电磁与引力作用形式对照(第八版)

复合场知识点总结

知识点总结 带电粒子在复合场中的运动是近几年高考重点和热点,准确分析受力和运动情况,并由几何知识画出轨迹是关键。两种基本模型:速度选择器(电磁场正交)和回旋加速器(电磁场相邻) 考点1. 带电粒子在复合场中的运动 1.带电粒子在电场、磁场和重力场等共存的复合场中的运动,其受力情况和运动图景都比较复杂,但其本质是力学问题,应按力学的基本思路,运用力学的基本规律研究和解决此类问题。 2.分析带电粒子在复合场中的受力时,要注意各力的特点。如带电粒子无论运动与否,在重力场中所受重力及在匀强电场中所受的电场力均为恒力,它们的做功只与始末位置在重力场中的高度差或在电场中的电势差有关,而与运动路径无关。而带电粒子在磁场中只有运动(且速度不与磁场平行)时才会受到洛仑兹力, 力的大小随速度大小而变, 方向始终与速度垂直,故洛仑兹力对运动电荷不做功. 3.带电微粒在重力、电场力、磁场力共同作用下的运动(电场、磁场均为匀强场) ⑴带电微粒在三个场共同作用下做匀速圆周运动:必然是电场力和重力平衡,而洛伦兹力充当向心力. ⑵带电微粒在三个场共同作用下做直线运动:重力和电场力是恒力,它们的合力也是恒力。 当带电微粒的速度平行于磁场时,不受洛伦兹力,因此可能做匀速运动也可能做匀变速运动; 当带电微粒的速度垂直于磁场时,一定做匀速运动。 ⑶与力学紧密结合的综合题,要认真分析受力情况和运动情况(包括速度和加速度)。必要时加以讨论 考点2.带电粒子在复合场中的运动实例 运动的带电粒子在磁场中的应用:速度选择器、磁流体发电机、质谱仪、回旋加速器、电磁流量计、霍尔元件等 1.速度选择器 两平行金属板(平行金属板足够长)间有电场和磁场,一个带电的粒子(重力忽略不计)垂直于电、磁场的方向射入复合场,具有不同速度的带电粒子受力不同,射入后发生偏转的情况不同。如果能满足所受到的洛仑兹力等于电场力,那这一粒子将沿直线飞出。这种装置能把具有某一定速度(必须满足V=E/B)的粒子选择出来,所以叫做速度选择器。而且:在装置确定的情况下,速度选择器所选则的粒子,与电性无关,只与带电粒子的速度大小方向有关,是名副其实的速度选择器。 2.磁流体发电机 磁流体发电机是一项新兴技术,它可以把物体的内能直接转化成电能,两个平行金属板之间有一个很强的匀强磁场,将一束等离子体(即高温下电离的气体,含有大量的正、负带电粒子)喷入磁场,这些等离子体在洛仑兹力的作用下,回分别打在两个金属板上形成电源的正负极,就可以给外电路供电。若外电路接通,等离子体时刻向两个金属板聚集形成持续电源。

电磁力和引力的统一

电磁力和引力的统一 云南云维集团大为制焦电仪黄兆荣 摘要:本文从实验及理论两方面来证明电磁力就是引力,引力也是电磁力,电磁力与引力是统一,利用该原理解释宇宙中星球之间的运动、原子内部的运动,以及电磁力和引力统一在工业生产中的现象。 关键词:电磁力引力统一电引力电斥力 一、概述: 引力即是万有引力,任意两个物质之间都存在的力,电磁力就是电力与磁力的统称,引力与电磁力都是长程力,通过实验来证明电磁力与引力是统一种力,从表面上看电磁力大,引力小。宇宙是一个电磁场,地球也是一个电磁场,物质在电磁场中受到的就是电磁力。 二、实验 1、引力实验,用各种大小不同的物质用细线悬挂起来,再用任何大小不同的其他物质去接近悬挂物质,发现都有吸引力现象,且不同的物质引力大小不同,引力有尖端现象,即尖端的力量大,万有引力常数只是对铅球而言的。 2、电磁力实验:实验(1)用的悬挂物质保留,将与毛皮摩擦后的塑料棒(带电)接近悬挂物质就有吸引力,也有尖端效应,再将摩擦后的塑料棒直接接触悬挂物质,大小在一定范围内表现为斥力(电斥力),超过一定的范围就是引力(电引力)。 既有mA/Va(引力)<m/V(电斥力)<mc/Vc(电引力)。 3、用电压表测量(自然物体)任意物体任意两点均有电压,且电压值不相等,同样用频率表或电流表也可以测出其频率和电流值。 从上述实验中可以看出电磁力是引力,只是电磁力比引力大。 我们从基本的现象摩擦来分析。 摩擦;是两个物体做相对运动时产生的现象,是一种物理变化。因为任何物体的表面都是凸凹不平的,在物体的相对运动产生的现象,不仅物体自身发生变化还会影响周围物质产生物理变化,摩擦会产生振动发出声音、热量(发光),电等现象,还会产生能量和物质交换。我们都知道塑料棒与毛皮摩擦后,能吸引碎片等物体,这实验表明塑料棒有电引力带电荷,也就是有电磁力,或者说引力转换了成电磁力,也说明电磁力与引力是同一种作用力。 三、解释星球和原子运动现象 众所周知,地球围绕太阳做近似椭圆轨道的运动,太阳对地球的引力使地球与太阳保持在相对稳定的距离范围内。原子内部的情况也与此相似,电子围绕原子核在相对稳定的距离范围内运动。正是因为质量与电压(m/V)的比值:A:当m/V小于某一数值时,原子核与电子就表现为排斥力, 不能成为一个整体。 B、当m/V的值大于某一数值时,两者之间表现为引力,不会远离而去。 C、原子都是带电的,这是由于原子核与电子时刻都在做相对运动,电引力与电斥力不是时刻保持平衡的。因为任何物体都是在变化的,所以电压都是变化的。 现在的电学中,说电的性质时,有同性相斥、异性相斥,这说明任何物质都是带电的,都有电磁力,也说明任何物质之间都有引力,但是用正、负来表示电荷的性质,是不准确的,电力与其他力一样有大小和方向。没有正、负的。四,生产中的电磁力与引力统一的例证

统一理论 万有力与电磁力的统一

万有力与电磁力的统一 云南云维股份大为制焦电仪黄兆荣 摘要:本文从现有的电磁理论和万有引力理论出发,结合作者做的大量实验,证明统一理论中的电磁力与万有引力(万有力)的统一,万有力是电磁力,电磁力也是的万有力。电磁力分为电斥力和电引力。万有力分为万有引力和万有斥力,引力和斥力能相互转换。 关键词:万有引力万有斥力电引力电斥力万有力电磁力 Unified theory The unification of gravitation and electromagnetic force Yunnan Yunwei big char Huang Zhao rong instrument Abstract: This article from the existing electromagnetic theory and the theory of gravity, the author does a lot of experiments to prove the unity of the theory of electromagnetic force and gravitational force (million) of the unified, powerful force is electromagnetic force, electromagnetic force is also powerful. Electromagnetic force is divided into electric repulsion and electric force. 000 strong points are the universal gravitation and the universal repulsion, the attraction and the repulsion energy conversion. Key words: gravity, gravity, gravitational force, electromagnetic force 一、概述:万有引力是任何物体之间的吸引力,数值很小,电磁力数值大,都是长程力。统一理论是引力、电磁力、弱力、强力统一成一种力。 二、物体的原子或分子热运动:任何物体的原子(分子)都做热运动,运动就会有摩擦,则有小噪音、小热量、小电磁力、少量的新物质产生等小效应。大摩擦有大效应,小摩擦有小效应,故原子、分子就是一个带电体,物体也就是一个带电体。用电位差计、毫伏表、示波器测量任何物体(原子、分子)任何两点都有毫伏级的电压值,即任何物体任何两点之间的力是电磁力,我与同事们用电位差计(0.04%级)先测量没摩擦的任何物体的电压,然后用表笔与任何物体一边摩擦一边测量摩擦的电压,发现摩擦的电压比没摩擦的大,且与摩擦速度有关。人们一直认为原子、分子、物体是不带电的,它们之间的力是万有引力(数值很小电磁力),地球是一个电磁场,物体也是一个小电磁场,地球与物体之间的作用力是很小的电磁力,也就认为是万有引力。 三、原子的电性:以氢原子为例说明原子的带电性,氢原子是由一个氢原子核(带正电)和一个核外电子(带负电)组成,那么氢原子核有一个正电场(+E),电子有一个负电场(-E),如图1所示:

带电粒子在复合场中的运动问题是中电场磁场中的重点和难点问题

带电粒子在复合场中的运动问题是中电场磁场中的重点和难点问题,也实际中应用的知识源头,所以要掌握好带点粒子在实际中的应用,一般是这几样是比较常见的。

【例1】某带电粒子从图中速度选择器左端由中点O以速度v0 向右射去,从右端中心a下方的b点以速度v1射出;若增大磁感应强 度B,该粒子将打到a点上方的c点,且有ac=ab,则该粒子带___ 电;第二次射出时的速度为_____。 解:B增大后向上偏,说明洛伦兹力向上,所以为带正电。由于洛伦兹力总不做功,所以两次都是只有电场力做功,第一次为正功,第二次为负功,但功的绝对值相同。 2 1 2 2 2 2 2 2 2 1 2 , 2 1 2 1 2 1 2 1 v v v mv mv mv mv- = ∴ - = - 【例2】如图所示,一个带电粒子两次以同样的垂直于场线的初速度v0分别穿越匀强 电场区和匀强磁场区,场区的宽度均为L偏转角度均为α,求E∶B 解:分别利用带电粒子的偏角公式。在电场中偏转: 2 tan mv EqL = α,在磁场中偏转: sin mv LBq = α,由以上两式可得 α cos v B E =。可以证 明:当偏转角相同时,侧移必然不同(电场中侧移较大);当侧移相同时,偏转角必然不同(磁场中偏转角较大)。 a b c

【习题反馈】 1.(2008学年越秀区高三摸底调研测试)如图所示虚线所围的区域内(为真空环境),存在电场强度为E的匀强电场和磁感强度为B的匀强磁场.已知从左方水平射入的电子,穿过这区域时未发生偏转.设重力可忽略,则在这区域中的E和B的方向可能是() A、E和B都沿水平方向,并与电子运动方向相同 B、E和B都沿水平方向,并与电子运动方向相反 C、E竖直向上,B水平、垂直纸面向外 D、 E 竖直向上,B水平、垂直纸面向里 答案:ABC 2.(江苏省连云港市2008届高三第一次调研考试)如图所示,有一带电小球,从两竖直的带电平行板上方某高度处自由落下,两板间匀强磁场方向垂直纸面向外,则小球通过电场、磁场空间时() A.可能做匀加速直线运动 B.一定做曲线运动 C.只有重力做功 D.电场力对小球一定做正功 答案:B E,B

电磁力作用及应用

电磁力的作用及应用 云南 曲靖 云维股份 大为制焦 电仪 摘要:本文简述了电的趋肤效应,任何物体都有趋肤效应,通过万有力与电磁力的统一理论解释趋肤效应,该理论在分析仪器、化工生产中的应用。 关键词:宇宙力 引力 斥力 暗子 光子 原子带电 一、概述:宇宙是个大电磁场,地球是个电磁场,宇宙、地球是由物质组成的,那么物质也是个电磁场,物质是由原子、分子组成,则原子、分子也是个电磁场。趋肤效应电流通过导体时,导体表面的电流密度大,中心的电流密度小。动、植物一样也有趋肤效应,外面的密度大(引力大),中心处的密度小(斥力大),人挖地手会起茧,茧的密度比皮肤大,是因摩擦所致。如瓜果、竹类、桔杆、树木、花草等,动物的皮肤和肉比,五脏六府、骨头等。 二、万有力与电磁力的统一理论就是万有力是电磁力,万有力是万有引力和万有斥力的统称。电磁力分为引力和斥力,根据引力、斥力的大小分为弱力、强力、万有力和电磁力,宇宙力是电磁力。电是一种能量,能量是粒子(m )运动(V )二次方的乘积,电是粒子运动的结果。 宇宙力是电磁力,是随时变化的,宇宙力(电磁力)的方式图1 图 1宇宙力引力强力斥力弱 力 万有 力 电磁力或电磁力万有 图 2 图2是物体的引力、斥力图,外表面引力大,里面斥力大。 原子、分子是带电的,物质也是带电的。电的定义:与丝绸摩擦过的玻璃棒带正电荷,与毛皮摩擦过的塑料棒带负电荷,电荷也是一种物质,物质是不可凭空消失的,即物质不灭定律,原子核的正电荷和电子的负电荷是不会抵消的,若抵消了,原子核还带正电、电子还带负电吗?在没摩擦前玻璃棒就是高电位(正极)、塑料棒是低电位(负极),摩擦是电位变化增大。原子核和电子不能吸在一起,也不会远离而去就是引力和斥力的作用,电子绕原子核自由运动,就会与原子核与电子之间的物质(暗子)摩擦,摩擦有损失,电子(粒子)一面摩擦损失,另一面在引力的作用下吸引暗子物质,补充损失。暗子是有质量和电位,暗子之间也是引力和斥力的作用,粒子运动影响暗子的运动,暗子运动也会影响粒子的运动。原子、分子(带电粒子)运动(变化)就有电磁波,任何物体、星球、星系(都是带电的)运动(变化)都有电磁波,电磁场(电磁力)都会发生变化。任何一个电磁场(粒子之间到星系之间)都是(大小、方向)随时变化,相互影响。 围电磁场变化带电粒子电磁场变化磁场变化磁场变化 暗子 宇宙力是随时变化,故原子之间分子之间的力比外力小时,原子、分子就会离开原物体,质量就会减少,过塑照片退色、国际一千克标准器物质量的变化等,是电磁力变化的结果。

高考专题磁场和复合场

高考专题:磁场和复合场 【考纲要求】 1.掌握直线电流、环形电流、通电螺线管、条形磁铁、蹄形磁铁等所产生的磁场分布情况,能灵活应用安培定则解答有关问题。 2.深刻理解磁感应强度、磁感线、磁通量的物理含义。 3.灵活应用左手定则和安培力计算公式定量解决有关磁场对电流作用力的问题(限B 和I平行和垂直两类)。 4.熟练掌握洛仑兹力及其变化规律,灵活解决各类带电粒子在磁场及其它复合场中的运动类问题(即与平行和垂直两类)。 【知识结构】 【热点导析】 1.磁场的主要内容 磁场的主要内容可概括成一个工具(磁感线)、两个物理量(磁感强度和磁通量)、两个定则(安培定则和左手定则),两个力(安培力、洛仑兹力)。其中带电粒子在有边界和无边界磁场区域中的运动及其规律、带电粒子在复合场中的运动及其规律是本单元内容的重点和难点。 2.磁场和电场都是客观存在的一种特殊物质,它们之间更多地存在着比较和区别 磁场存在于运动电荷周围,电场存在于电荷周围;磁场只对运动电荷(含电流和磁铁)有作用,电场对电荷有作用;用磁极受力定义方向、电流无受力定义大小,用检验电 荷+q受力来定义大小和方向;磁感线闭合,电场线不闭合。电磁场可共存于同一空间。 3.有关方向定则 通电直导线、圆形电流和螺线管用周围磁场分布情况均用安培定则来判定,通电直导线、

圆形电流和螺线管等受力方向用左手定则来判定。不能简单理解为B和安培定则,求力用 F、V各量间因果关系辩清晰,I为原因,为产生的结果的左手定则,而应把、、 B 用安培定则;、为原因,F B(或受力后运动)为结果的,用左手定则,运动为原因、感应电流为结果的用右手定则。 判定由和I(或运动电荷)而导致的F B(f B)方向时,可用左手定则,且B(f B)的方向在空间立体上一定垂直和I两线(与两线)决定的平面,在此基础上再用左手定则判定确切方向更易正确解答。 4.磁通量和磁力矩 单匝线圈和n匝线圈放在垂直线圈平面的匀强磁场中,磁通量场为B·S(B为磁感强度、S为线圈所围面积)。若在线圈中通有电流I,则在磁场中转过90°后所受磁力矩分别为BIS 和nBIS。 5.带电粒子在复合场中受力及运动 首先带电粒子在复合场中运动规律广泛应用于近代物理的许多实验装置中,如回旋加速器、质谱仪、磁流体发电机、电磁流量计、速度选择器等。 其次,应明确:研究复合场中带电粒子的运动规律首先要分析初速度和运动过程中加速度(受力)情况。在受力分析的过程中应将重力(是否考虑)、电场力、洛仑兹力等作为力学中按性质来命名的力首先进行讨论。 再次,应明确:不管带电粒子做的是圆周运动还是一般曲线运动,洛仑兹力永远不做功,但洛仑兹力的变化与否可间接影响到重力、电场力等力的做功情况。 最后,因为电磁学物理量及单位比较复杂,而且数值往往相差悬殊,因此计算有关结果时,应先进行字母运算,简化后最后再代入数据。也可这样讲,力学问题的基本思路和求解方法在本单元中广泛适用。 【典型例析】 例1 如图5-10-1所示,一金属直杆MN两端接有导线,悬挂于线圈上方,MN与线圈轴线均处于竖直平面内,为使MN垂直于纸面向外运动,可以() A.将a、c端接在电源正极,b、d端接在电源负极 B.将b、d端接在电源正极,a、c端接在电源负极 C.将a、d端接在电源正极,b、c端在电源负极 D.将a、c端接在交流电源的一端,b、d接在交流电源的另一端

3弱相互作用与电磁相互作用统一的研究

3、弱相互作用与电磁相互作用统一的研究 到二十世纪中叶,粒子世界呈现出非常复杂的局面,粒子数目众多,而且实验上发现和确证的粒子还在不断地增加,粒子之间的相互作用有电磁作用、引力作用、强作用、弱作用四种,它们的区别很大,电磁作用和引力作用是长程力,强作用和弱作用是短程力,它们的强度差别非常大,强作用最强,电磁作用次之,弱作用更次,引力作用最弱,在粒子物理中引力作用可以不考虑。对于电磁作用,已经建立起量子电动力学,它是物理学中最成功的理论。在这个理论中,力的传递者是电磁场,场的量子是光子,电磁作用是通过交换光子而传递的,光子的静质量为零,与电磁作用的长程性联系在一起。关于弱作用,在弱作用宇称不守恒基础上发展了弱作用的中间玻色子理论,认为弱作用是交换中间玻色子W±而传递的,中间玻色子的质量很大,与电磁作用中的光子不同,它是与弱作用的短程性联系在一起。 20世纪60年代末, 美国物理学家格拉肖、温伯格和巴基斯坦物理学家萨拉姆等人建立了弱电统一理论, 把电磁场和弱作用场进行成功的统一,他们因此获得1979年诺贝尔物理学奖。在弱电理论背后的基本对称性更加奇怪一些,它跟空间或时间的视点改变无关,而是关于不同类型的基本粒子的识别。在弱电理论中,如果在方程里处处以一种既非电子,也非中微子的混合粒子态来取代电子和中微子,则物理定律的形式是不会改变的。因为其他许多不同的粒子也跟电子和中微子发生作用,所以同时需要把那些粒子族也混合起来。如上夸克与下夸克,光子、带正电和带负电的W粒子、中性的Z粒子。这是与电磁力相联系的对称性,源于光子的交换。对于弱核力来说,那种对称来自W粒子和Z粒子的交换。在弱电理论中,光子、W粒子和Z粒子分别表现为4种场的能量束,那些场是对弱电理论的对称性的响应,就像引力场响应广义相对论的对称性一样。弱电理论背后的这种对称性被称为内在对称性。内在对称性比作用在寻常时间和空间上的那些对称性更加陌生,物理定律这种一来于时间和空间的对称变换下的不变性称为局域对称性。还有一类精确的局域对称性,跟夸克的一种内在性质相关,那种性质叫做夸克的颜色。通常称为红、白、蓝三色。当然它跟普通意义上的颜色一点关系也没有,不过是用来区别不同夸克个体的标签。而在不同颜色之间确实存在着精确的对称性。红夸克和白夸克间的力与白夸克和蓝夸克间的力是一样的;两个红夸克间的力与两个蓝夸克间的力也是一样的。但这种对称性不仅限于颜色的相互交换。 我们人类对于弱相互作用其实了解得很少,主要是原子核的β衰变现象。β衰变就是核内一个中子通过弱相互作用衰变成一个电子、一个质子和一个反中微子。凡是涉及到中微子的反应都是弱相互作用过程。弱相互作用仅在原子核内起作用,力程非常短(大约在10-18 m 范围内)。为了得到弱和电的统一,物理学家大胆假定有W粒子作为中间粒子,它的质量要比核子大100多倍。人们设想弱相互作用与电磁相互作用有着相同的作用机制,并假设弱相互作用通过W玻色子来传递,但是,理论的结果却又出现了无穷大困难。后来,人们将弱相互作用与电磁相互作用作类比,假定粒子除了带有电荷以外,还带有弱荷,并且弱相互作用也遵循一种人们还没有发现的规范不变性,人们将它称为隐藏的对称性,因而弱荷也是守恒的。采用这种办法不仅克服了无穷大困难,而且理论还证明存在四种规范粒子,它们是带电的W + 、W _ 和中性的Z 0,第四种就是光子,它们分别传递三种弱相互作用和电磁相互作用。因而,这一理论不仅克服了无穷大困难,而且还将弱相互作用和电磁相互作用统一了起来,因而这一理论被称为弱电统一理论。弱电统一理论所预言的三种中间波色子经过人们长期的不懈努力,最终在实验中被全部发现,并且它们的质量与主要性质理论与实验也符合得很好。 参与碰撞的粒子称为费米子,其自旋为半整数。由于两粒子间的碰撞是间隔一定距离的,这种碰撞并不是超距作用,而是要通过媒介粒子来传递,这个起传递作用的粒子就象是一个“媒

高三电磁复合场计算题(共23道题,有答案)

学进辅导高三物理学习资料---带电粒子在电、磁场中的运动 2012-11-17 1.在图所示的坐标系中,x 轴水平,y 轴垂直,x 轴上方空间只存在重力场,第Ⅲ象限存在沿y 轴正方向的匀强电场和垂直xy 平面向里的匀强磁场,在第Ⅳ象限由沿x 轴负方向的匀强电场,场强大小与第Ⅲ象限存在的电场的场强大小相等。一质量为m ,带电荷量大小为q 的质点a ,从y 轴上y=h 处的P 1点以一定的水平速度沿x 轴负方向抛出,它经过x = -2h 处的P 2点进入第Ⅲ象限,恰好做匀速圆周运动,又经过y 轴上方y = -2h 的P 3点进入第Ⅳ象限,试求: ?质点a 到达P 2点时速度的大小和方向; ?第Ⅲ象限中匀强电场的电场强度和匀强磁场的磁感应强度的大小; ?质点a 进入第Ⅳ象限且速度减为零时的位置坐标 解.(2分)如图所示。 (1)质点在第Ⅱ象限中做平抛运动,设初速度为v 0,由 2 12 h gt = ……① (2分) 2h =v 0t …… ② (2分) 解得平抛的初速度 0v = (1分) 在P 2点,速度v 的竖直分量 y v gt == (1分) 所以,v =2gh ,其方向与x 轴负向夹角 θ=45° (1分) (2)带电粒子进入第Ⅲ象限做匀速圆周运动,必有 mg =qE ……③ (2分) 又恰能过负y 轴2h 处,故23P P 为圆的直径,转动半径 R= h h OP 22 222 22 =?= ? …… ④ (1分) 又由 2 v q v B m R = ……⑤ (2分). 可解得 E =mg /q (1分); B = h g q m 2(2分) (3)带电粒以大小为v ,方向与x 轴正向夹45°角进入第Ⅳg ,方向与过P 3点的速度方向相反,故带电粒做匀减速直线运动,设其加速度大小为a ,则: g a m = = …… ⑥ (2分); 由2 22 2,2v O v as s a -=-== =得(2分) 由此得出速度减为0时的位置坐标是(),h h -(1分) 2.如图所示的坐标系,x 轴沿水平方向,y 轴沿竖直方向在x 轴上空间 第一、 第二象限内,既无电场也无磁场,在第三象限,存在沿y 轴正方向的匀强电场和垂直xy 平面(纸面)向里的均强磁场,在第四象限,存在沿y 轴负方向、场强大小与第三象限电场场强相等的匀强电场。一质量为m 、电荷量为q 的带电质点,从y 轴上y =h 处的P 1点以一定的水平初速度沿x 轴负方向进入第二象限。然后经过x 轴上x = -2h 处的P 2点进入第三象限,带电质点恰好能做匀速圆周运动.之后经过y 轴上y = -2h 处的P 3点进入第四象限。已知重力加速度为 g .求: (1)粒子到达P 2点时速度的大小和方向; (2)第三象限空间中电场强度和磁感应强度的大小; (3)带电质点在第四象限空间运动过程中最小速度的大小和方向。 分析和解: (1)参见图,带电质点从P 1到P 2,由平抛运动规律 2 2 1gt h =……①(2分); v 0=2h /t ……②(1分) gt v y =v y =gt ……③(1分) 求出gh v v v y O 22 2 =+= ……④(2分)

物理电磁场带电粒子在复合场中运动

专题:带电粒子在复合场中的运动 1)简要磁场:B,洛伦兹力,安培力 2)带电粒子在电场中运动 3)带电粒子在磁场中运动(这一部分之后再讲) 初速度方向垂直于匀强磁场方向的带电粒子运动 初速度方向与匀强磁场方向成任意夹角(分解速度) 4)关于临界!!!问题: 关键在于找到临界点,确定临界状态。根据速度方向找到半径方向;由磁场边界和题设条件画出轨迹,定好圆心 粒子射出或者不射出磁场的临界状态是粒子运动轨迹与磁场边界相切; 粒子射出或者不射出电场的临界状态是粒子到边界时速度恰好为零 5)应用:速度选择器,霍尔效应,质谱仪,回旋加速器,磁流体发电机(每一个应用都应该懂得原理,公式要自己推导一遍) 例1:有两根长直导线a,b互相平行放置,如图为垂直于导线的界面图。在如图平面内,O 点为两根导线连线的中点,M,N为两导线连线的中垂线上两点,与O点的距离相等,aM与MN夹角为 ,若两导线中通有大小相等、方向相同的恒定电流I,单根导线中的电流在M 处产生的磁感应强度为B0,则关于线段MN上各点的磁感应强度,下列说法正确的是() 例2:利用霍尔效应制作的霍尔元件,广泛应用于自动控制领域。如图为霍尔元件工作原理示意图,磁感应强度B。工作面向下,通入图示电流I,CD两侧面形成U CD,下列说法正确的是()

例3:在边长为L 的正方形区域内存在垂直纸面向里的匀强磁场,其磁感应强度大小为B ,在正方形对角线CE 上有一点P ,其到CF 、CD 距离均为L/4,且在P 点处有一个发射正离子的装置,能连续不断的向纸面内的各方向发射出速率不同的正离子,已知离子质量为m ,电荷量为q ,不计离子重力及离子间相互作用。 (1)速率在什么范围内,所有的离子均不可能射出正方形区 域。 (2)求速率为m qBL v 3213 的离子在DE 边的射出点距离D 点的范围 例4:无限宽广的匀强磁场分布在XOY 平面内,x 轴上下方磁场均垂直xoy 平面向里,x 轴上方磁感应强度为B ,x 轴下方磁感应强度为4/3B ,现有一质量为m ,电量为-q 的粒子以速度v0从坐标原点O 沿y 轴正方向进入上方磁场,在粒子运动过程中,与x 轴交于若干点。不计粒子的重力,求: (1)粒子在x 轴上方磁场做匀速圆周运动 的半径 (2)设粒子在x 轴上方的周期为T1,x 轴下 方为T2,求T1:T2 (3)如果把x 轴上方运动的半周与x 轴下 方运动的半周成为一周期,则每经过一周 期,在x 轴上粒子右移的距离 (4)在与x 轴的所有交点中,粒子两次通过同一点的坐标位置 例5:如图所示,水平放置的不带电 的平行金属板p 和b 相距h ,与图示 电路相连,金属板厚度不计,忽略边 缘效应。P 板上表面光滑,涂有绝缘 层,其上O 点右侧相距h 处有小孔 k;b 板上有小孔T ,且O, T 在同一条 竖直线上,图示平面为竖直平面。质 量为m 、电荷量为-q(q>O)的静止粒

万有力与电磁力统一结题报告

万有力与电磁力统一结题报告 即统一理论 云南曲煤焦化大为制焦黄兆荣 一、引言:万有力与电磁力的统一,万有力是万有引力与万有斥力的统称,万有力是小的电磁力,电磁力是大的万有力。作者通过大量的实验证明万有力是电磁力,电磁力分为引力和斥力,物体、物质之间是电磁力的作用。 1、研究背景和意义:宇宙有四种基本相互作用力:万有引力、电磁力、强相互作用力、弱相互作用力,虽然一些力统一称为电磁力了,还有万有引力与电磁力没有统一,制约物理的进步,物理学的进步直接影响其它各个学科的进步,当然也就影响人类的发展和进步,解决了力的统一问题,物理学向前前进了一大步,也是地球上物理学家共同研究课题。 2、前期研究基础:作者和同事们工作中碰到一些难题,用现有的理论是无法解释通的,难题虽然处理了,没有解释清楚大家心里是过不去的坎。作者接触的工种,有化工(有机化工、无机化工)、机械修理、电气(高、低压电)、仪器仪表、医疗器械修理、生物工程、电器修理等,虽然产品生产出来了,一些故障排除了,但其道理就说不出来,或者是说不通。经过一段时间是分析发现,一些理论是不正确的,为了证明这些分析,作者开始做实验,就是从物理基础开始做。 3、发现过程:物理学的内容之多又要从何处下手呢?就从电磁力与引力开始,塑料棒之间没有摩擦时是引力的作用,摩擦了就成为了电磁力的作用了,引力转换我电磁力的过程是摩擦,做大量的摩擦实验,摩擦是一个物理和化学变化都有的过程。摩擦使热运动加剧。 当时做实验时也没有什么目的,更没有方案,做一样是一样,当时儿子也在帮忙做摩擦实验,不知道做多少实验,发现了引力是电磁力。 2014年4月,作者在重庆做利用垃圾生产木炭、焦油和煤气中型实验是,一天,想在重庆做一个引力与电磁力统一实验,没有想到,与重庆的同事们发现物体的万有斥力,当时我们一直没有想通,后面想再做万有斥力实验,就没有出现了。时间过了一年,2015年4月,万有斥力又出现了,左思右想的分析,后来终于了解到万有斥力出现的条件,是在有偏置的条件下才能出现的。 做万有力实验时,发现引力和斥力能相互转换,物体之间不但有引力,还有斥力,只是大小不同。 4、实验简介:实验发现任何自然物体任何两点都有变化的电参数,电参数有电阻、阻抗、频率、频谱、电压、电流、振动等,测量工具是一切电工仪器,示波器等。 实验还发现物体之间不但有引力,而且还有斥力,只是大小不同,引力和斥力能相互转换,二者都是电磁力。原子力显微镜证明原子与物质之间有引力和斥力。 用现代原子理论证明了粒子之间的引力和斥力,物质、物体都是由原子组成,原子与光(电磁场物质)有引力和斥力(电磁力)的作用,那么物质、物体、星球之间都是引力和斥力的作用,是电磁力的作用。 物体与光作用时,在物体周围有明、暗条纹,明条纹是引力大的结果,暗条纹是斥力大的结果,光是电磁波集合形成电磁场,光给物体一个电磁场,物体也有电磁场,二者电磁场形成了明、暗条纹现象。 只要温度不在绝对零度,物质就有热运动,有运动就有摩擦,宏观摩擦是热运动摩擦的加剧,摩擦属性变化增大,电磁场变化增大,电磁力变化增大,噪音

电磁力引力斥力

电磁力在化工生产中的应用 云南曲靖云维股份大为制焦电仪黄兆荣 摘要:本文从原子结构到星系简述引斥力的关系,是作用力与反作用力关系,宇宙只有引力没有斥力,所有物质都是一样的性质,只有斥力没有引力那就没有形状。电磁力在化工生产应用太普遍了。 关键词:宇宙力电磁力引力斥力万有力 The Application of Electromagnetic Force (Gravitational Repulsion) in Chemical Production Yunnan Qujing cloud-dimensional shares of large coke-power instrument Huang Zhaorong Abstract: In this paper, from the atomic structure to the galaxy, the relationship between the repulsive force is the relationship between force and reaction force. The universe has only gravitational force and no repulsion force. All matter is the same nature, only repulsion has no gravity and no shape. Electromagnetic force in the production of chemical applications is too common. Key words: cosmic force; electromagnetic force; gravity repulsion; 一、概述:宇宙力就是变化的电磁力,万有力是在常态下的电磁力,万有力分为万有引力和万有斥力,电磁力分为电引力和电斥力,万有引力和电引力称为引力,电斥力和万有斥力称为斥力,其它力是按引力和斥力大小来分的,宇宙力是引力和斥力,化学键是电磁力。万有斥力是把悬挂的小物体加一定偏置电压,外加物体与悬挂物体的万有斥力就显现出来了,多挂几个小物体,可看到外加物体的引力和斥力同时显现(实验证明)。 二、原子、分子、物质、物体星球是带电的,仪器测得玻璃棒和橡胶棒摩擦前和摩擦后极性是一样的,只是数值的大小不同,摩擦只是运动加剧,粒子时刻在热运动的。摩擦前、后玻璃棒都是高电位,橡胶棒摩擦前、后是还低电位。原子核带正电荷,电子带负电荷,正、负电荷,电场、磁场都是物质,物质是不会抵消(物质不灭),若抵消了,原子核、电子还会带正、负电荷吗?原子、电子就不会带电了,故原子、分子是带电的。宇宙、地球都是一个电磁场,分子、原子也是一个电磁场。电子绕原子核自由、无规则的运动,证明它们之间是有不是真空的空间,电子、原子核、原子、分子、物质运动时要与它摩擦的,量子之间也是有摩擦(小)。粒子之间的物质(称为暗子)是有质量、电位,也有引、斥力的作用,光子是暗子的高能态,粒子运动摩擦损失在引力的作用下,吸引暗子补上,斥力的作用下驱走暗子,保持质量的稳定。粒子波动带动暗子波动传向远方(太空)波动,同时远方(星系)的波动也影响粒子的波动,相互影响。 电子为什么不会离原子核远去,也不会与原子核吸为一体(磁铁同性相斥,异性相吸见过),拉弹簧(弹性物质)时,单位体积的物质减少,显现出引力,弹簧也显现出引力,与拉力(斥力)平衡,反之,压弹簧,单位体积的物质增加,显现出斥力。原子核与电子也是这样运动的。原子核高电位电场物质与电子低电位电场物质之间的密度紧松度决定引、斥力的大小,松了是引力,紧了是斥力。松紧度是变化(涨落)的,有电磁波,用任何毫伏表都能测量出物体的电磁场变化数据和曲线,宇宙、地球、物体、物质都有噪音。 三、电磁力(引力斥力)在化工生产中的应用:电磁力在化工生产在应用太多, 1、电气设备是曲型的应用,若设备不匹配(阻抗),就会浪费电能和电气事故的发生,电气设备的参数就是电磁力大小的表现,漏电就是绝缘引力小了。 2、分析仪表中的色谱柱、变压吸附、变温吸附,红外线分析仪,PH值仪表,都是利用各种元素原子的相互之间的引力、斥力(阻力)作用不同从混合的工艺介质中分离出高纯度的单种工艺介质而工作。 3、触媒(固定相)和工艺介质(流动相)是相对运动,即摩擦,使引、斥力变化增大,斥力使反应物质分离成为离子,引力使离子重新组合成生成物,高温也是一样,从而降低工

高二物理电磁场复合场典型习题(期末复习)

1.如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向.在x轴上方空间的第一、第二象限内,既无电场也无磁场;在第三象限,存在沿y轴正方向的匀强电场和垂直xy平面(纸面)向里的匀强磁场;在第四象限,存在沿y轴负方向、场强大小与第三象限电场场强相等的匀强电场.一质量为m、电荷量为q的带电质点,从y轴上y=h处的P1点以一定的水平初速度沿x轴负方向进入第二象限,然后经过x轴上x=-2h处的P2点进入第三象限,带电质点恰好能做匀速圆周运动.之后经过y轴上y=-2h处的P3点进入第四象限.已知重力加速度为g.求: (1)粒子到达P2点时速度的大小和方向; (2)第三象限空间中电场强度和磁感应强度的大小; (3)带电质点在第四象限空间运动过程中最小速度的大小和方向. 2.如图17所示,一带电微粒质量为m=2.0×10-11kg、电荷量为q=+1.0×10-5C,从静止开始经电压为U1=100V 的电场加速后,水平进入两平行金属板间的偏转电场中,偏转电压为U2=100V,接着进入一个方向垂直纸面向里、宽度为D=34.6cm的匀强磁场区域。已知偏转电场中金属板长L=20cm,两板间距d =17.3cm,带电微粒的重力忽略不计。求: (1)带电微粒进入偏转电场时的速率v1; (2)带电微粒射出偏转电场时的速度偏转角; (3)为使带电微粒不会从磁场右边界射出,该匀强磁场的磁感应强度的最小值B。 3.如图所示,带电平行金属板PQ和MN之间的距离为d;两板之间有垂直纸面向里的匀强磁场,磁感应强度大小为B。如图建立坐标系,x轴平行于金属板,与金属板中心线重合,y轴垂直于金属板。区域I的左边界为y轴,右边界与区域II的左边界重合,且与y轴平行;区域II的左、右边界平行。在区域I和区域II内分别存在匀强磁场,磁感应强度大小均为B,区域I内的磁场垂直于Oxy平面向外,区域II内的磁场垂直于Oxy平面向里。一电子沿着x轴正向以速度v0射入平行板之间,在平行板间恰好沿着x轴正向做直线运动,并先后通过区域I和II。已知电子电量为e,质量为m,区域I和区域II沿x轴方向宽度均 为。不计电子重力。

1、引力场与电磁场统一途径展望讲解

1、引力场与电磁场统一途径展望 Einstein在临终前八个月曾表示:“……我认为非常有可能,物理学不是建立在场的概念上,即不是建立在连续体上的。如果是这样,那末,我的空中楼阁——包括引力论在内——甚至连其他现代物理学也一样,都将荡然无存。”由于Einstein的引力场与Maxwell的电磁场都是从宏观物质存在总结出来的,且均为宏观物质实体,所以统一场论思想也应从宏观存在入手。另外,应力作用影响实在空间的几何形状,而与引力相类似的电磁力作用同样也应该影响实在空间的几何形状。因为空间和时间的客观意义在于:四维连续区是双曲面型的,因此,从每一点出发,都有“时间的”(即ds2<0=和“空间的”(即ds2>0)线元。【1】从这一点,统一场论理所当然地也应从宏观存在的空间的几何变形入手。基于以上两点,从微观世界寻找统一场的考虑就不存在了,这也符合Einstein的统一思想。 如果接受Einstein的有引力场的对称度规张量gμν和电磁场的反对称电磁张量Fμν考虑的一个对称部分sik和一个实数的或纯虚数的反对称部分aik之和而形成的表示度规的非对称张量gik的思想的话,那么,我们将走入误区。因为引力场的度规张量gμν为对称张量,且每个元素是非矢量的协变分量和逆变分量的集合——纯几何量构成的;而电磁场的电磁张量Fμν只能表示电磁张量,其中的每个元素是由只具有几何特征的纯电磁场量构成的,并非表示电磁场的空间度规成份——电磁场引起的空间的几何变形。因此,电磁场的空间度规,不一定非为反对称张量aik不可——由电磁张量不能确定电磁度规的结构,也许与引力场相似它也是对称张量。 如果接受束星北的电磁与引力间的复数形式的结合的话,虽然满足了相同符号的两个质点彼此相吸,而相同符号的两个电荷彼此相斥的结论,但这也许得到电磁与引力之间毫无相干这样的结果,尽管这对从总场分解出电磁与引力的各分场有利,但和电磁与引力也许是一个统一的相互影响的整

引力作用和电磁作用的统一理论

引力作用和电磁作用的统一理论 内容提要 本文回顾了引力作用理论和电磁作用理论发展的历史,简要叙述了正统理论基本相互作用理论。指出了经典物理学和近代物理学的正统理论关于引力作用和电磁作用认识的盲区和误区。揭示了质量和电荷,角动量与磁矩的内在联系。探讨了引力作用和电磁作用机制。确立了引力作用与电磁作用是自然界基本相互作用。 李鑫2012年3月12日 目录 1 引力作用理论和电磁作用理论历史的回顾 2 近代物理学统一相互作用理论存在的困难 3 关于引力作用和电磁作用认识的盲区和误区 3.1 经典物理学引力作用和电磁作用认识的盲区和误区 3.2近代物理学的正统理论关于引力作用和电磁作用认识的误区。 4 引力作用和电磁作用内在联系 4.1质量与电荷的传统和正统正概念 4.2. 质量和和电荷内在联系 4. 2.1微观粒子的质量和电荷内在联系 4.2.2天体的质量和电荷内在联系 4.3 角动量和磁矩内在联系 4.3.1 微观粒子角动量和磁矩内在联系 4.3.2天体角动量和磁矩内在联系 5. 引力作用机制 5.1. 引力场理论 5.2 微观引力场 5.2.1 de Broglie假设 5.2.2 微观引力场的基本相互作用 5.3 天体引力场 5.3.1 天体引力场现状 5.3.2 天体自聚能与天体内部微观结构 6 电磁作用机制 6.1 电磁场理论 6.2 微观电磁场 6.3 天体电磁场

1 引力作用理论和电磁作用理论历史的回顾 16世纪丹麦天文学家B. Tycho对行星绕日运行作了长期的观测,记录了大量准确可靠的天文数据资料,他死后20年,由德国天文学家J. Kepler整理分析这些资料,在1609一1619年,先后公布行星运动三定律。英国著名的物理学家I.Newton,英国科学家S.Hook 和荷兰物理学家C.Huygens都曾根据开普勒定律推测行星和太阳间存在和距离二次方成反比的引力,为此Hook和Newton还通过信,因此,对定律的首创权有过争议。Newton还曾对晚年的忘年交斯多克雷说过,1666年他在家乡避瘟疫时,曾因见苹果从树上落地而想到地球对苹果的引力是否可延伸到月球。此说传布很广,许多科学家深信不疑,并对牛顿为何推迟20年才发表万有引力定律有种种推测。 1687 年 7 月 Newton名著《自然哲学的数学原理》问世。万有引力定律公开发表。它和牛顿动力学三定律一起,构成了牛顿力学特别是天体力学的理论基础。在Newton 以后,经过J.-L .Lagrange, P.-S. Laplace和S.-D.Poisson. 等人的卓越工作,建立起完整和谐的力学体系,经典引力理论被包括在经典力学体系之中。 19世纪中叶,描述电磁现象的基本实验规律:库仑定律、毕-萨-拉定律、安培定律、欧姆定律、法拉第电磁感应定律等已经先后提出,建立统一电磁理论的课题摆在了物理学家面前。J.C。Maxwell审查了当时已知的全部电磁学定律、定理的基础,提取了其中带有普遍意义的内容,提出了有旋电场的概念和位移电流的假设,揭示了电磁场的内在联系和相互依存,完成了建立电磁场理论的关键性突破。1865年Maxwell建立了包括电荷守恒定律、介质方程以及电磁场方程在内的完备方程组。麦克斯韦方程组关于电磁波等的预言在三十年后为德国物理学家H.-R. Hertz的实验所证实,证明了位移电流假设和电磁场理论的正确性。它是物理学继牛顿力学之后的又一伟大成就。荷兰物理学家H.-A.Lorentz于1895年提出了著名的洛伦兹力公式,完善了经典电磁理论。经典电磁理论被包括在经典电动力学理论体系之中。 在星系和恒星世界,引力作用主宰着天体的运动,而电磁作用只是引力的v c 阶(v是天 体运动速度,c为光速)小量,在原子和分子世界,则是电磁作用的一统天下,引力作用强度只是电磁作用强度的37 10 。 经典力学体系和经典电动力学体系都各自成体系,统一的物理理论不能允许这样两个体系毫无连系地并存着。长期以来,统一引力作用和电磁作用一直是物理学家的追求目标。 首先,人们是利用以太概念,想把电磁作用纳入力学体系之内。人们设想了形形色色的电磁以太机制,理论变得越来越玄妙,而问题和困难也越来越大。德国物理学家H.-R. Hertz 审慎地抛弃了所有的力学推测,我们引用他自己的话来说明问题的实质:“所的物体,包括自由以太,其内部从静止的初始状态开始,可以受到我们称之为电的一些扰动和另一些我们称之为磁的扰动。我们不知道这些状态变化的本质,而只知道由于它们存在而引起的现象。”(M. 波恩著,《爱恩斯坦相对论》 P211 河北人民出版社出版,统一书号 13086.77)其次,人们用以太把电磁作用统一到力学体系内的努力受到挫折后,就想把力学统一到电动力学体系内,利用电磁质量代替力学的质量概念。如ABrajam 曾假定电子的全部质量都是电磁质量,由此得出电子古典半径与原子核大小差不多。现在我们知道ABrajam 的理论存在着许多严重困难。 综上所述,尽管物理学家们作了巨大的努力和发挥了巨大的创造才能,仍不能把电动力学纳入力学体系,也不能把力学纳入电动力学体系。

相关文档
最新文档