FLUENT和ANSYS的并行计算设置

FLUENT和ANSYS的并行计算设置
FLUENT和ANSYS的并行计算设置

Fluent并行计算

以2核为例:

1:找到fluent安装目录中的启动程序,在地址栏中复制目录例如:C:\Fluent.Inc\ntbin\ntx86

2:开始-->程序-->附件-->命令提示符

cd C:\Fluent.Inc\ntbin\ntx86

3:fluent 3d –t2

(启动3d模型,两核)

6.在ansys中使用多核处理器的方法:

使用AMG算法,可以使多个核同时工作。使用方法1或2.

方法1:

(1). 在ansys product lancher 里面lauch标签页选中parallel performance for ansys.

(2). 然后在求解前执行如下命令:

finish

/config,nproc,n!设置处理器数n=你设置的CPU数。

/solu

eqslv,amg !选择AMG算法

solve !求解

方法2:

(1). 在ansys product lancher 里面lauch标签页选中parallel performance for ansys.

(2). 在D:\professional\Ansys Inc\v90\ANSYS\apdl\start90.ans中添加一行:/config,nproc,2.别忘了把目录换成你自己的安装目录.

化学反应软件

FactSage_Demo

COMSOL

Courant number实际上是指时间步长和空间步长的相对关系,系统自动减小courant数,这种情况一般出现在存在尖锐外形的计算域,当局部的流速过大或者压差过大时出错,把局部的网格加密再试一下。

在FLUENT中,用courant number来调节计算的稳定性与收敛性。一般来说,随着courant number的从小到大的变化,收敛速度逐渐加快,但是稳定性逐渐降低。所以具体的问题,在计算的过程中,最好是把courant number从小开始设置,看看迭代残差的收敛情况,如果收敛速度较慢而且比较稳定的话,可以适当的增加courant number的大小,根据自己具体的问题,找出一个比较合适的courant number,让收敛速度能够足够的快,而且能够保持它的稳定性。FLUENT计算开始迭代最好使用较小的库朗数,否则

ANSYS FLUENT 介绍

想起CFD,人们总会想起FLUENT,丰富的物理模型使其应用广泛,从机翼空气流动到熔炉燃烧,从鼓泡塔到玻璃制造,从血液流动到半导体生产,从洁净室到污水处理工厂的设计,另外软件强大的模拟能力还扩展了在旋转机械,气动噪声,内燃机和多相流系统等领域的应用。今天,全球数以千计的公司得益于FLUENT的这一工程设计与分析软件,它在多物理场方面的模拟能力使其应用范围非常广泛,是目前功能最全的CFD软件。 FLUENT因其用户界面友好,算法健壮,新用户容易上手等优点一直在用户中有着良好的口碑。长期以来,功能强大的模块,易用性和专业的技术支持所有这些因素使得FLUENT受到企业的青睐。 网格技术,数值技术,并行计算 计算网格是任何CFD计算的核心,它通常把计算域划分为几千甚至几百万个单元,在单元上计算并存储求解变量,FLUENT使用非结构化网格技术,这就意味着可以有各种各样的网格单元:二维的四边形和三角形单元,三维的四面体核心单元、六面体核心单元、棱柱和多面体单元。这些网格可以使用FLUENT的前处理软件GAMBIT自动生成,也可以选择在ICEM CFD工具中生成。 在目前的CFD市场, FLUENT以其在非结构网格的基础上提供丰富物理模型而著称,久经考验的数值算法和鲁棒性极好的求解器保证了计算结果的精度,新的NITA算法大大减少了求解瞬态问题的所需时间,成熟的并行计算能力适用于NT,Linux或Unix平台,而且既适用单机的多处理器又适用网络联接的多台机器。动态加载平衡功能自动监测并分析并行性能,通过调整各处理器间的网格分配平衡各CPU的计算负载。

湍流和噪声模型 FLUENT的湍流模型一直处于商业CFD软件的前沿,它提供的丰富的湍流模型中有经常使用到的湍流模型、针对强旋流和各相异性流的雷诺应力模型等,随着计算机能力的显著提高,FLUENT已经将大涡模拟(LES)纳入其标准模块,并且开发了更加高效的分离涡模型(DES),FLUENT提供的壁面函数和加强壁面处理的方法可以很好地处理壁面附近的流动问题。 气动声学在很多工业领域中倍受关注,模拟起来却相当困难,如今,使用FLUENT可以有多种方法计算由非稳态压力脉动引起的噪音,瞬态大涡模拟(LES)预测的表面压力可以使用FLUENT内嵌的快速傅立叶变换(FFT)工具转换成频谱。Fflow-Williams&Hawkings声学模型可以用于模拟从非流线型实体到旋转风机 叶片等各式各样的噪声源的传播,宽带噪声源模型允许在稳态结果的基础上进行模拟,这是一个快速评估设计是否需要改进的非常实用的工具。

并行计算1

并行计算 实 验 报 告 学院名称计算机科学与技术学院专业计算机科学与技术 学生姓名 学号 年班级 2016年5 月20 日

一、实验内容 本次试验的主要内容为采用多线程的方法计算pi的值,熟悉linux下pthread 形式的多线程编程,对实验结果进行统计并分析以及加速比曲线分析,从而对并行计算有初步了解。 二、实验原理 本次实验利用中值积分定理计算pi的值 图1 中值定理计算pi 其中公式可以变换如下: 图2 积分计算pi公式的变形 当N足够大时,可以足够逼近pi,多线程的计算方法主要通过将for循环的计算过程分到几个线程中去,每次计算都要更新sum的值,为避免一个线程更新sum 值后,另一个线程仍读到旧的值,所以每个线程计算自己的部分,最后相加。三、程序流程图 程序主体部分流程图如下:

多线程执行函数流程图如下: 四、实验结果及分析

令线程数分别为1、2、5、10、20、30、40、50和100,并且对于每次实验重复十次求平均值。结果如下: 图5 时间随线程的变化 实验加速比曲线的计算公式类似于 结果如下: 图5 加速比曲线 实验结果与预期类似,当线程总数较少时,线程数的增多会对程序计算速度带来明显的提升,当线程总数增大到足够大时,由于物理节点的核心数是有限的,因此会给cpu带来较多的调度,线程的切换和最后结果的汇总带来的时间开销较大,所以线程数较大时,增加线程数不会带来明显的速度提升,甚至可能下降。 五、实验总结

本次试验的主要内容是多线程计算pi的实现,通过这次实验,我对并行计算有了进一步的理解。上学期的操作系统课程中,已经做过相似的题目,因此程序主体部分相似。不同的地方在于,首先本程序按照老师要求应在命令行提供参数,而非将数值写定在程序里,其次是程序不是在自己的电脑上运行,而是通过ssh和批处理脚本等登录到远程服务器提交任务执行。 在运行方面,因为对批处理任务不够熟悉,出现了提交任务无结果的情况,原因在于windows系统要采用换行的方式来表明结束。在实验过程中也遇到了其他问题,大多还是来自于经验的缺乏。 在分析实验结果方面,因为自己是第一次分析多线程程序的加速比,因此比较生疏,参考网上资料和ppt后分析得出结果。 从自己遇到的问题来看,自己对批处理的理解和认识还比较有限,经过本次实验,我对并行计算的理解有了进一步的提高,也意识到了自己存在的一些问题。 六、程序代码及部署 程序源代码见cpp文件 部署说明: 使用gcc编译即可,编译时加上-pthread参数,运行时任务提交到服务器上。 编译命令如下: gcc -pthread PI_3013216011.cpp -o pi pbs脚本(runPI.pbs)如下: #!/bin/bash #PBS -N pi #PBS -l nodes=1:ppn=8 #PBS -q AM016_queue #PBS -j oe cd $PBS_O_WORKDIR for ((i=1;i<=10;i++)) do ./pi num_threads N >> runPI.log

CRC16并行计算的Matlab推导

CRC16并行计算的Matlab推导 本文使用的CRC16的生成多项式为: 其对应的串行编码图如下图所示。 假设输入数据的位宽为8比特,即{I7,I6,I5,I4,I3,I2,I1,I0},I为Input的首字母。I0表示最低比特位,I7表示最高比特位。 在串行模式下,I0先输入CRC16计算模块,于是I0输入后各个寄存器的状态变化如下: = = = = = = = = = = =

= = = = = 可以将以上表达式组成矩阵乘法的形式,则有: '0D T D S I =?+? (1) 其中,D 为0D ~15D 构成的列向量,用转置矩阵的形式表示为: () 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15T D D D D D D D D D D D D D D D D D =同理,'D 是'0D ~'15D 构成的列向量,用转置矩阵的形式表示为: () '' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '0123456789101112131415T D D D D D D D D D D D D D D D D D = 表达式(1)中的矩阵T ,表示为: 00000000000000110000000000000000100000000000001001000000000000000010000000000000000100000000000000001000000000000000010000000000000000100000000000000001000000000000000010000000000000000100000000000T =0000010000000000000000100000000000000001000000000000000011?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ?

并行计算(天津大学软件学院)

并行计算 一、并行计算概述 1.并行计算定义: 并行计算(Parallel Computing)是指同时使用多种计算资源解决计算问题的过程。为执行并行计算,计算资源应包括一台配有多处理机(并行处理)的计算机、一个与网络相连的计算机专有编号,或者两者结合使用。并行计算的主要目的是快速解决大型且复杂的计算问题。此外还包括:利用非本地资源,节约成本―使用多个“廉价”计算资源取代大型计算机,同时克服单个计算机上存在的存储器限制。 为利用并行计算,通常计算问题表现为以下特征: (1)将工作分离成离散部分,有助于同时解决; (2)随时并及时地执行多个程序指令; (3)多计算资源下解决问题的耗时要少于单个计算资源下的耗时。 并行计算是相对于串行计算来说的,所谓并行计算分为时间上的并行和空间上的并行。时间上的并行就是指流水线技术,而空间上的并行则是指用多个处理器并发的执行计算。2.并行化方法 1)域分解 首先,确定数据如何划分到各个处理器 然后,确定每个处理器所需要做的事情 示例:求数组中的最大值 2)任务(功能)分解 首先,将任务划分到各个处理器 然后,确定各个处理器需要处理的数据 Example: Event-handler for GUI 二、并行计算硬件环境 1.并行计算机系统结构 1)Flynn分类 a. MIMD 多指令流多数据流(Multiple Instruction Stream Multiple Data Stream,简称MIMD),它使用多个控制器来异步的控制多个处理器,从而实现空间上的并行性。 对于大多数并行计算机而言,多个处理单元都是根据不同的控制流程执行不同的操作,处理不同的数据,因此,它们被称作是多指令流多数据流计算机 b. SIMD 单指令流多数据流(Single Instruction Multiple Data)能够复制多个操作数,并把它们打包在大型寄存器的一组指令集,以同步方式,在同一时间内执行同一条指令。 以加法指令为例,单指令单数据(SISD)的CPU对加法指令译码后,执行部件先访问内存,取得第一个操作数;之后再一次访问内存,取得第二个操作数;随后才能进行求和运算。而在SIMD型的CPU中,指令译码后几个执行部件同时访问内存,一次性获得所有操作数进行运算。这个特点使SIMD特别适合于多媒体应用等数据密集型运算。 2)并行计算及结构模型 a. SMP SMP (Symmetric Multiprocessor) 采用商品化的处理器,这些处理器通过总线或交叉开关连接到共享存储器。每个处理器可等同地访问共享存储器、I/O设备和操作系统服务。 扩展性有限。

并行计算第一次实验报告

并行计算上机实验报告题目:多线程计算Pi值 学生姓名 学院名称计算机学院 专业计算机科学与技术时间

一. 实验目的 1、掌握集群任务提交方式; 2、掌握多线程编程。 二.实验内容 1、通过下图中的近似公式,使用多线程编程实现pi的计算; 2、通过控制变量N的数值以及线程的数量,观察程序的执行效率。 三.实现方法 1. 下载配置SSH客户端 2. 用多线程编写pi代码 3. 通过文件传输界面,将文件上传到集群上 4.将命令行目录切换至data,对.c文件进行编译 5.编写PBS脚本,提交作业 6.实验代码如下: #include

#include #include #include #include #include static double PI=0; static int N=0; static int numOfThread=0; static int length=0; static int timeUsed=0; static int numOfThreadArray[]={1,2,4,6,8,10,12,14,16,20,24,30}; static int threadArraySize=12; static int nTime=4; static int repeatTime=30; static double totalTime=0; struct timeval tvpre, tvafter; pthread_mutex_t mut; clockid_t startTime,endTime;

并行计算综述

并行计算综述 姓名:尹航学号:S131020012 专业:计算机科学与技术摘要:本文对并行计算的基本概念和基本理论进行了分析和研究。主要内容有:并行计算提出的背景,目前国内外的研究现状,并行计算概念和并行计算机类型,并行计算的性能评价,并行计算模型,并行编程环境与并行编程语言。 关键词:并行计算;性能评价;并行计算模型;并行编程 1. 前言 网络并行计算是近几年国际上并行计算新出现的一个重要研究方向,也是热门课题。网络并行计算就是利用互联网上的计算机资源实现其它问题的计算,这种并行计算环境的显著优点是投资少、见效快、灵活性强等。由于科学计算的要求,越来越多的用户希望能具有并行计算的环境,但除了少数计算机大户(石油、天气预报等)外,很多用户由于工业资金的不足而不能使用并行计算机。一旦实现并行计算,就可以通过网络实现超级计算。这样,就不必要购买昂贵的并行计算机。 目前,国内一般的应用单位都具有局域网或广域网的结点,基本上具备网络计算的硬件环境。其次,网络并行计算的系统软件PVM是当前国际上公认的一种消息传递标准软件系统。有了该软件系统,可以在不具备并行机的情况下进行并行计算。该软件是美国国家基金资助的开放软件,没有版权问题。可以从国际互联网上获得其源代码及其相应的辅助工具程序。这无疑给人们对计算大问题带来了良好的机遇。这种计算环境特别适合我国国情。 近几年国内一些高校和科研院所投入了一些力量来进行并行计算软件的应用理论和方法的研究,并取得了可喜的成绩。到目前为止,网络并行计算已经在勘探地球物理、机械制造、计算数学、石油资源、数字模拟等许多应用领域开展研究。这将在计算机的应用的各应用领域科学开创一个崭新的环境。 2. 并行计算简介[1] 2.1并行计算与科学计算 并行计算(Parallel Computing),简单地讲,就是在并行计算机上所作的计算,它和常说的高性能计算(High Performance Computing)、超级计算(Super Computing)是同义词,因为任何高性能计算和超级计算都离不开并行技术。

FLUENT和ANSYS的并行计算设置

Fluent并行计算 以2核为例: 1:找到fluent安装目录中的启动程序,在地址栏中复制目录例如:C:\Fluent.Inc\ntbin\ntx86 2:开始-->程序-->附件-->命令提示符 cd C:\Fluent.Inc\ntbin\ntx86 3:fluent 3d –t2 (启动3d模型,两核) 6.在ansys中使用多核处理器的方法: 使用AMG算法,可以使多个核同时工作。使用方法1或2. 方法1: (1). 在ansys product lancher 里面lauch标签页选中parallel performance for ansys. (2). 然后在求解前执行如下命令: finish /config,nproc,n!设置处理器数n=你设置的CPU数。 /solu eqslv,amg !选择AMG算法 solve !求解 方法2: (1). 在ansys product lancher 里面lauch标签页选中parallel performance for ansys. (2). 在D:\professional\Ansys Inc\v90\ANSYS\apdl\start90.ans中添加一行:/config,nproc,2.别忘了把目录换成你自己的安装目录. 化学反应软件 FactSage_Demo COMSOL

Courant number实际上是指时间步长和空间步长的相对关系,系统自动减小courant数,这种情况一般出现在存在尖锐外形的计算域,当局部的流速过大或者压差过大时出错,把局部的网格加密再试一下。 在FLUENT中,用courant number来调节计算的稳定性与收敛性。一般来说,随着courant number的从小到大的变化,收敛速度逐渐加快,但是稳定性逐渐降低。所以具体的问题,在计算的过程中,最好是把courant number从小开始设置,看看迭代残差的收敛情况,如果收敛速度较慢而且比较稳定的话,可以适当的增加courant number的大小,根据自己具体的问题,找出一个比较合适的courant number,让收敛速度能够足够的快,而且能够保持它的稳定性。FLUENT计算开始迭代最好使用较小的库朗数,否则

MATLAB分布式并行计算服务器配置和使用方法Word版

Windows下MATLAB分布式并行计算服务器配置和使用方 法 1MATLAB分布式并行计算服务器介绍 MATLAB Distributed Computing Server可以使并行计算工具箱应用程序得到扩展,从而可以使用运行在任意数量计算机上的任意数量的worker。MATLAB Distributed Computing Server还支持交互式和批处理工作流。此外,使用Parallel Computing Toolbox 函数的MATLAB 应用程序还可利用MATLAB Compiler (MATLAB 编译器)编入独立的可执行程序和共享软件组件,以进行免费特许分发。这些可执行应用程序和共享库可以连接至MATLAB Distributed Computing Server的worker,并在计算机集群上执行MATLAB同时计算,加快大型作业执行速度,节省运行时间。 MATLAB Distributed Computing Server 支持多个调度程序:MathWorks 作业管理器(随产品提供)或任何其他第三方调度程序,例如Platform LSF、Microsoft Windows Compute Cluster Server(CCS)、Altair PBS Pro,以及TORQUE。 使用工具箱中的Configurations Manager(配置管理器),可以维护指定的设置,例如调度程序类型、路径设置,以及集群使用政策。通常,仅需更改配置名称即可在集群间或调度程序间切换。 MATLAB Distributed Computing Server 会在应用程序运行时在基于用户配置文件的集群上动态启用所需的许可证。这样,管理员便只需在集群上管理一个服务器许可证,而无需针对每位集群用户在集群上管理单独的工具箱和模块集许可证。 作业(Job)是在MATLAB中大量的操作运算。一个作业可以分解不同的部分称为任务(Task),客户可以决定如何更好的划分任务,各任务可以相同也可以不同。MALAB中定义并建立作业及其任务的会话(Session)被称为客户端会话,通常这是在你用来编写程序那台机器上进行的。客户端用并行计算工具箱来定义和建立作业及其任务,MDCE通过计算各个任务来执行作业并负责把结果返

并行计算-习题及答案-第12章 并行程序设计基础

第十二章 并行程序设计基础 习题例题: 1、假定有n 个进程P(0),P(1),…,P(n -1),数组元素][i a 开始时被分配给进程P(i )。试写出求归约和]1[]1[]0[-+++n a a a 的代码段,并以8=n 示例之。 2、假定某公司在银行中有三个账户X 、Y 和Z ,它们可以由公司的任何雇员随意访问。雇员们对银行的存、取和转帐等事务处理的代码段可描述如下: /*从账户X 支取¥100元*/ atomic { if (balance[X] > 100) balance[X] = balance[X]-100; } /*从账户Y 存入¥100元*/ atomic {balance[Y] = balance[Y]-100;} /*从账户X 中转¥100元到帐号Z*/ atomic { if (balance[X] > 100){ balance[X] = balance[X]-100; balance[Z] = balance[Z]+100; } } 其中,atomic {}为子原子操作。试解释为什么雇员们在任何时候(同时)支、取、转帐时,这些事务操作总是安全有效的。 3、考虑如下使用lock 和unlock 的并行代码: parfor (i = 0;i < n ;i++){ noncritical section lock(S); critical section unlock(S); }

假定非临界区操作取T ncs时间,临界区操作取T cs时间,加锁取t lock时间,而去锁时间可忽略。则相应的串行程序需n( T ncs + T cs )时间。试问: ①总的并行执行时间是多少? ②使用n个处理器时加速多大? ③你能忽略开销吗? 4、计算两整数数组之内积的串行代码如下: Sum = 0; for(i = 0;i < N;i++) Sum = Sum + A[i]*B[i]; 试用①相并行;②分治并行;③流水线并行;④主-从行并行;⑤工作池并行等五种并行编程风范,写出如上计算内积的并行代码段。 5、图12.15示出了点到点和各种集合通信操作。试根据该图解式点倒点、播送、散步、收集、全交换、移位、归约与前缀和等通信操作的含义。 图12.15点到点和集合通信操作

22进程、线程与并行计算(windows 编程技术)

第22章 进程、线程与并行计算 进程是正在运行的程序,线程是轻量级的进程。多任务的并发执行会用到多线程(multithreading ),而CPU 的多核(mult-core )化又将原来只在巨型机和计算机集群中才使用的并行计算带入普通PC 应用的多核程序设计中。 本章先介绍进程与线程的概念和编程,再给出并行计算的基本概念和内容。下一章讨论基于多核CPU 的并行计算的若干具体编程接口和方法。 22.1 进程与线程 进程(process )是执行中的程序,线程(thread )是一种轻量级的进程。 22.1.1 进程与多任务 现代的操作系统都是多任务(multitask )的,即可同时运行多个程序。进程(process )是位于内存中正被CPU 运行的可执行程序实例,参见图22-1。 图22-1 程序与进程 目前的主流计算机采用的都是冯·诺依曼(John von Neumann )体系结构——存储程序计算模型。程序(program )是在内存中顺序存储并以线性模式在CPU 中串行执行的指令序列。对于传统的单核CPU 计算机,多任务操作系统的实现是通过CPU 分时(time-sharing )和程序并发(concurrency )完成的。即在一个时间段内,操作系统将CPU 分配给不同的程序,虽然每一时刻只有一个程序在CPU 中运行,但是由于CPU 的速度非常快,在很短的时间段中可在多个进程间进行多次切换,所以用户的感觉就像多个程序在同时执行,我们称之为多任务的并发。 22.1.2 进程与线程 程序一般包括代码段、数据段和堆栈,对具有GUI (Graphical User Interfaces ,图形用户界面)的程序还包含资源段。进程(process )是应用程序的执行实例,即正在被执行的程进程(内存中) 可执行文件(盘上) 运行

Ansys与FLUENT中MHD(Magnetohydrodynamics)模型接口

用户手册

目录 1 免责声明 (1) 2 前言 (2) 3 软件概述 (2) 3.1 软件简介 (2) 3.2 功能特点 (2) 4 软件安装 (2) 5 软件操作指南 (3) 5.1 整体操作流程 (3) 5.2 如何得到坐标文件(Coordinate File)和磁场文件(B File) (3) 5.3 将坐标与磁场文件导入软件 (6) 5.4 设置参数 (6) 5.5 计算并得到目标文件(*.mag) (9) 5.6 将目标文件导入FLUENT (9) 6 帮助 (10)

1 免责声明 本软件为北京科技大学绿色冶金及冶金过程模拟仿真研究室(Laboratory of Green Process Metallurgy and Modeling,以下称LGPMM)为提供ANSYS与FLUENT中MHD模型的接口而制作,本说明书所载所有内容(包括但不限于文字叙述、图片与其它信息等)均受著作权法及其它智慧财产权法规保护,LGPMM保留一切法律权利,非经LGPMM授权同意使用,此处数据或内容均不得以任何形式予以重制或其它不当侵害。 免责声明 本服务及软件乃依其ANSYS模拟结果文件为基础提供FLUENT中MHD所需磁场文件,不提供ANSYS模拟结果之前及FLUENT中MHD加载磁场文件之后之保证。对于因使用本服务及软件而产生任何损害(包括模拟结果及其权利纠纷之损害),即便本研究室已被告知此类损害之可能,均不负任何责任。 本研究室保留任何时刻修改本用户手册之权利,恕不另行通知。

2 前言 本手册是专为ANSYS与FLUENT中MHD(Magnetohydrodynamics)模型接口V2.0用户编写的。与本手册配套的软件版本为ANSYS与FLUENT中MHD(Magnetohydro-dynamics)模型接口V2.0,手册包含软件的总体介绍及用户操作说明。 3 软件概述 3.1 软件简介 ANSYS与FLUENT中MHD(Magnetohydrodynamics)模型接口是一款用于仿真模拟的软件,可将ANSYS磁场模拟结果转为FLUENT中MHD模型所需加载的磁场文件(*.mag)。使用该软件可节省大量人力及时间,并且不会产生因人为操作而导致的错误或误差。 该软件适用于ANSYS磁场的三维(3D)模拟,将其结果用于FLUENT中MHD模型的二维(2D)和三维(3D)模拟,暂不提供ANSYS磁场的二维(2D)模拟。 3.2 功能特点 ●软件界面简洁,操作简单,用户可以迅速上手。 ●节省人力及时间,且不会产生人为错误或误差。 ●支持ANSYS三维(3D)与FLUENT中MHD模型的二维(2D)和三维(3D)模拟操 作。 4 软件安装 该软件是基于MATLAB R2012a开发,其运行环境为MATLAB R2012a,即需安装MATLAB R2012a.exe或安装该版本库函数包MCRInstaller.exe。运行该软件前需安装与其配套使用的KEY.exe文件(如图4-1)。 图4-1

Parallel Computing with MATLAB(并行计算)

Getting Started with Parallel Computing using MATLAB: Interactive and Scheduled Applications Created by S. Zaranek, E. Johnson and A. Chakravarti 1.Objectives This user guide provides an end user with instructions on how to get started running parallel MATLAB applications using a desktop computer or a cluster. 2.Assumptions User has access to MATLAB and Parallel Computing Toolbox on the desktop computer or head node of the cluster. If running on a cluster: MATLAB Distributed Computing Server has been installed by an administrator on the cluster. The desktop MATLAB client has been configured to connect to the cluster. If this has not been done, you should contact the cluster administrator. 3. Getting the Example Files Unzip the demoFiles.zip file that was provided along with this guide. You can add the files to the MATLAB path by running the addpath command in MATLAB. >> addpath 4. Examples Running Locally In this section, you will be running and submitting jobs using the local configuration. If your workflow will ultimately involve submitting jobs to a cluster, you can follow this section by switching the default configuration from local to that of your cluster and running these jobs again. This is described in Section 5.

Ansys Fluent 13.0 or 14.0 Tutorials教程

Ansys FLUENT Tutorials └─ANSYS FLUENT ├─ANSYS-FLUENT-Intro_13.0_1st-ed_pdf ││fluent_13.0_Agenda.pdf ││fluent_13.0_TOC.pdf ││ │├─lectures ││fluent_13.0_lecture01-welcome.pdf ││fluent_13.0_lecture02-intro-to-cfd.pdf ││fluent_13.0_lecture03-solver-basics.pdf ││fluent_13.0_lecture04-boundary-conditions.pdf ││fluent_13.0_lecture05-solver-settings.pdf ││fluent_13.0_lecture06-turbulence.pdf ││fluent_13.0_lecture07-heat-transfer.pdf ││fluent_13.0_lecture08-udf.pdf ││fluent_13.0_lecture09-physics.pdf ││fluent_13.0_lecture10-transient.pdf ││fluent_13.0_lecture11-post.pdf ││ │├─workshop-input-files ││├─workshop1-mixing-tee │││ fluidtee.meshdat │││ ││├─workshop2-airfoil-new │││ NACA0012.msh │││ mach_0.5_comparison.cas.gz │││ mach_0.5_comparison.dat.gz │││ mach_0.7_converged.cas.gz │││ mach_0.7_converged.dat.gz │││ test-data-bottom.xy │││ test-data-top.xy │││ ││├─workshop3-multi-species │││ calc_activities.jou │││ garage.msh │││ workshop3-converged.cas.gz │││ workshop3-converged.dat.gz │││ ││├─workshop4-electronics │││ heatsink.msh.gz │││ ws4_no-radiation.cas.gz │││ ws4_no-radiation.dat.gz │││ ws4_s2s-radiation.cas.gz │││ ws4_s2s-radiation.dat.gz

传统并行计算框架与MR的区别

现在MapReduce/Hadoop以及相关的数据处理技术非常热,因此我想在这里将MapReduce的优势汇总一下,将MapReduce与传统基于HPC集群的并行计算模型做一个简要比较,也算是对前一阵子所学的MapReduce知识做一个总结和梳理。 随着互联网数据量的不断增长,对处理数据能力的要求也变得越来越高。当计算量超出单机的处理能力极限时,采取并行计算是一种自然而然的解决之道。在MapReduce出现之前,已经有像MPI这样非常成熟的并行计算框架了,那么为什么Google还需要MapReduce,MapReduce相较于传统的并行计算框架有什么优势,这是本文关注的问题。 文章之初先给出一个传统并行计算框架与MapReduce的对比表格,然后一项项对其进行剖析。 MapReduce和HPC集群并行计算优劣对比 ▲ 在传统的并行计算中,计算资源通常展示为一台逻辑上统一的计算机。对于一个由多个刀片、SAN构成的HPC集群来说,展现给程序员的仍旧是一台计算机,只不过这台计算拥有为数众多的CPU,以及容量巨大的主存与磁盘。在物理上,计算资源与存储资源是两个相对分离的部分,数据从数据节点通过数据总线或者高速网络传输到达计算节点。对于数据量较小的计算密集型处理,这并不是问题。而对于数据密集型处理,计算节点与存储节点之间的I/O将成为整个系统的性能瓶颈。共享式架构造成数据集中放置,从而造成I/O传输瓶颈。此外,由于集群组件间耦合、依赖较紧密,集群容错性较差。 而实际上,当数据规模大的时候,数据会体现出一定的局部性特征,因此将数据统一存放、统一读出的做法并不是最佳的。 MapReduce致力于解决大规模数据处理的问题,因此在设计之初就考虑了数据的局部性原理,利用局部性原理将整个问题分而治之。MapReduce集群由普通PC机构成,为无共享式架构。在处理之前,将数据集分布至各个节点。处理时,每个节点就近读取本地存储的数据处理(map),将处理后的数据进行合并(combine)、排序(shuffle and sort)后再分发(至reduce节点),避免了大量数据的传输,提高了处理效率。无共享式架构的另一个好处是配合复制(replication)策略,集群可以具有良好的容错性,一部分节点的down机对集群的正常工作不会造成影响。 硬件/价格/扩展性 传统的HPC集群由高级硬件构成,十分昂贵,若想提高HPC集群的性能,通常采取纵向扩展的方式:即换用更快的CPU、增加刀片、增加内存、扩展磁盘等。但这种扩展方式不能支撑长期的计算扩展(很容易就到顶了)且升级费用昂贵。因此相对于MapReduce集群,HPC集群的扩展性较差。 MapReduce集群由普通PC机构成,普通PC机拥有更高的性价比,因此同等计算能力的集群,MapReduce集群的价格要低得多。不仅如此,MapReduce集群

并行计算期末试题-理工

并行计算期末试题 适用专业:理工类 考试说明: 1、将试卷答案以学号命名为word文件,如115042101.doc,上传到 ftp://172.17.124.203/upload。 2、第一、二大题,直接将答案写在题后;第三、四题要求将程序补充、编写完 整并将运行结果截图插在题目后面。 一、简述题(每小题4分,共20分)。 1、简述openmp编译制导指令master,single,critical,atomic的功能。 1.master制导语句指定代码段只能被主线程执行 2.single编译制导语句指定内部代码只能由线程组中的一个线程执行。线程组中没有执行single语句的线程会一直等待代码块的结束,使用nowait子句除外。 3.critical制导语句表明域中的代码一次只能由一个线程执行,其他线程被阻塞在临界区 4.atomic制导语句指定特定的存储单元将被原子更新 2、简述openmp编译制导子句shared,private的功能?简述openmp编译制导指令threadprivate的功能。 1.private子句表示它列出的变量对于每个线程是局部的。 2.shared子句表示它所列出的变量被线程组中所有的线程共享,所有线程都能对它进行读写访问。 3.threadprivate语句使一个全局文件作用域的变量在并行域内变成每个线程私有,每个线程对该变量复制一份私有拷贝并在多个并行域中保持。 3、简述openmp函数omp_set_num_threads,omp_get_num_threads, omp_get_thread_num的功能;环境变量OMP_NUM_THREADS的功能。 omp_set_num_threads

并行计算简介

并行计算简介 Blaise Barney, 劳伦斯利弗莫尔国家实验室 译者:卢洋,同济大学 原文地址:https://https://www.360docs.net/doc/246248008.html,/tutorials/parallel_comp/ 目录 1 摘要 2 概述 2.1 什么是并行计算 2.2 为什么使用并行计算 3 概念和术语 3.1 冯诺依曼体系结构 3.2 Flynn经典分类法 3.3 一些通用的并行术语 4 并行计算机存储结构 4.1 共享内存 4.2 分布式内存 4.3 混合型分布式共享内存 5 并行编程模型 5.1 概览 5.2 共享内存模型 5.3 线程模型 5.4 消息传递模型 5.5 数据并行模型 5.6 其他模型 6 设计并行程序 6.1 自动化vs. 手工并行化 6.2 问题的理解和程序 6.3 问题分解

6.4 通信 6.5 同步 6.6 数据依赖 6.7 负载平衡 6.8 粒度 6.9 I/O 6.10 并行程序设计的限制和消耗 6.11 性能分析与调整 7 并行示例 7.1 数组程序 7.2 PI 的计算 7.3 简单的加热等式 7.4 一维的波等式 8 参考和更多信息 1 摘要 为了让新手更加容易熟悉此话题,本教程覆盖了并行计算中比较基础的部分。首先在概述中介绍的是与并行计算相关的术语和概念。然后探索并行存储模型和编程模型这两个话题。之后讨论一些并行程序设计相关的问题。本教程还包含了几个将简单串行化程序并行化的例子。无基础亦可阅读。 2 概述 2.1 什么是并行计算 传统上,一般的软件设计都是串行式计算: -软件在一台只有一个CPU的电脑上运行; -问题被分解成离散的指令序列; -指令被一条接一条的执行; -在任何时间CPU上最多只有一条指令在运行 图

分布式与并行计算报告

并行计算技术及其应用简介 XX (XXX,XX,XXX) 摘要:并行计算是实现高性能计算的主要技术手段。在本文中从并行计算的发展历程开始介绍,总结了并行计算在发展过程中所面临的问题以及其发展历程中出现的重要技术。通过分析在当前比较常用的实现并行计算的框架和技术,来对并行计算的现状进行阐述。常用的并行架构分为SMP(多处理系统)、NUMA (非统一内存存储)、MPP(巨型并行处理)以及集群。涉及并行计算的编程模型有MPI、PVM、OpenMP、TBB及Cilk++等。并结合当前研究比较多的云计算和大数据来探讨并行计算的应用。最后通过MPI编程模型,进行了并行编程的简单实验。 关键词:并行计算;框架;编写模型;应用;实验 A Succinct Survey about Parallel Computing Technology and It’s Application Abstract:Parallel computing is the main technology to implement high performance computing. This paper starts from the history of the development of Parallel Computing. It summarizes the problems faced in the development of parallel computing and the important technologies in the course of its development. Through the analysis of framework and technology commonly used in parallel computing currently,to explain the current situation of parallel computing.Framework commonly used in parallel are SMP(multi processing system),NUMA(non uniform memory storage),MPP(massively parallel processing) and cluster.The programming models of parallel computing are MPI, PVM, OpenMP, TBB and Cilk++, etc.Explored the application of parallel computing combined with cloud computing and big data which are very popular in current research.Finally ,through the MPI programming model,a simple experiment of parallel programming is carried out. Key words:parallel computing; framework; programming model; application; experiment 1引言 近年来多核处理器的快速发展,使得当前软件技术面临巨大的挑战。单纯的提高单机性能,已经不能满足软件发展的需求,特别是在处理一些大的计算问题上,单机性能越发显得不足。在最近AlphaGo与李世石的围棋大战中,AlphaGo就使用了分布式并行计算技术,才能获得强大的搜索计算能力。并行计算正是在这种背景下,应运而生。并行计算或称平行计算时相对于串行计算来说的。它是一种一次可执行多个指令的算法,目的是提高计算速度,及通过扩大问题求解规模,解决大型而复杂的计算问题。可分为时间上的并行和空间上的并行。时间上的并行就是指流水线技术,而空间上的并行则是指用多个处理器并发的执行计算。其中空间上的并行,也是本文主要的关注点。 并行计算(Parallel Computing)是指同时使用多种计算资源解决计算问题的过程,是提高计算机系统计算速度和处理能力的一种有效手段。它的基本思想是用多个处理器来协同求解同一问题,即将被求解的问题分解成若干个部分,各部分均由一个独立的处理机来并行计算。并行计算系统既可以是专门设计的,含有多个处理器的超级计算机,也可以是以某种方式互联的若干台的独立计算机构成的集群。通过并行计算集群完成数据的处理,再将处理的结果返回给用户。 目前常用的并行计算技术中,有调用系统函数启动多线程以及利用多种并行编程语言开发并行程序,常用的并行模型有MPI、PVM、OpenMP、TBB、Cilk++等。利用这些并行技术可以充分利用多核资源适应目前快速发展的社会需求。并行技术不仅要提高并行效率,也要在一定程度上减轻软件开发人员负担,如近年来的TBB、Cilk++并行模型就在一定程度上减少了开发难度,提高了开发效率,使得并行软件开发人员把更多精力专注于如何提高算法本身效率,而非把时间和精力放在如何去并行一个算法。

相关文档
最新文档