配位化学基础

配位化学基础
配位化学基础

配位化学基础

配位化学就是在无机化学基础上发展起来得一门具有很强交叉性得学科,配位化学旧称络合物化学,其研究对象就是配合物得合成、结构、性质与应用。配位化学得研究范围,除最初得简单无机加与物外,已包括含有金属-碳键得有机金属配位化合物,含有金属-金属键得多核蔟状配位化合物即金属簇合物,还包括有机配体与金属形成得大环配位化合物,以及生物体内得金属酶等生物大分子配位化合物。

一、配合物得基本概念

1、配合物得定义及构成

依据1980年中国化学会无机化学命名原则,配合物可以定义为:由可以给出孤对电子或多个不定域电子得一定数目得离子或分子(统称为配体)与具有接受孤对电子或多个不定域电子得空位得原子或离子(统称为中心原子),按一定得组成与空间构型所形成得化合物。结合以上规定,可以将定义简化为:由中心原子或离子与几个配体分子或离子以配位键相结合而形成得复杂分子或离子,统称为配体单元。含配体单元(又称配位个体)得化合物称为配位化合物。

配体单元可以就是配阳离子,配阴离子与中性配分子,配位阳离子与阴离子统称配离子。配离子与与之平衡电荷得抗衡阳离子或阴离子结合形成配位化合物,而中性得配位单元即时配位化合物。但水分子做配体得水合离子也经常不瞧成配离子。

配位化合物一般分为内界与外界两部分,配体单元为内界,抗衡阳离子或阴离子为外界,而含中性配位单元得配位化合物则无外界。配合物得内界由中心与配体构成,中心又称为配位化合物得形成体,多为金属,也可以就是原子或离子,配体可以就是分子、阴离子、阳离子。

2、配位原子与配位数

配位原子:配体中给出孤对电子与中心直接形成配位键得原子

配位数:配位单元中与中心直接成键得配位原子得个数配位数一般为偶数,以4、6居多,奇数较少

配位数得多少与中心得电荷、半径及配体得电荷、半径有关:

一般来说,中心得电荷高、半径大有利于形成高配位数得配位单元,如氧化数为+1得中心易形成2配位,氧化数为+2得中心易形成4配位或6配位,氧化数为+3得易形成6配位。配体得半径大,负电荷高,易形成低配位得配位单元。

配位数得大小与温度、配体浓度等因素有关:

温度升高,由于热震动得原因,使配位数减少;配体浓度增大,利于形成高配位。

配位数得大小与中心原子价电子层结构有关:

价电子层空轨道越多一般配位数较高

配位数得大小与配体位阻与刚性有关:

配体得位阻一般都会使中心原子得配位数降低,位阻越大、离中心原子越近,配位数得降低程度也就越大。配体得刚性不利于配体在空间中得取向,长回事中心原子得配位数降低。

3、配体得类型

⑴、经典配体与非经典配体

经典配体:维尔纳型配合物中得配体即配体原子只能单纯地提供孤对电子与中心原子形成σ配键

非经典配体:不同于只提供孤对电子得经典配体,它往往即能给出电子又接受电子,能用π电子或者反馈π键与中心原子配位(包括π配体与π酸配体)

π配体:往往以不饱与有机分子上得π电子与中心原子键合

π酸配体:配体不仅能给中心原子提供孤对电子形成σ配键,同时还用自身空得π轨道接受中心原子得反馈电子,形成反馈π键

⑵、单基配体、多基配体以及螯合物

单基配体(即单齿配体):只有一个配位原子得配体

多基配体(即多齿配体):含两个或两个以上配位原子得配体

螯合物(即内配位化合物):由多基配体形成得环状结构得配位化合物

内盐:阴离子多基配体与阳离子中心形成得中性配位单元

⑶、金属配体

金属配体:将具有孤对电子得配合物作为配体

4、配合物类型

非经典配合物:金属羰基配合物、分子氮配合物、烯与炔类配合物、金属簇状配合物与王冠类化合物

按中心原子个数分类:

5、配合物得命名

⑴首先根据盐类命名习惯,依次命名阴、阳离子,注意区分某酸某与某化某;非离子型得中性分子配合物则作为中性化合物命名

⑵内界得命名原则

①配体名称列在中心原子之前,两者以“合”字连接,如H[AuCl4] 四氯合金(II)酸

②带倍数词头得无机含氧酸阴离子命名时需用括号括起,有机配体要用括号括起来,如

[Cu(en)2]SO4硫酸二(乙二胺)合铜(II)

③配体数目用倍数词头二、三、四等表示,如H[AuCl4] 四氯合金(II)酸

④中心离子得氧化数在其名称后用带括号得罗马数字表示,(负氧化数需带负号,为零时

省略)

⑶配体命名原则

若配体不止一种,不同配体间以中圆点分开

①无机配体先于有机配体

②无机配体中,先阴离子,其次为中性配体,最后就是阳离子配体

③同类配体若不止一种,名称按配原子元素符号得英文字母顺序排列

④若同类配体配原子相同,则含较少原子数得配体在前,含较多原子数得配体在后

⑤同类配体配原子相同,配体中原子数也相同,则在配体得结构式中与配体相连得原子

得元素符号得顺序依次排列

⑥注意区分配体化学式相同配原子不同得两个配体得命名,如硫氰根(以S配位)与异硫

氰根(以N配位)

⑦羟基配体与金属相连时,一般表现为阴离子,但在命名时将其称为“基”。如

K[B(C6H5)4] 四笨基合硼(III)酸钾

⑷多核配合物得命名

①多核配合物中若中心原子间有金属键连接且结构对称,则应该在前面加倍数词头。如

[(CO)5Mn-Mn(CO)5] 二(五羟基合锰)

②若结构不对称,则将其中一个元素符号中得英文字母在前得中心原子及相连配体作

为另一个中心原子得配体(词尾用“基”)来命名。如

[(C6H5)3AsAuMn(CO)5] 五羟基·[(三笨基胂)金基]合锰

③对于配位聚合物,命名前在重复单元得名称前加“聚”,若为链状配位聚合物,则往往

在名称前加“链”取代“聚”

④桥联配体前加词头“μ-”,π电子配体前加词头“η-”

⑤原子簇与物中还应该表明中心原子得几何形状,如三角形,正方形,四面形等

⑸几何异构体得命名

用“顺-”(或cis-)表示顺式异构体,用“反-”(trans-)表示反式异构体

用“面-”(或fac-)表示面式异构体,“经-”(mer-)表示经式异构体

当配合物中存在多种配体时,用小写英文字母作为位标表示配体具体得空间位置

⑹含不饱与配体配合物得命名

对于有机金属配合物,在以π键配位得不饱与配体得名称前加词头η,若配体与中心原子以σ键键合,则在配体前加词头σ

二、配合物得合成、分离与晶体培养

1.配合物得合成

根据配位数与氧化数得变化,可以将合成方法分:

加成反应:中心原子得配位数增加,氧化数不变

取代反应:中心原子得配位数、氧化数均不变

解离反应:中心原子得配位数减小,氧化数不变

氧化或还原反应:中心原子得氧化数不变

氧化加成反应:中心原子得氧化数与配位数均不变

按实验方法分类:

直接法:通过配体与中心原子直接进行配位反应,包括溶液中得直接配位反应、金属

蒸汽法、基底分离法等

组分交换合成法:包括金属交换反应与配体取代反应

氧化还原反应:包含电化学合成法

水热、溶剂热法

微波辐射合成法

热分解合成法

分层扩散法

固相反应法

模板法

2.配合物得分离

⑴对于经典配合物(通常具有盐得性质,易溶于水,常采用结晶得方法)

①蒸发浓缩除去溶剂:用冰盐冷却较浓得反应混合物使产品析出。加入所需化合物得晶

种,并在液面下摩擦器壁常有利于晶体析出

注意:当配体就是挥发性得(如NH3),或对热不稳定(如多聚磷酸盐),或只能增大溶液得浓度而不结晶时,则不宜采用浓缩得方法

②缓慢加入能与溶剂互相混溶但又不能溶解所需配合物得溶剂,使产品析出

例如:【Cu(NH3)4】SO4,在水中溶解度大不易析出,若在其溶液中加入乙醇(在乙醇中得溶解度小)则结晶析出

③利用同离子效应使产品析出

④加入沉淀剂

⑵对于非经典配合物(通常就是共价性化合物,一般溶于非极性溶剂,具有较低得沸点

与熔点)也可以用上列方法,但更常用蒸馏、升华与色层分离得方法

注意:若配合物在水中溶解度不大,可采用在沸水中进行重结晶。也可以选用适当有

机溶剂,在有机相中重结晶

3.配合物制备得注意事项

⑴、溶剂选择:依次顺序[1]水;[2]乙醇;[3]甲醇;[4]水-乙醇[5]水-甲醇;[6]乙

腈;[7]DMF(N,N-二甲基甲酰胺)或DMSO(二甲亚砜);[8]或其她混合溶剂;[9]四氢呋喃水或醇得用量合计20mL左右,可以适当增加,取决于溶解性DMF得用量要小,一般合计10mL,配体与金属盐各用5mL溶解DMF可直接用于配合物得合成,也可在后续用于重结晶

⑵操作

①混合操作:容器采用50或100mL烧杯或100mL圆底烧瓶

方法一:金属盐与配体分别溶解于溶剂后混与;

方法二:第一配体与第二配体溶于有机溶剂,然后滴入金属盐得水溶液,混与

方法三:第一配体与金属盐溶于水或醇/ 水混与溶剂,调节pH,然后滴入第二配体得醇溶液

②酸碱度控制:采用广泛与精密pH试纸测量混与溶液pH值,然后根据需要搅拌下调节

pH6-7(过渡金属)或5、5-6、5(稀土金属)

③温度控制:加热设备采用加热磁力搅拌器或恒温磁力电热套

方法一:常温下以烧杯做容器,平板磁力搅拌器或不加热得电热套

方法二:60-70℃恒温水浴控制,圆底烧为容器置于500mL烧杯中水浴加热2-3h;或置于恒温槽中加热保温3h或更长时间

方法三:回流控温

⑶影响配合物生成因素

内因:中心原子(离子)与配体得性质以及她们之间得成键情况

外因:溶液得酸碱度、浓度、温度,共存离子得影响等

4.晶体得培养

测定晶体结构得关键问题就是培养出合格得单晶,合格得单晶体(晶粒)粒径≈0、3mm三个方向基本匀称表面光滑,无棱片状或细绒毛状

内因:分子间色散力、偶极性及氢键

外因:溶剂极性|挥发或扩散速度、温度

⑴晶体生长得共同条件:

①结晶物质要纯净

②过饱与浓度要低

要培养晶体,基本条件:溶液要达到过饱与(但若过饱合度太大,一次形成得晶核多,晶体颗粒小)晶粒长大得三种方法:

①小晶粒做晶种,放在刚达到饱与得溶液中,通过自然挥发等方法慢慢除

去溶剂,增加过饱合度,使小晶粒长大。

②长时间放置,使相对较小得晶粒因界面能大而溶解度较大,逐渐溶解;

相对较大得晶粒过饱与度大,溶质逐渐地结晶沉积到这些较大得晶粒上。

③利用蒸气扩散法,缓慢地改变溶液得组成,增加过饱与度,向结晶过程发展。

③溶液得组成与温度合适:

溶液得组成合适:溶质一定,溶剂需要选择。选择合适得溶剂,考虑两

方面因素:溶解度与溶剂不同对晶体外形生长得影响

温度合适:温度影响溶液得溶解度,也就就是说影响溶液得组成(影响溶液得相图),有些晶体在夏天易生长,有些晶体在冬天易生长

⑵培养单晶得方法:

方法一:对于溶液体系,直接置于小烧杯中,用保鲜膜包裹并扎数十个孔或用纸包裹,室温静置。

方法二:对于有少量沉淀得体系,冷却至室温后,过滤,滤液置于小烧杯中,用保鲜膜包裹并扎数十个孔或用纸包裹,室温静置。

方法三:对于有大量沉淀物得体系,冷却,过滤,滤液置于小烧杯中,用保鲜膜包裹并扎数十个孔或用纸包裹,室温静置。此处沉淀需要再用水、乙醇分别洗涤(注意:不要将洗涤后得溶液与前面得溶液混与),然后真空干燥备用。取一小部分约50mg,溶于5mLDMF,过滤后,滤液培养单晶。或将此溶液置于小试管中,然后小心注入1mL异丙醇或乙醇,封口静置(这就是扩散法得一种方法)。

方法四:对于产生大量沉淀得体系,如果沉淀难溶于DMF或DMSO,可以再考虑用扩散法,即试管用容器,分上中下三层,下层为配体得水溶液或DMF 溶液(溶液选择视配体得溶解性,必须保证就是可溶得透明得溶液状态),中层为水-乙醇混与溶剂或DMF-乙醇混与溶剂(体积比为1:1)约1mL,上层为金属盐得乙醇溶液,封口、静置。有时,下层为金属盐与某一配体得水溶液(如果二者反应后无混浊现象,而与另一配体混与即有大量沉淀得情况)

注意:在单晶培养过程中,烧杯不能触动,甚至就是风吹等振动。单晶必须就是有规则平面闪光得颗粒状或块或片或棒状,如果就是粉末,宣告失败。

常用单晶培养方法:常规得溶液法、扩散法(气相扩散、液层扩散与凝胶扩散等)以及水热或溶剂热合成法

三、配合物得空间结构

1.配位数与空间构型得关系

⑴一配位得配合物呈直线型配位数为1得配合物很少,目前报道得两个含一个单

齿配体都就是中心原子与一个大体积单齿配体键合得金属有机化合物

⑵二配位得配合物直线型二配位得配合物较少,主要限于Cu+、Ag+、Au+、Hg+与Be2+

等d10与s2电子构型得配合物,可以认为中心原子就是以sp或dp杂化轨道与配体成键

⑶三配位得配合物平面三角形中心原子以sp2、dp2或d2s杂化轨道与配体得轨道成

⑷四配位得配合物呈正四面体或平面四边形

⑸五配位得配合物三角双锥或四方锥

⑹六配位得配合物八面体或三棱柱

⑺七配位得配合物单帽八面体、单帽三棱柱或五角双棱

⑻八配位得配合物十二面体、四方反棱柱、六角双锥

⑼九配位得配合物三帽三棱柱、单帽四方反棱柱

⑽十配位及十以上配位得配合物多为镧系与锕系配合物,结构往往就是畸变得正多面体,到目前为止,所发现得配合物得配位数最大为16

2、配合物得异构现象

1.立体异构:化学式相同、成键原子得连接方式也相同,但空间排列不同

①几何异构:凡就是一个分子与其镜像分子不能重叠者即互为对映体,而不属于对映体

得立体异构体皆为几何异构体。几何异构体主要就是顺反异构。

②对映异构(旋光异构):若一个分子与其镜像分子不能重叠,则该分子与其镜像分子互

为对映异构体。对映异构体得物理性质(如熔点、水中得溶解度等)均相同,化学性质也颇为相似,但其平面偏振旋转得方向不同

2.构造异构:化学式相同,而成键原子得连接方式不同

①配位异构:配合物得组成相同,只就是配体在配阴离子与配阳离子之间得分配不同

②电离异构:配合物在溶液中电离时,由于内界与外界配体发生交换而生成不同配离子

③水合异构:化学组成相同得配合物,由于水分子处于内、外界得不同而引起得异构现象,

一般只限于晶体中讨论

④聚合异构:化学式相同但分子量成倍数关系得一组配合物称为聚合异构体

⑤键合异构:含多个配位原子得配体与金属离子配位时,由于键合原子得不同而造成得

异构

四、配合物得反应性

1.配合物得稳定性

⑴配合物稳定性常数得测定:电位法、极谱法、分光光度法、萃取法与离子交换法、量

热滴定法等

⑵影响配合物稳定性得因素:

内因:中心原子与配体得性质

中心原子得影响:半径与电荷、电子构型

配体得影响:配体原子得电负性、配体得碱性、螯合效应、空间位阻

外因:溶液得酸碱度、浓度、温度、与压力等外界条件

2.配体得反应性

⑴配体得亲核加成反应

⑵配体得酸式解离反应

⑶中心离子活化配体得反应

3.配位催化反应

定义:在催化过程中催化剂与反应物或反应中间体之间发生配位反应,使反应物分子在配位后处于活化状态从而加速与控制反应得进程。

特点:配位与解离这种活化分子得方式为反应提供了较低得得反应能垒;可以对反应方向与产物结构起选择性得效果;可以促进电子传递;提供了电子与能量偶联传递途径。

⑴按反应选择性分类:常规催化体系、区域选择性催化反应体系与立体选择催化反应体系

⑵按相体系分类:均相催化与异相催化

⑶配位催化基本原理:

关键:降低反应活化能

降低途径:一就是使化学键得部分成键电子转移,消弱了该化学键,从而易生成新得化学键;二就是使反键轨道中填充电子,为生成新化学键提供条件。

配位催化得催化剂大多就是过渡金属配合物或其盐类

⑷配位催化中得基本反应:

①配体得配位与解离

②氧化加成与还原消除

③插入及挤出反应

④σ—π重排

⑸配体对催化反应得影响

⑹配位催化反应举例:

①催化氢化反应

②催化氧化反应

③夏普勒斯催化不对称环氧化体系

④烯烃聚合

五.配合物得表征方法

应用各种物理方法去分析化合物组成与结构,以了解原子、分子与晶体等物质中得基本微粒如何相互作用(键型)以及她们在空间中得几何排布与配置方式(构型)

电子吸收光谱

荧光光谱

红外光谱

拉曼光谱

射线光电子光谱

核磁共振

顺磁共振

圆二色谱法

电化学

X射线衍射

电喷雾质谱

六.功能配合物

1.配合物发光材料

⑴OLED有机电致发光材料

⑵发光金属凝胶

2.荧光探针及分子传感器

设计原理主要基于光诱导电子转移、分子内电荷转移、电子能量转移、激基缔合物等机理

荧光探针及荧光分子传感器一般由荧光团、间隔基与受体三部分构成

pH荧光探针

阳离子荧光探针

配合物作为荧光探针

3.导电配合物

一般认为配合物多为绝缘体,究其原因,因为它们不存在强得相互作用力(这里所指得就是小于范德华半径得原子间近距离接触或π轨道得有效重叠)

目前导电配合物主要有低维配位聚合物与电荷转移复合物

4.磁性配合物

磁化率X:材料得磁化强度M与外磁场强度H得比值

抗磁体过渡族金属铁磁体铁、钴、镍

弱磁体顺磁体贵金属、稀土金属、碱金属强磁体

反铁磁体а—Mn、铬等亚铁磁体四氧化三铁

抗磁性:与外磁场相反得方向诱导出磁化强度得现象即磁化强度方向与磁场强度方向相反(磁化率为负),源于电子在轨道中运动时与外磁场得相互作用,故所有物质均具有抗磁性

顺磁性:就是指材料对磁场响应很弱得磁性,主要源于原子内部存在永久磁矩。故只有未成对电子得物质才具有顺磁性,且磁化强度方向与磁场强度方向相同(磁化率为正)

在原子自旋(磁矩)受交换作用而呈现有序排列得磁性材料中,如果相邻原子自旋间就是受负得交换作用,自旋为反平行排列,则磁矩虽处于有序状态(称为序磁性),但总得净磁矩在不受外场作用时仍为零。这种磁有序状态称为反铁磁性。

亚铁磁性:就是在无外加磁场得情况下,磁畴内由于相邻原子间电子得交换作用或其她相互作用。使它们得磁矩在克服热运动得影响后,处于部分抵消得有序排列状态,以致还有一个合磁矩得现象。

近年来配合物基分子磁体得研究方向:

①高T C分子基磁体

②低微分子基磁体:包括单分子磁体(可磁化得分子)与单链磁体(指像 Glauber 模型那

样具有磁化强度缓慢弛豫作用得一维材料)

③自选转换材料

④多功能分子基磁性材料:光诱导磁体、导电磁体、手性磁体、微孔磁体、磁冰箱等

5.磁共振成像造影剂

磁共振成像基本原理:核磁共振现象

核磁共振分析能提供四种信息:化学位移、偶合常数、各种核得信号强度比与弛豫时间

弛豫:高能级得核可以不用辐射得方式回到低能级得现象(分为两种形式:自旋-晶格弛豫又称纵向弛豫、自旋-自旋弛豫又称横向弛豫)

磁共振成像造影剂也叫磁共振成像对比剂:就是一类用来缩短成像生物体不同组织在外磁场影响下产生不同得共振时间、增强对比信号差异、提高成像对比度与清晰度得磁性物质

6、配合物杂化材料

根据杂化材料得基质组成分类:无机基质得杂化材料、有机聚合物基质得杂化材料与无机/有机杂化基质得杂化材料

根据配合物杂化材料中两相间结合方式分类:次价键(氢键、范德华力与静电作用等)结合得杂化材料与强化学键(共价键或配位键)结合得杂化材料

7、分子电子器件

依据介质种类分类:光化学分子器件、分子电子器件与分子离子器件

依据分子器件得功能与用途分类:分子开关、分子梭、分子转子、分子棘齿、分子闸、分子镊子、分子电梯、分子导线等

无机化学 第12章 配位化学基础习题及全解答-教学提纲

第12章 配位化学基础 1 M 为中心原子,a, b, d 为单齿配体。下列各配合物中有顺反异构体的是 (A ) (A ) Ma 2bd (平面四方)(B ) Ma 3b (C ) Ma 2bd (四面体)(D ) Ma 2b (平面三角形) 2 在下列配合物中,其中分裂能最大的是 (A ) (A ) Rh(NH 3)36+ (B )Ni(NH 3) 36+ (C ) Co(NH 3)36+ (D ) Fe(NH 3)36+ 3 在八面体强场中,晶体场稳定化能最大的中心离子d 电子数为 (B ) (A ) 9 , (B ) 6 , (C )5 , (D )3 4 化合物[Co(NH 3)4Cl 2]Br 的名称是 溴化二氯?四氨合钴(III ) ; 化合物[Cr(NH 3)(CN)(en)2]SO 4的名称是 硫酸氰?氨?二乙二胺合铬(III )。 5 四硫氰·二氨合铬(Ⅲ)酸铵的化学式是 NH 4[Cr (SCN )4(NH 3)2] ; 二氯·草酸根·乙二胺合铁(Ⅲ)离子的化学式是[Fe Cl 2(C 2O 4)en]- 4 。 6. 下列物质的有什么几何异构体,画出几何图形 (1)[Co(NH 3)4Cl 2]+ (2)[Co(NO 2)3(NH 3)3] 答:(1)顺、反异构(图略),(2)经式、面式异构(图略)。 7.根据磁矩,判断下列配合物中心离子的杂化方式,几何构型,并指出它们属于何类配合物(内/外轨型。 (1)[Cd (NH 3)4]2+ μm =0 ; (2)[Ni(CN)4]2- μm =0 ; (3)[Co(NH 3)6]3+ μm =0 ; (4)[FeF 6]3- μm =5.9μB ; 答:

中级无机化学习题和答案

中级无机化学习题 第二章 对称性与群论基础 1、利用Td 点群特征标表(右表)回答下列问题 (1)、群阶,对称操作类数,不可约表示数 (2)、SO 42-离子中S 原子3p x 轨道及3d xy 轨道所属的不可约表示 (3)、可约表示Г(10,-2,2,0,0)中包括了 哪些不可约表示?SO 42-离子是否表现为红外活性?SO 42-离子是否表现为拉曼活性的? 解:(1)点群的阶h=8;对称操作类=5;不可约表示数=5 (2)S 原子的P X 轨道所属不可约表示为T 2表示。 (3)()01231)2(811018 1 11=??+?-?+??=?Γ?=∑i A g h a χ;同理 02 =A a ;11=T a ;12=T a ;2=E a ;故可约表示E T T 221)0,0,2,2,10(⊕⊕=Γ- 因T 2表示中包含(x,y,z )和 (xy,xz,yz),故既表现为红外活性又表现为拉曼活性。 2 (1)、点群的阶,对称操作类数,不可约表示数 (2)、NH 3分子中偶极矩所属的不可约表示 (3)可约表示Г(6,0,2)中包括了哪些不可约表示? 解:(1)点群的阶h=6; 对称操作类=3;不可约表示数=3 (2)NH 3分子中偶极矩所属不可约表示为A 1表示 (3)()21231021616 1 11=??+??+??=?Γ?= ∑i A g h a χ;同理 02=A a , 2=E a ; 故可约表示E A 221)2,0,6(⊕=Γ 3 (1)、点群的阶,对称操作类数,不可约表示数 (2)、SF 5Cl 分子中S 原子Px 轨道所属的不可约表示 (3)、可约表示Г(4,0,0,-2,0)中包括了哪些不可约表示?

配位化学第一组第三章作业

第三章配合物在溶液中的稳定性作业 1.下列各组中,哪种配体与同一种中心离子形成的配合物稳定性较高,为什么? (1)Cl- , F-和Al3+(2)Br-,I-和Hg2+ (3)2CH3NH2,en和Cu2+(4)Br-,F- 和Ag+ (5)RSH,ROH和Pt2+(6)Cl-,OH-和Si4+ (7)RSH,ROH和Mg2+ 解(1)F-与Al3+形成配合物更稳定,因为F-电负性大,离子半径更小(2)I-与Hg2+更稳定,因为碘离子的电负性较大,离子半径更小(3 )2CH3NH2与Cu2+形成的配合物更稳定,因为它的碱性比en更强与形成的配合物更稳定 (4)Br-与Ag+形成的配合物更稳定,因为与Ag+形成配合物Br-变形性比F-强 (5)RSH与Pt2+形成配合物更稳定,因为在与Mg2+形成配合物时S 的半径小于O的半径 (6)OH-与Si4+形成的配合物更稳定,因为在与Si4+形成配合物时OH-的电荷比更多 (7)RSH与Mg2+形成配合物更稳定,因为在与Mg2+形成配合物时S 的半径小于O的半径 2.写出下列,配体与中心离子形成的配合物的稳定次序。 解(1)CH3NH2,en,NH2-NH2,NH2-OH和Cu2+ en > CH3NH2 > NH2-NH2 > NH2OH

(2)R3CCOOH,CH3COOH,Cl3CCOOH,I3CCOOH和Fe3+ R3CCOOH > CH3COOH > I3CCOOH > Cl3CCOOH (3)NH3,NH2-NH2,NH2-OH,R-OH和Ag+ NH3 > NH2-NH2 > NH2-OH > R-OH (4)N, NH2 与Zn2+ N> NH2 (5)NH2 O2N, NH2 C H3, NH2 NO2与Cu2+ NH2 C H3> NH2 NO2> NH2 O2N (6) N OH, N OH CH3 与Ni2+ N OH CH3 > N OH CH3 3.下列二组试剂与同一种金属离子形成螯合物时,估计lg k的大小次序:

配位化学基础

配位化学基础 配位化学就是在无机化学基础上发展起来得一门具有很强交叉性得学科,配位化学旧称络合物化学,其研究对象就是配合物得合成、结构、性质与应用。配位化学得研究范围,除最初得简单无机加与物外,已包括含有金属-碳键得有机金属配位化合物,含有金属-金属键得多核蔟状配位化合物即金属簇合物,还包括有机配体与金属形成得大环配位化合物,以及生物体内得金属酶等生物大分子配位化合物。 一、配合物得基本概念 1、配合物得定义及构成 依据1980年中国化学会无机化学命名原则,配合物可以定义为:由可以给出孤对电子或多个不定域电子得一定数目得离子或分子(统称为配体)与具有接受孤对电子或多个不定域电子得空位得原子或离子(统称为中心原子),按一定得组成与空间构型所形成得化合物。结合以上规定,可以将定义简化为:由中心原子或离子与几个配体分子或离子以配位键相结合而形成得复杂分子或离子,统称为配体单元。含配体单元(又称配位个体)得化合物称为配位化合物。 配体单元可以就是配阳离子,配阴离子与中性配分子,配位阳离子与阴离子统称配离子。配离子与与之平衡电荷得抗衡阳离子或阴离子结合形成配位化合物,而中性得配位单元即时配位化合物。但水分子做配体得水合离子也经常不瞧成配离子。 配位化合物一般分为内界与外界两部分,配体单元为内界,抗衡阳离子或阴离子为外界,而含中性配位单元得配位化合物则无外界。配合物得内界由中心与配体构成,中心又称为配位化合物得形成体,多为金属,也可以就是原子或离子,配体可以就是分子、阴离子、阳离子。 2、配位原子与配位数 配位原子:配体中给出孤对电子与中心直接形成配位键得原子 配位数:配位单元中与中心直接成键得配位原子得个数配位数一般为偶数,以4、6居多,奇数较少 配位数得多少与中心得电荷、半径及配体得电荷、半径有关: 一般来说,中心得电荷高、半径大有利于形成高配位数得配位单元,如氧化数为+1得中心易形成2配位,氧化数为+2得中心易形成4配位或6配位,氧化数为+3得易形成6配位。配体得半径大,负电荷高,易形成低配位得配位单元。 配位数得大小与温度、配体浓度等因素有关: 温度升高,由于热震动得原因,使配位数减少;配体浓度增大,利于形成高配位。

第三章 第四节 配合物与超分子

第四节配合物与超分子 [核心素养发展目标] 1.能从微观角度理解配位键的形成条件和表示方法,能判断常见的配合物。2.能利用配合物的性质去推测配合物的组成,从而形成“结构决定性质”的认知模型。 3.了解超分子的结构特点与性质。 一、配合物 1.配位键 (1)概念:由一个原子单方面提供孤电子对,而另一个原子提供空轨道而形成的化学键,即“电子对给予—接受”键。 (2)表示方法:配位键常用A—B表示,其中A是提供孤电子对的原子,叫给予体,B是接受孤电子对的原子,叫接受体。 如:H3O+的结构式为;NH+4的结构式为。 (3)形成条件 形成配位键的一方(如A)是能够提供孤电子对的原子,另一方(如B)是具有能够接受孤电子对的空轨道的原子。 ①孤电子对:分子或离子中,没有跟其他原子共用的电子对就是孤电子对。如、 、分子中中心原子分别有1、2、3对孤电子对。含有孤电子对的微粒:分子如CO、NH3、H2O等,离子如Cl-、CN-、NO-2等。 ②含有空轨道的微粒:过渡金属的原子或离子。一般来说,多数过渡金属的原子或离子形成配位键的数目基本上是固定的,如Ag+形成2个配位键,Cu2+形成4个配位键等。 2.配合物 (1)概念 通常把金属离子或原子(称为中心离子或原子)与某些分子或离子(称为配体或配位体)以配位键结合形成的化合物称为配位化合物,简称配合物。如[Cu(NH3)4]SO4、[Ag(NH3)2]OH等均为配合物。 (2)组成 配合物[Cu(NH3)4]SO4的组成如下图所示:

①中心原子:提供空轨道接受孤电子对的原子。中心原子一般都是带正电荷的阳离子(此时又叫中心离子),最常见的有过渡金属离子:Fe3+、Ag+、Cu2+、Zn2+等。 ②配体:提供孤电子对的阴离子或分子,如Cl-、NH3、H2O等。配体中直接同中心原子配位的原子叫做配位原子。配位原子必须是含有孤电子对的原子,如NH3中的N原子,H2O中的O原子等。 ③配位数:直接与中心原子形成的配位键的数目。如[Fe(CN)6]4-中Fe2+的配位数为6。 (3)常见配合物的形成实验 实验操作实验现象有关离子方程式 滴加氨水后,试管中首先出现蓝色沉淀,氨水过量后沉淀逐渐溶解,得到深蓝色的透明溶液,滴加乙醇后析出深蓝色晶体Cu2++2NH3·H2O===Cu(OH)2↓+2NH+4、Cu(OH)2+4NH3=== [Cu(NH3)4]2++2OH-、 [Cu(NH3)4]2++SO2-4+H2O===== 乙醇[Cu(NH3)4]SO4·H2O↓ 溶液变为红色Fe3++3SCN-Fe(SCN)3滴加AgNO3溶液后,试管 中出现白色沉淀,再滴加氨水后沉淀溶解,溶液呈无色Ag++Cl-===AgCl↓、AgCl+2NH3===[Ag(NH3)2]++Cl- (4)配合物的形成对性质的影响 ①对溶解性的影响 一些难溶于水的金属氢氧化物、氯化物、溴化物、碘化物、氰化物,可以溶解于氨水中,或依次溶解于含过量的OH-、Cl-、Br-、I-、CN-的溶液中,形成可溶性的配合物。如Cu(OH)2+4NH3===[Cu(NH3)4]2++2OH-。 ②颜色的改变 当简单离子形成配离子时,其性质往往有很大差异。颜色发生变化就是一种常见的现象,根据颜色的变化就可以判断是否有配离子生成。如Fe3+与SCN-形成硫氰化铁配离子,其溶液显红色。

配位化学基础

配位化学基础 配位化学是在无机化学基础上发展起来的一门具有很强交叉性的学科,配位化学旧称络合物化学,其研究对象是配合物的合成、结构、性质和应用。配位化学的研究范围,除最初的简单无机加和物外,已包括含有金属-碳键的有机金属配位化合物,含有金属-金属键的多核蔟状配位化合物即金属簇合物,还包括有机配体与金属形成的大环配位化合物,以及生物体内的金属酶等生物大分子配位化合物。 一、配合物的基本概念 1.配合物的定义及构成 依据1980年中国化学会无机化学命名原则,配合物可以定义为:由可以给出孤对电子或多个不定域电子的一定数目的离子或分子(统称为配体)和具有接受孤对电子或多个不定域电子的空位的原子或离子(统称为中心原子),按一定的组成和空间构型所形成的化合物。结合以上规定,可以将定义简化为:由中心原子或离子和几个配体分子或离子以配位键相结合而形成的复杂分子或离子,统称为配体单元。含配体单元(又称配位个体)的化合物称为配位化合物。 配体单元可以是配阳离子,配阴离子和中性配分子,配位阳离子和阴离子统称配离子。配离子与与之平衡电荷的抗衡阳离子或阴离子结合形成配位化合物,而中性的配位单元即时配位化合物。但水分子做配体的水合离子也经常不看成配离子。 配位化合物一般分为内界和外界两部分,配体单元为内界,抗衡阳离子或阴离子为外界,而含中性配位单元的配位化合物则无外界。配合物的内界由中心和配体构成,中心又称为配位化合物的形成体,多为金属,也可以是原子或离子,配体可以是分子、阴离子、阳离子。 2.配位原子和配位数 配位原子:配体中给出孤对电子与中心直接形成配位键的原子 配位数:配位单元中与中心直接成键的配位原子的个数配位数一般为偶数,以4、6居多,奇数较少 配位数的多少和中心的电荷、半径及配体的电荷、半径有关: 一般来说,中心的电荷高、半径大有利于形成高配位数的配位单元,如氧化数为+1的中心易形成2配位,氧化数为+2的中心易形成4配位或6配位,氧化数为+3的易形成6配位。配体的半径大,负电荷高,易形成低配位的配位单元。 配位数的大小与温度、配体浓度等因素有关: 温度升高,由于热震动的原因,使配位数减少;配体浓度增大,利于形成高配位。 配位数的大小与中心原子价电子层结构有关: 价电子层空轨道越多一般配位数较高 配位数的大小与配体位阻和刚性有关: 配体的位阻一般都会使中心原子的配位数降低,位阻越大、离中心原子越近,配位数的降低程度也就越大。配体的刚性不利于配体在空间中的取向,长回事中心原子的配位数降低。 3.配体的类型

无机化学-第12章-配位化学基础习题及全解答-

1 / 7 第12章 配位化学基础 1 M 为中心原子,a, b, d 为单齿配体。下列各配合物中有顺反异构体的是 (A ) (A ) Ma 2bd (平面四方)(B ) Ma 3b (C ) Ma 2bd (四面体)(D ) Ma 2b (平面三角形) 2 在下列配合物中,其中分裂能最大的是 (A ) (A ) Rh(NH 3)36+ (B )Ni(NH 3) 36+ (C ) Co(NH 3)36+ (D ) Fe(NH 3)36+ 3 在八面体强场中,晶体场稳定化能最大的中心离子d 电子数为 (B ) (A ) 9 , (B ) 6 , (C )5 , (D )3 4 化合物[Co(NH 3)4Cl 2]Br 的名称是 溴化二氯?四氨合钴(III ) ; 化合物[Cr(NH 3)(CN)(en)2]SO 4的名称是 硫酸氰?氨?二乙二胺合铬(III )。 5 四硫氰·二氨合铬(Ⅲ)酸铵的化学式是 NH 4[Cr (SCN )4(NH 3)2] ; 二氯·草酸根·乙二胺合铁(Ⅲ)离子的化学式是[Fe Cl 2(C 2O 4)en]- 4 。 6. 下列物质的有什么几何异构体,画出几何图形 (1)[Co(NH 3)4Cl 2]+ (2)[Co(NO 2)3(NH 3)3] 答:(1)顺、反异构(图略),(2)经式、面式异构(图略)。 7.根据磁矩,判断下列配合物中心离子的杂化方式,几何构型,并指出它们属于何类配合物(内/外轨型。 (1)[Cd (NH 3)4]2+ μm =0 ; (2)[Ni(CN)4]2- μm =0 ; (3)[Co(NH 3)6]3+ μm =0 ; (4)[FeF 6]3- μm =5.9μB ; 答: 8判断下列配离子属何类配离子 9 配合物K 3 10 计算下列金属离子在形成八面体配合物时的CFSE/Dq (1) Cr 2+ 离子,高自旋;

第一章 配位化学基础要点

绪论 导课:配位化学一般是指金属和金属离子同其他分子或离子相互反应的化学。它是在无机化学的基础上发展起来的一门独立的、同时也与化学各分支学科以及物理学、生物学等相互渗透的具有综合性的学科。配位化学所涉及的化合物类型及数量之多、应用之广,使之成为许多化学分支的汇合口。现代配位化学几乎渗透到化学及相关学科的各个领域,例如分析化学、有机金属化学、生物无机化学、结构化学、催化活性、物质的分离与提取、原子能工业、医药、电镀、燃料等等。因此,配位化学的学习和研究不但对发展化学基础理论有着重要的意义,同时也具有非常重要的实际意义。 一、配位化学的任务 配位化学是研究各类配合物的合成、结构、性质和应用的一门新型学科。 配合物的合成是重点,结构与性质研究是难点,研究方法是关键。应用是落脚点。二、配位化学的学科基础 配位化学的学科基础是无机化学,分析化学、有机化学、物理化学和结构化学。配位化学已成为许多化学分支的汇合口。 配位化学是许多新兴化学学科的基础。如:超分子化学,酶化学,蛋白质化学,生物无机化学,材料化学,化学生物学,药物化学,高分子化学等。 三、配位化学的研究方法 1、合成方法:要求掌握有机和无机化学的合成技术,特别是现今发展起来的水热技术、微波技术、微乳技术、超临界技术等。 2、结构研究:元素分析、紫外光谱、红外光谱、质谱、核磁共振、荧光光谱、X-衍射等。 3、性质研究:电位滴定、循环伏安、磁天平、变温磁化率、交流磁化率、电子顺磁共振、光电子能谱、E-扫描、催化性质、凝胶电泳、园二色谱、核磁共振研究与细胞及DNA 的作用。 4、应用:催化反应用于有机合成、金属酶的模拟、分子识别、金属药物、非线性光学材料、分子磁体、介孔材料、分子机器等。 四、配位化学的学习方法 1、课前预习:在上课以前,把下一次课的内容先粗略的看一次,把自己看不懂的内容做上记号,有时间再认真的看一次,如果仍看不懂,做好记录,等待课堂解决。 2、上课:根据课前预习的难度,对较难理解的部分认真听讲,理解教师的分析思路,学习思考问题和解决问题的方法。在教材上作好批注。 3、复习:对在课堂上没有弄懂的问题在课间问主讲教师,下课后对整个课堂内容复习一次并作好复习笔记。 五、课程的内容安排:

中级无机化学[第三章配位化学] 山东大学期末考试知识点复习

第三章配位化学 1.配合物 配合物:由提供孤对电子或多个不定域电子的一定数目的离子或分子(配体)和接受孤对电子或多个不定域电子的原子或离子(统称中心原子)按一定组成和空间构型所形成的化合物。其中,与中心原子直接相连的原子称为配位原子,与同一中心原子连接的配位原子数目称为配位数;由中心金属离子和配体构成的络合型体称为内界,通常用“[]”标出。 配合物的命名:配体名称在先,中心原子名称在后。阴离子名称在先,阳离子名称在后,两者间用“化”或“酸”相连。不同配体名称的顺序与化学式的书写顺序相同,相互间以圆点隔开,最后一种配体名称之后加“合”字。配体个数在配体名称前用中文数字表示。中心原子的氧化态在元素名称之后用括号内的罗马数字表示。 2.配合物的异构 立体异构:包括几何异构和旋光异构。配合物内界中两种或两种以上配体在空间的排布方式不同所产生的异构现象称为几何异构。若由配体在空间的排布方式不同所产生的异构体之间互为对映体,则这种异构现象称为旋光异构。 电离异构:配合物在溶液中电离时,由于内界和外界配体发生交换而生成不同配离子的异构现象称为电离异构。 键合异构:含有多种配位原子的单齿配体用不同的配位原子参与配位而产生的异构现象称为键合异构。 配位异构:在配阴离子与配阳离子形成的配合物盐中,配阴离子与配阳离子中配体与中心离子出现不同组合的现象称为配位异构。 3.配合物的常用制备方法 加成反应:路易斯酸碱之间直接反应,得到酸碱加合型配合物。加成后配位

数增大。 取代反应:用一种适当的配体(通常是位于光谱化学序列右边的配体)取代配合物中的某些配体(通常是位于光谱化学序列左边的配体)。取代后配位数通常不变。 氧化还原反应:伴随有中心金属氧化态变化的制备反应,在许多情况下同时伴随有配体的取代反应。 热解反应:在升高温度时,配合物中易挥发的配体失去,外界阴离子占据失去配体的配位位置,相当于固相取代反应。 4.配合物的化学键理论 (1)晶体场理论理论要点: (a)中心金属离子具有电子结构,配体视为无电子结构的阴离子或偶极子,二者之间存在的静电吸引作用产生配位键。 (b)中心金属离子的电子与配体电子之间存在排斥作用。由于配体在中心离子周围的分布具有方向性,配体的静电场作用使中心离子的d轨道发生能级分裂。分裂的方式与分裂的程度取决于配位场的类型及配体、中心离子的性质。 (c)中心离子的电子在配位场能级中的占据结果,使配合物获得一个晶体场稳定化能(CFSE)。 晶体场理论可以定性解释配合物的吸收光谱、稳定性、磁性、结构畸变等,但无法解释金属与配体间的轨道重叠作用,不能很好地解释光谱化学序列。 (2)配位场理论理论要点:配体的存在使中心金属离子与配体之间存在的化学键作用既包括静电作用也包括共价作用(既有σ成键作用也有π成键作用)。金属离子的d电子局限在金属原子核附近运动,不进入配体范围,但是配位场负电荷的影响使中心金属离子的d轨道能级分裂。在配位场中,分裂能既决定于静电作用,又决定于共价作用(其中首先包括σ成键作用,其次包括π成键作用)。

无机化学 第12章 配位化学基础习题及全解答

无机化学第12章配位化学基础习 题及全解答 第12章配位化学基础1 M为中心原子,a, b, d 为单齿配体。下列各配合物中有顺反异构体的是Ma2bd Ma3b Ma2bd Ma2b 2 在下列配合物中,其中分裂能最大的是Rh(NH3)6 Ni(NH3) 6 Co(NH3)6 Fe(NH3)6 3 在八面体强场中,晶体场稳定化能最大的中心离子d 电子数为9 , 6 , 5 , 3 4 化合物[Co(NH3)4Cl2]Br 的名称是溴化二氯?四氨合钴;化合物[Cr(NH3)(CN)(en)2]SO4的名称是硫酸氰?氨?二乙二胺合铬。 5 四硫氰·二氨合铬酸铵的化学式是NH4[Cr42] ;二氯·草酸根·乙二胺合铁离子的化学式是[Fe Cl2en] 4 。 6. 下列物质的有什么几何异构体,画出几何图形[Co(NH3)4Cl2]

[Co(NO2)3(NH3)3] 答:顺、反异构,经式、面式异构。7.根据磁矩,判断下列配合物中心离子的杂化方式,几何构型,并指出它们属于何类配合物[Cd (NH3)4]μm=0 ;[Ni(CN)4] μm=0 ;[Co(NH3)6] μm=0 ;[FeF6] μm=μB ;答:序配离子[Cd(NH3)4] [Ni(CN)4] [Co(NH3)6] [FeF6] 3-3+22+3+3-2+ 2-+ 3?3?3?3?-d电子数磁矩/μm 10 8 6 5 0 0 0 杂化方式SP dSP dSP SPd 322323几何构型正四面体平面正方形内/外轨外轨型内轨型内轨型外轨型正八面体正八面体8判断下列配离子属何类配离子序号9 配合物K3[Fe(CN)5(CO)]中配离子的电荷应为-3 —,配离子的空间构型为八面体,配位原子为C,中心离子的配位数为 6 ,d 电子在t2g 和eg轨道上的排布方式为t2g eg —60配离子[Fe(en)3] [Mn(CN)6] [Co(NO2)6] 4-4-2+△o与P关系△o<P

配位化学基础57659

第9章配位化学基础 9.1 配位化合物的基本特征 9.1.1 配位化合物及其命名 配位化学是研究中心原子或离子(通常是金属)与其周围的作为配位体的其它离子或分子构成的较复杂的化合物及其性质的学科,它是化学的一个分支。它所研究的对象称为配位化合物,简称配合物。早期称为络合物,原词complex compounds是复杂化合物的意思。 配合物及配离子一般表示为: 配合物: [M(L)l],[M(L)l]X n,或K n[M(L)l] 配离子: [M(L)l]m+,[M(L)l]m- 其中M为中心原子,通常是金属元素。它可为带电荷的离子,也可为中性原子(一般应标注其氧化值)。它们具有空的价轨道,是配合物的形成体。L是配位体,可为离子(通常是负离子)或中性分子,配位体中的配位原子具有孤对电子对,可提供给M的空价轨道,形成配价键。l表示配位体的个数或配位数。[]若带m个电荷者为配离子,它与n个异电荷离子X或K形成中性化合物为配合物;若m=0,即不带电荷者为配合物。如化学组成为CoCl3·6NH3的配合物表示为: 中心离子为Co(Ⅲ),它的价电子构型为3d6 4s0 4p0,具有未充满的空的价轨道,是配离子形成体。NH3是配位体简称配体,其中氮能向中心离子的空轨道提供孤对电子,形成配价键L:→M,钴-氮共享电子对,直接较紧密地结合,这种结合称为配位。钴离子周围的六个氨分子皆通过配位原子氮向它配位,形成六个配价键,构成具有一定组成和一定空间构型的配离子。该配离子带有三个正电荷。Co(Ⅲ)的配位数为6。 Cl-在外围以静电引力与配离子结合成电中性的配合物,称为氯化六氨合钴(Ⅲ)。由于配体与金属离子结合得相当牢固而呈现新的物理、化学性质,因此用方括号将其限定起来,常称为配合物的内界。带异电荷的离子称为外界。由于内界与外界靠静电结合,因此在极性溶剂中容易解离。 1文档来源为:从网络收集整理.word版本可编辑.

第11章 配合物结构

第十一章配合物结构 & 主要内容: q 配合物的空间构型和磁性 q 配合物的化学键理论 & 重点难点: q 配合物的结构理论,包括价键理论、晶体场理论和分子轨道理论。并根据这些理论解释配合物的有关性质。 q 由试验测得的磁矩算出未成对电子数;推测中心离子的价电子的分布情况和中心离子采取的杂化方式;确定配合物是内轨型还是外轨型,来解释配合物的相对稳定性。 q 根据晶体场分裂能与电子成对能的相对大小,判断在晶体场中中心离子的价电子在不同轨道中的分布,推论配合物类型,确定配合物的磁性,估算出配合物磁矩数值,进一步可计算晶体场稳定化能,说明配合物的相对稳定性。 & 教学目的: q 熟悉配合物价键理论的基本要点、配合物的几何构型与中心离子杂化轨道的关系。 q 了解内轨型、外轨型配合物的概念、中心离子价电子排布与配离子稳定性、磁性的关系q 了解配合物晶体场理论的基本要点;了解八面体场中d电子的分布和高、低自旋的概念,推测配合物的稳定性、磁性;了解配合物的颜色与d-d跃迁的关系。 & 授课学时 4学时 §11.1配合物空间构型和磁性 11.1.1 配合物的空间构型 配合物分子或离子的空间构型与配位数的多少密切相关。

由图可见,配合物的空间构型除了与配位数密切相关外,还与配体种类有关,例如,配位数 同样是4,但为四面体构型,而则为平面正方形。 11.1.2 配合物的磁性 磁性:物质在磁场中表现出来的性质。 顺磁性:被磁场吸引的性质。例如:O 2,NO,NO 2 等物质具有顺磁性。 反磁性:被磁场排斥的性质。大多数物质具有反磁性。 铁磁性:被磁场强烈吸引的性质。例如:Fe,Co,Ni属于铁磁性物质。 物质的磁性与内部的电子自旋有关。若电子都是偶合的,由电子自旋产生的磁效应彼此抵消,这 种物质在磁场中表现反磁性;反之,有未成对电子存在时,才会在磁场中显示磁效应,可用磁矩(μ)。 式中,μ为磁矩,单位是B.M.(玻尔磁子), n为未成对电子数。 可用未成对电子数目n估算磁矩μ。 n 0 1 2 3 4 5 μ/B.M. 0 1.73 2.83 3.87 4.90 5.92 物质的磁性亦可用磁天平测定。实验测得的磁矩与估算值略有出入,总趋势比较吻合。

第十一章 配合物结构

第十一章配合物结构 (11-1) 如果配合物具有平面四方形和八面体空间构性,这类配合无可能存在几何异构体。 (1)[Co(NH3)4(H2O)2]3+具有八面体空间构性,其顺、反几何异构体为: (3),(4)与(1)类似,请自行完成。 (2)[PtCl(NO2)(NH3)2]为平面四方形构型,其顺、反几何异构体为: (5)[IrCl3(NH3)3]为八面体构型,属[MX3A3]型配合物,其顺、反几何异构体分别称为面式和经式异构体: (11-3) 磁矩是研究配合物结构的重要实验数据之一。决定配合物磁矩的最最重要因素是中心离子或原子的未成对电子数,由试验测得磁矩后,可以推测出未成对电子数,进而确定形成体的价层电子排布、杂化轨道类型及配合物的空间构型。 [Co(H2O)6]2+的μ=4.3B.M,Co2+为3d7电子构型,推知Co2+的未成对电子数n=3,其价层电子排布为: 配合无为正八面体的空间构型。 [Mn(CN)6]4-:μ=1.8B.M,Mn2+为3d5电子构型,n=1。其价层电子分布为: 配合物的空间构型为八面体。 自行回答[Ni(NH3)6]2+的相关问题。 *如果已经确定配合物个体的空间构型,可推知形成体的杂化轨道类型,再确定其价层电子排布和未成对电子数,从而可估算出该配合物磁矩。(11-2)题就属这种情况,请自行完成本体的解答。同样,也可完成(11-5)题。 (11-4) 本题的解体思路与(11-3)相同。这里,主要是对三种常见的螯合剂en,C2O42-,EDTA 的配位原子种类和数目要进一步熟悉;同时对内轨型和外轨型配合物的概念要很了解。 [Co(en)3]2+:μ=3.82B.M,Co2+为3d7, n=3,每个en有两个配位原子N。Co2+ 的价层电子分布为: Co2+采用sp3d2杂化轨道成键,为外轨型配合物(即成键轨道为ns,np,nd),是正八面体空间构型。 [Fe(C2O4)33-]的5.75B.M,Fe3+为,n=5,其价层电子分布为: 1C2O42-个有2个配位O,Fe3+以sp3d2杂化轨道成键,是外轨型八面体配合物。[Co(EDTA)]-的,n=0,Co3+的价层电子分布为: 每个EDTA中有2个N和4个O为配位原子,Co3+以d2sp3杂化轨道与EDTA成键,该螯合物空间构型为八面体,是内轨型配合物(其成键轨道为(n-1)d,ns,np)。

第3章配位化学-习题

第三章 配位化学 【习题】 3.1 试判断下列配离子的几何构型和电子结构: [Co(CN)6]3-(抗磁性);[NiF6]4-(两个成单电子); [CrF6]4-(4个成单电子);[AuCl4]-(抗磁性); [FeCl4]-(5个成单电子);[NiF6]2-(抗磁性) 3.2 画出下列各配合物(配离子)所有可能的异构体: [CoCl2(NH3)4]+,[Be(gly)2],[RhBr2(en)2]+,[PtBr2Cl2(en)], [Ir(C2O4)2Cl2]3-,[Cr(gly)3],[Pt(gly)2](gly=glycine,甘氨酸) 3.3 已知配合物[M(A-B)2]和[M(A-B)2X2]型的配合物都是旋光活性的,请分别画出它们的几何结构。 3.4 紫红色的[Ti(H2O)6]3+在可见区的吸收光谱如教材中例题3-1的图所示,其最大吸收峰位置对应于20.3×103 cm-1,并在该最大吸收峰位置的右边(低频方向)出现一个肩峰,试用晶体场理论解释上述肩峰的由来。 3.5 下列配离子中哪些属于高自旋构型? (a)Mn(H2O)62+;(b)Fe(H2O)63+;(c)Co(NH3)63+; (d)Co(H2O)62+;(e)CoCl42-;(f)Fe(CN)64- 3.6 下列配合物或配离子中属于低自旋构型的是 (a)Fe(H2O)63+;(b)Co(H2O)62+;(c)Co(H2O)63+;(d)CoF63- 3.7 对于CoF63-配离子,下面的哪项论述是正确的? (a)CoF63-的晶体场分裂能大;(b)F-为强场配体; (c)CoF63-是顺磁性的;(d)所有论述都不正确。

2018安徽安徽高中化学竞赛无机化学第十三章 配位化学基础

第十三章配位化学基础 13. 1. 01 配位化合物的定义: 由于配位化合物涉及的化学领域非常广泛,所以要严格定义配位化合物很困难。目前被化学界基本认可的方法是首先定义配位单元,而后在配位单元的基础上,进一步定义配位化合物。 由中心原子或离子和几个配体分子或离子以配位键相结合而形成的复杂分子或离子,称为配位单元。[ Co(NH3)6 ]3+,[ Cr(CN)6 ]3-和[ Ni(CO)4 ] 都是配位单元。分别称作配阳离子、配阴离子和配分子。 含有配位单元的化合物称为配位化合物,也叫络合物。例如 [ Co(NH3)6 ]Cl3,K3 [ Cr(CN)6 ],[ Ni(CO)4 ] 都是配位化合物。 [ Co(NH3)6 ] [ Cr(CN)6 ] 也是配位化合物。判断配位化合物的关键在于物质中是否含有配位单元。 13. 1. 02 配位化合物的內界和外界: 在配位化合物中,配位单元称为内界,外界是简单离子。例如 [ Co(NH3)6 ]Cl3中,[ Co(NH3)6 ]3+是内界,Cl-是外界。又如 K3 [ Cr(CN)6 ] 中,[ Cr(CN)6 ]3-是内界,K+是外界。 配位化合物中可以无外界,如[ Ni(CO)4 ] 中就没有外界, [ Co(NH3)6 ] [ Cr(CN)6 ] 中也没有外界。但配位化合物不能没有内界。 在溶液中,内外界之间是完全解离的,例如在水溶液中 [ Co(NH3)6 ]Cl3==== [ Co(NH3)6 ]3++ 3 Cl- 13. 1. 03 配位化合物的中心和配体: 内界配位单元由中心和配体构成。例如在配位单元[ Co(NH3)6 ]3+ 中,Co3+为中心,NH3为配体。中心又称为配位化合物的形成体。中心多为金属离子,尤其是过渡金属离子;而配体经常是阴离子或分子。 13. 1. 04 配位原子和配位数: 配体中给出孤电子对与中心直接形成配位键的原子,叫配位原子。配位单元中,中心周围的配位原子的个数,叫配位数。 配位单元[ Co(NH3)6 ]3 + 的中心Co3+的周围有6个配体NH3,每个NH3中有一个N 原子与Co3+直接配位。N 是配位原子,Co 的配位数是6。

配位化学教材全文最新版

第1章配位化学导论 配位化学(coordination chemistry)是无机化学的一个重要分支学科。配位化合物(coordination compounds)(有时称络合物complex)是无机化学研究的主要对象之一。配位化学的研究虽有近二百年的历史,但仅在近几十年来,由于现代分离技术、配位催化及化学模拟生物固氮等方面的应用,极大地推动了配位化学的发展。它已广泛渗透到有机化学、分析化学、物理化学、高分子化学、催化化学、生物化学等领域,而且与材料科学、生命科学以及医学等其他科学的关系越来越密切。目前,配位化合物广泛应用于工业、农业、医药、国防和航天等领域。 1.1 配位化学发展简史 历史上记载的第一个配合物是普鲁士蓝。它是1704年由柏林的普鲁士人迪斯巴赫(Diesbach)制得,它是一种无机颜料,其化学组成为Fe4[Fe(CN)6]3·nH2O。但是对配位化学的了解和研究的开始一般认为是1798年法国化学家塔萨厄尔(B.M.Tassaert)报道的化合物CoCl3·6NH3,他随后又发现了CoCl3·5NH3、CoCl3·5NH3·H2O、CoCl3·4NH3以及其他铬、铁、钴、镍、铂等元素的其他许多配合物,这些化合物的形成,在当时难于理解。因为根据经典的化合价理论,两个独立存在而且都稳定的分子化合物CoCl3和NH3为什么可以按一定的比例相互结合生成更为稳定的―复杂化合物‖无法解释,于是科学家们先后提出多种理论,例如,布隆斯特兰德(W.Blomstrand)在1869年、约尔更生(S.M.J?rgensen)在1885年分别对―复杂化合物‖的结构提出了不同的假设(如―链式理论‖等),但由于这些假设均不能圆满地说明实验事实而失败。 1893年,年仅27岁的瑞士科学家维尔纳(A.Werner)发表了一篇研究分子加合物的论文―关于无机化合物的结构问题‖,改变了此前人们一直从平面角度认识配合物结构的思路,首次从立体角度系统地分析了配合物的结构,提出了配位学说,常称Werner配位理论,其基本要点如下: (1) 大多数元素表现有两种形式的价,即主价和副价; (2) 每一元素倾向于既要满足它的主价又要满足它的副价; (3) 副价具有方向性,指向空间的确定位置。 Werner认为直接与金属连接的配体处于配合物的内界,结合牢固,不易离解;不作为配体的离子或分子远离金属离子,与金属结合弱,处于配合物的外界。在上述钴氨盐配合物中,每个中心原子(金属离子)配位的分子和离子数的和总是6,这个6即为中心原子的副价,而原来CoCl3中每个钴与3个氯离子形成稳定的化合物,其中的3即为钴的主价。可见Werner提出的主价就是形成复杂化合物之前简单化合物中原子的价态,相当于现在的氧化态;而副价则是形成配合物时与中心原子有配位作用的分子和离子的数目,即现在的配位数。 Werner的配位理论有两个重要贡献:一是提出副价的概念,补充了当时不完善的化合价理论。二是提出空间概念,创造性地把有机化学中立体学说理论扩展到无机化学领域的配合物中,认为配合物不是简单的平面结构,而是有确定的空间(立体)几何构型,从而奠定了配合物的立体化学基础。这些概念成为现代配位化学发展的基础,但是配位理论中的主价和副价的概念后来被抛弃,而另外提出了配位数的概念。 由于Werner理论成功地解释了配位化合物的结构,他于1913年获得诺贝尔化学奖,29岁时就任Zurich大学教授。Werner一生曾发表200多篇论文,合成了一系列相关配位化合

第三章晶体结构及配位化学

第三章:晶体结构及配位化学 1.配合物的组成 (1)配位体:是含有孤电子对的分子或离子,如NH 3、Cl -、CN -等。配位体中直接同中心原子配合的原子,叫做配位原子。如上例[Cu(NH 3)4]2+配离子中,NH 3是配位体,其中N 原于是配位原子。配位原子经常是含有孤对电子的原子。 (2)中心离子(或原子):一般是金属离子,特别是过渡金属离子,但也有电中性的原子为配合物的中心原子,如Ni(CO)4、Fe(CO)5中的Ni 和Fe 都是电中性的原子。此外,少数高氧化态的非金属元素也能作为中心原子存在,如SiF 62-中的Si(Ⅳ)及PF 6-中的P(V)等。 (3)配位数:直接同中心离子(或原子)配合的配位原子的数目,叫做该中心离子(或原子)的配位数,一般中心离子的配位数为2、4、6、8(较少见),如在[Pt(NH 3)6]C14中,配位数为6,配位原子为NH 3分子中的6个氮原子。 (4)配离子的电荷:配离子的电荷数等于中心离子和配位体电荷的代数和。如[Cu(NH 3)4]2+的电荷是+2+(0)×4=+2。 2.配合物的分类 配位化合物的范围极广,主要可以分为以下几类: (1)单核配合物 这类配合物是指一个中心离子或原子的周围排列着一定数量的配位体。中心离子或原子与配位体之间通过配位键而形成带有电荷的配离子或中性配合分子。如 [Cu(NH 3)4]SO 4、K 4[Fe(CN)6]等皆属于此类配合物。 (2)螯合物 这类配合物是由多齿配位体以两个或两个以上的配位原子同时和一个中心离子配合并形成具有环状结构的配合物。例如乙二胺H 2N-CH 2-CH 2-NH 2和Cu 2+形成的如下螯合物: 3.配合物的命名 配合物的命名与一般无机化合物的命名原则相同。若配合物的外界是一简单离子的酸根,便叫某化某;若外界酸根是一个复杂阴离子,便叫某酸某(反之,若外界为简单阳离子,内界为配阴离子的配合物也类似这样叫法)。 若配离子的内界有多种配体,须按下列顺序依次命名:简单离子—复杂离子—有机酸根离子;而中性分子配位体的命名次序为:H 2O —NH 3—有机分子。配位体的个数则用一、 二、

中级无机化学习题和答案

中级无机化学习题 第二章对称性与群论基础 1利用Td点群特征标表(右表)回答下列问题 (1 )、群阶,对称操作类数,不可约表示数 (2)、SQ2-离子中S原子3p x轨道及3d xy轨道所属的不可约表示 (3)、可约表示r(10,- 括了哪些不可约表示?SQ?离子是否 表现为红外活性?SQ2-离子是否表现 为拉曼活性的? 解:(1)点群的阶h=8;对称操作类=5; 不可约 表示数=5 (2)S原子的P X轨道所属不可约表示为T2表示。 1 1 (3)a A1 1g i 11 10 1 8 ( 2) 1 3 2 10 ;同理 h 8 a A2 0;a T1 1 ;a T2 1 ;3E 2 ;故可约表示(10, 2,2,0,0) T1 T2 2E 因T2表示中包含(x,y,z )和(xy,xz,yz), 故既表现为红外活性又表现为拉曼活性。 2. 利用C3v点群特征标表(见下表)回答下列问题 (2)、NH分子中偶极矩所属的不可约表示 (3、可约表示r( 6, 0, 2)中包括了哪些不可约表示?解:(1、点群的阶h=6;对称操作类=3;不可约 表示数=3 (2)NH分子中偶极矩所属不可约表示为A表示 1 1 (3) a A1g i 161 201 321 2 ;同理 h 6 a A2 0 , a E 2 ;故可约表示(6,0,2) 2A1 2E 3

(2) 、SECI分子中S原子Px轨道所属的不可约表示 (3) 、可约表示r( 4, 0, 0, -2 , 0)中包括了哪些不可约表示?

-1 △o =20300cm 4、试用特征标表的分析 MnO 的杂化方式。(要求有分析的详细过程) 第三章配位化学基础 属离子的t 2g 轨道变成了 * MO(中心金属离子的d 电子将填入其中),能量升高,结果使 减小。上述分子轨道的形成和电子的占据相当于形成了 L M 键。 2 ?第二过渡系金属离子 皿+水化焓与原子序数的关系如右图所示,试解释之。 解:① M 2 H 2O M (H 2O)2 H 0 ; CFSE(晶体场稳定化能) 随d n (d 电子数增加) 呈双峰变化,给5分; ②从 H °中扣出CFSE 后其 H :随d n 变化呈直线关系。 3、 什么叫Jahn-Teller 效应?指出下列配离子中,哪些会发生结构变形? ( 10分) (1) Cr(H 2O)6 ; (2) Ti(H 2O)3 ; (3) Fe(CN): ; (4) Mn(H 2。);; (5) Cu(H 2O)6 ; (6) MnF ; ; (7) CdCl ; ; (8) Ni(CN) 4。 4. 试用晶体场理论解释 Ti(H 2O)62+的吸收光谱 1配位体与中心金属离子的 成键作用将影响配合物的分裂能,假 定配位体的 轨道能量低于中心金属离子的 轨道,且已被电子所 填满。请画出在八面体场中, 这种 成键作用的分子轨道能级图, 分 析其对配合物的 △ o 的影响。 解:中心金属离子的 e g 轨道与配体的 轨道对称性不匹配,保留非 键。中心金属离子有 对称性的是t 2g 轨道,当其与能量较低的已被 电子填满的配体的 轨道组成分子轨道时,其成键 MC 更接近于配 体的 轨道(即配体上的 电子将进占 成键分子轨道),而中心金 e g * t 2g e g * *( t 2g *) ■-—— 飞2g ) ML n 血 过證系密国离f?】的水介範

第三章溶液中配合物的稳定性

第三章配合物在溶液中的稳定性 第一节 影响配合物稳定性的因素 一、概述 逐级稳定常数和积累稳定常数 二、金属离子对配合物稳定性的影响 1、具有惰性气体电子结构的金属离子 碱金属: Li +、Na +、K +、Rb +、Cs + 碱土金属:Be 2+、Mg 2+、Ca 2+、Sr 2+、Ba 2+ 及:Al 3+、Sc 3+、Y 3+、La 3+ 般认为它们与配体间的作用主要是静电作用,金属离子 z/r 越 M + L = ML K i [ML] [M][L] Bl K i [ML] [M][L] ML + L ML 2 K 2 [ML 2] [ML][L] K ,K 2 [ML 2] [M][L] 2 ML 2 + L ML K 3 [ML 3] [ML 2][L] 03 K 1K 2K 3 [ML 3] [M][L] 3

大,配合物越稳定。 例:二苯甲酰甲烷[phC(O)CH 2C(0)ph]配合物的IgK i值(30C, 75% 氧六环) M2+IgK i Be2+13.62 Mg2+8.54 7.17 Sr2+ 6.40 Ba2+ 6.10 2、Irving-Williams 顺序 研究发现:第四周期过渡金属离子与含0、N配位原子的配体的 高自旋八面体配合物,其稳定性顺序如下: Mn2+ < Fe2+ < Co2+ < Ni2+ < Cu2+ > Zn2+ CFSE(Dq) 0 -4 -8 -12 -6 0 这称为Irving-Williams 顺序,可用CFSE 解释。Ni2+ < Cu2+,可用Jahn-Teller效应解释。 三、配体性质对配合物稳定性的影响 1、碱性 配位原子相同,结构类似的配体与同种金属离子形成配合物时,配体碱性越强,配合物越稳定。 例:Cu2+的配合物:

相关文档
最新文档