WiFiPDR 室内组合定位的无迹卡尔曼滤波算法

WiFiPDR 室内组合定位的无迹卡尔曼滤波算法
WiFiPDR 室内组合定位的无迹卡尔曼滤波算法

卡尔曼滤波算法总结

Kalman_Filter(float Gyro,float Accel) { Angle+=(Gyro - Q_bias) * dt; Pdot[0]=Q_angle - PP[0][1] - PP[1][0]; Pdot[1]= - PP[1][1]; Pdot[2]= - PP[1][1]; Pdot[3]=Q_gyro; PP[0][0] += Pdot[0] * dt; PP[0][1] += Pdot[1] * dt; PP[1][0] += Pdot[2] * dt; PP[1][1] += Pdot[3] * dt; Angle_err = Accel - Angle; PCt_0 = C_0 * PP[0][0]; PCt_1 = C_0 * PP[1][0]; E = R_angle + C_0 * PCt_0; K_0 = PCt_0 / E; K_1 = PCt_1 / E; t_0 = PCt_0; t_1 = C_0 * PP[0][1]; PP[0][0] -= K_0 * t_0; PP[0][1] -= K_0 * t_1; PP[1][0] -= K_1 * t_0; PP[1][1] -= K_1 * t_1; Angle += K_0 * Angle_err; Q_bias += K_1 * Angle_err; Gyro_x = Gyro - Q_bias; } 首先是卡尔曼滤波的5个方程: -=--+(1)先验估计 X k k AX k k Bu k (|1)(1|1)() -=--+(2)协方差矩阵的预测(|1)(1|1)' P k k AP k k A Q

无损变换和无迹Kalman滤波算法

UT 变换 核心思想:近似一种概率分布比近似任意一个非线性函数或非线性变换要容易。 假设n 维向量x 经过一个非线性变换得到y ,即()y g x =,x 的均值为?x ,协方差矩阵为xx P 。 步骤1:根据x 的均值?x 和协方差矩阵xx P ,采用一定的采样策略(此处采用对称采样)得到sigma 点集{}i χ。 0???1,2,...,i i i n i x x x i n χχχ+==+=-= 其中,i 表示矩阵的第i 列。 (0)(0)2() ()/() /()(1) 1/2(),1,2,...,21/2(), 1,2,...,2m c i m i c W n W n W n i n W n i n λλλλαβλλ=+=++-+=+==+= 注,这里sigma 点集{}i χ乘以对应的权重{}i m W ,可得sigma 点集的均 值为?x ,协方差为xx P 。 步骤2:对所采样的sigma 点集{}i χ中的每个sigma 点通过非线性变 换g(*),得到采样后的sigma 点集{}i y 。 ()i i y g χ= 步骤3:对变换后的sigma 点集{}i y 进行加权处理,得到输出变量y 的均值?y 和协方差yy P 。 2()02()0???()()n i m i i n i T yy c i i i y W y P W y y y y ====--∑∑

UKF 非线性系统模型为: ()((1))(1)()(())() x k f x k V k y k h x k W k =-+-=+ 1) 状态初始条件为 ?(0|0)((0|0))??(0|0)(((0|0)(0|0))((0|0)(0|0)))T xx x E x P E x x x x ==-- 2) Sigma 点采样 ??(1|1)[(1|1)(1|1)?(1|1)k k x k k x k k x k k χ--=----+-- 3) 时间更新 202020(|1)((1|1)) ?(|1)(|1) (|1)((|1)) ?(|1)(|1) ??(|1)(((|1)(|1))((|1)(|1)))(1)n i m i i n i m i i n i T xx c i i i k k f k k x k k W k k k k h k k y k k W k k P k k W k k x k k k k x k k Q k χχχμχμχχ===-=---=--=--=--=------+-∑∑∑ 4) 测量更新 20 20 1??(|1)((|1)(|1))((|1)(|1))??(|1)((|1)(|1))((|1)(|1))()(|1)*(|1)???(|)(|1)()(()(|1))(|)n i T xy c i i i n i T yy c i i i xy yy xx P k k W k k x k k k k y k k P k k W k k y k k k k y k k K k P k k P k k x k k x k k K k y k y k k P k k χμμμ==--=-------=------=--=-+--∑∑(|1)()(|1)()T xx yy P k k K k P k k K k =---

无迹卡尔曼滤波算法

%该文件用于编写无迹卡尔曼滤波算法及其测试 %注解:主要子程序包括:轨迹发生器、系统方程 % 测量方程、UKF滤波器 %作者:Jiangfeng %日期:2012.4.16 %--------------------------------------- function UKFmain %------------------清屏---------------- close all;clear all; clc; tic; global Qf n; %定义全局变量 %------------------初始化-------------- stater0=[220; 1;55;-0.5]; %标准系统初值 state0=[200;1.3;50;-0.3]; %测量状态初值 %--------系统滤波初始化 p=[0.005 0 0 0;0 0.005 0 0; 0 0 0.005 0;0 0 0 0.005]; %状态误差协方差初值 n=4; T=3; Qf=[T^2/2 0;0 T;T^2/2 0;0 T]; %-------------------------------------- stater=stater0;state=state0; xc=state; staterout=[]; stateout=[];xcout=[]; errorout=[];tout=[]; t0=1; h=1; tf=1000; %仿真时间设置 %---------------滤波算法---------------- for t=t0:h:tf [state,stater,yc]=track(state,stater); %轨迹发生器:标准轨迹和输出 [xc,p]=UKFfiter(@systemfun,@measurefun,xc,yc,p); error=xc-stater; %滤波处理后的误差 staterout=[staterout,stater]; stateout=[stateout,state]; errorout=[errorout,error]; xcout=[xcout,xc]; tout=[tout,t]; end %---------------状态信息图像--------------- figure; plot(tout,xcout(1,:),'r',tout,staterout(1,:),'g',... tout,stateout(1,:),'black'); legend('滤波后','真实值','无滤波'); grid on; xlabel('时间 t(s)'); ylabel('系统状态A');

几种卡尔曼滤波算法理论

自适应卡尔曼滤波 卡尔曼滤波发散的原因 如果卡尔曼滤波是稳定的,随着滤波的推进,卡尔曼滤波估计的精度应该越来越高,滤波误差方差阵也应趋于稳定值或有界值。但在实际应用中,随着量测值数目的增加,由于估计误差的均值和估计误差协方差可能越来越大,使滤波逐渐失去准确估计的作用,这种现象称为卡尔曼滤波发散。 引起滤波器发散的主要原因有两点: (1)描述系统动力学特性的数学模型和噪声估计模型不准确,不能直接真实地反映物理过程,使得模型与获得的量测值不匹配而导致滤波发散。这种由于模型建立过于粗糙或失真所引起的发散称为滤波发散。 (2)由于卡尔曼滤波是递推过程,随着滤波步数的增加,舍入误差将逐渐积累。如果计算机字长不够长,这种积累误差很有可能使估计误差方差阵失去非负定性甚至失去对称性,使滤波增益矩阵逐渐失去合适的加权作用而导致发散。这种由于计算舍入误差所引起的发散称为计算发散。 针对上述卡尔曼滤波发散的原因,目前已经出现了几种有效抑制滤波发散的方法,常用的有衰减记忆滤波、限定记忆滤波、扩充状态滤波、有限下界滤波、平方根滤波、和自适应滤波等。这些方法本质上都是以牺牲滤波器的最优性为代价来抑制滤波发散,也就是说,多数都是次优滤波方法。 自适应滤波 在很多实际系统中,系统过程噪声方差矩阵Q和量测误差方差阵R事先是不知道的,有时甚至连状态转移矩阵 或量测矩阵H也不能确切建立。如果所建立的模型与实际模型不符可能回引起滤波发散。自适应滤波就是这样一种具有抑制滤波发散作用的滤波方法。在滤波过程中,自适应滤波一方面利用量测值修正预测值,同时也对未知的或不确切的系统模型参数和噪声统计参数进行估计修正。自适应滤波的方法很多,包括贝叶斯法、极大似然法、相关法与协方差匹配法,其中最基本也是最重要的是相关法,而相关法可分为输出相关法和新息相关法。

卡尔曼滤波算法(C--C++两种实现代码)

卡尔曼滤波算法实现代码 C++实现代码如下: ============================kalman.h================= =============== // kalman.h: interface for the kalman class. // ////////////////////////////////////////////////////////////////////// #if !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__IN CLUDED_) #define AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLU DED_ #if _MSC_VER > 1000 #pragma once #endif// _MSC_VER > 1000 #include #include "cv.h" class kalman { public: void init_kalman(int x,int xv,int y,int yv); CvKalman* cvkalman; CvMat* state; CvMat* process_noise; CvMat* measurement; const CvMat* prediction; CvPoint2D32f get_predict(float x, float y);

kalman(int x=0,int xv=0,int y=0,int yv=0); //virtual ~kalman(); }; #endif// !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C 0__INCLUDED_) ============================kalman.cpp=============== ================= #include "kalman.h" #include /* tester de printer toutes les valeurs des vecteurs*/ /* tester de changer les matrices du noises */ /* replace state by cvkalman->state_post ??? */ CvRandState rng; const double T = 0.1; kalman::kalman(int x,int xv,int y,int yv) { cvkalman = cvCreateKalman( 4, 4, 0 ); state = cvCreateMat( 4, 1, CV_32FC1 ); process_noise = cvCreateMat( 4, 1, CV_32FC1 ); measurement = cvCreateMat( 4, 1, CV_32FC1 ); int code = -1;

卡尔曼滤波简介及其算法实现代码

卡尔曼滤波简介及其算法实现代码 卡尔曼滤波算法实现代码(C,C++分别实现) 卡尔曼滤波器简介 近来发现有些问题很多人都很感兴趣。所以在这里希望能尽自己能力跟大家讨论一些力所能及的算法。现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。 因为这里不能写复杂的数学公式,所以也只能形象的描述。希望如果哪位是这方面的专家,欢迎讨论更正。 卡尔曼滤波器– Kalman Filter 1.什么是卡尔曼滤波器 (What is the Kalman Filter?) 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下载: https://www.360docs.net/doc/257389108.html,/~welch/media/pdf/Kalman1960.pdf。 简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 2.卡尔曼滤波器的介绍 (Introduction to the Kalman Filter) 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。 假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就

卡尔曼滤波算法总结

卡尔曼滤波算法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

2015.12.12 void Kalman_Filter(float Gyro,float Accel) { Angle+=(Gyro - Q_bias) * dt; Pdot[0]=Q_angle - PP[0][1] - PP[1][0]; Pdot[1]= - PP[1][1]; Pdot[2]= - PP[1][1]; Pdot[3]=Q_gyro; PP[0][0] += Pdot[0] * dt; PP[0][1] += Pdot[1] * dt; PP[1][0] += Pdot[2] * dt; PP[1][1] += Pdot[3] * dt; Angle_err = Accel - Angle; PCt_0 = C_0 * PP[0][0]; PCt_1 = C_0 * PP[1][0]; E = R_angle + C_0 * PCt_0; K_0 = PCt_0 / E; K_1 = PCt_1 / E; t_0 = PCt_0; t_1 = C_0 * PP[0][1]; PP[0][0] -= K_0 * t_0; PP[0][1] -= K_0 * t_1; PP[1][0] -= K_1 * t_0; PP[1][1] -= K_1 * t_1; Angle += K_0 * Angle_err; Q_bias += K_1 * Angle_err; Gyro_x = Gyro - Q_bias; }

首先是卡尔曼滤波的5个方程: (|1)(1|1)() X k k AX k k Bu k -=--+(1)先验估计 (|1)(1|1)'P k k AP k k A Q -=--+(2)协方差矩阵的预测 ()(|1)'/(|1)')Kg k P k k H HP k k H R =--+(3)计算卡尔曼增益 (|)(|1)()(()(|1))X k k X k k Kg k Z k HX k k =-+--(4)进行修正 5个式子比较抽象,现在直接用实例来说: 一、卡尔曼滤波第一个式子 对于角度来说,我们认为此时的角度可以近似认为是上一时刻的角度值加上上一时刻陀螺仪测得的角加速度值乘以时间,因为d dt θω=?,角度微分等于时间的微分乘以角速度。但是陀螺仪有个静态漂移(而且还是变化的),静态漂移就是静止了没有角速度然后陀螺仪也会输出一个值,这个值肯定是没有意义的,计算时要把它减去。 由此我们得到了当前角度的预测值Angle Angle=Angle+(Gyro - Q_bias) * dt; 其中等号左边Angle 为此时的角度,等号右边Angle 为上一时刻的角度,Gyro 为陀螺仪测的角速度的值,dt 是两次滤波之间的时间间隔,我们的运行周期是4ms 或者6ms 。 同时 Q_bias 也是一个变化的量。 但是就预测来说认为现在的漂移跟上一时刻是相同的,即 Q_bias=Q_bias 将上面两个式子写成矩阵的形式 1_0 1_0 Angle dt Angle dt Q bias Q bia o s Gyr -= + 得到上式,这个式子对应于卡尔曼滤波的第一个式子 (|1)(1|1)() X k k AX k k Bu k -=--+ (|)(|1) P k k I Kg k H P k k =--(())(5)更新协方差阵

卡尔曼滤波中文

处理线性滤波以及预测问题的一种新途径R.E.Kalman1引言通讯与控制中的理论与实际问题中有很重要的一类具有统计性质。 这样的问题有:(1)、随机信号的预测;(2)、从随机噪声中分离随机信 号;(3)、在有噪声的情况下探测已知形式的信号(脉冲、正弦波)。 在Wiener开拓性的工作中,他证明[1]从问题(1)和问题(2)可导 出所谓Wiener-Hopf积分方程;他同样给出了解决具有实际重要意义的特 殊情况——定态统计和有理数频谱——之积分方程的方法(频谱因式分解)。 在Wiener的基础性工作之后出现了许多延伸和推广。Zadeh与 Ragazzini给出了有限存储器情况的解[2]。Bode和Shannon[3]同时独 立的给出上述情况的解,并且给出了简化的求解方法。Booton讨论了非定 态统计Wiener-Hopf方程[4]。这些结果现在都写入了标准教科书中[5,6]。 最近Darlington[7]沿着这些主线给出了一种稍微有些不同的方法。对抽 样信号的延伸,参见Franklin[8]和Lees[9]的工作。基于Wiener-Hopf方 程(同样应用于非定态问题,尽管前述方法一般并非如此)特征函数的 方法由Davis[10]开创并被许多其他人应用,例如Shinbrot[11],Blum[12], Pugachev[13],Solodovnikov[14]. 在所有这些工作中,目标都是获取一个线性动力系统的明确说明 (Wiener滤波器),由此可以完成预测、分离或者探测随机信号。 现有求解Wiener问题的方法受制于若干限制,这样就使得它们的实际 用处收到削弱: 1.最佳的滤波器由其脉冲响应具体指定。由这些数据合成滤波器并非易 事。 2.数值确定最佳的脉冲响应往往十分复杂并且不很适合机器计算。这种 情况随着问题复杂度的增加而迅速变得更为糟糕。 11引言2 3.重要的推广(如增长存储器滤波器、非定态预测)需要新的推导过 程,经常给非专业人士带来相当大的困难。 4.这些推导过程的数学部分并不透明。基本假设及其后果趋于模糊。 本文回避上述困难,提出看待这些问题的整个集合的新方式。以下是 本文的亮点: 5.最佳估计和正交投影。Wiener问题是以条件分布与期望的观点处理 的。这样,Wiener理论的基本事实可以迅速获取;结果的范围以及基 本假设可以清楚的显现出来。可以看到所有的统计计算以及结果都基 于一阶和二阶平均;不需要其他的统计数据。这样一来困难(4)便被 排除。这种方法在概率论中为人们所熟知(见Doob[15]第148至155 页以及Lo`eve[16]第455至464页),但在工程上还没有大量的应用。 6.随机过程模型。继前人之后,尤其是Bode与Shannon[3],任意随机 信号可以被表示(直到二阶平均统计性质)为线性动力系统受独立或 不相关随机信号(“白噪声”)激励后的输出。这是工程上应用Wiener 理论的标准手法[2,3,4,5,6,7]。这里用到的方法与传统方法相比只 在线性动力系统的描述方法上不同。我们将强调状态以及状态过渡; 换言之,线性系统将以一阶差分(或微分)方程组来刻画。为了利用 (5)中提到的简化,这种观点是自然的,也是必要的。 7.求解Wiener问题。使用状态——过渡方法,单独一次推导即覆盖多

卡尔曼滤波基础知识

卡尔曼滤波 马尔可夫过程: 在随机理论中,把在某时刻的事件受在这之前事件的影响,其影响范围有限的随机过程,称为马尔可夫过程。一个事件受在它之前的事件的影响的深远程度,通常用在它之前的事件作为条件的概率来表达。受前一个事件的影响,简称为马尔可夫过程;受前两个事件的影响,称为二阶马尔可夫过程;受前三个事件的影响,称为三阶马尔可夫过程! 卡尔曼滤波简介+算法实现代码(转): 最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。 现设线性时变系统的离散状态防城和观测方程为: X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1) Y(k) = H(k)·X(k)+N(k) 其中 X(k)和Y(k)分别是k时刻的状态矢量和观测矢量 F(k,k-1)为状态转移矩阵 U(k)为k时刻动态噪声

T(k,k-1)为系统控制矩阵 H(k)为k时刻观测矩阵 N(k)为k时刻观测噪声 则卡尔曼滤波的算法流程为: 1 2预估计X(k)^= F(k,k-1)·X(k-1) 3计算预估计协方差矩阵C(k)^=F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)' Q(k) = U(k)×U(k)' 4计算卡尔曼增益矩阵 K(k) = C(k)^×H(k)'×[H(k)×C(k)^×H(k)'+R(k)]^(-1) R(k) = N(k)×N(k)' 5更新估计 X(k)~=X(k)^+K(k)×[Y(k)-H(k)×X(k)^] 6计算更新后估计协防差矩阵 C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)' 7X(k+1) = X(k)~ C(k+1) = C(k)~ 重复以上步骤 其c语言实现代码如下: #include "stdlib.h" #include "rinv.c" int lman(n,m,k,f,q,r,h,y,x,p,g) int n,m,k; double f[],q[],r[],h[],y[],x[],p[],g[]; { int i,j,kk,ii,l,jj,js; double *e,*a,*b; e=malloc(m*m*sizeof(double)); l=m;

Kalman滤波算法

Kalman 滤波算法 姓名:刘金强 专业:控制理论与控制工程 学号:2007255 ◆实验目的: (1)、掌握klman 滤波实现的原理和方法 (2)、掌握状态向量预测公式的实现过程 (3)、了解Riccati 差分方程实现的过程和新息的基本性质和过程的计算 ◆实验要求: 问题: F=[a1,a2,a3],其中a1=[1.0 0 0]的转置,a2=[0.3 1.0 0]的转置,a3=[0.1 0.2 0.4]的转置,x(0)=[3,-1,2]的转置;C=[b1,b2,b3],其中b1=[0.3 0.5]的转置,b2=[1,0.4]的转置,b3=[0.8 -0.7]的转置;V1(n)=[0 0 n1(n)sin(0.1n)]的转置,V2(n)=[n2(n) n3(n)];n1(n)为均值为零,方差为1的均匀分布白噪声;n2(n),n3(n)为均值为0,方差为0.1的均匀分布白噪声,n1(n),n2(n),n3(n)相互独立,试用卡尔曼滤波器算法估计x^(n). ◆实验原理: 初始条件: 1?(1)x =E{x(1)} K(1,0)=E{[x(1)- (1)x ][x(1)- (1)H x ]},其中(1)x =E{x(1)} 输入观测向量过程: 观测向量序列={y(1),…………y(n)} 已知参数: 状态转移矩阵F(n+1,n) 观测矩阵C(n) 过程噪声向量的相关矩阵1()Q n 观测噪声向量的相关矩阵2()Q n 计算:n=1,2,3,………………. G(n)=F(n+1,n)K(n,n+1) ()H C n 12[()(,1)()()]H C n K n n C n Q n --+ Kalman 滤波器是一种线性的离散时间有限维系统。Kalman 滤波器的估计性能是:它使滤波后的状态估计误差的相关矩阵P(n)的迹最小化。这意味着,kalman 滤波器是状态向量x(n)的线性最小方差估计。 ◆实验结果: ◆程序代码: (1)主程序

时间序列分析方法 第3章 kalman滤波

第十三章 卡尔曼滤波 在本章中,我们介绍一种被称为卡尔曼滤波的十分有用的工具。卡尔曼滤波的基本思想是将动态系统表示成为一种称为状态空间表示的特殊情形。卡尔曼滤波是对系统线性投影进行序列更新的算法。除了一般的优点以外,这种算法对计算确切的有限样本预测、计算Gauss ARMA 模型的确切似然函数、估计具有时变参数的自回归模型等,都提供了重要方法。 §13.1 动态系统的状态空间表示 我们已经介绍过一些随机过程的动态表示方法,下面我们在以前的假设基础上,继续分析动态系统的表示方法。 13.1.1 继续使用的假设 假设t y 表示时刻t 观测到的n 维随机向量,一类非常丰富的描述t y 动态性的模型可以利用一些可能无法观测的被称为状态向量(state vector)的r 维向量t ξ表示,因此表示t y 动态性的状态空间表示(state-space representation)由下列方程系统给出: 11+++=t t t v ξF ξ 状态方程(state model) (13.1) t t t w ξH x A y t +'+'= 量测方程(observation model) (13.2) 这里F ,A '和H '分别是阶数为r r ?,k n ?和r n ?的参数矩阵,t x 是1?k 的外生或者前定变量。方程(13.1)被称为状态方程(state model),方程(13.2)被称为量测方程(observation model),1?r 维向量t v 和1?n 维向量t w 都是向量白噪声,满足: ? ??≠=='τττt t E t ,,)(0Q v v (13.3) ? ??≠=='τττt t E t ,,)(0R w w (13.4) 这里Q 和R 是r r ?和n n ?阶矩阵。假设扰动项t v 和t w 对于所有阶滞后都是不相关的,即对所有t 和τ,有: 0w v =')(τ t E (13.5) t x 是外生或者前定变量的假定意味着,在除了包含在121,,,y y y --t t 内的信息以外,t x 没有为s t +ξ和s t +w ( ,2,1,0=s )提供任何新的信息。例如,t x 可以包括t y 的滞后值,也可以包括与τξ和τw (任意τ)不相关的变量。 方程系统中方程(13.1)至方程(13.5)可以表示有限观测值的序列},,,{21T y y y ,这时需要状态向量初始值1ξ。假设1ξ与t v 和t w 的任何实现都不相关: 0ξv =')(1 t E ,对任意T t ,,2,1 = (13.6) 0ξw =')(1 t E ,对任意T t ,,2,1 = (13.7) 状态方程(13.1)表明,t ξ可以表示成为},,,,{321t v v v ξ 的线性函数: 1122221ξF v F v F v F v ξ----+++++=t t t t t t ,T t ,,3,2 = (13.8) 因此,方程(13.6)和方程(13.3)意味着t v 与所有ξ的滞后值都是不相关的: 0ξv =')(τ t E ,1,,2,1 --=t t τ (13.9) 类似地,可以得到: 0ξw =')(τ t E ,T ,,2,1 =τ (13.10)

基于无迹卡尔曼滤波的移动机器人室内定位算法研究

目录 摘要..................................................................................................................I ABSTRACT.......................................................................................................... II 第1章绪论 (1) 1.1课题研究目的及意义 (1) 1.2移动机器人研究的发展 (1) 1.3移动机器人室内定位方法现状 (5) 1.3.1室内定位方法概述 (5) 1.3.2特征提取与匹配算法 (7) 1.3.3多传感器定位的信息融合算法 (9) 1.4本文研究内容 (11) 第2章多传感器移动机器人系统搭建 (12) 2.1弓 (12) 2.2硬件平台设计与搭建 (12) 2.2.1机械结构设计 (12) 2.2.2传感器选型 (15) 2.3多传感器系统软件开发 (17) 2.3.1运动控制模块 (18) 2.3.2基于里程计建立移动机器人运动学模型 (19) 2.3.3基于激光测距仪数据建立特征地图 (22) 2.3.4基于动态阈值的特征提取 (23) 2.3.5传感器数据的特征匹配 (28) 2.4基于Q t架构的上位机界面程序开发 (32) 2.5本章小结 (33) 第3章基于无迹卡尔曼冗余测量参数的室内定位算法 (35) 3.1引言 (35) 3.2 Kalman滤波的基本原理 (35) 3.3无迹Kalman滤波的基本原理 (36) - III -

什么是卡尔曼滤波器——基础理解

1.什么是卡尔曼滤波器 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。卡尔曼是一个人的名字。 卡尔曼全名Rudolf Emil Kalman,1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文 《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。 简单来说,卡尔曼滤波器是一个 “optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 2.卡尔曼滤波器的介绍 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。

假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。假设你对你的经验不是100%的相信,可能会有上下偏差几度。我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。我们也把这些偏差看成是高斯白噪声。(所谓高斯白噪声中的高斯是指概率分布是正态函数,而白噪声是指它的二阶矩不相关,一阶矩为常数,是指先后信号在时间上的相关性。这是考查一个信号的两个不同方面的问题。 高斯白噪声:如果一个噪声,它的幅度分布服从高斯分布,而它的功率谱密度又是均匀分布的,则称它为高斯白噪声。) 好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。 假如我们要估算k时刻的是实际温度值。首先你要根据k-1时刻的温度值,来预测k时刻的温度。因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平

卡尔曼(kalman)滤波算法特点及其应用

Kalman滤波算法的特点: (1)由于Kalman滤波算法将被估计的信号看作在白噪声作用下一个随机线性系统的输出,并且其输入/输出关系是由状态方程和输出方程在时间域内给出的,因此这种滤波方法不仅适用于平稳随机过程的滤波,而且特别适用于非平稳或平稳马尔可夫序列或高斯-马尔可夫序列的滤波,所以其应用范围是十分广泛的。 (2)Kalman滤波算法是一种时间域滤波方法,采用状态空间描述系统。系统的过程噪声和量测噪声并不是需要滤除的对象,它们的统计特征正是估计过程中需要利用的信息,而被估计量和观测量在不同时刻的一、二阶矩却是不必要知道的。 (3)由于Kalman滤波的基本方程是时间域内的递推形式,其计算过程是一个不断地“预测-修正”的过程,在求解时不要求存储大量数据,并且一旦观测到了新的数据,随即可以算的新的滤波值,因此这种滤波方法非常适合于实时处理、计算机实现。 (4)由于滤波器的增益矩阵与观测无关,因此它可预先离线算出,从而可以减少实时在线计算量。在求滤波器增益矩阵时,要求一个矩阵的逆,它的阶数只取决于观测方程的维数,而该维数通常很小,这样,求逆运算是比较方便的。另外,在求解滤波器增益的过程中,随时可以算出滤波器的精度指标P,其对角线上的元素就是滤波误差向量各分量的方差。 Kalman滤波的应用领域 一般地,只要跟时间序列和高斯白噪声有关或者能建立类似的模型的系统,都可以利用Kalman滤波来处理噪声问题,都可以用其来预测、滤波。Kalman滤波主要应用领域有以下几个方面。 (1)导航制导、目标定位和跟踪领域。 (2)通信与信号处理、数字图像处理、语音信号处理。 (3)天气预报、地震预报。 (4)地质勘探、矿物开采。 (5)故障诊断、检测。 (6)证券股票市场预测。 具体事例: (1)Kalman滤波在温度测量中的应用; (2)Kalman滤波在自由落体运动目标跟踪中的应用; (3)Kalman滤波在船舶GPS导航定位系统中的应用; (4)Kalman滤波在石油地震勘探中的应用; (5)Kalman滤波在视频图像目标跟踪中的应用;

WiFi-PDR室内组合定位的无迹卡尔曼滤波算法

WiFi-PDR室内组合定位的无迹卡尔曼滤波算法 陈国良1,2,张言哲1,2,汪云甲1,2,孟晓林3 【摘 要】针对当前室内定位的应用需求和亟待解决的关键问题,结合城市室内环境下广泛存在的WiFi无线信号以及智能手机传感器信息,提出了一种WiFi无线信号联合行人航迹推算(PDR)的室内定位方法。该方法采用无迹卡尔曼滤波(UKF)算法对WiFi和PDR定位信息进行融合处理,有效克服了WiFi单点定位精度低和PDR存在累计误差的问题。针对融合算法中WiFi指纹匹配计算量大的问题,用k-means聚类算法对WiFi指纹库进行聚类处理,降低了指纹匹配算法的计算量,提高了算法的实时性。通过在华为P6-U06智能手机平台上实际测试,在时间效率上经过聚类处理后系统定位耗时有很大程度的改善,平均降幅为51%,其中最大降幅达到64%,最小的也达到了36%;在定位精度上,当室内人员为行走状态时WiFi定位平均误差为7.76 m,PDR定位平均误差为4.57 m,UKF滤波融合后平均定位误差下降到1.24 m。 【期刊名称】测绘学报 【年(卷),期】2015(044)012 【总页数】8 【关键词】室内定位;手机传感器;WiFi;行人航迹推算;k-means;无迹卡尔曼滤波 1 引 言 随 着 基 于 位 置 的 服 务[1] (location-based services,LBS)的兴起,人们对室内位置服务的需求日益强烈,如大型商场、地铁、飞机场等。各个领域的研究者越来越关注基于无线传感器网络[2](wireless sensing networks,WSN)和无线局域网[3](wireless local area networks,WLAN)等面向室内场所环境的定位技术,研究成果包括红外线[4]、超 声 波[5]、射 频 识 别[6](radio frequency identification,RFID)、蓝 牙[7]、超 宽 带[8](ultra wide band,UWB)、无线保真[9](wireless fidelity,WiFi)、 ZigBee[10]、地磁定位[11]等典型的室内定位方法,设计出了多个具有代表性的室内定位系统。由于单一信号无法覆盖全部室内空间,这就需要多种定位技术的结合使用。文献[12]将GPS、RFID、WiFi和计步器4种定位技术融合,组成一个定位平台,有效弥补了各种定位技术的缺点,提高了定位精度和稳定性。文献[13—14]利用行人航迹推算(ped estrian dead reckoning,PDR)和UWB定位互补技术,采用约束滤波器使得位置估计精度达到亚米级。文献[15]采用UKF(unscented kalman filter)滤波融合惯导定位结果和WiFi定位结果来对室内车辆进行定位,取得很好的效果。文献[16—17]开展了多源泛在无线信号辅助的室内外无缝定位方法研究,提出了一种泛在无线信号辅助的无缝定位新方法,并对无缝定位技术的原理、特点和发展趋势进行了讨论。上述这些定位系统往往需要添加额外的硬件设施,系统实现复杂,部署成本高,因

卡尔曼滤波算法及MATLAB实现

基于matlab的卡尔曼信号滤波设计 卡尔曼滤波的基本思想是:以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型,利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值,算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。 语音信号在较长时间内是非平稳的,但在较短的时间内的一阶统计量和二阶统计量近似为常量,因此语音信号在相对较短的时间内可以看成白噪声激励以线性时不变系统得到的稳态输出。假定语音信号可看成由一AR模型产生: 时间更新方程: 测量更新方程: K(t)为卡尔曼增益,其计算公式为: 其中 、分别为过程模型噪声协方差和测量模型噪声协方差,测量协方差可以通过观测得到, 则较难确定,在本实验中则通过与两者比较得到。 由于语音信号短时平稳,因此在进行卡尔曼滤波之前对信号进行分帧加窗操作,在滤波之后对处理得到的信号进行合帧,这里选取帧长为256,而帧重叠个数为128; 下图为原声音信号与加噪声后的信号以及声音信号与经卡尔曼滤波处理后的信号:

原声音信号与加噪声后的信号 原声音信号与经卡尔曼滤波处理后的信号 MATLAB程序实现如下: %%%%%%%%%%%%%%%%%基于LPC全极点模型的最大后验概率估计法,采用卡尔曼滤波%%%%%%%%%%%%%% clear; clc; %%%%%%%%%%%%%%%%%%%%%%%%%%%加载声音数据%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% loadvoice.mat y=m1(2,:); x=y+0.08*randn(1,length(y)); %%%%%%%%%%%%%%%原声音信号和加噪声后的信号%%%%%%%%%%%%%%% figure(1); subplot(211);plot(m1(1,:),m1(2,:));xlabel('时间');ylabel('幅度');title('原声音信号'); subplot(212);plot(m1(1,:),x);xlabel('时间');ylabel('幅度');title('加噪声后的信号');

卡尔曼滤波算法总结

2015.12.12 void Kalman_Filter(float Gyro,float Accel) { Angle+=(Gyro - Q_bias) * dt; Pdot[0]=Q_angle - PP[0][1] - PP[1][0]; Pdot[1]= - PP[1][1]; Pdot[2]= - PP[1][1]; Pdot[3]=Q_gyro; PP[0][0] += Pdot[0] * dt; PP[0][1] += Pdot[1] * dt; PP[1][0] += Pdot[2] * dt; PP[1][1] += Pdot[3] * dt; Angle_err = Accel - Angle; PCt_0 = C_0 * PP[0][0]; PCt_1 = C_0 * PP[1][0]; E = R_angle + C_0 * PCt_0; K_0 = PCt_0 / E; K_1 = PCt_1 / E; t_0 = PCt_0; t_1 = C_0 * PP[0][1]; PP[0][0] -= K_0 * t_0; PP[0][1] -= K_0 * t_1; PP[1][0] -= K_1 * t_0; PP[1][1] -= K_1 * t_1; Angle += K_0 * Angle_err; Q_bias += K_1 * Angle_err; Gyro_x = Gyro - Q_bias; }

首先是卡尔曼滤波的5个方程: (|1)(1|1)()X k k AX k k Bu k -=--+(1)先验估计 (|1)(1|1)'P k k AP k k A Q -=--+(2)协方差矩阵的预测 ()(|1)'/(|1)') Kg k P k k H HP k k H R =--+(3)计算卡尔曼增益 (|)(|1)()(()(|1)) X k k X k k Kg k Z k HX k k =-+--(4)进行修正 5个式子比较抽象,现在直接用实例来说: 一、卡尔曼滤波第一个式子 对于角度来说,我们认为此时的角度可以近似认为是上一时刻的角度值加上上一时刻陀螺仪测得的角加速度值乘以时间,因为d dt θω=?,角度微分等于时间的微分乘以角速度。但是陀螺仪有个静态漂移(而且还是变化的),静态漂移就是静止了没有角速度然后陀螺仪也会输出一个值,这个值肯定是没有意义的,计算时要把它减去。 由此我们得到了当前角度的预测值Angle Angle=Angle+(Gyro - Q_bias) * dt; 其中等号左边Angle 为此时的角度,等号右边Angle 为上一时刻的角度,Gyro 为陀螺仪测的角速度的值,dt 是两次滤波之间的时间间隔,我们的运行周期是4ms 或者6ms 。 同时 Q_bias 也是一个变化的量。 但是就预测来说认为现在的漂移跟上一时刻是相同的,即 Q_bias=Q_bias 将上面两个式子写成矩阵的形式 1_01_0 Angle dt Angle dt Q bias Q bia o s Gyr -=+ 得到上式,这个式子对应于卡尔曼滤波的第一个式子 (|1)(1|1)()X k k AX k k Bu k -=--+ ()|1X k k -为2维列向量 _Angle Q bias ,A 为2维方阵101dt -,()|-11X k k -为2维列向量_Angle Q bias ,B 为2维列向量0dt , ()u k 为Gyro (|)(|1) P k k I Kg k H P k k =--(())(5)更新协方差阵

相关文档
最新文档