腐植酸与土壤中重金属离子的作用机理研究概况

腐植酸与土壤中重金属离子的作用机理研究概况
腐植酸与土壤中重金属离子的作用机理研究概况

腐植酸与土壤中重金属离子的作用机理研究概况*

卢 静 朱 琨 侯 彬 赵艳锋

(兰州交通大学环境与市政工程学院 兰州 730070)

摘 要:在分析我国农田土壤重金属污染状况的基础上,阐述了腐植酸与铬、镉、锌等金属离子在土壤中的作用机理研究现状,认为通过范德华力、氢键、静电吸附、阳离子键桥等形成土壤有机-无机复合体,使腐植质的胶团被吸附在土壤颗粒表面,使带正电的金属离子更牢固地与土壤结合,从而有效防止被农作物吸收。文章指出,腐植物质的结构及其与金属离子作用机理的研究,对于促进腐植酸土壤环境保护领域的应用与相关的技术开发具有重要意义。

关键词:腐植酸 土壤 重金属离子 作用机理

中图分类号:TQ320.6 文献标识码:A 文章编号:1671-9212(2006)05-0001-05

General Situation of the Reaction Mechanisms of Humic Substances

with Heavy Metal Ions in Soil

Lu Jing, Zhu Kun, Hou Bin, Zhao Yanfeng

(School of Environmental and Municipal Engineering Lanzhou Jiaotong University, Lanzhou, 730070) Abstract: On the basis of analyzing the exact contamination situation of agricultural soils in China, the utilization of humic substances to prevent heavy metal contamination from wastewater irrigation is reviewed while the reaction mechanisms of humic substances with heavy metal ions, such as Cr, Cd and Zn, are supposed including formation of organic-inorganic complexes by hydrogen bonds, static electrical adsorption and cation bond etc. As a result, colloidal structural groups of humic substances are adsorbed on the soil surfaces in addition to adsorb metal cations to promote them binding ef? ciency. Finally, the heavy metals that retain in the soil matrix can be prevented crops from absorption. Furthermore, the investigations on the reaction of humic substances with metal ions play an important role in environ-mental protection and the relative technical development.

Key words: humic acid; soil; heavy metal ion; reaction mechanism

随着工业发展及城市化程度的不断提高,水资源日趋紧张。水资源的匮乏,使污水成为灌溉用水的来源之一。这对于解决我国水资源短缺问题起到了重要作用。2005年全国废水排放总量为524.5亿吨,其中工业废水排放量为243.1亿吨[1]。目前,我国污水处理率低,灌溉水中有害物质严重超标。

根据我国第二次污灌区环境质量状况普查统计结果(基准年为1995年),我国利用污水灌溉的农田面积为361.84×104h m2,占我国总灌溉面积的7.33%,占地表水灌溉面积约10%[2]。该资料表明,我国37个主要污灌区中有明显污染点22个,其中多半是积累性重金属超标[3]。据我国农业部进行的全国污灌区调查,在约140万公顷的污水灌区中,遭受重金属污染的土地面积占污水灌区面积的64.8%,其中轻度污染的占46.7%,中度污染的占9.7%,严重污染的占8.4%[4]。因盲目使用污水作为灌溉水源,导致农作物品质产生严重的影响[5]。

腐植质是一种广泛存在于水体、土壤中的有机化合物,是动、植物残体通过微生物分解、合成的高分子有机物。

根据在酸碱性水溶液中的溶解度,可以将腐植质分类为:胡敏酸(humic acid,即腐植酸,H A)溶于碱溶液,但不溶于酸性溶液(一般p H <2);富里酸(fulvic acid,煤化学中称黄腐

*甘肃省自然科学基金资助项目,编号:3ZS06-A25-025。

酸,F A)在所有的p H条件下都溶;胡敏素(煤化学中称腐黑物,h u m i n)不溶解的残留大分子部分。土壤腐植酸中的活性功能团对农药有很高的吸附性,农药被腐植酸吸附后往往降低毒性,延缓分解;腐植酸因带负电且阳离子代换量高,对吸附土壤重金属离子起着重要的作用,同时具有很好的络合性能,对重金属离子可起到显著的络合吸附作用,在合适的条件下,这种吸附作用可有效地阻止重金属离子进入植株中,减轻重金属离子对作物的毒害。

1 腐植质的性质与结构

1.1 腐植质在土壤中的特性

腐植物质的整体呈黑色,富里酸颜色较淡,呈黄色至棕红色,而胡敏酸的颜色较深,呈棕黑色至黑色,这是由于富里酸和胡敏酸各自的分子量的大小和发色基团组成及其比例不同所引起的。腐植酸分子量的变动范围在几至几百万之间,我国几种主要土壤胡敏酸和富里酸的平均分子量分别在890~2550和675~1450之间,我国主要土壤表土中胡敏酸和富里酸的元素组成(无灰干基)见表1[6]。

表1 我国主要土壤表土中腐植物质的

元素组成(无灰干基)

Tab.1 Element composition of humic substances

on surface soil

土壤中腐植酸的相对密度在1.4~1.6g/c m3之间,土壤腐植酸胶体粒子的直径在1~1000n m 范围。当p H=2.5时,有小球体(直径在1.5~2n m 之间)、球聚集体(直径在20~30n m之间)和低收缩、多孔、不规则的球状聚集体,厚度为10~30n m,结构为上面有许多孔(直径在20~100n m 之间)的海绵状结构;当p H≥4.5时,结构为很少收缩、多孔的薄片状结构,直径在20~200n m 之间。

腐植酸分子中含有多种功能基。其中主要是含氧的酸性功能基,包括芳香族和脂肪族化合物上的羧基和芳香环上的酚羟基,其中羧基是最重要的功能基。

此外,腐植物质中还存在着一些中性功能基和碱性功能基,中性功能基主要有醇羟基、醚基、酮基、醛基酯;碱性功能基主要有胺基和酰胺基。

正是由于腐植酸中存在着多种功能基,所以腐植酸在土壤中表现出多种活性,如离子交换、对金属离子的络合作用、氧化-还原性以及生理活性等。以单位质量计算,腐植酸因带负电荷而产生的阳离子交换量(CEC)为5~12mol/kg,以单位体积计算,C E C值为0.4~0.80m o l/L, 远超过土壤硅酸盐粘土矿物的CEC含量。

在通常情况下,腐植酸具有弱酸特性,因而对酸碱度有较大的缓冲作用。此外,腐植酸的化学活性还反映在与A13+、F e3+、C u2+等金属离子以及与铁、铝氧化物及其水合氧化物之间的络合作用上。腐植酸的羧基等重要的功能基不总是以游离基团存在,而一般是与金属离子络合、以复合体的方式存在。

1.2 腐植酸的分子结构特点

目前所假定的腐植酸分子模型主要有F l a i g (1960)的腐植酸模型和Stevenson(1982)的腐植酸模型以及Schnitzer和Khan(1972)的FA模型。其中Stevenson(1982)的腐植酸模型比较典型,其中有自由和结合的酚羟基、醌结构,N和O 是桥接单元,羧基连接在芳香环或脂肪结构上[7]。Stevenson的腐植酸模型如图1所示。

不少研究者通过光谱分析、电子显微镜、居里点热解—质谱、软电离—质谱、场致离子化—质谱等技术所得的信息又对腐植酸的结构提出了修正,认为腐植质是大分子集合物,是由许多相对小的和化学性质不同的有机分子由氢键和疏水

图1 Stevenson的腐植酸模型

Fig.1 Humic acid model suggested by F. J. Stevenson

2 腐植酸在土壤中与重金属离子作用的机理

土壤腐植物质按其存在状态的不同,可分为游离态腐植物质和结合态腐植物质,土壤中游离态腐植物质很少,绝大多数是结合态的,尤其是在粘粒矿物和阳离子紧密结合时以有机-无机复合

体的形式存在。通常52%~98%的土壤有机质集中在粘粒部分。土壤有机-无机复合体的形成过程十分复杂,通常认为范德华力、氢键、静电吸附、阳离子键桥等是土壤有机-无机复合体键合的主要机理。

土壤胶体结构中有机-无机复合体见图2。

图2 土壤胶体结构中有机-无机复合体

Fig.2 Organic-inorganic complexes in soil structure

复合体形成过程中可同时有两种或更多种机理起作用,主要取决于土壤腐植物质类型、粘粒矿物表面交换性离子的性质、表面酸度、系统的水分含量等。腐植物质-金属离子复合体的稳定常数反映了金属离子与有机配位体之间的亲和力,

一般金属-富里酸复合体条件稳定常数的排列次序为:F e 3+>A l 3+>C u 2+>N i 2+>C o 2+>P b 2+>C a 2+>Z n 2+>M n 2+>M g 2+,其中稳定常数在p H为5.0时比p H为3.5时稍大,这主要是由于羧基等官能团在较高pH条件下有较高的离解度[6]。

作用连接而成的簇[8]。与这个模型相对应的是胶束的概念,即有机分子在水溶液的条件下亲水基团

排列在外侧以便防护内部的疏水基团和邻近的水

分子接触。

腐植酸是一种带负电荷的大颗粒胶体,而土壤中粘土晶体表面也带负电荷,但腐植酸边棱是带正电荷的,对腐植酸有很强的吸附能力。由于粘土吸附了腐植酸,从而加强了土壤对金属离子的吸附或络合。

土壤和水环境中的腐植质对金属离子总键合容量为0.2~0.6m m o l/g,其中三分之一是质子交换点位,剩余为配位点位[9]。腐植酸比表面积约为2000m/g,比粘土和金属氧化物的比表面积都大。腐植质与金属离子作用类型有离子的相互作用、疏水作用、电子给体-受体相互作用等[10],其中,碱金属离子(L i+、N a+、K+、R b+、C s+)、碱土金属离子(B e2+、S r2+、R a2+、B a2+)一般与具有负电荷表面的有机质形成离子键[11],其他二价或多价金属离子与腐植酸之间不易形成离子键,趋向于跟腐植酸中的羧基、酚羟基等形成配位化合物,这类元素主要包括过渡元素和其他重金属元素,其作用方式主要是电子给体-受体相互作用。

应用最普遍的土壤中重金属形态分级方法是T e s s i e r法,即将重金属分为可溶态(包括水溶态W S和交换态E X C)、碳酸盐结合态(C a r b)、铁锰氧化物结合态(A f e+c f e+M n O x)、有机结合态(O.M)及残渣态(R E S)[12]。土壤对可溶态的金属离子吸附量小、稳定性差,腐植酸的存在有可能使重金属离子形态的比例发生变化,使可溶态的含量减少,而使其他形态的含量相对增加,从而减小了被农作物吸收的风险;也可使一些重金属离子价态发生变化,使其毒性减弱。

3 腐植质对土壤中重金属的活性影响

3.1 腐植质对土壤中六价铬的固化作用

可溶态铬在污染土壤中具有直接毒性,能被植物及微生物吸收,并能在生物体内富集,氧化物结合态、碳酸盐结合态和有机结合态在一定条件下可转化为可溶态而间接地起到毒害作用。当p H值下降时,腐植酸中的碳原子起还原作用,可使C r(V I)氧化性加强,可将腐植酸氧化的同时将自身还原成Cr(III),从而铬可以腐植酸螯合物的形式被土壤胶体吸附,从而脱离土壤溶液;同时腐植酸又极易吸附在土壤胶体表面。因此,随p H降低时,C r有机结合态增加的同时,可溶态的含量减小。

试验表明,随着加入土壤溶液中腐植酸浓度的增加, 土壤溶液中可溶态的C r(V I)含量和总铬含量都逐渐降低。由于腐植酸中除含有大量苯环外,还含有大量羧基、醇羟基、硫羟基、酚羟基以及氨基、偶氮基等,其中的络合官能团和螯合基团提供电子与还原生成的三价铬生成络合物和螯合物。

随着腐植酸含量的增加,参加配位的铬离子会越来越多,而且腐植酸本身又是一种很强的吸附剂,它很容易吸附在土壤胶体的表面,同时吸附溶液中铬离子。通过腐植酸的配合作用和吸附作用,土壤溶液中可溶态的C r(V I)含量和总铬含量都逐渐降低,有机结合态、氧化物结合态和碳酸盐结合态三种形态都逐渐增加。

我们课题组的试验证明[13]:当腐植酸存在时,在p H=3条件下,振荡8h以后,砂土对水溶态铬去除率达到最大值50%;而当没有腐植酸存在时,砂土对水溶态铬去除率仅达到22%。由此说明腐植酸的存在明显地增强了砂土对水溶态铬的吸附能力。

加入腐植酸后,在砂土吸附铬的试验中,当腐植酸存在时砂土对溶液中C r(V I)的吸附去除率随着时间会加快,在5h到8h之间C r(V I)的去除最快,8h以后去除率几乎达到平稳,去除率可达50%。

p H值对去除铬有很大的影响,随p H值的升高,腐植酸对C r(V I)的去除能力降低,因此降低水溶液的p H值有利于C r(V I)的还原与螯合。在p H 值为3的条件下,对C r(V I)的去除效果最佳;随着H A投加量的增加,C r(V I)的去除率始终是上升的,当试验中沙土重量为5g时,腐植酸投加量高于0.4g时,C r(V I)的去除率达到平稳,去除率约为50%。

3.2 腐植质对土壤中Cd、Zn离子活性的影响

土壤中各形态的腐植酸对土壤中各形态C d含

量有很大的影响,随其投入比的加大,可溶态C d 下降,相应使有机态C d上升,铁铝(锰)氧化态C d 与有机态C d相同,以可溶态C d和有机态C d与之的相关性最明显[14]。

Brahim Koukal等人曾研究过在腐植酸存在条件下,C d、Z n对绿色海藻毒性方面的影响[15],发现腐植酸能显著地降低C d、Z n对海藻的毒性。添加5m g/L腐植酸,海藻中C d、Z n的含量明显减少,C d的毒性降低了2倍,Z n的毒性降低了10倍。另外,当腐植酸浓度为1m g/L时,大约有25%的金属可以被腐植酸胶团吸附。如果腐植酸浓度增加到5m g/L,那么被吸附的金属量就会增加两倍。

结果显示腐植酸可从两个方面降低C d、Z n对植物的毒性。

(1)腐植酸减少了自由金属离子的数量,金属—腐植酸复合体是相对稳定的结构。

(2)腐植酸吸附到海藻表面,阻挡了C d、Z n 离子侵害生物细胞。

该试验结果可用来推断土壤中加入腐植酸后,植物的根系可能减少对土壤溶液中重金属离子的吸收。

4 小结

随着工业污水用于农业灌溉的数量不断增大,土壤重金属污染将日益严重。为保护农耕土壤的质量,防止土壤中残留重金属被农作物吸收而大量聚集,保障食品安全,深入做好污水灌溉技术理论并完善管理法规,是农业环境应研究的重大课题之一。

腐植酸由于其特有的分子结构和官能团,可以与重金属离子发生交换、络合和螯合等作用。今后对腐植质的研究不仅应注重腐植质的结构和组成,还应在测定和分析方法上做更大努力。只有依赖先进分析方法和仪器,以及现代有机化学结构理论,才能更好地研究腐植质对重金属离子等的作用机理,使腐植酸类物质在农业环境保护中的功能得到更充分的发挥。

参考文献

[1]国家环保局.2005年中国环境状况公报[R],2006,北京

[2]王贵玲,蔺文静.污水灌溉对土壤的污染及整治[J].农业

环境科学学报,2003,22(2):163~166

[3]夏立江,王宏康.土壤污染及其防治[M].上海:华东理工

大学出版社,2001:40~44,87~111,168~178

[4]陈志良,仇荣亮.重金属污染土壤的修复技术[J].环境保

护,2002,29(6):21~23

[5]刘书运.我国污水灌溉发展现状及存在问题研究[J].沿海

企业与科技,2005,(7):112~113

[6]陈怀满主编.环境土壤学[M].北京:科学出版社,2005

[7]Stevenson F J著.腐植质化学[M].夏荣基等译.北京:北

京农业大学出版社,1994

[8]Rebecca Sutton and Garrison Sposito. Molecular structure in

soil humic substances: The new view[J]. Environmental Sci-ence & Technology 2005,39(23):9910~9915

[9]Rashid MA.1985.Geochemistry of Marine Humic

Substances[M].New York:Springer-Verlag

[10]Brezonik P L.Chemical Kinetics and Process Dynamics in

Aquatic Systems[M].London: Lewis.1994

[11]李云峰,王兴理著.腐植质-金属离子的络合稳定性

及土壤胡敏素的研究[M].贵阳:贵州科技出版社,1999:1~37

[12]Tessier A,Campbell PC, Bisson M. Sequential extraction

procedure for the speciation of particulate trace metals[J].

Analytical Chemistry. 1979 51(7):844~851

[13]王亚军.腐殖酸对六价铬在土壤及水体中的吸附行为影

响研究.硕士学位论文,2006

[14]王晶,张旭东,李彬等.腐植酸对土壤中Cd形态的影响

及利用研究[J].土壤通报,2002,33(3):185~187 [15]Brahim Koukal, C_eline Gu_eguen , Michel Pardos , Ja-

nusz Dominik.In? uence of humic substances on the toxic effects of cadmium and zinc to the green alga Pseudokirch-neriella subcapitata[J].Chemosphere, 2003,(53):953~961 (收稿日期:2006-10-10)[作者简介]卢静,女,1982年生,兰州交通大学环境与市政工程学院在读研究生。主要研究方向:水和土壤的污染治理技术。

中国协会名单分解

中国协会名单福建省经济技术协作促进会 福建省纺织行业协会 福建省石油和化工行业协会 福建省食品工业协会 中国企业联合会 中国质量协会 中国农业机械流通协会 中国轮胎翻修利用协会 中国拆船协会 中国煤炭城市发展联合促进会 中国民用爆破器材流通协会 中国物资储运协会 中国调味品协会 中国机械通用零部件工业协会 中国模具工业协会 中国塑料机械工业协会 中国钢结构协会 中国重型机械工业协会 中国热处理行业协会 中国炭素行业协会 中国炼焦行业协会

中国耐火材料行业协会 中国铁合金工业协会 中国模板协会 中国废钢铁应用协会 中国化学试剂工业协会 中国化工节能技术协会 中国腐植酸工业协会 中国化工企业管理协会 中国监控化学品协会 中国化学矿业协会 中国化工装备协会 中国工业气体工业协会 中国农药工业协会 中国橡胶工业协会 中国化工施工企业协会 中国化工情报信息协会 中国造纸化学品工业协会 中国石油和石化工程研究会 中国针织工业协会中国化纤工业协会中国丝绸协会 中国纺织机械器材工业协会 中国家用纺织品行业协会

中国砖瓦工业协会 中国非金属矿工业协会 中国砂石协会 中国建筑卫生陶瓷协会 中国建材工程建设协会 中国石棉制品工业协会 中国石灰协会中国水泥制品工业协会(CCPA)全国电力技术市场协会 中国电力建设企业协会 中国电力企业多种经营协会 中国电力规划设计协会 陕西省注册会计师协会 中国室内装饰协会 中国宝玉石协会 温州市自营进出口生产企业协会 中国武术协会 中国家具协会 中国制笔协会 中国缝纫机协会 中国搪瓷协会 中国眼镜协会 北京市保龄球运动协会

上海自行车协会 天津自行车协会 中国机械工程学会 中国食品科学技术学会 中国市场学会 中华糖尿病学会信息化专家委员会中国电子学会IEEE 北京分会中国力学学会 中国制冷学会 中国药学会中华医学会 中国计算机学会 上海市公路学会 中国中医药学会 中国针灸学会 广东省制冷学会 中国科学技术情报学会 天津市通信学会 中国社会学会宁波计算机学会 上海市微型电脑应用学会 上海市图像图形学学会 中华护理学会 中国中西医结合学会 福建省医药信息学会 秦皇岛天文科普学会

数学建模A题 城市表层土壤重金属污染分析(基础教资)

2011高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮 件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问 题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他 公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正 文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反 竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):重庆交通大学 参赛队员 (打印并签名) :1. 陈训教 2. 范雷 3. 陈芮 指导教师或指导教师组负责人 (打印并签名):胡小虎 日期:2011 年9 月 12日赛区评阅编号(由赛区组委会评阅前进行编号):

2011高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 评 阅 人 评 分 备 注 全国统一编号(由赛区组委会送交全国前编号): 全国评阅编号(由全国组委会评阅前进行编号):

城市表层土壤重金属污染分析 摘要 本文针对城市表层土壤重金属污染做出了详细的分析,对于本题中所提出的问题一,我们利用MATLAB软件对所给的数值进行空间作图,然后分别作出了八种重金属元素的空间分布特征,然后,我们利用综合指数(内梅罗指数)评价的方法,对五个区域进行了综合评价,得出结果令人满意。对于问题二,我们根据第一问和题目所给的数据进行综合分析,得出了重金属污染的主要原因来自于交通区含铅为主的大量排放,和工业区污水的大量排放等等。对于问题三,我们通过对问题一中的八张重金属元素空间分布的图可以看出,发现大多数金属都呈中心发散性传播,同时经过分析,我们发现,如果考虑大气传播和固态传播,很难得出结论,在交通区,由于是汽车尾气造成的传播,发现重金属的传播无规律可循等,所以,我们考虑液态形式的传播,以针对地表水污染物的物理运动过程,以偏微分方程为建模基础,通过和假设和模型参数的估计,得出了可能污染源位置,最后,我们对模型进行了稳定性检验即灵敏性分析和拟合检验,发现在参数变化在10%左右,模型的稳定性良好。最后我们全面分析了模型的优缺点,,最后可以用MATLAB软件得出相应的结果。为更好地研究城市地质环境的演变模式,测定污染源范围还应收集该地区的每年生活、工业等重要污染源的垃圾排放量,地下水流动方向以及每年的生物降解量,降雨量对重金属元素扩散的影响。一但有污染证据,我们可以在该污染源附近沿地下水流动方向设定更多采样点,由此,我们可以构造一个三维公式来计算污染物质浓度的浮动就可以模拟三维空间内的重金属分布影响。 关键字:表层土壤重金属污染 MATLAB 内梅罗指数偏微分方程稳定性检验灵敏性分析地质演变生物降解量

土壤重金属污染

土壤重金属污染 摘要:随着现代工业的发展,工业排出的污染物越来越多,土壤的重金属污染就是一个例子,土壤污染对人类的身心都造成了巨大的危害。本文主要就土壤重金属的概念、来源种类、特点危害、采样检测、防治修复等方面都做了一定的阐述。 With the development of modern industry, industrial discharge pollutants is more and more, soil heavy metal pollution is one example, soil pollution has caused great harm on human body and mind . This paper discusses the concept, origin of soil heavy metal types and characteristics, sampling testing and prevention harm repair all aspects were discussed as well。 关键词:土壤污染,重金属,危害 据报道,目前我国受镉、砷、铬、铅等重金属污染耕地面积近 2000 万公顷,约占总耕地面积的 1/5,其中工业“三废”污染耕地 1000 万公顷,污水灌溉的农田面积已达 330 多万公顷。例如:某省曾对 47 个县和郊区的 259 万公顷耕地(占全省耕地面积的五分之二)进行过调查。其结果表明,75% 的县已受到不同程度的重金属污染的潜在威胁,而且污染趋势仍在加重。 一土壤重金属污染的定义 重金属系指密度4.0以上约60种元素或密度在5.0以上的45种元素。但是由于不同的重金属在土壤中的毒性差别很大,所以在环境科学中人们通常关注锌、铜、钴、镍、锡、钒、汞、镉、铅、铬、钴等。砷、硒是非金属,但是它的毒性及某些性质与重金属相似,所以将砷、硒列入重金属污染物范围内。由于土壤中铁和锰含量较高,因而一般不太注意它们的污染问题,但在强还原条件下,铁和锰所引起的毒害亦应引起足够的重视。 土壤重金属污染是指由于人类活动将重金属带入到土壤中,致使土壤中重金属含量明显高于背景含量、并可能造成现存的或潜在的土壤质量退化、生态与环境恶化的现象。[1] 如下图为土壤环境质量标准值(GB15618—1995)单位: mg/kg

中国901个协会、学会名单

中国901个协会、学会名单福建省经济技术协作促进会 福建省纺织行业协会 福建省石油和化工行业协会 福建省食品工业协会 中国企业联合会 中国质量协会 中国农业机械流通协会 中国轮胎翻修利用协会 中国拆船协会 中国煤炭城市发展联合促进会 中国民用爆破器材流通协会 中国物资储运协会 中国调味品协会 中国机械通用零部件工业协会 中国模具工业协会 中国塑料机械工业协会 中国钢结构协会 中国重型机械工业协会 中国热处理行业协会 中国炭素行业协会 中国炼焦行业协会

中国耐火材料行业协会 中国铁合金工业协会 中国模板协会 中国废钢铁应用协会 中国化学试剂工业协会 中国化工节能技术协会 中国腐植酸工业协会 中国化工企业管理协会 中国监控化学品协会 中国化学矿业协会 中国化工装备协会 中国工业气体工业协会 中国农药工业协会 中国橡胶工业协会 中国化工施工企业协会 中国化工情报信息协会 中国造纸化学品工业协会 中国石油和石化工程研究会 中国针织工业协会中国化纤工业协会中国丝绸协会 中国纺织机械器材工业协会 中国家用纺织品行业协会

中国砖瓦工业协会 中国非金属矿工业协会 中国砂石协会 中国建筑卫生陶瓷协会 中国建材工程建设协会 中国石棉制品工业协会 中国石灰协会中国水泥制品工业协会(CCPA)全国电力技术市场协会 中国电力建设企业协会 中国电力企业多种经营协会 中国电力规划设计协会 陕西省注册会计师协会 中国室内装饰协会 中国宝玉石协会 温州市自营进出口生产企业协会 中国武术协会 中国家具协会 中国制笔协会 中国缝纫机协会 中国搪瓷协会 中国眼镜协会 北京市保龄球运动协会

土壤中重金属环境污染元素的来源及作物效应

第23卷第2期2005年5月 贵州师范大学学报(自然科学版) Journa l of Guizhou Nor m al University(Natural Sciences) Vo.l23.No.2 M ay2005 文章编号:1004)5570(2005)02-0113-08 土壤中重金属环境污染元素的来源及作物效应 王济1,王世杰2 (1.贵州师范大学地理与生物科学学院,中科院地化所环境地球化学国家重点实验室,中科院研究生院贵州贵阳550002; 2.中科院地化所环境地球化学国家重点实验室,贵州贵阳550002) 摘要:主要介绍我国5土壤环境质量标准6中规定含量的8种重金属环境污染元素(汞、镉、铅、铬、砷、锌、铜、镍)的污染来源及作物效应。土壤中重金属的主要来源是成土母质,矿山开采的三废污染,大气中重金属的沉降,农药、化肥、塑料薄膜等的使用等。重金属在作物中的分布规律一般是根>茎>叶>籽实。 关键词:土壤;重金属;环境;污染;来源;作物效应 中图分类号:X53文献标识码:A The sources and crops effect of heavy m eta l ele m en ts of con ta m i na ti on i n soil WANG Ji1,WANG S h i2ji e2 (1.Gu iz hou Nor ma lUn i ve rs i ty,The State Key Laboratory of Enviro nmenta lGeochem istry,Institute of Geochem i stry,Graduate School of Ch i nese A cade m y of Sc i ences,Guiyang,Gu i zho u550002,Ch i na; 2.The S tate Key Laboratory of Environ m en tal Geoche m istry,Instit ute of Geoche m istry, Chinese A cade m y of Sc i ences,Guiyang,Gu i zho u550002,Ch i na) Abstr act:Th is paper has intr oduced t h e source and crops eff ect of heavymetal e le ments of conta m i n a2 ti o n(H g,Cd,Pb,Cr,A s,Z n,Cu,N i)li m ited by Environmental Qua lity Standar d f or Soils (GB1561821995).The ma i n source is f ro m mother2materi a l of soi.l The heavy meta ls polluti o n also can be related w ith the produce ofm iner,sedi m en tation of heavy me tals in at m osphere,use of agro2 che m icals etc.The distri b uti o na l or der in crops i s root>ste m>leaf>f rui.t K ey w ord s:soi;l heavy meta;l environmen;t pollution;source,crop e f fect 土壤中重金属污染元素主要包括汞、镉、铅、铬及类金属元素砷等生物毒性显著的元素,以及有一定毒性的锌、铜、镍等[1]。因此我们将汞、镉、铅、铬、砷、锌、铜、镍合称为重金属环境污染元素。人类活动将重金属加入到土壤中,致使土壤中重金属含量明显高于原有含量,并造成生态环境质量恶化的现象称为土壤重金属污染[2]。重金属污染物在土壤中移动性很小,不易随水淋滤,不被微生物降解[3,4]。它们一方面对农作物、农产品和地下水等许多方面产生重大影响,并通过食物链危害人体健康;另一方面因大多数重金属在土壤中相对稳定且难以迁出土体,对土壤理化性质及土壤生物学特性(尤其是土壤微生物)和微生物群落结构产生明显不良影响,从而影响土壤生态结构和功能的稳定性[2,5]。 113 收稿日期:2005-01-04 基金项目:贵州省高校发展专项资金(黔教科2004111),贵州师范大学校科研启动费资助项目。作者简介:王济(1975-)男,博士,研究方向:土壤与环境。

腐植酸为什么能提高植物的抗逆性

腐植酸为什么能提高植物的抗逆性? 腐殖酸是一种天然的有机大分子化合物的混合物,广泛存在于自然界中,由于其具有独特的生理功能,近年来被广泛应用于农业生产。除了改良土壤、提高肥效、促进作物生长等方面,它在植物抗逆性中的作用也越来越受到关注。 关于植物抗逆性 植物体是一个开放体系,生存于自然环境之下,难免会遭到恶劣环境的伤害。通常我们把这些对植物产生伤害的环境称之为逆境(或胁迫),细分起来有以下几类: 生物 物理 化学 温度 病害、虫害、杂草 阴雨、雪、冰雹、机械伤害、洪涝、干旱 除草剂及化肥的副作用、药害、土壤酸化、板结、盐碱化 高温、低温 当这些逆境出现时,植物会产生一些列的变化,如干旱会导致叶片和嫩茎萎蔫;淹水使叶片黄化,枯干,根系褐变甚至腐烂;高温下叶片变褐,出现死斑,树皮开裂;病原菌侵染叶片出现病斑。

轻则影响植物的生长发育及产量和品质,严重时甚至直接导致其死亡。 与人和动物不一样是,植物无论遇到什么危险,都无法逃离,既然跑不掉,植物只能退而求其次,练就了一身“挨打”的本领,这便是植物抗逆性的由来。 如干旱情况下植物通过控制叶片的气孔的开关,来维持水分的平衡;受到高盐度的环境胁迫,通过改善细胞膜的通透性,来阻止大量盐溶液进入植物体内;甚至遭受病虫害时,部分植物也可产生化学物质去抵抗,或吸引病虫害的天敌来消灭它们。 一般来说,植物在生长盛期抗逆性比较小,进入休眠以后,则抗逆性增大;营养生长期抗逆性较强,开花期抗逆性较弱。但如果逆境超出了其耐受能力,植物也是难逃厄运。 逆境一旦出现,我们无法改变,但若能提升植物自身的抗逆性,或许是不错的办法! 腐植酸在各种逆境中的作用

土壤重金属污染综述

重庆文理学院环境管理学课程作业之三 综述报告 题目:土壤重金属污染综述 姓名:冯思特 学号:201204159007 班级:环科2班 成绩:

土壤重金属污染综述 摘要:土壤是生物和人类赖以生存和生活的重要环境。随着工业化的发展、城市化进程的深入,我国土壤环境污染不断加剧。土壤环境质量变化较大,土壤环境污染物种类和数量的不断增加,发生的地域和规模在逐渐扩大,危害也进一步深入。而土壤重金属污染是其中重要的组成部分,由于其不能为土壤微生物所分解,且污染具有蓄积性的特点,土壤一旦遭受污染,就难以在短时间内消除,从而对农产品的产量品质和人类的身体健康造成很大的危害【1,2】。 关键词:现状;来源;特性;修复方法 一.我国重金属污染现状 我国土壤重金属污染形势严峻。近年来,我国土壤重金属污染事件频发,不仅对耕地与农产品质量构成严重威胁,还直接损害了民众身体健康,影响社会稳定【3】。国务院批复的《重金属污染综合防治“十二五”规划》、近期印发的《国务院办公厅关于印发近期土壤环境保护和综合治理工作安排的通知》(国办发〔2013 ] 7号)和《国务院关于加快发展节能环保产业的意见》(国发〔2013]30号)中,都明确提出了攻克污染土壤修复技术和加强试点示范的要求。建设土壤重金属污染治理试点示范工程,加强修复技术体系研究和推广应用,防控和修复土壤重金属污染,提高土壤环境质量,保障生态环境与食物安全,已成为国家重大现实需求。 二.重金属污染主要来源 土壤重金属的来源主要有自然来源和人为干扰输入两种途径。在自然情况下,土壤中重金属主要来源于母岩和残落的生物物质,含量比较低,一般不会对土壤一植物系统生态环境造成危害【4】。人为活动是造成土壤遭受重金属污染的重要原因,在金属矿床开发、城市化建设、固体废弃物堆积以及为提高农业生产而施用化肥、农药、污泥和污水灌溉的过程中,都可能导致重金属在土壤中大量积累。 三.土壤重金属的特性 3.1 重金属在土壤中的沉积 重金属能在一定的幅度内发生氧化还原反应,具有可变价态,因重金属的价态不同,其活性和毒性也不同;重金属易在土壤环境中发生水解反应,生成氢氧化物,也可以与土壤中的一些无机酸反应,生成硫化物、碳酸盐、磷酸盐等。这些化合物的溶度积【5】都比较小,使得重金属累积于土壤中,不易迁移,污染危害范围扩大的可能性较小,但却使污染区域内

腐植酸与土壤中重金属离子的作用机理研究概况

腐植酸与土壤中重金属离子的作用机理研究概况* 卢 静 朱 琨 侯 彬 赵艳锋 (兰州交通大学环境与市政工程学院 兰州 730070) 摘 要:在分析我国农田土壤重金属污染状况的基础上,阐述了腐植酸与铬、镉、锌等金属离子在土壤中的作用机理研究现状,认为通过范德华力、氢键、静电吸附、阳离子键桥等形成土壤有机-无机复合体,使腐植质的胶团被吸附在土壤颗粒表面,使带正电的金属离子更牢固地与土壤结合,从而有效防止被农作物吸收。文章指出,腐植物质的结构及其与金属离子作用机理的研究,对于促进腐植酸土壤环境保护领域的应用与相关的技术开发具有重要意义。 关键词:腐植酸 土壤 重金属离子 作用机理 中图分类号:TQ320.6 文献标识码:A 文章编号:1671-9212(2006)05-0001-05 General Situation of the Reaction Mechanisms of Humic Substances with Heavy Metal Ions in Soil Lu Jing, Zhu Kun, Hou Bin, Zhao Yanfeng (School of Environmental and Municipal Engineering Lanzhou Jiaotong University, Lanzhou, 730070) Abstract: On the basis of analyzing the exact contamination situation of agricultural soils in China, the utilization of humic substances to prevent heavy metal contamination from wastewater irrigation is reviewed while the reaction mechanisms of humic substances with heavy metal ions, such as Cr, Cd and Zn, are supposed including formation of organic-inorganic complexes by hydrogen bonds, static electrical adsorption and cation bond etc. As a result, colloidal structural groups of humic substances are adsorbed on the soil surfaces in addition to adsorb metal cations to promote them binding ef? ciency. Finally, the heavy metals that retain in the soil matrix can be prevented crops from absorption. Furthermore, the investigations on the reaction of humic substances with metal ions play an important role in environ-mental protection and the relative technical development. Key words: humic acid; soil; heavy metal ion; reaction mechanism 随着工业发展及城市化程度的不断提高,水资源日趋紧张。水资源的匮乏,使污水成为灌溉用水的来源之一。这对于解决我国水资源短缺问题起到了重要作用。2005年全国废水排放总量为524.5亿吨,其中工业废水排放量为243.1亿吨[1]。目前,我国污水处理率低,灌溉水中有害物质严重超标。 根据我国第二次污灌区环境质量状况普查统计结果(基准年为1995年),我国利用污水灌溉的农田面积为361.84×104h m2,占我国总灌溉面积的7.33%,占地表水灌溉面积约10%[2]。该资料表明,我国37个主要污灌区中有明显污染点22个,其中多半是积累性重金属超标[3]。据我国农业部进行的全国污灌区调查,在约140万公顷的污水灌区中,遭受重金属污染的土地面积占污水灌区面积的64.8%,其中轻度污染的占46.7%,中度污染的占9.7%,严重污染的占8.4%[4]。因盲目使用污水作为灌溉水源,导致农作物品质产生严重的影响[5]。 腐植质是一种广泛存在于水体、土壤中的有机化合物,是动、植物残体通过微生物分解、合成的高分子有机物。 根据在酸碱性水溶液中的溶解度,可以将腐植质分类为:胡敏酸(humic acid,即腐植酸,H A)溶于碱溶液,但不溶于酸性溶液(一般p H <2);富里酸(fulvic acid,煤化学中称黄腐 *甘肃省自然科学基金资助项目,编号:3ZS06-A25-025。

腐植酸作为陶瓷添加剂魅力无限

《腐植酸作为陶瓷添加剂魅力无限》的初审意见本文作者对腐植酸作为陶瓷添加剂作了比较细致的综述性描述,写作及内容比较合理,有较好的参考使用价值,建议适当修改后发表。部分文字已在文中修改,其他意见详见文中批注。请直接在此稿上修改。 腐植酸作为陶瓷添加剂魅力无限 孙晓然 (河北理工大学化工与生物技术学院唐山063009) 摘要:介绍了腐植酸及钠盐在陶瓷产业中作为多功能添加剂的应用背景、作用机理、制备及应用概况,对腐植酸钠改性方法、发展方向进行评述,指出腐植酸在陶瓷产业清洁生产中起推动作用,为陶瓷工艺及质量增添无限魅力,在陶瓷工业生产领域具有广阔发展空间。关键词:腐植酸腐植酸钠陶瓷添加剂应用进展 Humic Acid as a Ceramic Additive Has Infinite Charm Sun Xiaoran (College of Chemical and Biological Technology, Hebei Polytechnic University, Tangshan, 063009) Abstract:The paper introduces application background, action mechanism, preparation and application of humic acid and sodium humate as multi-functional ceramic additives. The modification and development of sodium humate also have been reviewed. It indicates that humic acid is a pushing force to the ceramic clean production. Humic acid in the application of ceramic production will have extensive development space. Key words: humic acid; sodium humate; ceramic additive ;application; development 瓷器是我国古代伟大发明之一,与人类的历史发展和日常生活息息相关,从最早的食器、住宅,到现代的行道、车辆,甚至到纳米科技材料,都有它的存在。即使是按现有的考证,从粗陶出现算起,已有上万年历史,从原始瓷算起,也有二三千年以上的历史。不管陶与瓷是同源还是不同源,中国人做陶瓷的窑火从没有中止过,几千年来,中国陶瓷以其精美的造型、细腻的质地享誉世界。在当代,中国更是世界陶瓷生产基地、制造中心、陶瓷业发展最发达的国家。陶瓷虽然是中国的传统产业,但随着科技的发展,经历了一轮又一轮的创新与进步,陶瓷产业已成为充满生机创新与挑战的朝阳产业。 为生产出五彩缤纷、用途各异的陶瓷,自古以来陶瓷生产者往往为满足工艺要求而添加不同的化学添加剂,所有的这些添加剂通称为陶瓷添加剂。陶瓷添加剂是无机或有机物质

1-中国特种肥发展现状和方向

特种肥品类层出不穷经济作物需求旺盛本刊特约记者杨吉龙陈振兴赵禹郴黄海洋黄帼蓉 化肥是粮食的“粮食”。上世纪80年代以来,我国粮食连年增产,进入21世纪连续迈上11000亿斤和12000亿斤的台阶,化肥功不可没。然而,看到功劳的同时,我们不能回避过量、盲目施用化肥带来的后果。 农产品质量下降、生产成本增加、农业面源污染……种种问题不仅挑战着中国化肥工业,更牵动着中国农业可持续发展的命脉。 在原料资源日益紧缺、种植效益仍然偏低、环境承载压力不断增大的情况下,靠大量投入资源和消耗环境的发展方式已难以为继,必须转变发展方式,大力推进科学施肥用肥。 今年3月,农业部制定的《到2020年化肥使用量零增长行动方案》明确指出要“调整化肥使用结构,优化氮、磷、钾配比,促进大量元素与中微量元素配合,提高肥料利用率,减少不合理投入,发展新型肥料,促进农业可持续发展。 靠什么实现零增长? 以海藻酸肥、腐植酸肥、生物菌肥、水溶肥、土壤调理剂、硅肥、功能性复合肥等一大批具有特定功能的新型特种肥料,因可满足不同作物的不同生长时期的养分需求,且兼具省工高效、节能环保、提高农作物抗逆和产品品质等诸多优点,正日益受到市场的青睐。 我国政府对特种肥料的发展高度重视,利好政策不断出台,新型肥料迎来了发展的黄金机遇期。 今年7月,国家工业和信息化部发布了《关于推进化肥行业转型发展的指导意见》,当中提出,大力发展新型肥料,力争到2020年,我国新型肥料的施用量占总体化肥使用量的比重从目前的不到10%提升到30%。其中,掺混肥、硝基复合肥、增效肥料、尿素硝酸铵溶液、缓(控)释肥、水溶肥、液体肥、土壤调理剂、腐植酸、海藻酸、氨基酸等被列为高效、环保新型肥料,鼓励开发。 腐植酸:与化肥“联姻”前景无限 腐植酸肥料作为新型高效肥料,凭借显著的应用效果,成为在大宗经济作物上使用最多的新型肥料之一。专家表示,未来腐植酸将集成中微量元素,通过与化肥联姻,助力肥料工业进入4.0时代。 2013年,中国腐植酸工业协会理事长曾宪成在其发表的《腐植酸本源性肥料可持续发展》一文中提到,腐植酸的结构和功能特性决定了其在改良土壤、增强肥效方面的显著作用,在等养分的情况下,腐植酸肥料比常规肥料利用率平均提高10个百分点以上,肥效相当于净增30%-40%。未来腐植酸将集成中微量元素,通过与化肥联姻,助力肥料工业进入4.0时代。 腐植酸肥发展至今已超过30年历史2006年,农业部出台了《含腐植酸水溶肥料》行业标准,一定程度上让含腐植酸水溶肥市场得到了规范。2010年,农业部对其进行了部分修订。 据中国腐植酸工业协会统计,我国腐植酸肥生产企业有1000多家,已经成为世界上最大的腐植酸肥生产国。腐植酸肥料专委会计划抓住化肥转型龙头企业,推动现有委员企业成为骨干力量,3年产量达500万吨以上,销售额达150亿元以上。 腐植酸肥的品种主要有腐植酸铵、腐植酸磷、腐植酸铵磷、腐植酸纳、腐植酸钾和硝基腐植酸铵等。众多腐植酸肥生产企业中,利用煤炭等原料自制腐植酸的不多,大部分企业直接购买腐植酸或腐植酸钾、腐植酸铵、腐植酸钠等腐植酸盐为原料,通过与大量元素、微量元素混配生产成品肥料。 腐植酸肥系列产品多种多样:有机-无机复合肥、有机肥、复混肥等固体肥料;叶面肥、冲施肥等液体肥;已经形成了速效与长效并举、固体和液体并存、通用与专用同在、高浓度与低浓度配合、有机与无机协调的肥料体系。 中国农业科学院首席研究员赵秉强表示,在化肥零增长驱动下,应大力发展绿色肥料,腐植酸钾将在其中扮演重要角色。 我国腐植酸肥料的生产技术日渐成熟,但仍然面临着许多问题。广西土壤肥料工作站肥料登记办公室主任韦鸿雁分析,由于缺乏统一规范实施和检测标准,加之生产企业多规模小、资金短缺、技术条件差、生产工艺落后、能耗大,因此生产出来的产品外观较差、质量不稳定,严重影响产品的应用效果,扰乱了肥料市场的秩序。 海藻肥:功能多样尚无国家标准 海藻肥在国外被列入有机食品生产专用肥料,是集营养和调理于一体的生物肥料。其最主要特点是含有海藻生物活性因子,极大地保留了天然活性成分,具备植物营养物质、生物活性物质、植物抗逆因子的功能。与近几年新崛起的新型肥料产业相比,海藻肥在中国的发展速度较快,但是由于行业标准不明确,国内海藻肥市场仍比较混乱,产品质量参差不齐,严重影响了农户对

重金属的来源及传播

土壤是人类赖以生存的主要自然资源之一,也是人类生态环境的重要组成部分。随着工业、城市污染的加剧和农用化学物质种类、数量的增加,土壤重金属污染日益严重,目前,全世界平均每年排放Hg约1.5万吨,Cu 340万吨,Pb 500万吨,Mn 1500万吨,Ni 100万吨。据我国农业部进行的全国污灌区调查,在约140万公顷的污水灌区中,遭受重金属污染的土地面积占污水灌区面积的64.8%,其中轻度污染的占46.7%,中度污染的占9.7%,严重污染的占8.4%。 土壤重金属污染具有污染物在土壤中移动性差、滞留时间长、不能被微生物降解的特点,并可经水、植物等介质最终影响人类健康。因此,治理和恢复的难度大。本文在讨论土壤重金属污染物来源和分布的基础上,评述土壤重金属污染修复技术研究进展,旨在为重金属污染土壤的有效修复提供科学的依据。 1 土壤重金属来源与分布 1.1 随着大气沉降进入土壤的重金属 大气中的重金属主要来源于能源、运输、冶金和建筑材料生产产生的气体和粉尘。除汞以外,重金属基本上是以气溶胶的形态进入大气,经过自然沉降和降水进人土壤。据Lisk报道,煤含Ce、Cr、Pb、Hg、Ti等金属,石油中含有相当量的Hg(O.02~30mg/kg),这类燃料在燃烧时,部分悬浮颗粒和挥发金属随烟尘进入大气,其中1O%~30%沉降在距排放源十几公里的范围内,据估计全世界每年约有1600吨的汞是通过煤和其它石化燃料燃烧而排放到大气中去的。例如比利时每年从大气进入每公顷土壤的重金属量就有Pb 250g、Cd 19g、As 15g、Zn 3750g。 运输,特别是汽车运输对大气和土壤造成严重污染。主要以Pb、Zn、Cd、Cr、Cu等的污染为主。它们来自于含铅汽油的燃烧和汽车轮胎磨损产生的粉尘,据有关材料报导,汽车排放的尾气中含Pb量多达20~50 μg/L,它们成条带状分布,因距离公路、铁路、城市中心的远近及交通量的大小有明显的差异。Вериня等研究发现在公路两侧50m的距离有被污染的痕迹,每月每平方米累积的易溶性污染物在4~40 g。进入环境的强度顺序为:Cu、Pb、Co、Fe和Zn。在宁-杭公路南京段两侧的土壤形成Pb、Cr、Co污染带,且沿公路延长方向分布,自公路两侧污染强度减弱。经自然沉降和雨淋沉降进入土壤的重金属污染,与重工业发达程度、城市的人口密度、土地利用率、交通发达程度有直接关系,距城市越近污染的程度就越重,污染强弱顺序为:城市-郊区-农村。 1.2 随污水进入土壤的重金属 利用污水灌溉是灌区农业的一项古老的技术,主要是把污水作为灌溉水源来利用。污水按来源和数量可分为城市生活污水、石油化工污水、工业矿山污水和城市混合污水等。生活污水中重金属含量很少,但是,由于我国工业迅速发展,工矿企业污水未经分流处理而排人下水道与生活污水混合排放,从而造成污灌区土壤重金属Hg、Cd、Cr、Pb、Cd等含量逐年增加。淮阳污灌区土壤Hg、Ca、Cr、Pb、As等重金属1995年已超过警戒线。其它灌区部分重金属含量也远远超过当地背景值。 随着污水灌溉而进入土壤的重金属,以不同的方式被土壤截留固定。95%的Hg被土壤矿质胶体和有机质迅速吸附,一般累积在土壤表层,自上而下递减。郑州污水灌区水中Hg的浓度达到O.242mg/kg,而土壤Hg含量O.194 mg/kg就会造成重度污染。污水中的As多以3价或5价状态存在,进入土壤后被铁、铝氢氧化物及硅酸盐粘土矿物吸附,也可以和铁、铝、钙、镁等生成复杂的难溶性砷化合物。而Cd很容易被水中的悬浮物吸附,水中Cd的含量随着距排污口距离的增加而迅速下降,因此污染的范围较少。Pb很容易被土壤有机质和粘土矿物吸附。Pb的迁移性弱,污灌区Pb的累积分布特点是离污染源近土壤含量高,距离远则土壤含量低。污水中Cr有4种形态,一般以3价和6价为主,3价Cr很快被土壤吸附固定,而6价Cr进入土壤中被有机质还原为3价Cr,随之被吸附固定。因此,污灌区土壤Cr会逐年累积。 1.3 随固体废弃物进入土壤的重金属

中国耕地土壤重金属污染概况

中国耕地土壤重金属污染概况 摘要:依托收集的耕地土壤重金属污染案例资料,建立了我国138个典型区域的耕地土壤重金属污染数据库,并利用《土壤环境质量标准》(GB15618—1995)中的二级标准作为评价标准,测算了我国耕地的土壤重金属污染概况。研究表明:(1)我国耕地的土壤重金属污染概率为16.67%左右,据此推断我国耕地重金属污染的面积占耕地总量的1/6左右;(2)耕地土壤重金属污染等别中,尚清洁、清洁、轻污染、中污染、重污染比重分别为68.12%,15.22%,14.49%,1.45%,0.72%;(3)8种土壤重金属元素中,Cd污染概率为25.20%,远超过其他几种土壤重金属元素;此外,也有一些区域发生Ni,Hg,As和Pb土壤污染,但是Zn、Cr和Cu元素发生污染的概率较小;(4)辽宁、河北、江苏、广东、山西、湖南、河南、贵州、陕西、云南、重庆、新疆、四川和广西14个省、市和自治区可能是我国耕地重金属污染的多发区域,特别是辽宁和山西的耕地土壤重金属污染可能尤其严重。 关键词:土壤污染;重金属;耕地;污染概率 过去的50年中,大约有2.2万t的Cr,9.39×105t的Cu,7.89×105t的Pb 和1.35×106t的Zn排放到全球环境中,其中大部分进入土壤,引起了土壤重金属污染。随着我国工业和城市化的不断发展,工业和生活废水排放、污水灌溉、汽车废气排放等造成的土壤重金属污染问题也日益严重。重金属污染不仅能够引起土壤的组成、结构和功能的变化,还能够抑制作物根系生长和光合作用,致使作物减产甚至绝收。更为重要的是,重金属还可能通过食物链迁移到动物、人体内,严重危害动物、

生化腐植酸的肥效及作用机理研究

生化腐植酸的肥效及作用机理研究 贾爱萍 赵 冰 廖宗文 (华南农业大学资源环境学院新肥料资源研究中心 广州 510642) 摘 要:采用温室盆栽的方法,研究了施用生化黄腐酸(BFA)对番茄生长和防病的影响。结果表明:BFA能明显提高番茄的株高、生物量,土壤微生物群落的结构组成发生了明显变化,土壤微生物的各项多样性指数都有所提高,并降低了番茄青枯病的发生率。关键词:生化腐植酸 番茄 防病功能 Biolog 多样性指数 Abstract: The effects of B FA o n tomato g rowth and disease resistance were studied through pot experiment in a greenhouse. The results showed that the application of BFA could increase the plant height and biomass significantly, change the soil microbial c ommunity structure, and enhance the soil microbial diversity index. The severity of tomato wilt was also reduced. Key words: BFA; tomato; disease resistance; Biolog; diversity Index 生化腐植酸(BFA)是一种有机肥,其成分和功效均有突出的优点。我国上世纪50年代末和70年代,都曾大搞腐植酸的群众运动。80年代,在进行了长达4年的大规模应用试验和较深入的理论研究之后,总结出腐植酸在农业方面有五大功效:改良土壤、增强肥效、增加产量、提高作物抗病力和改善品质。近年来,随着环保意识增强和绿色食品、有机食品的发展,包括BFA在内的绿色环保肥倍受关注。在国家和地方科技立项和企业新产品开发中,BFA成为一个活跃的前沿。 BFA有别于传统的腐植酸产品,它不是由矿物(泥炭、风化煤)通过化学方法提取的,而是由作物秸秆、木屑、蔗渣等农业废弃物通过化学或微生物发酵工艺制取。其重要成分为腐植酸中最具活性的黄腐酸,研究表明,BFA含有多种氨基酸和有益微生物种群,是一种混合物,其缩合程度和碳含量较低,分子量较小,而含有活性基团较多,表现出色泽较浅,水溶性较好,易于被动植物组织吸收及生物活性较高等特点[1]。十多年来的大量事实证明,与矿物腐植酸(包括矿物黄腐酸)相比,BFA活性更高,具有更优良的应用效果,而且开拓了一条资源化治污的新路,把废弃物转化为一种极有价值的新资源。 BFA的出现和发展晚于矿物腐植酸,对其功能、效果及制造的研究亦较为薄弱。加强这方面的研究,对于推进BFA及整个有机肥的发展,都有重要作用。本研究在几种腐植酸肥的肥效对比基础上,应用Biolog方法探讨其肥效机理,并分析其应用前景。 1 BFA的生产特点 BFA的原料取自生物残体,如秸秆、木屑、蔗渣和一些工业废渣废液如味精、酒精废液。对这类废物资源的利用还有环保效益。而且这类资源充裕,与矿物(泥炭、风化煤)等不可再生资源相比,一般不存在枯竭的问题。 BFA的制造,通常要对原料进行水解,然后提取黄腐酸(FA),江苏南通市绿色肥料研究所开发“化学氧化降解法”技术,大大提高了产品得率,快速高效[2]。

浅谈我国土壤重金属污染现状及修复技术

浅谈我国土壤重金属污染现状及修复技术 土壤是一个开放的缓冲动力学系统,承载着环境中50%~90%的污染负荷[1-2]。随着矿产资源开发、冶炼、加工企业等规模的扩大以及农业生产中农药、化肥、饲料等用量的增加和不合理的使用,致使土壤中重金属含量逐年累积,明显高于其背景值,造成生态破坏和环境质量恶化,对农业环境和人体健康构成严重威胁。重金属在土壤中移动性差、滞留时间长、难降解,可以通过生物富集作用和生物放大作用进入到农牧产品中[3],从而影响产出物的生长、产量和品质,潜在威胁人体健康[4]。本文对我国土壤重金属污染现状进行了简要分析,概述了土壤中重金属的来源,简单介绍了物理修复、化学修复和生物修复技术在土壤重金属污染修复方面的研究进展,以期为土壤重金属污染修复提供参考。 1我国土壤重金属污染现状 随着矿山开采、冶炼、电镀以及制革行业的蓬勃发展,一些企业盲目追逐经济利益,轻视环境保护,再加上农药、化肥、地膜、饲料添加剂等的大量使用,我国土壤中Pb、Cd、Zn等重金属的污染状况日益严重,污染面积逐年扩大,危害人类和动物的生命健康。据报道,2008年以来,全国已发生100余起重大污染事故,其中Pb、Cd、As等重金属污染事故达30多起。据2014年国家环境保护部和国土资源部发布的全国土壤污染状况调查公报显示,全国土壤环境总状况体不容乐观,部分地区土壤污染较重,耕地土壤环境质量堪忧,工矿业废弃地土壤环境问题突出。全国土壤总的点位超标率为16.1%,其中轻微、轻度、中度和重度污染点位比例分别为11.2%、2.3%、1.5%和1.1%。据农业部对我国24个省市、320个重点污染区约548 万hm2土壤调查结果显示,污染超标的大田农作物种植面积为60万hm2,其中重金属含量超标的农产品产量与面积约占污染物超标农产品总量与总面积的80%以上,尤

近十年腐植酸应用研究综述_李威

专题评述 近十年腐植酸应用研究综述 李 威 邹立壮 朱书全 钱芬芬 (中国矿业大学化学与环境工程学院 北京 100083) 摘 要:综述了近十年腐植酸应用研究的进展,介绍了其在农业、园林业、工业、环境工程、医药卫生等领域的研究成果,着重介绍了腐植酸基保水剂,并对其研究前景作一展望。 关键词:腐植酸 进展 保水剂 中图分类号:TQ311 文献标识码:A 文章编号:1671-9212(2006)03-0003-06 The General Statement on Humic Acid Application in Recent Ten Years Li Wei, Zou Lizhuang, Zhu Shuquan, Qian Fenfen (School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083) Abstract: It reviews the progress in humic acid application in recent ten years, and introduces the achievements made on agriculture, horticulture, industry, environmental engineering, and pharmaceuticals etc., and absorbents of humic and acrylamide is introduced stressly. The potential development of the research on humic acid is also prospected. Key words: humic acid; progress; superabsorbent polymer 腐植酸广泛存在于土壤、湖泊、河流、海洋中。自然界中的泥炭、褐煤和风化煤中含有丰富的腐植酸[1,2]。它是影响环境生态平衡的重要因素,也是潜在的、可大力开发和综合利用的有机资源[3]。近些年来,在广大科技工作者的不懈努力下,腐植酸的开发利用工作取得了长足进步,使得腐植酸类物质在农业、园林业、畜牧业、养殖业、医药卫生、工业、环境工程等领域的研究与应用都有了新的进展。 1 腐植酸在农业领域的应用 1.1 制造腐植酸类肥料 腐植酸在农业领域的研究开发利用是最多的,也是我国20世纪70年代开展腐植酸综合利用的初衷,目的是为了缓解当时化肥总量不足的困难[4,5]。实践证明,腐植酸对西红柿、棉花、葡萄等作物的生长具有类似于荷尔蒙的刺激作用[6]。目前,腐植酸已成为农业上应用的抗旱剂、叶面肥、调整剂及复配产品的主要成分[7]。 1.1.1 制造腐植酸类液肥 腐植酸喷洒在叶面上后,能使叶面气孔缩小,减少水分蒸腾,提高农作物抗旱能力。腐植酸已主要作为植物调整剂用于叶面肥的组分,在农业上正获得越来越广泛的应用[2,4]。如中国科学院化学研究所的“华硕828”、广东的“叶面宝”、北京的“万得福”、保定的“万家宝”和河北的“高美施”等叶面肥均属此列。自1997年12月至2001年7月,在我国农业部登记的各种形式的叶面肥生产企业已有53家。白燕等[8]利用改性泥炭提取出的腐植酸,溶于水后加入常量、微量元素配制成的液体肥料,在蔬菜上施用后能改善蔬菜品质,增加产量20%左右。关敏等[9]在腐植酸溶液中复配NPK常量元素和络合铜、铁、锌、锰等微量元素制成的腐植酸植物营养液具有改良土壤、对氮磷钾肥增效、刺激作物生长、增加产量、改善农产品品质等优点。 生物技术如能充分利用黄腐酸分子量小、生物活性高、水溶性好、抗硬水能力强以及螯合能力强等特点,制成生物技术黄腐酸微肥,既能补充农作物所需的微量元素,又能发挥黄腐酸对植物的生长调节作用[10,11],比传统腐植酸类叶面肥具有更优异的提高作物微量元素吸收率、增强抗病性和抗硬水能力强等特点。因此研究开发此类液体微肥对农业节水及农作物质量和产量的提高均有着重要意义。

相关文档
最新文档