实验六-主成分分析

实验六-主成分分析
实验六-主成分分析

实验六主成分分析

一、实验目的

通过本次实验,掌握SPSS及ENVI的主成分分析方法。

二、有关概念

1.主成分分析的概念

主成分分析(又称因子分析),是将多个实测变量转换为少数几个不相关的综合指标的多元统计分析方法。代表各类信息的综合指标就称为因子或主成份。

主成分分析的数学模型可写为:

=绚內 + a n x2 + 5x3 + …+ a lm x m

S = "21X] + Cl22X2 + Cl23X3 + ??? + a2m X m

Z3 =勺內+5小+如勺+??? + %〃

S = + a n2x2 + 心3X3 + ??? +

其中,X1.X2. x3. x4— x B为原始变量;Zi. z2. z3, z4—z n为主成份,且有mNn。写成矩阵形式为:Z=AX O Z为主成份向量,A为主成份变换矩阵,X为原始变量向量。主成份分析的目的是把系数矩阵A求出,主成份Zl、Z2、Z3…在总方差中所占比重依次递减。

从理论上讲呼n即有多少原始变量就有多少主成份,但实际上前面几个主成份集中了大部分方差,因此取主成份数目远远小于原始变量的数目,但信息损失很小。

因子分析的一个重要目的还在于对原始变量进行分门别类的综合评价。如果因子分析结果保证了因子之间的正交性(不相关)但对因子不易命名,还可以通过对因子模型的旋转变换使公因子负荷系数向更大(向1)或更小(向0)方向变化,使得对公因子的命名和解释变得更加容易。进行正交变换可以保证变换后各因子仍正交,这是比较理想的情况。如果经过正交变换后对公因子仍然不易解释,也可进行斜交旋转。

2.因子提取方法

SPSS提供的因子提取方法有:

①Principal components主成份法。该方法假设变量是因子的纯线性组合。这是SPSS 最通用的因子提取方法,故因子分析有时又称为主成份分析。

?Unweighted least square不加权最小平方法。该方法使观测的和再生的相关阵之差的平方最小。

?Generalized least square用变量的单值加权,使观测的和再生的相关阵之差的平方

最小。

?Maximum likelihood最大似然法。此方法不要求多元正态分布。给出参数估计,如果样本来自多元正态总体它们与原始变量的相关阵极为相似。

⑤Principal axis factoring使用多元相关的平方作为对公因子方差的初始估计。

⑥Alpha factoring a因子提取法

3.因子旋转方法

SPSS提供的因子旋转方法有:

?None不进行旋转。此为系统默认的选择项。

?Varimax方差最大旋转。

③Equamax平均正交旋转。

④Quartmax四次方最大正交旋转。

⑤Direct Oblimin斜交旋转,指定此项可以在下面的矩形框中键入Delta 值,该值应该在0?-1之间,是因子映象自相关的围。0值产生最高相关因子,大负数产生旋转的结果与正交接近。

三、实验容

1.在市宝山、吴淞地区的环境质量综合评价中,对20个监测点的大气、地面水和土壤要素进行监测,得到三种要素的实测超标倍数数据。本实验对这批资料进行主成份分析,为进一步进行环境综合分析作准备。

2.对2009年钱塘江湾TM影像进行主成分分析

四、实验步骤

(一)SPSS主成分分析

1.主成分分析的基本步骤

(1)打开"d:\SPSS实习\主成份分析.sav”文件,选择Analyze菜单下的Data Reduction的Factor项,展开主对话框。

(2)在左侧源变量框中选取“大气超标倍数”、“地面水超标倍数”“土壤超标倍数”变量,进入Variables框中,作为参与因子分析的变量。

(3) 单击Descriptives 按钮,展开相应的子对话框。在Statistics 组中选 取Initial solution 选择项,显示初始分析结果,给出原始变量的公因子方差、 与变量数目相等的因

子、各因子的特征值、各因子特征占总方差的百分比以及累 积百分比。在Correlation Matrix 组中选取Coefficients,显示原始变量相关系 数矩阵。按Continue 返回主对话框。

Factor Analysis; Descriptives

Statistics

hinivaLriat^ descripti 归 0 Ini ti al solution

Lorrelati on Matrix

[V] Coefficients Significance leve ; Ret ermin^xt t

riKFilO and BartletV s

(Statistics 组中的Univariate descriptive 项要求给出各变量的均数和 标准差; Correlation Matrix 组提供以下几种检验变量是否适合作因子分析的方法: (4 )单击Extraction 按钮,展开相应的子对话框。在Method 组中选择 Principal components 主成份法作为提取公因子的方法;在Extract 组中选取 Number of factors,并

在其右侧框中输入“2”,指定提取公因子的数目为2; 在Display 组中选取L'nrotated

factor solution 及Screen plot 选项,要求显示 未经旋转的因子提取结果因了载荷碎石图;Maximum iterations for

Continue

gprrlti In; □

B

of sphericity

convergence为因子分析收敛的最大迭代次数,系统默认为25;按Continue返回主对话框。

(5)单击Scores按钮,展开相应的子对话框。选取Save as variables选项,即要求将因子得分作为新变量保存在数据文件中;在Method组选取Regression选项,即因子的得分用回归法,其因子得分的均值为0 (Regression Method: A method for estimating factor score coefficients. The scores that are produced have a mean of 0 and a variance equal to the squared multiple correlation between the estimated factor scores and the true factor values? The scores may be correlated even when factors are orthogona 1?);选取Display factor score coeffient matrix,显示因子得分系数矩阵;按Continue 返回主对话框

(6)单击0K,提交运行。

(7)输出结果分析。

2.主成分分析结果分析

输出结果分析如F列表6. 1?表6. 6所示:

表6?1给出了三个原始变量的相关系数矩阵。

表6. 1

Correlation Matrix

表6.2第二列给出原始变量的公因子方差,三个均为1,三个变量的公因子方差之总和为3;第三列绐出的是使用两个因子代替原始变量后对各原始变量方差解释的百分比O

Extraction Method: Principal Component Analysis.

表6.3为方差解释表。第一列为主成份名,第二、三、四列分别为第一.二、三主成份的特征值、方差百分比、方差累积百分比;后三列为选用两个主成份时的特征值、方差百分比.方差累积百分比。

表6.3

Total Variance Explained

Extraction Method: Principal Component Analysis.

表6.4为因子矩阵表。给岀原始变量对第一、第二主成份的贡献。

表6.4

Component Matrix(a)

Extraction Method: Principal Component Analysis? a 2 components extracted?

表6.5为因子得分系数矩阵。给出第一、第二主成份与原始变量的关系。根据该矩阵可以写出因子的表达式为:Factorl=0. 281*xl*+0. 484*x2*+0. 516*x3* Factor2=0. 955*xl*-0. 414*x2*-0. 131*x3*

可以说,用这两个因子代替三个原始变量,可以概括原始变量所包含信息的87. 806%。

表6.5

Component Score Coefficient Matrix

Extraction Method: Principal Component Analysis?

Component Scores?

表6. 6给岀了两主成份间的协方差矩阵。

表6.6

Component Score Covariance Matrix

Component Score Covariance Matrix

Extract i on Method: Prin cipal Comp orient Analysis?

Component Scores.

图6. 1可以看岀因子1与因子2,以及因子2与因子3之间的特征值之差值比较

大,可以初步得岀提取两个因子将能槪括绝大部分信息。

Scree Plot

Component Nucaber

图6.1

注:在“Factorl二0. 281*xl*+0. 484*x2*+0. 516*x3*

及Factor2=0. 955*xl*-0. 414*x2*-0. 131*x3*,>中的xl* \x2*\x3*\变量是原始变量做了均值为0处理后的新变量。

(二)ENVI主成分分析

1.打开LT51180392009262BJC00下的B1-6及B7,用Basic Tools下的Layer Stacking进行6波段叠合(如图6-2,拾取Import File选择叠合的波段,拾取Reorder Files对波段进行排序,建议按B1—B7顺序),并选择Output Result to F订e,将结果输出到QT River文件。

15118039.0392*******^70. TIF [Band 1] IS118039_039200g0919_ES50.TIF [Band 1] LSI 18039_0392*******_B40. TIF [Band 1] LSI 18039_0392*******^30, TIF [Band 1] I£1 18039j :i39200g0919 J :20. TIF [Band 1] Resampling Nearest Neighbor

OK I | Cancel |

图6-2

2. 用ROI TOOLS 选择一块感兴趣区(建议选择地类比较全的部分),并将子 集存

为subset 文件。

3. ENVI [Transform] -> [Principal Components! -〉[Forward PC Rotate 正向PC 旋

转】-〉[Compute New Statistics and Rotate],展开如图所示对话框, 选中文件,并进行空间子集、光谱子集以及掩膜设置后,按0K,进入如图6-3所 示对话框。

StPlane" QTAD 27) State Plane (NAD 83) Ar gen tins - Zone 1 Ar gen tina - Zone 2 Ar gen tina ~ Zone 3

Import File... Reorder Files...

Delete

Output File Range :

0 Inclusive : range encompasses all the files | Units.??]Meters Exclusive : range encompasses file overlap Zone 51

Set Zone … Output Result to Q File Memory

Enter Output Filename Choose

X Pixel Y Pixel Size 30.00000000 Size 30.00000000

Meters Meters

Selected Files for Layer Stacking :

Output Map Projection i New. . . I

Arbitrary Lat/Lon

Layer Stacking Parameters

WGS-84

◎* Principal Components Input File

图6-3

图6-4

4.在图6-4对话框的Stats Subset中,输入小于1如0. 1的值,表示在统计计算时只用到十分之一像元(也可保持缺省值不变,表示统计全部像元),在Output Stats Filename中输入FT stats,即将统计结果放入该文件,并在"Select Subset from Eigenvalues”中选择Yes,统计信息将被计算,并出现如图6-5 Select Output PC Bands对话框。该对话框中列出每个波段和其相应的特征值, 同时也列出每个主成分波段中包含的数据方差的累积百分比。在"Number of Output PC Bands”文本框中,键入一个数字或点击箭头按钮,确定要输出的波段数,此处可选3,也可保持6不变,看主成份结果图。

可以看出,前三个主成份占了原始6个波段信息的98%以上,因此完全可以用前三个主成份来代替原始6个波段来进行后续的分类处理。

图6-5

5. 用【Basic Tools] -> [Statistics] -> [View statistics File]二 具查看PC Stats. sta 文件信息,在对话框的Select Plot 中,拾取Engevalus,展 开如图6-6所示对话

框,上方图表示各主成份的值。

Q Stats File:C:\钱塘江湾\LT51180392009262BJC00\PC-Stats ?sta File Options

6-6

回l ?^l

00O 8O 6Min Max

Mean

St dev N UTTI

Eigenvalue 68 255 89 .681072 13.930253

1 1265.428406 26 177 41 .087035 7.677076

2 381.348792 21 207 41 .368347 11.40840

3 3 147.366317 16 186 62 .193377 19.843377

4 15.330442 6 25

5 62 .983193 28.274721 5 6.044729 3

147

30 .409764 15.505121 6

1.250626

Band 1

Band 2

Band 3

Band 4 Band 5 194.051952 99. 893293 139.115587 15.743120 129.208646 99.893293 58. 937497 84.287998 10.484118 49.530327 139.115587 84. 287998 130.151650

-11.457030

37.044110

Select Plot^ Clear Plot

□ubaet

1200 2

.3 4 5

6

Eigenvalue Number

O 2

s 1 2 3 4 5 6 ad d d d d d tnnnnnn saaaaaa e 12 3 nd d d a n n n laBa r BBB

◎ Scroll (0.45025)

原始子影像RGB用Band5、4> 3显示的效果图

RGB显示第三、第二、第一主成分的效果图

图6-7

五、思考与练习

1.对''某地区主要污染源数据p.xls”中的各污染物排放指标进行主成分分析,并说明分析结果;再用主成份分析结果进行聚类分析,与实验四结果进行对比分析。

2.参照《中国地级以上城市腹地的测度分析》,试采用ArcGIS分析工具,分析'‘某地区主要污染源数据p.xls”中各污染源的影响围。

3.查看各组成分(Gray Scale或RGB color方式),并与原始各波段数据作对比分析,再用IsoData或K-Means等非监督分类法对PC转换前与转换后数据进行分类,最后分析同一种非监督分类法对转换前后数据的分类结果进行对比分析。有兴趣的同学,可以尝试用最小距离、最大似然法、平行六面体、SAM等监督分类方法对转换前后数据进行分类对比分析(可结合Google earth时间回溯工具,找到与TM影像同期(或时间相差不大)Google earth的感兴趣区域作为ground truth, 结合目判读等方法来做)。

主成分分析法总结

主成分分析法总结 在实际问题研究中,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。 因此,人们会很自然地想到,能否在相关分析的基础上,用较少的新变量代替原来较多的旧变量,而且使这些较少的新变量尽可能多地保留原来变量所反映的信息? 一、概述 在处理信息时,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠,例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。 为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。主成分分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。 主成分分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,通常综合指标(主成分)有以下几个特点: ↓主成分个数远远少于原有变量的个数 原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。 ↓主成分能够反映原有变量的绝大部分信息 因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。 ↓主成分之间应该互不相关 通过主成分分析得出的新的综合指标(主成分)之间互不相关,因子参与数据建模能够有效地解决变量信息重叠、多重共线性等给分析应用带来的诸多问题。 ↓主成分具有命名解释性 总之,主成分分析法是研究如何以最少的信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定的命名解释性的多元统计分析方法。 主成分分析的具体步骤如下: (1)计算协方差矩阵 计算样品数据的协方差矩阵:Σ=(s ij )p ?p ,其中 1 1()() 1n ij ki i kj j k s x x x x n ==---∑i ,j=1,2,…,p (2)求出Σ的特征值 i λ及相应的正交化单位特征向量i a Σ的前m 个较大的特征值λ1≥λ2≥…λm>0,就是前m 个主成分对应的方差,i λ对应的单 位特征向量 i a 就是主成分Fi 的关于原变量的系数,则原变量的第i 个主成分Fi 为:

主成分分析实验报告

项目名称实验4―主成分分析 所属课程名称多元统计分析(英)项目类型综合性实验 实验(实训)日期2012年 4 月15 日

实验报告4 主成分分析(综合性实验) (Principal component analysis) 实验原理:主成分分析利用指标之间的相关性,将多个指标转化为少数几个综合指标,从而达到降维和数据结构简化的目的。这些综合指标反映了原始指标的绝大部分信息,通常表示为原始指标的某种线性组合,且综合指标间不相关。利用矩阵代数的知识可求解主成分。

实验题目:下表中给出了不同国家及地区的男子径赛记录:(t8a6) Country 100m (s) 200m (s) 400m (s) 800m (min) 1500m (min) 5000m (min) 10,000m (min) Marathon (mins) Argentina 10.39 20.81 46.84 1.81 3.7 14.04 29.36 137.72 Australia 10.31 20.06 44.84 1.74 3.57 13.28 27.66 128.3 Austria 10.44 20.81 46.82 1.79 3.6 13.26 27.72 135.9 Belgium 10.34 20.68 45.04 1.73 3.6 13.22 27.45 129.95 Bermuda 10.28 20.58 45.91 1.8 3.75 14.68 30.55 146.62 Brazil 10.22 20.43 45.21 1.73 3.66 13.62 28.62 133.13 Burma 10.64 21.52 48.3 1.8 3.85 14.45 30.28 139.95 Canada 10.17 20.22 45.68 1.76 3.63 13.55 28.09 130.15 Chile 10.34 20.8 46.2 1.79 3.71 13.61 29.3 134.03 China 10.51 21.04 47.3 1.81 3.73 13.9 29.13 133.53 Columbia 10.43 21.05 46.1 1.82 3.74 13.49 27.88 131.35 Cook Islands 12.18 23.2 52.94 2.02 4.24 16.7 35.38 164.7 Costa Rica 10.94 21.9 48.66 1.87 3.84 14.03 28.81 136.58 Czechoslovakia 10.35 20.65 45.64 1.76 3.58 13.42 28.19 134.32 Denmark 10.56 20.52 45.89 1.78 3.61 13.5 28.11 130.78 Dominican Republic 10.14 20.65 46.8 1.82 3.82 14.91 31.45 154.12 Finland 10.43 20.69 45.49 1.74 3.61 13.27 27.52 130.87 France 10.11 20.38 45.28 1.73 3.57 13.34 27.97 132.3 German (D.R.) 10.12 20.33 44.87 1.73 3.56 13.17 27.42 129.92 German (F.R.) 10.16 20.37 44.5 1.73 3.53 13.21 27.61 132.23 Great Brit.& N. Ireland 10.11 20.21 44.93 1.7 3.51 13.01 27.51 129.13 Greece 10.22 20.71 46.56 1.78 3.64 14.59 28.45 134.6 Guatemala 10.98 21.82 48.4 1.89 3.8 14.16 30.11 139.33 Hungary 10.26 20.62 46.02 1.77 3.62 13.49 28.44 132.58 India 10.6 21.42 45.73 1.76 3.73 13.77 28.81 131.98

实验六主成分分析报告

实验六 主成分分析 一、实验目的 通过本次实验,掌握SPSS 及ENVI 的主成分分析方法。 二、有关概念 1. 主成分分析的概念 主成分分析(又称因子分析),是将多个实测变量转换为少数几个不相关的 综合指标的多元统计分析方法。代表各类信息的综合指标就称为因子或主成份。 主成分分析的数学模型可写为: m m x a x a x a x a z 131********++++= m m x a x a x a x a z 23232221212++++= m m x a x a x a x a z 33332321313++++= ……… m nm n n n n x a x a x a x a z ++++= 332211 其中,x 1、x 2、 x 3、 x 4 …x m 为原始变量;z 1、 z 2、 z 3、 z 4 …z n 为主成份,且有m ≥n 。 写成矩阵形式为:Z=AX 。Z 为主成份向量,A 为主成份变换矩阵,X 为原始变 量向量。主成份分析的目的是把系数矩阵A 求出,主成份Z1、Z2、Z3…在总方差中所占比重依次递减。 从理论上讲m=n 即有多少原始变量就有多少主成份,但实际上前面几个主成 份集中了大部分方差,因此取主成份数目远远小于原始变量的数目,但信息损失很小。 因子分析的一个重要目的还在于对原始变量进行分门别类的综合评价。如果 因子分析结果保证了因子之间的正交性(不相关)但对因子不易命名,还可以通过对因子模型的旋转变换使公因子负荷系数向更大(向1)或更小(向0)方向变化,使得对公因子的命名和解释变得更加容易。进行正交变换可以保证变换后各因子仍正交,这是比较理想的情况。如果经过正交变换后对公因子仍然不易解释,也可进行斜交旋转。 2. 因子提取方法 SPSS 提供的因子提取方法有: ①Principal components 主成份法。该方法假设变量是因子的纯线性组合。

主成分分析法及其在SPSS中的操作

一、主成分分析基本原理 概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。从数学角度来看,这是一种降维处理技术。 思路:一个研究对象,往往是多要素的复杂系统。变量太多无疑会增加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留原来较多的变量所反应的信息,这样问题就简单化了。 原理:假定有n 个样本,每个样本共有p 个变量,构成一个n ×p 阶的数据矩阵, 记原变量指标为x 1,x 2,…,x p ,设它们降维处理后的综合指标,即新变量为 z 1,z 2,z 3,… ,z m (m ≤p),则 系数l ij 的确定原则: ①z i 与z j (i ≠j ;i ,j=1,2,…,m )相互无关; ②z 1是x 1,x 2,…,x P 的一切线性组合中方差最大者,z 2是与z 1不相关的x 1,x 2,…,x P 的所有线性组合中方差最大者; z m 是与z 1,z 2,……,z m -1都不相关的x 1,x 2,…x P , 的所有线性组合中方差最大者。 新变量指标z 1,z 2,…,z m 分别称为原变量指标x 1,x 2,…,x P 的第1,第2,…,第m 主成分。 从以上的分析可以看出,主成分分析的实质就是确定原来变量x j (j=1,2 ,…, p )在诸主成分z i (i=1,2,…,m )上的荷载 l ij ( i=1,2,…,m ; j=1,2 ,…,p )。 ?????? ? ???????=np n n p p x x x x x x x x x X 2 1 2222111211 ?? ??? ? ?+++=+++=+++=p mp m m m p p p p x l x l x l z x l x l x l z x l x l x l z 22112222121212121111............

主成分分析、因子分析实验报告--SPSS

对2009年我国88个房地产上市公司的因子分析 分析结果: 表1 KMO 和 Bartlett 的检验 取样足够度的 Kaiser-Meyer-Olkin 度量。.637 Bartlett 的球形度检验近似卡方398.287 df 45 Sig. .000 由表1可知,巴特利特球度检验统计量的观测值为398.287,相应的概率p值接近0,小于显著性水平 (取0.05),所以应拒绝原假设,认为相关系数矩阵与单位矩阵有显著差异。同时,KMO值为0.637,根据Kaiser给出的KMO度量标准(0.9以上表示非常适合;0.8表示适合;0.7表示一般;0.6表示不太适合;0.5以下表示极不适合)可知原有变量不算特别适合进行因子分析。 表2 公因子方差 初始提取市盈率 1.000 .706 净资产收益率 1.000 .609 总资产报酬率 1.000 .822 毛利率 1.000 .280 资产现金率 1.000 .731 应收应付比 1.000 .561 营业利润占比 1.000 .782 流通市值 1.000 .957 总市值 1.000 .928 成交量(手) 1.000 .858 提取方法:主成份分析。 表2为公因子方差,即因子分析的初始解,显示了所有变量的共同度数据。第一列是因子分析初始解下的变量共同度,它表明,对原有10个变量如果采用主成分分析方法提取所有特征根(10个),那么原有变量的所有方差都可被解释,变量的共同度均为1(原有变量标准化后的方差为1)。事实上,因子个数小于原有变量的个数才是因子分析的目标,所以不可提取全部特征根;第二列是在按指定提取条件(这里为特征根大于1)提取特征根时的共同度。可以看到,总资产报酬率、成交量、流

最新实验六主成分分析

实验六主成分分析

实验课:主成分分析 实验目的 理解主成分(因子)分析的基本原理,熟悉并掌握SPSS中的主成分(因子)分析方法及其主要应用。 一、相关知识 1 概念 因子分析(Factor analysis):就是用少数几个因子来描述许多指标或因素之间的联系,以较少几个因子来反映原资料的大部分信息的统计学分析方法。 主成分分析(Principal component analysis):是因子分析的一个特例,是使用最多的因子提取方法。它通过坐标变换手段,将原有的多个相关变量,做线性变化,转换为另外一组不相关的变量。选取前面几个方差最大的主成分,这样达到了因子分析较少变量个数的目的,同时又能与较少的变量反映原有变量的绝大部分的信息。从数学角度来看,主成分分析是一种化繁为简的降维处理技术。 两者关系:主成分分析(PCA)和因子分析(FA)是两种把变量维数降低以便于描述、理解和分析的方法,而实际上主成分分析可以说是因子分析的一个特例。

2 特点 (1)因子变量的数量远少于原有的指标变量的数量,因而对因子变量的分析能够减少分析中的工作量。 (2)因子变量不是对原始变量的取舍,而是根据原始变量的信息进行重新组构,它能够反映原有变量大部分的信息。 (3)因子变量之间不存在显著的线性相关关系,对变量的分析比较方便,但原始部分变量之间多存在较显著的相关关系。 (4)因子变量具有命名解释性,即该变量是对某些原始变量信息的综合和反映。 在保证数据信息丢失最少的原则下,对高维变量空间进行降维处理(即通过因子分析或主成分分析)。显然,在一个低维空间解释系统要比在高维系统容易的多。 3 类型 根据研究对象的不同,把因子分析分为R型和Q型两种。 当研究对象是变量时,属于R型因子分析; 当研究对象是样品时,属于Q型因子分析。 但有的因子分析方法兼有R型和Q型因子分析的一些特点,如因子分析中的对应分析方法,有的学者称之为双重型因子分析,以示与其他两类的区别。

第6章 因子分析

第六章 因子分析 一、填空题 1.因子分析常用的两种类型为 和 。 2.因子分析是将具有错综复杂关系的变量(或样品)综合为数量较少的几个因子,以再现_____________与____________之间的相互关系。 3.因子分析就是通过寻找众多变量的 来简化变量中存在的复杂关系的一种方法。 4.因子分析是把每个原始变量分解成两个部分即 、 。 5.变量共同度是指因子载荷矩阵中_______________________。 6.公共因子方差与特殊因子方差之和为_______。 7.求解因子载荷矩阵常用的方法有 和 。 8.常用的因子旋转方法有 和 。 9.Spss 中因子分析采用 命令过程。 10.变量i X 的方差由两部分组成,一部分为 ,另一部分为 。 二、判断题 1.在因子分析中,因子载荷阵不是唯一的。 ( ) 2.因子载荷阵经过正交旋转后,各变量的共性方差和各个因子的贡献都发生了变化。 ( ) 3.因子分析和主成分分析的核心思想都是降维。 ( ) 4.因子分析有两大类,R 型因子分析和Q 型因子分析;其中R 型因子分析是从变量的相似矩阵出发,而Q 型因子分析是从样品的相关矩阵出发。( ) 5.特殊因子与公共因子之间是相互独立的。( ) 6.变量共同度是因子载荷矩阵列元素的平方和。( ) 7.公共因子的方差贡献是衡量公共因子相对重要性指标。( ) 8.对因子载荷阵进行旋转的目的是使结构简化。( ) 三、简答题 1. 因子分析的基本思想是什么,它与主成分分析有什么区别和联系? 2.因子模型的矩阵形式ε+=X UF ,其中:

() () () u F F ij m p P m U F ?=' =' =εεε,,,,1 1 请解释式中F 、 ε、U 的统计意义。 3.因子旋转的意义何在?如何进行最大方差因子旋转? 4.因子分析主要应用在哪几个方面? 四、计算题 4.假设某地固定资产投资率1x , 通货膨胀率2x 和失业率3x 的约相关矩阵为: ??????? ????? ????----=525 25 152******** 51* R 并且已知该相关矩阵的各特征根和相应的非零特征根的单位特征向量分别为: 9123.01=λ ()' -=657.0657.0369 .01α 0877.02=λ ()'-=261.0261 .0929 .02α 03=λ 要求求解因子分析模型,计算各变量的共同度和各公共因子的方差贡献并解释它们的统计意义。 2.设变量x 1,x 2和x 3已标准化,其样本相关系数矩阵为: ?? ?? ??????=135.045.035.0163.045.063.01 R (1)对变量进行因子分析。 (2)取q=2进行正交因子旋转。 3.已知我国某年各地区的国有及非国有规模以上的工业企业经济效益资料,现做因子分析,结果如下,请说明每一个输出结果的含义及目的,并回答以下问题: (1)什么是方差贡献率? 计算方差贡献率的目的何在? (2) 如何利用因子分析结果进行综合评价? 结合本例写出计算综合评价结果的公式。

主成分分析实验报告

项目名称实验4—主成分分析 所属课程名称多元统计分析(英) 项目类型综合性实验_____________ 实验(实训)日期2012年4 月15日

二、实验(实训)容: 【项目容】 主成分分析。 【方案设计】 题目: 由原始数据求主成分。 【实验(实训)过程】(步骤、记录、数据、程序等)附后 【结论】(结果、分析) 附后 三、指导教师评语及成绩: 评语: 成绩:指导教师签名: 批阅日期: 实验报告4 主成分分析(综合性实验) (Prin cipal comp onent an alysis) 实验原理:主成分分析利用指标之间的相关性,将多个指标转化为少数几个综合指标,从而达到降维和数据结构简化的目的。这些综合指标反映了原始指标的绝

大部分信息,通常表示为原始指标的某种线性组合,且综合指标间不相关。利用矩阵代数的知识可求解主成分 实验题目:下表中给出了不同国家及地区的男子径赛记录:(t8a6) Country 100m 200m 400m 800m 1500m 5000m 10,000m Marathon (s) (s) (s) (min) (min) (min) (min) (mins) Argentina 10.39 20.81 46.84 1.81 3.7 14.04 29.36 137.72 Australia 10.31 20.06 44.84 1.74 3.57 13.28 27.66 128.3 Austria 10.44 20.81 46.82 1.79 3.6 13.26 27.72 135.9 Belgium 10.34 20.68 45.04 1.73 3.6 13.22 27.45 129.95 Bermuda 10.28 20.58 45.91 1.8 3.75 14.68 30.55 146.62 Brazil 10.22 20.43 45.21 1.73 3.66 13.62 28.62 133.13 Burma 10.64 21.52 48.3 1.8 3.85 14.45 30.28 139.95 Canada 10.17 20.22 45.68 1.76 3.63 13.55 28.09 130.15 Chile 10.34 20.8 46.2 1.79 3.71 13.61 29.3 134.03 China 10.51 21.04 47.3 1.81 3.73 13.9 29.13 133.53 Columbia 10.43 21.05 46.1 1.82 3.74 13.49 27.88 131.35 Cook Islands 12.18 23.2 52.94 2.02 4.24 16.7 35.38 164.7 Costa Rica 10.94 21.9 48.66 1.87 3.84 14.03 28.81 136.58 Czechoslovakia 10.35 20.65 45.64 1.76 3.58 13.42 28.19 134.32 Denmark 10.56 20.52 45.89 1.78 3.61 13.5 28.11 130.78 Dominican Republic 10.14 20.65 46.8 1.82 3.82 14.91 31.45 154.12 Finland 10.43 20.69 45.49 1.74 3.61 13.27 27.52 130.87 France 10.11 20.38 45.28 1.73 3.57 13.34 27.97 132.3 German (D.R.) 10.12 20.33 44.87 1.73 3.56 13.17 27.42 129.92 German (F.R.) 10.16 20.37 44.5 1.73 3.53 13.21 27.61 132.23 Great Brit.& N. Ireland 10.11 20.21 44.93 1.7 3.51 13.01 27.51 129.13

教育信息处理(实验九因子分析与主成分分析)实验报告-示例

1、对北京18个区县中等职业教育发展水平进行聚类。X1:每万人中职在校生数;X2:每万人中职招生数;X3:每万人中职毕业生数;X4:每万人中职专任教师数;X5:本科以上学校教师占专任教师的比例;X6:高级教师占专任教师的比例;X7:学校平均在校生人数;X8:国家财政预算中职经费占国内生产总值的比例;X9:生均教育经费。 具体步骤如下: 1、导入数据,建立数据文件(data.sav) 2、选择聚类分析(分析—分类—系统聚类分析),选择变量,分群选择个 案方式 3、聚类分析描述统计(统计量—合并进程表;聚类成员—单一方案—聚类 数3) 4、聚类分析绘制(树状图;冰柱—所有聚类,方向—垂直) 5、聚类分析方法(聚类方法—组间联接,度量标准—区间—平方Euclidean

距离) 6、聚类分析保存(聚类成员—单一方案—聚类数3) 7、保存实验结果,并分析结果 结果与分析: (1)输出结果文件中的第一部分如下图1所示。 图1中可以看出18个样本都进入了聚类分析,但有效样本为14个,缺失14个。 (2)输出结果文件中的第二部分为系统聚类分析的凝聚状态表如图2所示。

第一列表示聚类分析的步骤,可以看出本例中共进行了17个步骤的分析; 第二列和第三列表示某步聚类分析中,哪两个样本或类聚成了一类; 第四列表示两个样本或类间的距离,从表格中可以看出,距离小的样本之间先聚类; 第五列和第六列表示某步聚类分析中,参与聚类的是样本还是类。0表示样本,数字n(非零)表示第n步聚类产生的类参与了本步聚类; 第七列表示本步聚类结果在下面聚类的第几步中用到。 图2给中第一行表示,第二个样本和第四个样本最先进行了聚类,样本间的距离为4803.026,这个聚类的结果将在后面的第六步

实验六-主成分分析

实验六主成分分析 一、实验目的 通过本次实验,掌握SPSS及ENVI的主成分分析方法。 二、有关概念 1.主成分分析的概念 主成分分析(又称因子分析),是将多个实测变量转换为少数几个不相关的综合指标的多元统计分析方法。代表各类信息的综合指标就称为因子或主成份。 主成分分析的数学模型可写为: =绚內 + a n x2 + 5x3 + …+ a lm x m S = "21X] + Cl22X2 + Cl23X3 + ??? + a2m X m Z3 =勺內+5小+如勺+??? + %〃 S = + a n2x2 + 心3X3 + ??? + 其中,X1.X2. x3. x4— x B为原始变量;Zi. z2. z3, z4—z n为主成份,且有mNn。写成矩阵形式为:Z=AX O Z为主成份向量,A为主成份变换矩阵,X为原始变量向量。主成份分析的目的是把系数矩阵A求出,主成份Zl、Z2、Z3…在总方差中所占比重依次递减。 从理论上讲呼n即有多少原始变量就有多少主成份,但实际上前面几个主成份集中了大部分方差,因此取主成份数目远远小于原始变量的数目,但信息损失很小。 因子分析的一个重要目的还在于对原始变量进行分门别类的综合评价。如果因子分析结果保证了因子之间的正交性(不相关)但对因子不易命名,还可以通过对因子模型的旋转变换使公因子负荷系数向更大(向1)或更小(向0)方向变化,使得对公因子的命名和解释变得更加容易。进行正交变换可以保证变换后各因子仍正交,这是比较理想的情况。如果经过正交变换后对公因子仍然不易解释,也可进行斜交旋转。 2.因子提取方法 SPSS提供的因子提取方法有: ①Principal components主成份法。该方法假设变量是因子的纯线性组合。这是SPSS 最通用的因子提取方法,故因子分析有时又称为主成份分析。 ?Unweighted least square不加权最小平方法。该方法使观测的和再生的相关阵之差的平方最小。 ?Generalized least square用变量的单值加权,使观测的和再生的相关阵之差的平方

主成分分析计算方法和步骤

在对某一事物或现象进行实证研究时,为了充分反映被研究对象个体之间的差异, 研究者往往要考虑增加测量指标,这样就会增加研究问题的负载程度。但由于各指标都是对同一问题的反映,会造成信息的重叠,引起变量之间的共线性,因此,在多指标的数据分析中,如何压缩指标个数、压缩后的指标能否充分反映个体之间的差异,成为研究者关心的问题。而主成分分析法可以很好地解决这一问题。 主成分分析的应用目的可以简单地归结为: 数据的压缩、数据的解释。它常被用来寻找和判断某种事物或现象的综合指标,并且对综合指标所包含的信息给予适当的解释, 从而更加深刻地揭示事物的内在规律。 主成分分析的基本步骤分为: ①对原始指标进行标准化,以消除变量在数量极或量纲上的影响;②根据标准化后的数据矩阵求出相关系数矩阵 R; ③求出 R 矩阵的特征根和特征向量; ④确定主成分,结合专业知识对各主成分所蕴含的信息给予适当的解释;⑤合成主成分,得到综合评价值。 结合数据进行分析 本题分析的是全国各个省市高校绩效评价,利用全国2014年的相关统计数据(见附录),从相关的指标数据我们无法直接评价我国各省市的高等教育绩效,而通过表5-6的相关系数矩阵,可以看到许多的变量之间的相关性很高。如:招生人数与教职工人数之间具有较强的相关性,教育投入经费和招生人数也具有较强的相关性,教工人数与本科院校数之间的相关系数最高,到达了,而各组成成分之间的相关性都很高,这也充分说明了主成分分析的必要性。 表5-6 相关系数矩阵 本科院校 数招生人数教育经费投入 相关性师生比 重点高校数 教工人数 本科院校数 招生人数 教育经费投 入

师生比重点高校数教工人数 相关性师生比 重点高校数 教工人数 本科院校数 招生人数 教育经费投 入(元) 表5-7给出的是各主成分的方差贡献率和累计贡献率,我们选取主成分的标准有两个:第一,特征根大于1,因为,如果特征根小于1,说明该主成分的解释力度太弱,还比不上直接引入一个原始变量的平均解释力度大;第二,方差贡献率大于85%,如果这两个标准不能同时符合要求,则往往是因为选择的指标不合理或者样本容量太小,应继续调整。表5-7还显示,只有前2个特征根大于1,因此SPSS只提取了前两个主成分,而这两个主成分的方差贡献率达到了%,因此选取前两个主成分已经能够很好地描述我国高等教育地区现状。

主成分分析实验报告

主成分分析 地信0901班陈任翔010******* 【实验目的及要求】 掌握主成分分析与因子分析的思想和具体步骤。掌握SPSS实现主成分分析与因子分析的具体操作。 【实验原理】 1.主成分分析的主要目的是希望用较少的变量去解释原来资料中的大部分变异,将我们手中许多相关性很高的变量转化成彼此相互独立或不相关的变量。通常是选出比原始变量个数少,能解释大部分资料中的变异的几个新变量,即所谓主成分,并用以解释资料的综合性指标。由此可见,主成分分析实际上是一种降维方法。 2.因子分析研究相关矩阵或协方差矩阵的内部依赖关系,它将多个变量综合为少数几个因子,以再现原始变量与因子之间的相关关系。 【实验步骤】 1.数据准备 ●1)首先在Excel中打开“水样元素成分分析数据”,删除表名“水样元素成分分析数据”, 保存数据。 ●3)数据格式转换。 2.数据描述分析操作 1)Descriptives过程 点击Analyze下的Descriptive Statistics选项,选择该选项下的Descriptives ●选中待处理的变量(左侧的As…..Hg等);

●点击使变量As…..Hg 移至Variable(s)中; ●选中Save standrdized values as variables; ●点击Options 2)数据标准化 标准化处理后的结果

2.主成分分析 1)点击Analyze下的Data Reduction选项,选择该选项下的Factor过程。选中待处理的变量,移至Variables 2)点击Descriptives判断是否有进行因子分析的必要 Coefficients(计算相关系数矩阵) Significance levels(显著水平) KMO and Bartlett’s test of sphericity (对相关系数矩阵进行统计学检验) Inverse(倒数模式):求出相关矩阵的反矩阵; Reproduced(重制的):显示重制相关矩阵,上三角形矩阵代表残差值,而主对角线及下三角形代表相关系数; Determinant(行列式):求出前述相关矩阵的行列式值; Anti-image(反映像):求出反映像的共同量及相关矩阵。 Univariate descriptive单变量描述统计量(输出被选中的各变量的均数与标准差) Initial solution未转轴之统计量(显示因素分析未转轴前之共同性、特征值、变异数百分比及累积百分比) 3)点击Extraction : ●选择主成分分析方法 ●输出未旋转的因子载荷矩阵

(整理)实验六主成分分析.

实验课:主成分分析 实验目的 理解主成分(因子)分析的基本原理,熟悉并掌握SPSS中的主成分(因子)分析方法及其主要应用。 一、相关知识 1 概念 因子分析(Factor analysis):就是用少数几个因子来描述许多指标或因素之间的联系,以较少几个因子来反映原资料的大部分信息的统计学分析方法。 主成分分析(Principal component analysis):是因子分析的一个特例,是使用最多的因子提取方法。它通过坐标变换手段,将原有的多个相关变量,做线性变化,转换为另外一组不相关的变量。选取前面几个方差最大的主成分,这样达到了因子分析较少变量个数的目的,同时又能与较少的变量反映原有变量的绝大部分的信息。从数学角度来看,主成分分析是一种化繁为简的降维处理技术。 两者关系:主成分分析(PCA)和因子分析(FA)是两种把变量维数降低以便于描述、理解和分析的方法,而实际上主成分分析可以说是因子分析的一个特例。 2 特点 (1)因子变量的数量远少于原有的指标变量的数量,因而对因子变量的分析能够减少分析中的工作量。 (2)因子变量不是对原始变量的取舍,而是根据原始变量的信息进行重新组构,它能够反映原有变量大部分的信息。 (3)因子变量之间不存在显著的线性相关关系,对变量的分析比较方便,但原始部分变量之间多存在较显著的相关关系。 (4)因子变量具有命名解释性,即该变量是对某些原始变量信息的综合和反映。 在保证数据信息丢失最少的原则下,对高维变量空间进行降维处理(即通过因子分析或主成分分析)。显然,在一个低维空间解释系统要比在高维系统容易的多。 3 类型 根据研究对象的不同,把因子分析分为R型和Q型两种。 当研究对象是变量时,属于R型因子分析; 当研究对象是样品时,属于Q型因子分析。 但有的因子分析方法兼有R型和Q型因子分析的一些特点,如因子分析中的对应分析

主成分分析法介绍.doc

主成分分析方法 我们进行系统分析评估或医学上因子分析等时,多变量问题是 经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂 性,而且在许多实际问题中,多个变量之间是具有一定的相关关 系的。因此,我们就会很自然地想到,能否在各个变量之间相关 关系研究的基础上,用较少的新变量代替原来较多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的 信息事实上,这种想法是可以实现的,本节拟介绍的主成分分析 方法就是综合处理这种问题的一种强有力的方法。 第一节主成分分析方法的原理 主成分分析是把原来多个变量化为少数几个综合指标的一种 统计分析方法,从数学角度来看,这是一种降维处理技术。假定 有 n 样本,每个样本共有 p 个变量描述,这样就构成了一个 n×p阶的数据矩阵: x 11 x 12 ... x 1 p x 21 x 22 ... x 2 p X ... ... ... ????(1) ... x n1 x n 2 ... x np

如何从这么多变量的数据中抓住事物的内在规律性呢要解决 这一问题, 自然要在 p 维空间中加以考察, 这是比较麻烦的。为了克服这一困难, 就需要进行降维处理, 即用较少的几个综合指标来代替原来较多的变量指标, 而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息, 同时它们之间又是彼此独立的。那么,这些综合指标(即新变量 )应如何选取呢显然,其最简单的形式就是取原来变量指标的线性组合, 适当调整组合系数,使新的变量指标之间相互独立且代表性最好。 如果记原来的变量指标为 x 1 , x 2 , x p ,它们的综合指标 —— 新 变量指标为 z 1 , z 2 , z m ( m ≤p)。则 z 1 l 11x 1 l 12 x 2 l 1 p x p z 2 l 21 x 1 l 22 x 2 l 2 p x p (2) z m l m1x 1 l m2 x 2 l mp x p 在( 2)式中,系数 l ij 由下列原则来决定: ( 1)z i 与 z j ( i ≠j;i ,j=1,2, , m)相互无关; ( 2)z 1 是 x 1,x 2,?,x p 的一切线性组合中方差最大者; z 2 是与 z 1 不相关的 x 1, x 2,?,x p 的所有线性组合中方差 最大者; ;z m 是与 z 1,z 2,??z m-1 都不相关的 x 1, x 2, ?, x p 的所有线性组合中方差最大者。

主成分分析和因子分析实验报告

主成分分析实验报告 一、实验数据 2013年,在国内外形势错综复杂的情况下,我国经济实现了平稳较快发展。全年国内生产总值568845亿元,比上年增长7.7%。其中第三产业增加值262204亿元,增长8.3%,其在国内生产总值中的占比达到了46.1%,首次超过第二产业。经济的快速发展也带来了就业的持续增加,年末全国就业人员76977万人,其中城镇就业人员38240万人,全年城镇新增就业1310万人。随着我国城镇化进程的不断加快,加之农业用地量的不断衰减,工业不断的转型升级,使得劳动力就业压力的缓解需要更多的依靠服务业的发展。 (一)指标选择 根据指标选择的可行性、针对性、科学性等原则,选择13个指标来衡量服务业的发展水平,指标体系如表1所示: 表1 服务业发展水平指标体系

(二)指标数据 本次实验采用的数据是我国31个省(市、自治区)2012年的数据,原数据均来自《2013中国统计年鉴》以及2013年各省(市、自治区)统计年鉴,不能直接获得的指标数据是通过对相关原始数据的换算求得。原始数据如表2所示:

表2(续) 二、实验步骤 本次实验是在SPSS中实现主成分分析,具体步骤如下: (一)数据标准化,单击主菜单“Analyze”(分析)展开下拉菜单,在下拉菜单中寻找“Descriptive Statistics”,在小菜单中寻找“Descriptives”(描述),展开Descriptives对话框,将左面的矩形框中的变量X1、X2、…、X13,通过单击向右的箭头按钮,调入到右面的“Variables”(变量)框中。选中Save

standardized values as variables(对变量进行标准化)复选框,点击OK按(二)单击主菜单“Analyze”(分析)展开下拉菜单,在下拉菜单中寻找“Data Reduction”弹出小菜单,在小菜单中寻找“Factor”(因子),展开“Factor Analysis”(因子分析)主对话框。 (三)选择分析变量。将左面的矩形框中参与分析的标准化后的变量ZX1、ZX2、…、ZX13,通过单击向右的箭头按钮,调入到右面的“Variables”(变量)框中。 (四)因子分析过程选项,主对话框选择项中共有5个功能按钮: 1.单击【Descriptives】(描述统计量)按钮,展开“Descriptives”对话框,在Statistics中选中Univariate descriptive(单变量描述统计量)和Initial solution(初始因子分析结果),在Correlation Matrix中选择coefficients(相关系数矩阵)、Significance levels(显著性P值),KMO and Bartlett’s test of sphericity,点击Continue按钮。 2.在主对话框中,单击【Extraction】(因子提取)按钮,展开“Extraction”对话框,在Method中选择Principal components(主成分法),其他均为系统默认,点击Continue按钮。 3.在主对话框中,单击【Scores】(因子得分)按钮,展开“Scores”对话框,选中Save as variables(将因子得分作为新变量保存在数据文件中)复选框,单击Continue按钮。 (五)在主对话框中,单击【OK】按钮执行运算。 三、实验结果 (一)利用SPSS进行因子分析 输出结果表3至表4所示。

第5章 主成分分析

第五章 主成分分析 一、填空题 1.主成分分析就是设法将原来众多 的指标,重新组合成一组新的 的综合指标来代替原来指标。 2.主成分分析的数学模型可简写为 ,该模型的系数要求 。 3.主成分分析中,利用 的大小来寻找主成分。 4.第k 个主成分k y 的贡献率为 ,前k 个主成分的累积贡献率为 。 5.确定主成分个数时,累积贡献率一般应达到 ,在spss 中,系统默认为 。 6.主成分的协方差矩阵为_________矩阵。 7.原始变量协方差矩阵的特征根的统计含义是________________。 8.原始数据经过标准化处理,转化为均值为__ __,方差为__ __的标准值,且其________矩阵与相关系数矩阵相等。 9.在经济指标综合评价中,应用主成分分析法,则评价函数中的权数为________。 10.SPSS 中主成分分析采用______________命令过程。 二、判断题 1.主成分分析就是设法将原来众多具有一定相关性的指标,重新组合成一组新的相互无关的综合指标来代替原来指标。 ( ) 2.主成分y 的协差阵为对角矩阵。 ( ) 3.p x x x ,,,21 的主成分就是以∑的特征向量为系数的一个组合,它们互不相关,其方差为 ∑的特征根。 ( ) 4.原始变量i x 的信息提取率()m i V 表示这m 个主成分所能够解释第i 个原始变量变动的程度。 ( ) 5.在spss 中,可以直接进行主成分分析。 ( ) 6.主成分分析可用于筛选回归变量。 ( ) 7.SPSS 中选取主成分的方法有两个:一种是根据特征根≥1来选取; 另一种是按照累积贡献率≥85%来选取。 ( ) 8.主成分方差的大小说明了该综合指标反映p 个原始观测变量综合变动程度的能力的大小。 ( ) 9.主成分表达式的系数向量是协方差矩阵∑的特征向量。 ( ) 10.主成分k y 与原始变量i x 的相关系数()i k x y ,ρ反映了第k 个公共因子对第i 个原始变量的解释程度。 ( ) 三、简答题 1.简述主成分的概念及几何意义。 2.主成分分析的基本思想是什么? 3.简述主成分分析的计算步骤。 4.主成分有哪些性质? 5.主成分主要应用在哪些方面? 四、计算题 1.假设3个变量1x 、2x 和3x 的协方差矩阵为: ???? ??????--=∑20 05 3 032 要求用此协差阵和相应的相关阵对这3个变量进行主成分分析,根据计算结果说明应选取多 少个主成分以代表原来的3个变量,并说明理由。 2.在一项研究中,测量了376只鸡的骨骼,并利用相关系数矩阵进行主成分分析,见下表:

主成分分析法概念及例题

主成分分析法 主成分分析(principal components analysis,PCA)又称:主分量分析,主成分回归分析法 目录 [显示] 1 什么是主成分分析法 2 主成分分析的基本思想 3 主成分分析法的基本原理 4 主成分分析的主要作用 5 主成分分析法的计算步骤 6 主成分分析法的应用分析 o案例一:主成分分析法在啤酒风味评价分析中的应用[1] 1 材料与方法 2 主成分分析法的基本原理 3 主成分分析法在啤酒质量一致性评价中的应用 4 结论 7 参考文献 [编辑] 什么是主成分分析法 主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。 在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。 [编辑] 主成分分析的基本思想

在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具。 同样,在科普效果评估的过程中也存在着这样的问题。科普效果是很难具体量化的。在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。如上所述,主成分分析法正是解决这一问题的理想工具。因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。这样,综合指标不仅保留了原始变量的主要信息,且彼此间不相关,又比原始变量具有某些更优越的性质,就使我们在研究复杂的科普效果评估问题时,容易抓住主要矛盾。上述想法可进一步概述为:设某科普效果评估要素涉及个指标,这指标构成的维随机向量为。对作正交变换,令,其中为正交阵,的各分量是不相关的,使得的各分量在某个评估要素中的作用容易解释,这就使得我们有可能从主分量中选择主要成分,削除对这一要素影响微弱的部分,通过对主分量的重点分析,达到对原始变量进行分析的目的。的各分量是原始变量线性组合,不同的分量表示原始变量之间不同的影响关系。由于这些基本关系很可能与特定的作用过程相联系,主成分分析使我们能从错综复杂的科普评估要素的众多指标中,找出一些主要成分,以便有效地利用大量统计数据,进行科普效果评估分析,使我们在研究科普效果评估问题中,可能得到深层次的一些启发,把科普效果评估研究引向深入。 例如,在对科普产品开发和利用这一要素的评估中,涉及科普创作人数百万人、科普作品发行量百万人、科普产业化(科普示范基地数百万人)等多项指标。经过主成分分析计算,最后确定个或个主成分作为综合评价科普产品利用和开发的综合指标,变量数减少,并达到一定的可信度,就容易进行科普效果的评估。 [编辑] 主成分分析法的基本原理 主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。 [编辑] 主成分分析的主要作用

相关文档
最新文档