吸附作用的大小,β与降雨强度的关系为:b aI β=,式中I 为降雨强度,,a b 为经验系数。如果放射性物质含碘,则

5810,0.6a b -=?=;反之,51.210,0.5a b -=?=。

雨水的吸附作用导致的放射性物质浓度的减小,可对源强进行修正:

()exp()x

Q x Q βα

=- (27)

则进一步修正的连续点源高斯扩散模型为:

2

22

22

2()()()(,,,)exp(){exp[]exp[]}2222s s y z y

y

z

V x

V x

z h z h Q x y

C x y z h u α

α

πσσσσ

σ

-+

+-

=

--

+-

(28)

综上所述:修正的连续点源高斯扩散模型为:

222

222

2()()()(,,,)exp(){exp[]exp[]}2222()exp(),18s s y z y y z

b

s V x V x z h z h Q x y C x y z h u x Q x Q aI

gd V ααπσσσσσββαρα?

-++-?=--+-????=-=??

?=

????

(29)

5.2.3 模型二的求解

模型所需参数的选取对模型的求解至关重要,通常情况下气象参数的选取是

利用该地区多年气象资料,采取工业安全与环保统计的方法进行有关参数的确定,而其他扩散参数则以实际测定为准。

A:大气稳定度的计算

根据我国标准(GB/ T 13201—91) )制订地方大气污染物排放标准的技术方法的规定,大气稳定度分为6级,分别为A—极不稳定、B—不稳定、C—弱不稳定、D—中性、E—弱稳定、F—稳定。该方法的技术路线是:根据核泄漏源所在地的经度和纬度以及泄漏的日期和时间计算当时的太阳高度角

h,利用天气条件确定

辐射等级,然后利用辐射等级和风速确定大气稳定度,最后查扩散参数幂函数表,确定扩散参数。

首先,然后,由太阳高度角

h和云量查出太阳辐射等级;最后,再根据地面

风速确定当时的大气稳定度。

B:扩散参数的确定

σσ的确定,采用Briggs给出一套扩散参数幂函数表,如表三和扩散参数,

y z

表四:

表四:Briggs 扩散参数(工业区和城市中心区)

5.3 模型三的建立与求解

当风速为/km s 时,建立上风和下风L 公里处放射性物质浓度的预测模型。

此问题可以利用模型二进行求解,将模型二中的u 替换成k s + ,其中k

为风速的

向量表示,s 为泄漏点放射性气体自身扩散速度的向量表示。根据假设,风速k

沿x 轴正方向,恒为正。对上风向L 公里处放射性气体浓度计算时,s

方向沿x 轴负方向,为负;对下风向L 公里处放射性气体浓度计算时,s

方向沿x 轴正方向,

为正。因此此问题转化为求(,0,)L z 和(,0,)L z -两处的放射性气体浓度,即风速为

/km s 时,上风和下风L 公里处放射性物质浓度的预测模型为:

222

22(,0,)222

22()()()exp(){exp[]exp[]},2()222=()()()exp(){exp[]exp[]}2(+)222s s y z y z z L z s s y z y z z V x V x z h z h Q x y L k s C V x V x z h z h Q x y L k s ααπσσσσσααπσσσσσ±?

-++-?--+-?-??

?-++-?--+-??

上风向处,下风向处 (30)

我们根据模型分别模拟下风向和上风向的放射性物质扩散仿真图,如图 五、图六:(程序分别见附录二、三)

图五:核泄漏下风向扩散图

图六:核泄漏上风向扩散图

七参考文献

[1] 卓金武,魏永生,秦建,李必文.Matlab在数学建模中的应用[M].北京:

北京航空航天大学出版社,2011.

[2] 程勇,于林,姚安林.采用高斯模型分析输气管道泄漏后气体的扩散[J] .内

蒙古石油化工,2010 ,14:49-51.

[3] 张斌才,赵军.大气污染扩散的高斯烟羽模型及其GIS集成研究[J] .环境

监测管理与技术,2008,20(5):17-19.

八附录

附录一:

%绘制当没有风影响时放射性物质的扩散图形function []=expand(k,Q,C,t,r,ws,wa,wd)

R=sqrt((-4)*k*t*log((C/((1-r)*Q)).*(4*pi*k*t)^(1.5))) for i=0:24:t/3600

if (wd*(i/24))<=R

R=R-wd;

R0=R;

t=0:0.1:0.5*pi;

p=0:0.1:2*pi;

wsx=ws*cos(wa)*i;

wsy=ws*sin(wa)*i;

[theta,phi]=meshgrid(t,p);

x=R*sin(theta).*cos(phi)+wsx;

y=R*sin(theta).*sin(phi)+wsy;

z=R*cos(theta);

hold on

surfc(x,y,z)

end

end

R0=R0

%绘制其它相关信息

view(20,70) %观察角度

title('核泄漏无风影响扩散');%图形标题

xlabel('x'); %x轴标记

ylabel('y'); %y轴标记

zlabel('z'); %z轴标记

axis([-10,15,-10,20,0,12]) %xyz轴显示范围余量

x0=ws*cos(wa)*1000000/3600

y0=ws*sin(wa)*1000000/3600

R1=sqrt((x0)^2+(y0)^2)

End

附录二:

Q=2; %输入源强

k=2; %输入风速

s=0.5;

u=k+s;

d=1; %步长

Z=0.4;

x=10:d:300; %下风向距离

y=-70:d:70; %横风向距离

[x,y]=meshgrid(x,y);

by0=0.08*x.*(1+0.0001*x).^(-1/2); bz0=0.06*x.*(1+0.0015*x).^(-1/2); tempy1=-y.*y./by0./by0./2;

tempy2=2.718282.^(tempy1);

c=Q/pi/u*((by0.*bz0).^(-1)).*tempy2 Cs=2000; %输入求解的条数contour(x,y,c,Cs);

shading interp;

colorbar;

grid;

title('核泄漏模拟图一')

附录三:

Q=2; %输入源强

k=2; %输入风速

s=0.5;

u=k-s;

d=1; %步长

Z=0.4;

x=-300:d:-10; %下风向距离

y=-70:d:70; %横风向距离

[x,y]=meshgrid(x,y);

by0=0.08*x.*(1+0.0001*x).^(-1/2); bz0=0.06*x.*(1+0.0015*x).^(-1/2); tempy1=-y.*y./by0./by0./2;

tempy2=2.718282.^(tempy1);

c=Q/pi/u*((by0.*bz0).^(-1)).*tempy2 Cs=2000; %输入求解的条数contour(x,y,c,Cs);

shading interp;

colorbar;

grid;

title('核泄漏模拟图二')

2011数学建模A题优秀论文

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

基于系统综合评价的城市表层土壤重金属污染分析 摘要 本文针对城市表层土壤重金属污染问题,首先对各重金属元素进行分析,然后对各种重金属元素的基本数据进行统计分析及无量纲化处理,再对各金属元素进行相关性分析,最后针对各个问题建立模型并求解。 针对问题一,我们首先利用EXCEL 和 SPSS 统计软件对各金属元素的数据进行处理,再利用Matlab 软件绘制出该城区内8种重金属元素的空间分布图最后通过内梅罗污染 模型:2 /12 max 22?? ? ? ??+=P P P 平均综,其中平均P 为所有单项污染指数的平均值,max P 为土壤环境中 针对问题二,我们首先利用EXCELL 软件画出8种元素在各个区内相对含量的柱状图,由图可以明显地看出各个区内各种元素的污染情况,然后再根据重金属元素污染来源及传播特征进行分析,可以得出工业区及生活区重金属的堆积和迁移是造成污染的主要原因,Cu 、Hg 、Zn 主要在工业区和交通区如公路、铁路等交通设施的两侧富集,随时间的推移,工业区、交通区的土壤重金属具有很强的叠加性,受人类活动的影响较大。同时城市人口密度,土地利用率,机动车密度也是造成重金属污染的原因。 针对问题三,我们从两个方面考虑建模即以点为传染源和以线为传染源。针对以点为传染源我们建立了两个模型:无约束优化模型()[]()[]() 22y i y x i x m D -+-=,得到污染源的位置坐标()6782,5567;有衰减的扩散过程模型得位置坐标(8500,5500),模型为: u k z u c y u b x u a h u 222 2222222-??+??+??=??, 针对以线为传染源我们建立了l c be u Y ?-+=0模型,并通过线性拟合分析线性污染源的位置。 针对问题四,我们在已有信息的基础上,还应收集不同时间内的样点对应的浓度以及各污染源重金属的产生率。根据高斯浓度模型建立高斯修正模型,得到浓度关于时间和空间的表达式ut e C C -?=0。 在本题求解过程中,我们所建立的模型与实际紧密联系,有很好的通用性和推广性。但在求点污染源时,我们假设只有一个污染源,而实际上可能有多个点污染源,从而使得误差增大,或者使污染源的位置够不准确。 关键词 内梅罗污染模型 无量纲化 相关性 回归模型 高斯浓度模型

微分方程建模案例

第五章微分方程建模案例 微分方程作为数学科学的中心学科,已经有三百多年的发展历史,其解法和理论已日臻完善,可以为分析和求得方程的解(或数值解)提供足够的方法,使得微分方程模型具有极大的普遍性、有效性和非常丰富的数学涵。微分方程建模包括常微分方程建模、偏微分方程建模、差分方程建模及其各种类型的方程组建模。微分方程建模对于许多实际问题的解决是一种极有效的数学手段,对于现实世界的变化,人们关注的往往是其变化速度、加速度以及所处位置随时间的发展规律,其规律一般可以用微分方程或方程组表示,微分方程建模适用的领域比较广,涉及到生活中的诸多行业,其中的连续模型适用于常微分方程和偏微分方程及其方程组建模,离散模型适用于差分方程及其方程组建模。本章主要介绍几个简单的用微分方程建立的模型,让读者一窥方程的应用。下面简要介绍利用方程知识建立数学模型的几种方法: 1.利用题目本身给出的或隐含的等量关系建立微分方程模型 这就需要我们仔细分析题目,明确题意,找出其中的等量关系,建立数学模 型。 例如在光学里面,旋转抛物面能将放在焦点处的光源经镜面反射后成为平行光线,为了证明具有这一性质的曲线只有抛物线,我们就是利用了题目中隐含的条件——入射角等于反射角来建立微分方程模型的。 2.从一些已知的基本定律或基本公式出发建立微分方程模型

我们要熟悉一些常用的基本定律、基本公式。例如从几何观点看,曲线 y y(x)上某点的切线斜率即函数y y(x)在该点的导数;力学中的牛顿第二运 动定律:F ma ,其中加速度a 就是位移对时间的二阶导数,也是速度对时间 的一阶导数等等。从这些知识出发我们可以建立相应的微分方程模型。 例如在动力学中,如何保证高空跳伞者的安全问题。对于高空下落的物体, 我们可以利用牛顿第二运动定律建立其微分方程模型, 设物体质量为m ,空气阻 力 系数为k ,在速度不太大的情况下,空气阻力近似与速度的平方成正比;设时 刻t 时物体的下落速度为v ,初始条件:v (o ) 0.由牛顿第二运动定律建立其微 分方程模型: 求解模型可得: 体在地面上的投影面积。根据极限速度求解式子,在m,, 一定时,要求落地速 度w 不是很大时,我们可以确定出s 来,从而设计出保证跳伞者安全的降落伞的 直径大小来 3?利用导数的定义建立微分方程模型 dv m 一 dt mg kv 2 ? k(exp[2t 由上式可知,当t 其中,阻力系数k 1) 时,物体具有极限速度: lim v t mg :k , s , 为与物体形状有关的常数, 为介质密度,s 为物 、mg(exp[2t 1)

高斯扩散模型.

大气污染扩散 第一节大气结构与气象 有效地防止大气污染的途径,除了采用除尘及废气净化装置等各种工程技术手段外,还需充分利用大气的湍流混合作用对污染物的扩散稀释能力,即大气的自净能力。污染物从污染源排放到大气中的扩散过程及其危害程度,主要决定于气象因素,此外还与污染物的特征和排放特性,以及排放区的地形地貌状况有关。下面简要介绍大气结构以及气象条件的一些基本概念。 一、大气的结构 气象学中的大气是指地球引力作用下包围地球的空气层,其最外层的界限难以确定。通常把自地面至1200 km左右范围内的空气层称做大气圈或大气层,而空气总质量的98.2%集中在距离地球表面30 km以下。超过1200 km的范围,由于空气极其稀薄,一般视为宇宙空间。 自然状态的大气由多种气体的混合物、水蒸气和悬浮微粒组成。其中,纯净干空气中的氧气、氮气和氩气三种主要成分的总和占空气体积的99.97%,它们之间的比例从地面直到90km高空基本不变,为大气的恒定的组分;二氧化碳由于燃料燃烧和动物的呼吸,陆地的含量比海上多,臭氧主要集中在55~60km高空,水蒸气含量在4%以下,在极地或沙漠区的体积分数接近于零,这些为大气的可变的组分;而来源于人类社会生产和火山爆发、森林火灾、海啸、地震等暂时性的灾害排放的煤烟、粉尘、氯化氢、硫化氢、硫氧化物、氮氧化物、碳氧化物为大气的不定的组分。 大气的结构是指垂直(即竖直)方向上大气的 密度、温度及其组成的分布状况。根据大气温度在 垂直方向上的分布规律,可将大气划分为四层:对 流层、平流层、中间层和暖层,如图5-1所示。 1. 对流层 对流层是大气圈最靠近地面的一层,集中了大 气质量的75%和几乎全部的水蒸气、微尘杂质。受 太阳辐射与大气环流的影响,对流层中空气的湍流 运动和垂直方向混合比较强烈,主要的天气现象云 雨风雪等都发生在这一层,有可能形成污染物易于 扩散的气象条件,也可能生成对环境产生有危害的 逆温气象条件。因此,该层对大气污染物的扩散、输送和转化影响最大。 大气对流层的厚度不恒定,随地球纬度增高而降低,且与季节的变化有关,赤道附近约

数学建模(关于扩散问题的建模)

关于金属汞扩散的问题 引言: 我们都知道,重金属丢弃到土地后会严重污染环境,同时对人体健康造成危害。著名的秦始皇陵墓,据专家在陵墓周围取数据观测,周围的汞含量呈现出外渗的趋势。也就是说,随着外围半径的扩大,汞含量浓度递减,并且随着时间的增加,汞渗透的半径越来越大。这就证明了汞金属在泥土中会发生扩散。因此,我们就提出,能否通过在外部取样的观察数据,建立一个数学模型,来判断陵墓中心处汞的浓度呢? 模型的提出: 由于汞的扩散快慢跟本身的化学性质,物理性质有关。还有,由于在土堆里头,在各个方向上受到的力不相同和各种因素的影响,因此扩散的速度也会有差异。例如东西方向和南北方向会因为地球的自传而扩散速度会不一样。另一方面,汞在扩散的过程,由于泥土的吸收,化学反应等因数的影响,也会影响到汞的扩散。 为此我们引入一个函数u(x, y, z, t),它表示t时刻在(x,y,z)处汞的浓度。我们的目标就是利用所观测到的数据,来推断出这个函数的表达式。 模型符号的引入: 为了表示汞在想x,y,z 方向上的扩散速度,我们在此引

入扩散系数: 2 a :x 方向上的扩散系数 2 b :y 方向上的扩散系数 2 c :z 方向上的扩散系数 2 k :由于泥土吸收,化学反应而引起的衰减系数 M :扩散源汞的质量 模型假设: 1。假设有一汞扩散源,汞从扩散源沿 x ,y ,z 三个方向向四周扩散。 2。扩散前周围空间此物质的浓度为零。 3。扩散过程中没有人为因素的影响。 模型建立: u(x, y, z, t) 是 t 时刻点 (x, y , z) 处某物质的浓度。任取一个闭曲面 S ,它所围的区域是Ω,由于扩散,从 t 到 t t +? 时刻这段时间内,通过 S 流入Ω的质量为 1 M 2 2 2 1(cos cos cos )d d t t t S u u u M a b c S t x y z αβγ+????= ++???? ?? 其中 2 a ,2 b ,2 c 分别是沿 x ,y ,z 方向的扩散系数。 由高斯公式 : ? ??? ?+Ω ??+??+??= t t t t z y x z u c y u b x u a M d d d d )(2 2 2 2 2 2 2 2 2 1

创新扩散理论

創新擴散理論 Theory of Diffusion of Innovation 國立嘉義大學生物事業管理所 研究生 張雅卿 摘要 擴散到底是什麼,其實在我們的生活中有許多它的應用。有些人常不解為什麼一項好的發明,或一個可以造福個人或眾人的觀念,在推廣的時候,沒有想像中的容易;而相對不好的產品,卻可以繼續大行其道。 進步的科技與快速的研發,加速產品生命發展的腳步,更激烈了市場爭戰情勢,企業須不斷進行創新以取代進入衰退期的產品與事業、降低所面對之風險。然而並非所有創新事物皆得以為廣大市場所接受,曾有學者估計過, 新產品上市時的失敗率約為75% ,於僅有四分之一的創新可能成功的情況下,企業進行商情分析時莫不謹慎,有鑑於此,許多學者紛紛投入潛在市場的預估、新產品採用與擴散行為之研究,所以在此心得中,主要會針對企業的角度,探討創新擴散理論的應用。 一、為何要創新 「創新」是一種可以使企業資產再增添新價值的活動。當前企業普遍採行的持績改善,自廣義的定義,也可以被視為是一種「創新」,亦即企業的創新活動在本質上就包含持續改善產品、製程、客戶服務等 (陳志龍,2005)。 近年來,隨著網路及通訊科技的蓬勃發展,使得全球的經貿環境快速的變化,顧客的需求朝著多元化及個人化發展,市場區隔化越來越明顯,使得產業競爭更加激烈。當企業降低成本的效用偏低、企業的獲利空間有限時,提升產品或服務的附加價值,藉以區隔市場其他產品以創造利基市場的創新活動,就成為企業一項最好的競爭優勢。因此企業若要在瞬息萬變的環境中掌握競爭優勢,企業本身就要不斷地創新,利用創新來加強企業競爭力與適應力。「不創新,即滅亡」已成為今天企業奉為圭臬的一種說法。創新雖有較大的風險,但若企業不敢冒這種風險以創造未來世界,其實是冒另一種看不見的更大風險。

基于高斯烟羽模型的放射性气体的扩散

关于核电站泄漏放射性气体扩散的预估模型 摘要 由于核泄漏导致放射性气体扩散对经济和人身造成巨大损失的报道在国内外屡见不鲜,本文中日本福岛核泄漏事件更加使我们认识到对放射性气体扩散进行合理性的预估从而为以后类似于此的突发性事件作积极有效的补救措施的重要性。 对于问题一我们运用了点源烟羽扩散模型,用抛物型二阶偏微分方程解出理 想状态下的不同时刻、不同地点的浓度表达式: 222 4 32 (,,,) (4) x y z kt Q C x y z t e kt π ++ - =。 此模型是建立在以泄漏点为圆心的一个无界球形区域内的。为了使模型更符合实际情况,能够被应用于现实生活中,我们在泄漏源有效高度的确定和考虑地面反射与吸收作用下对此模型进行了修正,最终得到问题一浓度的确定公式 (14)(,,,) C x y z t的表达式。 对于问题二,我们采用高位连续点源烟羽扩散模式,其扩散服从正态分布,并根据概率论的相关知识通过数学公式推导,得到理想状态下的高斯模型,由泄漏源有效高度,地面反射等因素的影响对其进行修正,又由于重力干沉积,雨洗湿沉积以及核衰变等因素对源强的影响,对高斯烟羽模型再次进行修正,最终得到泄漏源周边浓度变化情况即公式(32),在风速为k m/s的条件下浓度为(,,,) C x y z H。 对于问题三,我们在第二问建立的模型的基础上,引入时间变量 r t和t,和 扩散速度变量s,在风速和扩散速度的共同影响下,可分别求出上风向和下风向浓度预估模型即公式(40)和(41)。 对于问题四,本文参阅整理大量气象、地理、新闻资料,选择我国东海岸典型地域---山东半岛和美国西海岸典型地域---加利福尼亚州作为研究对象,综合考虑对应海域平均风速及风向、地理距离、海水对放射性物质扩散的部分反射系数等因素,并通过计算机模拟,预测出放射性核物质将经过6天到达我国东海岸,且131I浓度预测值为:0.1053 mBq m- ?,,经过6.8天到达美国西海岸,且氙-133浓度的预测值几乎为零,与实际情况比较吻合。 关键词点源烟羽扩散模式偏微分方程 P-G曲线高斯修正模型仿真

创新扩散案例

创新扩散案例 【篇一:创新扩散案例】 (一)创新扩散理论 创新扩散理论是由罗杰斯于20世纪60年代提出的一个关于通过媒介劝服人们接受新观念、新事物、新产品的理论,侧重大众传媒对社会和文化的影响。一个创新扩散过程至少包含5个环节:知晓、劝服、决定、实施和确定。罗杰斯将采纳者分为五类:创新者、早期采纳者、前期追随者、后期追随者、迟钝者。① 大众传播与人际传播在创新扩散的各阶段扮演着不同的角色,大众传媒与人际交流的结合是新观念传播和说服人们利用这些创新的最有效途径。② (二)以微信的推广应用解析创新扩散理论的依据 2010年起中国移动互联网业兴起了一场“对讲潮”,多种移动通信软件(如:微信、米聊、kiki和talkbox等)受到用户欢迎。③腾讯旗下的微信成了其中的领军者。它是腾讯公司于2011年1月21日推出的一款通过网络快速发送语音短信、视频、图片和文字,支持多人群聊的手机聊天软件。 微信的成功推广几乎囊括了创新扩散研究的主要元素,学生群体在接受这一新兴通信软件的过程中,会受到大众传播媒介、周边同学朋友和微信自身特性等因素的影响。相较而言,大学生群体中微信的推广更符合创新扩散理论模式。 (三)研究方法 本研究使用了问卷调查和深度访谈法。问卷调查时间为2012年4月28日至5月5日,调查对象为重庆市主城三所高校的本科生。以配额抽样的方式,发放调查问卷120份,回收有效问卷100份。其中16名学生使用微信时间超过一年,属于早期使用者,因此对其进行了深度访谈。 研究发现 在被调查者中有73%的人使用过或正在使用微信,可见在大学生群体中使用微信的现象比较普遍。 (一)知晓阶段 1.早期使用者获知微信的渠道 16位微信的早期使用者在微信推出后两个月内就开始使用,此种行动不是因为受到他人影响,而是因为大众媒介对微信的推广信息引

基于高斯模型的放射性物质扩散模型

放射性气体扩散浓度预估模型 【摘要】本文是以日本地震引起的福岛核电站的核泄漏为背景,并以给出的数据为基础,研究某一假设核电站的核泄漏问题。我们通过收集相关的资料,并结合题目给出的数据,建立了高斯模型、连续点源高斯扩散模型解决了题目提出的四个问题。 针对问题一:考虑到泄漏源是连续、均匀和稳定的,我们运用散度、梯度、流量等数学概念,通过“泄漏放射性物质质量守恒”、“气体泄漏连续性定理”、 Guass 公式及积分中值定理得到了无界区域的抛物线型偏微分方程,然后再通过电源函数解出空间任意一点的放射性物质浓度的表达式,把此表达式定为模型一的前身。鉴于放射性物质的扩散受到诸多因素的影响,如:泄漏源的实际高度、地面反射等。我们以泄漏口为坐标原点建立三维坐标系,通过“像源法”处理地面反射对放射性物质浓度的影响,并由此对模型一的前身进行修正完善,得到模型一:高斯模型,即放射性物质浓度的预测模型。最后我们模拟了放射性物质无风扩散仿真图。 针对问题二:当风速为k m/s 时,我们根据放射性核素云团在大气中迁移和扩散的数值计算的基本方法和步骤,并以泄漏点源在地面的投影点为坐标原点,以风向方向为x 轴,铅直方向为z 轴,与x 轴水平面垂直方向为y 轴建立三维坐标系,地面的反射作用同样利用“像源法”进行处理,得到连续点源高斯扩散模型。考虑到地面反射、烟云抬升、放射性物质自身的沉降及雨水的吸附等对浓度的影响,我们对连续点源高斯扩散模型进行了修正,建立了修正的连续点源高斯扩散模型。最后利用大气稳定度确定了扩散参数,进而求解了模型。 针对问题三:经分析,问题三的提出是以问题二为基础的,模型三的建立只需要将模型二加以调整即可。我们以风速方向为x 轴正方向,将风速与放射性物质的扩散速度进行矢量运算,此问题则转化为求(,0,)L z 和(,0,)L z -两点处的放射性物质浓度,由此建立模型三,即上风和下风L 公里处放射性物质浓度浓度的预测模型。 针对问题四:首先,我们通过网络收集了相关数据,然后,我们结合模型二、模型三对数据进行整理代入,算出了日本福岛核电站泄漏的放射性物质扩散到中国东海岸和美国西海岸的浓度分别为334.242910/g m -?、432.385410/g m -?。 关键词:高斯模型 连续点源高斯扩散模型 核泄漏

云团扩散模型

1 云团扩散模型 根据物质泄漏后所形成的气云的物理性质的不同,可以将描述气云扩散的模型分为非重气云模型和重气云模型两种[5-13]。 1.1 非重气云模型 高斯模型是一种常用的非重气扩散模型,高斯烟羽(Plume model)模型又称高架点连续点源扩散模型,适用于连续源的扩散,即连续源或泄放时间大于或等于扩散时间的扩散。 高斯烟团(Puff model)模型适用于短时间泄漏的扩散,即泄放时间相对于扩散时间比较短的情形,如突发性泄放等。若假设气体云内空间上的分布为高斯分布,则地面地处风向的烟团浓度分布算式为 式中, c(x,y,H)——点(x,y,H)处浓度值,mg/m3; Q——源强,即单位时问的排放量,mg/s; u——环境平均风速,m/s; σx,σy,σz——扩散参数; H——源高(烟团高度),m; x——下方向到泄漏原点的距离,m; y,z——侧风方向、垂直向上方向离泄漏原点的距离,m。 高斯模式的实际应用效果很大程度上依赖于如何给定模式中的一些参数,尤其要注意源强、扩散参数等的确定。 源强与污染物的物理化学属性、扩散方式、释放点的地理环境等有关。扩散参数表征大气边界层内

湍流扩散的强弱,是高斯模式的一项重要数据。高斯扩散模式所描述的扩散过程(实质上也包含了在实际应用中对高斯模式的一些限制)主要有: 1)下垫面平坦、开阔、性质均匀,平均流场稳定,不考虑风场的切变。 2)扩散过程中,污染物本身是被动、保守的,即污染物和空气无相对运动,且扩散过程中污染物无损失、无转化,污染物在地面被反射。 3)扩散在同一温度层结中发生,平均风速大于1.0 m/s。 4)适用范围一般小于10~20 km。 1.2 重气云模型 由于重气本身的特殊性,在重气扩散领域也有大量基于不同理论的模型。鉴于重气扩散与中性或浮性气体扩散有着明显的区别,目前国内外已开发大量的不同复杂程度的重气扩散模型,如箱模型、相似模型、LTA-HGDM模型、CFD模型等。 1.2.1 箱(BOX)模型 箱模型是指假定浓度、温度和其他场,在任何下风横截面处为矩形分布等简单形状,这里的矩形分布是指在某些空间范围内场是均匀的,而在其他地方为零。该类模型预报气云的总体特征,如平均半径、平均高度和平均气云温度,而不考虑其在空间上的细节特征。重气效应消失后其行为表现为被动气体扩散,所以该类模型还包括被动扩散的高斯模型及对它的修正。 1.2.2 层流及湍流大气环境中的重气扩散(LTA-HGDM)模型 LTA-HGDM模型(Heavy Gas Dispersion Model in Lsaminar and Turbulent Atmosphere层流及湍流大气环境中的重气扩散模型)以箱模型为基础,结合虚点源模型,能描述重气泄漏扩散整个过程。模型同三维有限元模型相比,具有形式简单、原始输入数据运算速度快等优点。 LTA-HGDM模型的建立基于以下几点假设: 1)危险性气体初时泄漏时,其外形呈正圆柱形(H=2R)。 2)初始时刻泄漏源即此核电站内部的浓度、温度呈均匀分布。 3)扩散过程不考虑泄漏源即此核电站内部温度的变化,忽略热传递、热对流及热辐射。

新传理论17:创新与扩散

新传理论17:创新与扩散 1962年,美国社会学家罗杰斯在对农村中新事物的采纳和普及过程进行深入调查的基础上,发表了研究报告《创新与普及》,不仅补充修正了两级传播、发展了多级传播模式,还提出了关于新事物传播的重要理论——创新扩散理论。 创新扩散理论 提出背景 (1)早期阐释者:法国社会学家塔尔德和佩姆伯顿 塔尔德提出“模仿法则”,集中研究人们的心理过程。在这一过程中,个人知晓、权衡,然后做出决定——接受还是抛弃某个文化特质。他认为,人类通过一系列的“暗示”过程,将事物的特性与人类“欲求”联系起来,这一决策过程存在某种“模仿法则”。 佩姆伯顿认为,创新被采用的基础是人们之间以某种形式的“文化互动”表现出来的偶然现象。他发现了某种特殊的S型采用曲线——正态积累曲线,生物增长、人口增长、经济发展速度等都存在着某种普遍的规律。他认为,“某个特质被人们接受的过程之所以呈现上述分布形式,是因为这一过程中的文化互动正好符合正态分布的条件。” (2)美国田园社会学的杂交玉米实验 社会学家布莱斯·瑞恩和尼尔·格罗斯(Bryce Ryan & Neal Gross)在衣阿华州艾奥瓦两个社区的农民中进行了推广杂交玉米种子的研究。他们选择两个社区对种植玉米的农民进行个人访问,试图解释为什么农民会改变种植习惯、通过什么渠道得到了哪些信息、这些信息对决策产生了什么影响等问题。综合分析统计结果,研究者发现:创新的采用取决于既存的人际联系和对媒介的习惯性接触这两个因素的共同作用。 理论内容 1962年,罗杰斯(Everet M. Rogers)和休梅克(Pamela Sheomaker)通过深入调查农村中新品种、新农药、新机械等新事物的采用和普及过程,出版《创新的扩散》。对大众传播和人际传播的作用进行了比较,对“两级传播”理论做出了重要的补充,重点研究了社会进程中创新成果是怎样为人知晓以及如何在社会系统中得以推广的。 (1)罗杰斯认为,创新扩散是指一种基本的社会过程,在这个过程中,主观感受到的关于某个新主意的信息被传播。通过一个社会构建过程,某项创新的意义逐渐地显现。 (2)罗杰斯把采用创新的决定过程分为五个阶段:

大气污染物扩散高斯模型模拟

大气污染物扩散的高斯模型模拟:可视化模拟点源大气污染的扩散Gaussian Atmospheric Dispersion Model 突发性大气污染事故时有发生,对大气污染扩散进行模拟和分析,有利于减小事故的危害,减轻人员伤亡和财产损失。高斯扩散模型是国际原子能机构(IAEA)推荐使用于重气云扩散模拟的数学模型,该模型在非重气云扩散的应用日益广泛。高斯扩散模型是描述大气对有害气体的输移、扩散和稀释作用的物理或数学模型,是进行灾害预测和救援指挥的有力手段之一。 高斯扩散模型 高斯模型又分为高斯烟团模型和高斯烟羽模型。大气污染物泄漏分为瞬时泄漏和连续泄漏,瞬时泄漏是指污染物泄放的时间相对于污染物扩散的时间较短如突发泄漏等的情形,连续泄漏则是指污染物泄放的时间较长的情形。瞬时泄漏采用高斯烟团模型模拟,而连续泄漏采用高斯模型烟羽模型模拟。高斯模型适用于非重气云气体,包括轻气云和中性气云气体。要求气体在扩散过程中,风速均匀稳定。 在高斯烟团模型中,选择风向建立坐标系统,即取泄漏源为坐标原点,x轴指向风向,y轴表示在水平面内与风向垂直的方向,z轴则指向与水平面垂直的方向,具体公式见式: (mg/s); x、y、z轴上的扩散系数,需根据大气稳定度选择参数计算得到(m);x、y、z表示x、y、z上的坐标值(m);u 表示平均风速(m/s);t表示扩散时间(s);H 表示泄漏源的高度(m)。 同理,高斯烟羽模型的表达式如: 技术方法 若用高斯模型算出空间每一个点在一个时刻的污染浓度,这个计算量是很大的。因此所设计的系统一般都是采用先进行图层网格化,由高斯模型计算出有限个网格点的上的污染物浓度,在进行空间内插得到面上每一个点的污染物浓度,并由此得到污染物浓度的等值线。整个过程的示意图如图所示

污染物扩散模型-深圳数学建模

赛区评阅编号(由赛区组委会填写): 2015高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号(从A/B/C/D中选择一项填写): C 我们的报名参赛队号(12位数字全国统一编号): 参赛学校(完整的学校全称,不含院系名):温州医科大学 参赛队员 (打印并签名) :1. 章成俊 2. 杨超 3. 谢锦 指导教师或指导教师组负责人 (打印并签名): 日期:年月日

赛区评阅编号(由赛区组委会填写): 2015高教社杯全国大学生数学建模竞赛 编号专用页 送全国评阅统一编号(由赛区组委会填写): 全国评阅随机编号(由全国组委会填写):

对垃圾处理厂污染的动态监控及居民补偿 摘要 城市垃圾处理问题是一个世界性难题。目前垃圾焚烧正逐步成为中国垃圾处理的主要手段之一。本论文构根据题目设置的垃圾处理厂规模,建立了环境动态监控体系,并根据潜在污染风险对周围居民进行了合理经济补偿的设计。 对于问题(1),为了实现对垃圾焚烧厂烟气排放及相关环境影响状况的动态监控,本论文在高斯烟羽模型的基础上进行改进,引入温度、降雨对污染物扩散的影响,建立了新的污染物扩散模型。本论文创新性的提出了风雨影响指数M,用来衡量风向、降雨对颗粒物扩散的影响。本论文将抽象的污染物含量形象化,利用空气污染指数API描述具体的污染程度及其给周围居民带来的影响。并且从不同角度给出了模型检验,验证了所建模型的准确性。 对于问题(1)具体赔偿方案的制定,在综合考虑了不同方位风向频率、受污染时间、受污染程度的基础上,本论文使用了层次分析法,并且进行了一致性检验,使得赔偿方案具有说服力。通过MATLAB编程,计算出当政府和垃圾处理厂共支付风险赔偿金为N时,得出居住地的每位居民应得的赔偿金额计算公式。对于监测点的设置,经计算共需21个,具体布置情况见后文。 对于问题(2),在题目所述的发生事故的情况下,对污染物的具体含量进行了合理的预测与假设。模拟出酸性物质与颗粒物的影响范围,并根据具体的污染程度设置不同的污染区。对每个污染区的不同情况设置更改监测点的设置,并且在问题(1)的基础上对居民的经济补偿进行合理修改。 关键词:高斯烟羽模型,层次分析法,空气污染指数,烟气抬升公式 一、问题重述 “垃圾围城”是世界性难题,在今天的中国显得尤为突出。数据显示,目前全国三分之二以上的城市面临“垃圾围城”问题,垃圾堆放累计侵占土地75万亩。因此,垃圾焚烧正逐步成为中国垃圾处理的主要手段之一。然而,由于政府监管不力、投资者目光短浅等多方面的原因,致使前些年各地建设的垃圾焚烧电厂在运营中出现了环境污染问题,给垃圾焚烧技术在我国的推广造成了很大阻力,许多城市的新建垃圾焚烧厂选址都出现因居民反对而难以落地的局面。在垃圾焚烧厂运行监管方面,目前主要是在垃圾焚烧厂内进行测量监控,缺少从周边环境视角出发的外围动态监控,因而难以形成为民众所信服的全方位垃圾焚烧厂环境监控体系。 深圳市某地点计划建立一个中型的垃圾焚烧厂,计划处理垃圾量1950吨/天(设置三台可处理垃圾650吨/天的焚烧炉,排烟口高度80米,每天24小时运转)。从构建环境动态监控体系、并根据潜在污染风险对周围居民进行合理经济补偿的需求出发,有关部门希望能综合考虑垃圾焚烧厂对周围带来环境污染以及其他危害的多种因素(例如,焚烧炉的污染物排放量、居住点离开垃圾焚烧厂的距离、风力和风向及降雨等气象条件、地形地貌以及建筑物的遮挡程度等等),在进行科学定量分析的基础

污染空气的扩散模型

放射性气体扩散的预估模型 摘要:由于放射性气体泄漏造成惨重损失的报道在国际屡见不鲜,近日日本福岛核电站的放射性气体的泄漏事件更让我们关注放射性气体泄漏时在环境中的浓度问题,为了今后事故发生后提供积极的补救措施, 所以对放射性气体的扩散作深入的研究是很有必要的。本文结合高斯烟羽模型、线性拟合,以及微分方程模型,运用MA TLAB软件,分析了泄漏源强度、风速、大气稳定度参数、地面粗糙度参数和计算精确度等的因素对放射性气体扩散的影响,预测了放射性气体浓度在不同时间,不同地区的浓度变化,并且本文模型中的数据可以根据不同的实际情况而加以改变,因而使本文的应用范围大大增加,可以适用于具有较强的应用性。文章首先在第一问中利用MA TLAB软件对数据进行线性拟合,采用微分方程模型得到核电站周边放射性气体在不同地区,不同时间段的浓度变化,得出随着离泄漏源距离的延伸,最终放射性物质的浓度越来越小,趋近于零,即当L趋向无穷是,C(x,y,z,t)趋向于零;当时间趋于无穷时,C(x,y,z,t)也趋于无穷。问题二,问题三中,建立以核电站周边不同地区得距离以及风速为因变量,设置各个主要因素的参考数据,同时,利用高斯烟羽模型对核电站周边地区的浓度进行预测,然后,利用MATLAB软件,将相关数据代入程序,我们得到核电站周边地区的浓度分布的等高曲线。问题四中,通过实际收集数据,集合核电站周边地区的浓度等高曲线,可以直观的看出日本福岛核电站对我国东海岸以及美国西海岸的影响。 一.问题的提出 1.1背景的介绍 目前,核电的发展给国家带来了巨大的经济效益和社会效益,但核电正常运行以及发生泄露时不可避免的会有气载放射性核素排出,这样就给周围的环境产生了一定的影响,因此,正确的测出大气中放射性物质的浓度在环境检测以及安全评估中具有重要意义。 1.2需要解决的问题 的放射性气体以匀速排出,设有一座核电站遇自然灾害发生泄漏,浓度为p 速度为m kg/s,在无风的情况下,匀速在大气中向四周扩散, 速度为s m/s. (1)请你建立一个描述核电站周边不同距离地区、不同时段放射性物质浓度的预测模型。 (2)当风速为k m/s时,给出核电站周边放射性物质浓度的变化情况。 (3)当风速为k m/s时,分别给出上风和下风L公里处,放射性物质浓度的预测模型。

创新的扩散-罗杰斯

创新扩散模型是对创新采用的各类人群进行研究归类的一种模型,它的理论指导思想是在创新面前,部分人会比另一部分人思想更开放,更愿意采纳创新。这个模型也被称之为创新扩散理论(Diffusion of Innovations Theory),或多步创新流动理论(Multi-Step Flow Theory)创新采用曲线(Innovation Adoption Curve)。 创新扩散:指一种创新以一定的方式随时间在社会系统的各种成员间进行传播的过程。“创新扩散理论”是美国学者埃弗雷特?罗杰斯提出的。 埃弗雷特?罗杰斯认为创新是:“一种被个人或其他采纳单位视为新颖的观念、时间或事物。”而一项创新应具备相对的便利性、兼容性、复杂性、可靠性和可感知性五个要素。另一美国学者罗杰?菲德勒则认为创新还应当包括“熟悉”这一要素。 罗杰斯把创新的采用者分为革新者、早期采用者、早期追随者、晚期追随者和落后者。 创新扩散包括五个阶段:了解阶段、兴趣阶段、评估阶段、试验阶段和采纳阶段。 创新扩散的传播过程可以用一条“S”形曲线来描述。在扩散的早期,采用者很少,进展速度也很慢;当采用者人数扩大到居民的10%~25% 时,进展突然加快,曲线迅速上升并保持这一趋势,即所谓的“起飞期”;在接近饱和点时,进展又会减缓。整个过程类似于一条“S”形的曲线。在创新扩散过程中,早期采用者为后来的起飞作了必要的准备。这个看似“势单力薄”的群体能够在人际传播中发挥很大的作用,劝说他人接受创新。在罗杰斯看来,早期采用者就是愿意率先接受和使用创新事物并甘愿为之冒风险那部分人。这些人不仅对创新初期的种种不足有着较强的忍耐力,还能够对自身所处各群体的意见领袖展开“游说”,使之接受以至采用创新产品。之后,创新又通过意见领袖们迅速向外扩散。这样,创新距其“起飞期“的来临已然不远。 创新扩散理论是多级传播模式在创新领域的具体运用。这一理论说明,在创新向社会推广和扩散的过程中,大众传播能够有效地提供相关的知识和信息,而在说服人们接受和使用创新方面,人际传播则显得更为直接、有效。因此,罗杰斯认为,推广创新的最佳途径是“双管齐下“将大众传播和人际传播结合起来加以应用。这一观点已得到大部分人的认可。” “S”形曲线理论在市场营销、广告推广、产品代谢以及媒介生命周期的研究方面都得到了承认,有着广阔的应用前景。

大气污染源扩散模拟的实现及应用-v

污染源扩散模拟的实现及应用 突发性环境污染事故是一种威胁人类安全和健康、破坏生态环境、危害性大的污染事故。近年来,随着经济的发展,越来越多的突发环境事故爆发,造成严重的环境污染,不仅给国家人民财产造成了损失,同时还严重的危害了周边人民的健康。因此,加强突发性环境污染事故应急监测,研究其处理技术,对污染物的扩散进行预报是环境监测和环境保护领域中一项非常重要的工作。 1 大气扩散模型研究的意义 突发性环境污染事故主要是由于高压容器、储罐、输送管道节门的破裂等诸多原因引起的,它可导致有毒有害气体外泄。其特点是没有固定的排放方式和排放途径,突然发生、来势凶猛,在短时间内排放大量有毒有害的污染物,有毒气体外泄后,随大气弥散,中心位置浓度最高,向外逐步扩散稀释,下风向形成相应的时空浓度分布。 对于重大突发事故分析,目前国内外普遍采用仿真技术,通过建立数学模型进行分析,而且已建立了很多适用于不同条件的数学模型。当前应用较为广泛的应急大气扩散模型有:SLAB,DEGADIS,ALOHA,ARCHIE,DEMRA和LPDM,其中比较著名的有RADM、ADOM、STEMD等模型、美国Sigma公司于八十年代中期建立的HPDM模型以及英国剑桥研究院开发的ADMS模型。这些模型通过对早期的CRSTER的法规式模式做了一些改进和发展,从而产生新一代扩散模型。 这些算法以扩散统计理论为出发点,假设污染物的浓度分布在一定程度上服从高斯分布。模式系统可用于多种排放源(包括点源、面源和体源)的排放,也适用于乡村环境和城市环境、平坦地形和复杂地形、地面污染物排放模拟、区域环境容量计算与总量控制等多种功能。 这些扩散模型的特点是基于专有平台实现,自成系统。并且在这些系统中大多考虑了扩散模型源排放、平流输送、湍流扩散、干沉积、湿沉积、气象化学等众多因素,系统功能庞大。但同时它们基于专有平台,自成系统,所以很难同环保局具体的业务系统进行整合。考虑到天津某区环保监控与应急指挥系统的实际情况和具体需求,我们基于高斯扩散模型,并根据实际情况加以改造,最终在GIS系统中进行了展现。 2基于高斯的实用性大气扩散模型的算法实现 高斯扩散模型是高斯应用湍流统计理论,在大量实验数据资料分析以及正态分布假设的基础上,得到的污染物在大气中扩散的数学模型。经过多年的研究试验,国内外建立了多种高斯扩散模型,包括高斯点源扩散模式、点源封闭式扩散模型、高斯面源(虚拟点源)扩散模式以及多种特殊气象条件和复杂地形条件下的高斯扩散模式。高斯扩散模型是目前运用得最普遍的大气扩散的数学模型。例如UK一ADMS模型的Urban部分中就直接采用的模型是一个三维高斯模型,以高斯分布公式为主计算污染物浓度,在非稳定条件下的垂直扩散使用了倾斜式的高斯模型烟羽扩散。 3、基于Supermap的扩散模型图形化显示 SuperMap GIS是国内具有完全自主知识产权的大型地理信息系统软件平台。包括组件式GIS开发平台、服务式GIS开发平台等应用开发平台,同时具备相关的空间数据生产、加工和管理工具。其中B/S开发的组件SuperMap IS .NET采用面向Internet的分布式计算技术,支持跨区域、跨网络的复杂大型网络应用系统集成,提供可伸缩、多种层次的WebGIS 解决方案,全面满足网络GIS应用系统建设的需要。

技术创新 扩散的理论 、方法与实践

技术创新扩散的理论、方法与实践 本书的特点和独到之处在于理论上的创新性和对现实经济问题研 究上的开拓性,主要体现在:第一,在学术思想方面,鉴于技术创新扩散问题涉及技术创新的产生、流通、应用等一系列相互关联 的科学技术问题、经济问题和社会问题,而这些问题只有用系统 分析方法加以研究,才能提出科学的解决办法。因此,本书综合 运用系统分析方法,坚持定性分析与定量分析相结合、宏观分析 与微观分析相结合、理论与实践相结合、规范研究与实证分析相 统一,同时注重吸收、借鉴自然科学的某些科学思想和研究分析 方法,去揭示技术创新扩散的基本经济规律。第二,在内容范围 方面,本书内容丰富、新颖,既介绍了国外技术创新扩散的研究 成果,又反映了我国技术创新扩散理论和实践研究的最新进展;既有深入系统的理论分析和模型方法研究,又有具体的有关地区、 行业和企业的实证研究和案例分析,特别是针对我国西部地区传 统产业企业采用高新技术所面临的现实问题,提出了一系列具有 创新性的见解,与国内外同类著作相比具有独到之处。 内容简介本书从经济学角度探讨了技术创新扩散的弹论、方法和实践问题,介绍了技术创新扩散研究的简史,对技术创新扩散研究的代表性理论流派及其 演变进行了系统的归纳和梳理;讨论了技术创新扩散的宏观和微观模型,对其性质、模型参数估计和应用问题进行了研究;构建了一些新的理论模型和方法,并用其分别从宏观和微观的角度对技术创新扩散机制和采用者的采用行为进行了 理论考橐和实证分析;介绍了美国、日本、英国等发达国家运用高新技术改造传统产业的模式、政策措施和经验,进一步分析了我国高新技术改造传统产业的 历史、现状、制约因素、经验教训和发展机遇,并对我国西部地区高新技术改 造传统产业问题进行了专题研究,提出了若干有价值的对策措施和政策建议。 本书可供技术创新扩散研究的理论工作者、相关专业的高校师生、政府经 济和科技部门的管理人员、政策研究人员、企业高级管理人员及从事技术创新 活动的科技人员阅读,也可作为高等院校相关专业的教学参考书。

高斯扩散模式在瞬间排放空气污染物模拟中的应用

高斯扩散模式在瞬间排放空气污染物模拟中的应用 摘要:在文章中提出应用高斯模式模拟和预测在瞬间排放状况下空气污染等级,用FORTRAN 语言编写的高斯模式程序还可应用于区域污染影响评价中,模式不仅可以从GIS 中输入数据而且还可以应用GIS 格式输出结果。 关键词:高斯模式 空气污染 地理信息系统 瞬时污染源 浓度场 瞬间排放是指工业企业或电厂的事故性污染物排放,如贮油罐或输油管道发生事故等。排放的污染物污染了空气、土壤、地面及地下水,影响植被和影响环境。 模拟瞬间空气污染要求得到污染区域面积、污染浓度和等级、污染预测等。 本文提出用高斯模式的解析解来模拟和预测瞬间排放空气污染状况。基于烟羽扩散上的解析公式求解的高斯模式非常广泛的应用于评价区域污染状况。高斯数学模式作为一个污染物扩散的基础模式被国际原子能机构广泛推广。 从瞬间点源污染源排放的污染物,其转换和扩散可以用以下的扩散方程来表示: t C ??+div(CV )=?(K ?C )+Ri +Q δ(t ?t 0)δ(x ?x 0)δ(y ?y 0)δ(z ?z 0) (1) 式中:C(x, y, z, t)为污染物浓度 V 为风速 K 为扩散系数 R 为污染物光化学转化率 Q 为污染物排放量

x 0, y 0, z 0为污染源相对坐标 在一定的风速和扩散系数条件下,公式(1)有其高斯扩散模式的解析解。 因此,污染物浓度值C 由点源污染源的高度H 决定。H 在高斯扩散模式中由下述公式计算: C (x,y,z,t )= )() 2(22 22 2 22 2 2/) 2(2/) (2/)(2/) (2 /3z z y x wt h H z wt h z vt y ut x z y x e e e e Q σσσσσσσπ-++--------+ (2) 式中:t 为时间 Q 为排放量 u ,v ,w 为风速分别在x ,y ,z 方向的分量 σx , σy , σz 分别在x ,y ,z 方向的扩散系数 h 为点源高度 H 为混合层高度 高斯模式中,假设X 轴与风向方向一致,Z 轴铅直向上,V=W=0。公式(2)可以转化为以下形式。 C (x,y,z,t )= )() 2(22 22 2 22 2 2/) (2/) (2/2/) (2 /3z z y x H z H z y ut x z y x e e e e Q σσσσσσσπ+------+ (3) 从公式(3)我们可以看出,每一个烟团需要用不同的坐标系进行计算,当我们计算多源的污染浓度时,我们需要用到几个坐标系,这样计算起来很复杂。因此,公式(3)必须做相应的转化到同一个坐标系中。 我们建立一个相对的坐标系,I 表示原点,坐标轴为ξ和η(见1)。并以I 为原点建立第二个坐标系,LX 表示X 轴,其方向与风向

相关文档
最新文档