三角恒等变换专题复习

三角恒等变换专题复习
三角恒等变换专题复习

三角恒等变换专题复习

一、 两角和与差的三角函数公式:⑴ sin()_____________________αβ±= ⑵ cos()____________________αβ±=⑶ tan()_____________αβ±=

练习:1、sin15______o

=;1tan15______1tan15

o o

+=- 1tan 751tan 75+-

= 2、sin163°sin223°+sin253°sin313°等于 ( )

A.-21

B.21

C.-

2

3 D.

2

3

(一)特殊技巧 (1)平方相加

①ABC ?中,3sin 4cos 6,4sin 3cos 1A B B A +=+=,则C ∠=_______. ②已知sin sin sin 0,cos cos cos 0,αβγαβγ++=++=求cos()βγ-_______. (2)表示分子

①求值0000

tan35tan 25tan 25+?

②求(1tan 22)(1tan 23)_______o o

++=。

③求

(1tan1)(1tan 2)(1tan3)(1tan 44)_______o o o o

++++= (二)知值求值,知值求角

①设1sin()9αβ-=-,cos 2α=13

,且0<α<2

π,0<β<2

π,求cos (α+β)

②已知

α∈(4π,43π

),β∈(0,4π),cos (α-4

π)=5

3,sin(4

π

+β)=13

5,求sin(α+β)的值.

③已知??

? ??∈π,π4

3

βα、,5

3)sin(-=+βα,13

124πsin =??? ?

?-β,则??

? ?

?+4πcos α的值

④若sinA=

5

5

,sinB=

10

10,且A ,B 均为钝角,求A+B 的值。

⑤已知tan α ,tan β 是方程6x 2-5x +1=0的两个根,且0<α <2π

,π2

3π<<β,求α +β 的值

二、二倍角公式;

⑴ sin 2__________θ=__________= ①已知3sin(),4

5

x π

-=则sin 2x 的值为( )

②若

,且,则=( )

③已知),2,23(

ππα∈化简ααsin 1sin 1-++2cos 2

α

-__________=

④已知cos 23

θ=

44sin cos θθ+的值为()A .1813 B .1811 C .97 D .1-

⑵ cos 2__________α= __________= __________= __________= 降次公式: 2cos _______α=, 2sin _________α= ①求证:cos4θ-4cos2θ+3=8sin 4θ.

②已知sin 2

α=35,cos 2α= -45

,则角α终边所在的象限是

③证明,

1sin 2cos 2tan 1sin 2cos 2θθ

θθθ+-=++

④已知

1cos sin 21cos sin x x

x x

-+=-++,则x tan 的值为 ⑤函数2

21tan 21tan 2x y x

-=+的最小正周期是__________=

(3)tan 2____________θ=

①在△ABC 中,cos A =35

,tan B =2,求tan(2A +2B )的值。

②若1tan 2008,1tan αα+=-则1

tan 2cos 2αα

+= 。

三、公式的变形应用: (一)万能公式

①已知tan 2x =,则3sin 22cos 2cos 23sin 2x x

x x

+-的值为

②已知1tan 3θ=,则21

cos sin 22θθ+=( )

③已知,4

1

2tan =α则=+ααcos sin 。

(二)特殊公式: sin cos ______________a x b x += 常用变形公式:

1sin _______2x x =sin cos _______

x x +

=1

cos _______2

x x -=; sin cos _______x x -=;

1、函数2()2cos sin 2f x x x =+的最小值是= 2.已知f(x)=2)0(sin sin cos 2

cos sin 2

π???

<<-+x x x 在π=x 处取最小值则?=

3.已知函数22sin sin 23cos y x x x =++求 (1)函数的最小值及此时的x 的集合。 (2)函数的单调减区间

(3

)此函数的图像可以由函数2y x 的图像经过怎样变换而得到。

4.

已知函数2π()sin sin 2f x x x x ωωω??

=++ ??

?

(0ω>)的最小正周期为π.

⑴ 求ω的值; ⑵ 求函数()f x 在区间2π03??

???

?

,上的取值范围.

5.已知函数f (x )=a (2cos

22

x

+sin x )+b . (1)当a =1时,求f (x )的单调递增区间 (2)当

x ∈[0,π]时,f (x )的值域是[3,4],求a 、b 的值.

高中数学必修四第三章-三角恒等变换知识点总结

第三章 三角恒等变换 一、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβ αβαβ --= + ? ()()tan tan tan 1tan tan αβαβαβ-=-+ ⑹()tan tan tan 1tan tan αβ αβαβ ++=- ? ()()tan tan tan 1tan tan αβαβαβ+=+- 二、二倍角的正弦、余弦和正切公式: sin 22sin cos ααα =222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±? ⑵2222cos2cos sin 2cos 112sin α αααα=-=-=- ?2 2 1cos 2cos 1cos 2sin 2 2 α α αα+=-=, ?2 cos 21cos 2 αα+= ,2 1cos 2sin 2αα-=. ⑶22tan tan 21tan α αα =-. 三、辅助角公式: () 22sin cos sin α+=++a x b x a b x , 2 2 2 2 cos sin a b a b a b ???= = ++其中由,决定

四、三角变换方法: (1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的 相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如: ①α2是α的二倍;α4是α2的二倍;α是2α的二倍;2α是4 α的二倍; ②2 304560304515o o o o o o =-=-=; ③()ααββ=+-;④ ()4 24 π π π αα+= --; ⑤2()()()()44 ππ ααβαβαα=++-=+--;等等 (2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。如 在三角函数中正余弦是基础,通常化切为弦,变异名为同名。 (3)“1”的代换:在三角函数运算,求值,证明中,有时需要将常数转 化为三角函数值,例如常数“1”的代换变形有: 221sin cos sin90tan45o o αα=+== (4)幂的变换:降幂是三角变换时常用方法,对次数较高的三角函数式, 一般采用降幂处理的方法。降幂并非绝对,有时需要升幂,如对无理式αcos 1+常用升幂化为有理式。 (5)三角函数式的变换通常从:“角、名、形、幂”四方面入手; 基本原则是:见切化弦,异角化同角,倍角化单角,异名化同名, 高次降低次,特殊值与特殊角的三角函数互化等。

高考总复习三角恒等变换专题习题附解析

高考总复习三角恒等变换专题习题附解析 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

三角恒等变换专题习题 一、选择题(本大题共6小题,每小题5分,共30分) 1.已知α为锐角,cosα=,则tan=( ) A.-3 B.- C.-D.-7 解析依题意得,sinα=,故tanα=2,tan2α==-,所以tan==-. 答案B 2.已知cos=-,则cos x+cos的值是( ) A.-B.± C.-1 D.±1 解析cos x+cos=cos x+cos x+sin x=cos x+sin x==cos=-1. 答案C 3.已知cos2θ=,则sin4θ+cos4θ的值为( ) A. B. C. D.-1 解析∵cos2θ=,∴sin22θ=,∴sin4θ+cos4θ=1-2sin2θcos2θ=1-(sin2θ)2=. 答案B 4.已知α+β=,则(1+tanα)(1+tanβ)的值是( ) A.-1 B.1 C.2 D.4 解析∵α+β=,tan(α+β)==1, ∴tanα+tanβ=1-tanαtanβ. ∴(1+tanα)(1+tanβ)=1+tanα+tanβ+tanαtanβ =1+1-tanαtanβ+tanαtanβ=2. 答案C 5.

(2014·成都诊断检测)如图,在平面直角坐标系xOy中,角α,β的顶点与坐标原点重合,始边与x轴的非负半轴重合,它们的终边分别与单位圆相交于A,B两点,若点A,B的坐标为和,则cos(α+β)的值为( ) A.-B.- C.0 D. 解析cosα=,sinα=,cosβ=-,sinβ=,cos(α+β)=cosαcosβ-sinαsinβ=·(-)-·=-.选A. 答案A 6.若=-,则sinα+cosα的值为( ) A.-B.- C. D. 解析∵(sinα-cosα)=-(cos2α-sin2α), ∴sinα+cosα=. 答案C 二、填空题(本大题共3小题,每小题5分,共15分) 7.若tan=,则tanα=________. 解析∵tan==, ∴5tanα+5=2-2tanα. ∴7tanα=-3,∴tanα=-. 答案- 8.(2013·江西卷)函数y=sin2x+2sin2x的最小正周期T为________. 解析y=sin2x+2sin2x=sin2x-cos2x+ =2sin(2x-)+,所以T=π. 答案π 9.(2013·新课标全国卷Ⅰ)设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cosθ=________. 解析f(x)=sin x-2cos x=(sin x-cos x)=sin(x-φ)而sinφ=,cosφ=,当x -φ=+2kπ(k∈Z)时,f(x)取最大值,即θ=φ++2kπ时,f(x)取最大值.cosθ=cos(φ++2kπ)=-sinφ=-=-.

高一数学期末复习 第三章 三角恒等变换 测试四

第三章 三角恒等变换 单元测试 一、选择题 1.设2132tan131cos50cos6sin 6,,,221tan 13a b c -=-==+则有( ) A .a b c >> B .a b c << C .a c b << D .b c a << 2.函数221tan 21tan 2x y x -=+的最小正周期是( ) A . 4π B .2 π C .π D .2π 3.sin163sin 223sin 253sin313+=( ) A .12- B .12 C .- D 4.已知3sin(),45 x π-=则sin 2x 的值为( ) A .1925 B .1625 C .1425 D .725 5.若(0,)απ∈,且1cos sin 3αα+=-,则cos2α=( ) A .917 B . C . D .317 6.函数x x y 24cos sin +=的最小正周期为( ) A .4π B .2 π C .π D .2π 二、填空题 1.已知在ABC ?中,3sin 4cos 6,4sin 3cos 1,A B B A +=+=则角C 的大小为 . 2.计算:o o o o o o 80cos 15cos 25sin 10sin 15sin 65sin -+的值为_______. 3.函数22sin cos()336 x x y π=++的图象中相邻两对称轴的距离是 . 4.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 .

5.已知)sin()(?ω+=x A x f 在同一个周期内,当3 π=x 时,)(x f 取得最大值为2,当 0=x 时,)(x f 取得最小值为2-,则函数)(x f 的一个表达式为______________. 三、解答题 1. 求值:(1)0 00078sin 66sin 42sin 6sin ; (2)00020250cos 20sin 50cos 20sin ++。 2.已知4A B π+= ,求证:(1tan )(1tan )2A B ++= 3.求值:94cos log 92cos log 9cos log 222πππ++。 4.已知函数2()(cos sin cos )f x a x x x b =++ (1)当0a >时,求()f x 的单调递增区间; (2)当0a <且[0, ]2x π∈时,()f x 的值域是[3,4],求,a b 的值.

三角恒等变换知识点加练习汇总

三角恒等变换测试题 _____贺孝轩 三角函数 1.画一个单位圆,则x y x y ===αααtan ,cos ,sin 2.一些诱导公式 ααπααπααπtan )tan(,cos )cos(,sin )sin(-=--=-=- ααπ ααπααπ cot )2 tan(,sin )2cos(,cos )2sin( =-=-=-? (只要两角之和为/2就行) 3.三角函数间的关系 1cos sin 22=+α ? αα22sec 1tan =+, α α αcos sin tan = ?αααcos tan sin ?= 4.和差化积 βαβαβαsin cos cos sin )sin(±=± , βαβαβαsin sin cos cos )cos( =± β αβ αβαtan tan 1tan tan )tan(?±= ± 5.二倍角 αααcos sin 22sin = , ααααα2222sin 211cos 2sin cos 2cos -=-=-= α α α2tan 1tan 22tan -= 6.二倍角扩展 αα cos 12 cos 22 += , αα cos 12 sin 22 -= , 2)2 cos 2(sin sin 1α α α±=± )tan tan 1)(tan(tan tan βαβαβα +=± 7.)sin(cos sin 22θαβα++= +b a b a ,其中2 2 cos b a a += θ,2 2 sin b a b += θ a b = θtan 8.半角公式 θ θ θ θθ θ θθ sin cos 12 cos 2sin 22 sin 22 cos 2sin 2 tan 2 -= ==

三角恒等变换知识点和例题

三角恒等变换基本解题方法 1、两角和与差的正弦、余弦、正切公式及倍角公式: ()sin sin cos cos sin sin 22sin cos 令αβαβαβαβααα=±=±???→= ()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 2 1cos2sin 2 2tan tan 21tan 令 = = αβαβαβαβααα αα αβααβααβααααα =±=???→=-↓=-=-±±=?-↓=-m m 如(1)下列各式中,值为12 的是 A 、1515sin cos o o B 、221212cos sin ππ - C 、22251225tan .tan .-o o D (2)命题P :0tan(A B )+=,命题Q :0tan A tan B +=,则P 是Q 的 A 、充要条件 B 、充分不必要条件 C 、必要不充分条件 D 、既不充分也不必要条件 (3)已知35 sin()cos cos()sin αβααβα---=,那么2cos β的值为____ (4 )11080sin sin -o o 的值是______ (5)已知0tan110a =,求0tan 50的值(用a ,乙求得的结果是212a a -,对甲、乙求得的结果的正确性你的判断是______ 2. 三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。即首先观察角与 角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。基本的技巧有: (1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--, 22αβαβ++=?,()() 222αββααβ+=---等),

三角恒等变换专题复习

三角恒等变换专题复习 一、 两角和与差的三角函数公式:⑴ sin()_____________________αβ±= ⑵ cos()____________________αβ±=⑶ tan()_____________αβ±= 练习:1、sin15______o =;1tan15______1tan15 o o +=- 1tan 751tan 75+- = 2、sin163°sin223°+sin253°sin313°等于 ( ) A.-21 B.21 C.- 2 3 D. 2 3 (一)特殊技巧 (1)平方相加 ①ABC ?中,3sin 4cos 6,4sin 3cos 1A B B A +=+=,则C ∠=_______. ②已知sin sin sin 0,cos cos cos 0,αβγαβγ++=++=求cos()βγ-_______. (2)表示分子 ①求值0000 tan35tan 25tan 25+? ②求(1tan 22)(1tan 23)_______o o ++=。 ③求 (1tan1)(1tan 2)(1tan3)(1tan 44)_______o o o o ++++= (二)知值求值,知值求角 ①设1sin()9αβ-=-,cos 2α=13 ,且0<α<2 π,0<β<2 π,求cos (α+β) ②已知 α∈(4π,43π ),β∈(0,4π),cos (α-4 π)=5 3,sin(4 π +β)=13 5,求sin(α+β)的值. ③已知?? ? ??∈π,π4 3 βα、,5 3)sin(-=+βα,13 124πsin =??? ? ?-β,则?? ? ? ?+4πcos α的值 ④若sinA= 5 5 ,sinB= 10 10,且A ,B 均为钝角,求A+B 的值。 ⑤已知tan α ,tan β 是方程6x 2-5x +1=0的两个根,且0<α <2π ,π2 3π<<β,求α +β 的值 二、二倍角公式; ⑴ sin 2__________θ=__________= ①已知3sin(),4 5 x π -=则sin 2x 的值为( ) ②若 ,且,则=( ) ③已知),2,23( ππα∈化简ααsin 1sin 1-++2cos 2 α -__________= ④已知cos 23 θ= 44sin cos θθ+的值为()A .1813 B .1811 C .97 D .1- ⑵ cos 2__________α= __________= __________= __________= 降次公式: 2cos _______α=, 2sin _________α= ①求证:cos4θ-4cos2θ+3=8sin 4θ. ②已知sin 2 α=35,cos 2α= -45 ,则角α终边所在的象限是 ③证明, 1sin 2cos 2tan 1sin 2cos 2θθ θθθ+-=++ ④已知 1cos sin 21cos sin x x x x -+=-++,则x tan 的值为 ⑤函数2 21tan 21tan 2x y x -=+的最小正周期是__________= (3)tan 2____________θ= ①在△ABC 中,cos A =35 ,tan B =2,求tan(2A +2B )的值。 ②若1tan 2008,1tan αα+=-则1 tan 2cos 2αα += 。

三角恒等变换知识点总结

、知识点总结 1、两角和与差的正弦、 ⑴cos cos ⑶sin si n 三角恒等变换专题 余弦和正切公式: cos sin si n :⑵ cos cos cos si n si n cos cos si n :⑷ sin si n cos cos si n ⑸tan tan tan 1 tan tan ⑹ta n tan tan 1 tan tan 2、二倍角的正弦、 余弦和正切公式: ⑴ sin 2 2si n cos 1 sin 2 ⑵ cos2 cos 2 ?2 sin 2cos 2 升幕公式 1 cos 2cos 2 — 2 降幕公式 2 cos cos2 1 (tan (tan 1 cos 2 ,1 sin 2 .2 sin tan tan 2 cos tan tan 2 sin cos tan tan tan tan (si n ) ; ). cos )2 1 2si n 2 2sin 2 — 2 1 cos2 ⑶tan2 1 2ta n tan 2 万能公式 半角公式 2 tan a cos - 2 a tan - 2 1 "一个三角函数,一个角,一次方”的y A sin ( x a 2 2 a tan — 2 2 a tan - 2 4、合一变形 把两个三角函数的和或差化为 形式。 sin 2 si n ,其中tan 5. (1)积化和差公式 1 cos = [sin( 2 1 cos =— [cos( 2 和差化积公式 si n cos (2) si n + )+sin( + )+cos( +sin = 2 sin ------ cos --- 2 2 )] )] cos si n si n 1 sin = [sin( + )-sin( 2 1 sin = - — [cos( + )-cos( 2 )] )] -sin = 2 cos ----- sin --- 2 2

高一下数学期末考试知识点复习要点

高一下期末三角函数考点: 《数学必修4》 第一章 三角函数 《数学必修4》 第三章 三角恒等变换 《数学必修5》 第一章 解三角形 三角函数 知识要点: 定义1 角,一条射线绕着它的端点旋转得到的图形叫做角。若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负角,若不旋转则为零角。角的大小是任意的。 定义2 角度制,把一周角360等分,每一等分为一度,弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。360度=2π弧度。若圆心角的弧长为l ,则其弧度数的绝对值|α|= r l ,其中r 是圆的半径。 定义3 三角函数,在直角坐标平面内,把角α的顶点放在原点,始边与x 轴的非负半轴重合,在角的终边上任意取一个不同于原点的点P ,设它的坐标为(x ,y ),到原点的距离为r,则正弦函数s in α=r y ,余弦函数co sα=r x ,正切函 数tan α= x y , ?? ??? 正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{ } 36036090,k k k αα?<

第二象限角的集合为 { } 36090360180,k k k αα?+<

三角恒等变换知识点加练习汇总

三角恒等变换测试题 _____贺孝轩 三角函数 1.画一个单位圆,则x y x y ===αααtan ,cos ,sin 2.一些诱导公式 ααπααπααπtan )tan(,cos )cos(,sin )sin(-=--=-=- ααπ ααπααπ cot )2 tan(,sin )2cos(,cos )2sin( =-=-=-? (只要两角之和为错误!未找到引用源。/2就行) 3.三角函数间的关系 1cos sin 22=+α ? αα22sec 1tan =+, α α αcos sin tan = ?αααcos tan sin ?= 4.和差化积 βαβαβαsin cos cos sin )sin(±=± , βαβαβαsin sin cos cos )cos( =± β αβ αβαt a n t a n 1t a n t a n )t a n (?±= ± 5.二倍角 αααcos sin 22sin = , ααααα2 222s i n 211c o s 2s i n c o s 2 c o s -=-=-= α α α2tan 1tan 22tan -= 6.二倍角扩展 αα cos 12 cos 22 += , αα cos 12sin 22 -= , 2)2 c o s 2(s i n s i n 1α αα±=± )tan tan 1)(tan(tan tan βαβαβα +=± 7.)sin(cos sin 22θαβα++= +b a b a , 其中2 2 cos b a a +=θ,2 2 sin b a b += θ a b = θtan 8.半角公式 θ θ θ θθ θ θθ sin cos 12 cos 2sin 22 sin 22 cos 2sin 2 tan 2 -= ==

知识讲解-三角恒等变换-基础

三角恒等变换 【考纲要求】 1、会用向量的数量积推导出两角差的余弦公式. 2、能利用两角差的余弦公式导出两角差的正弦、正切公式. 3、能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系. 4、能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆). 【知识网络】 【考点梳理】 考点一、两角和、差的正、余弦公式 ()sin()sin cos cos sin ()S αβαβαβαβ±±=± ()cos()cos cos sin sin ()C αβαβαβαβ±±=m ()tan tan tan()()1tan tan T αβαβ αβαβ ±±±= - 要点诠释: 1.公式的适用条件(定义域) :前两个公式()S αβ±,()C αβ±对任意实数α,β都成立,这表明该公式是R 上的恒等式;公式()T αβ±③中,∈,且R αβk (k Z)2 ±≠ +∈、、π αβαβπ 2.正向用公式()S αβ±,()C αβ±,能把和差角()±αβ的弦函数表示成单角α,β的弦函数;反向用,能把右边结构复杂的展开式化简为和差角()±αβ 的弦函数。公式()T αβ±正向用是用单角的正切值表示和差角 ()±αβ的正切值化简。 考点二、二倍角公式 1. 在两角和的三角函数公式()()(),,S C T αβαβαβαβ+++=中,当时,就可得到二倍角的三角函数公式 222,,S C T ααα: sin 22sin cos ααα= 2()S α;

ααα22sin cos 2cos -=2()C α; 22tan tan 21tan α αα = -2()T α。 要点诠释: 1.在公式22,S C αα中,角α没有限制,但公式2T α中,只有当)(2 24 Z k k k ∈+≠+ ≠ππ αππ α和时才成立; 2. 余弦的二倍角公式有三种:ααα2 2 sin cos 2cos -==1cos 22 -α=α2 sin 21-;解题对应根据不同函数名的需要,函数不同的形式,公式的双向应用分别起缩角升幂和扩角降幂的作用。 3. 二倍角公式不仅限于2α和α的二倍的形式,其它如4α是2α的二倍, 24α α是的二倍,332 α α是 的二倍等等,要熟悉这多种形式的两个角相对二倍关系,才能熟练地应用二倍角公式,这是灵活运用这些公 式的关键。 考点三、二倍角公式的推论 降幂公式:ααα2sin 21 cos sin = ; 22cos 1sin 2 αα-=; 22cos 1cos 2 αα+=. 万能公式:α α α2 tan 1tan 22sin +=; α α α2 2tan 1tan 12cos +-=. 半角公式:2cos 12 sin α α -± =; 2cos 12 cos α α +± =; α α α cos 1cos 12 tan +-± =. 其中根号的符号由2 α 所在的象限决定. 要点诠释: (1)半角公式中正负号的选取由 2 α 所在的象限确定; (2)半角都是相对于某个角来说的,如2 3α 可以看作是3α的半角,2α可以看作是4α的半角等等。 (3)正切半角公式成立的条件是α≠2k π+π(k ∈Z)

高考总复习简单的三角恒等变换习题

高考总复习简单的三角恒等变换习题 (附参考答案) 一、选择题 1.(文)(2010·山师大附中模考)设函数f (x )=cos 2(x +π4)-sin 2(x +π 4),x ∈R ,则函数f (x ) 是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π 2的奇函数 D .最小正周期为π 2的偶函数 [答案] A [解析] f (x )=cos(2x +π2)=-sin2x 为奇函数,周期T =2π 2=π. (理)(2010·辽宁锦州)函数y =sin 2x +sin x cos x 的最小正周期T =( ) A .2π B .π C.π2 D.π3 [答案] B [解析] y =sin 2x +sin x cos x = 1-cos2x 2+1 2 sin2x =12+2 2sin ????2x -π4,∴最小正周期T =π. 2.(2010·重庆一中)设向量a =(cos α,22)的模为3 2 ,则cos2α=( ) A .-1 4 B .-1 2 C.12 D.3 2 [答案] B [解析] ∵|a |2=cos 2α+?? ? ?222 =cos 2α+12=34, ∴cos 2α=14,∴cos2α=2cos 2α-1=-1 2. 3.已知tan α 2=3,则cos α=( ) A.45 B .-45 C.4 15 D .-35 [答案] B

[解析] cos α=cos 2α2-sin 2α 2=cos 2α2-sin 2 α2cos 2α2+sin 2α2 =1-tan 2 α 21+tan 2 α2 =1-91+9=-4 5 ,故选B. 4.在△ABC 中,若sin A sin B =cos 2C 2,则△ABC 是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .既非等腰又非直角的三角形 [答案] B [解析] ∵sin A sin B =cos 2C 2 , ∴12[cos(A -B )-cos(A +B )]=1 2(1+cos C ), ∴cos(A -B )-cos(π-C )=1+cos C , ∴cos(A -B )=1, ∵-πcos x ,

三角函数和三角恒等变换知识点及题型分类总结

三角函数知识点总结 1、任意角。 2、角α的顶点与 重合,角的始边与 重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 3、与角α终边相同的角的集合为 4、 叫做1弧度. 5、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是 . 6、弧度制与角度制的换算公式 7、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则L= . S= 8、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是 () 220r r x y =+>,则sin y r α= ,cos x r α=,()tan 0y x x α=≠. 9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限 余弦为正. 10、三角函数线:sin α=MP ,cos α=OM ,tan α=AT . 11、同角三角函数的基本关系:(1) ;(2) 。 12、三角函数的诱导公式: ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-. ()5sin cos 2π αα??-= ???,cos sin 2παα?? -= ???.()6sin cos 2παα??+= ???,cos sin 2παα??+=- ???. 口诀:奇变偶不变,符号看象限. 重要公式 ⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+(()()tan tan tan 1tan tan αβαβαβ-=-+); ⑹()tan tan tan 1tan tan αβ αβαβ ++= -(()()tan tan tan 1tan tan αβαβαβ+=+-).

必修四三角函数和三角恒等变换知识点及题型分类的总结

三角函数知识点总结 1、任意角: 正角: ;负角: ;零角: ; 2、角α的顶点与 重合,角的始边与 重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 终边在x 轴上的角的集合为 终边在y 轴上的角的集合为 终边在坐标轴上的角的集合为 3、与角α终边相同的角的集合为 4、已知α是第几象限角,确定()*n n α ∈N 所在象限的方法:先把各象限均分n 等份, 再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象 限对应的标号即为n α 终边所落在的区域. 5、 叫做1弧度. 6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是 . 7、弧度制与角度制的换算公式: 8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l= .S= 9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距 离是() 220r r x y =+>,则sin y r α= ,cos x r α=,()tan 0y x x α=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线:. 12、同角三角函数的基本关系:(1) ; (2) ;(3) 13、三角函数的诱导公式: ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.

(完整word)2018年高考数学总复习三角恒等变换

第三节 三角恒等变换 考纲解读 会用向量的数量积推导出两角差的余弦公式. 能利用两角差的余弦公式导出两角差的正弦,正切公式. 能利用两角差的余弦公式导出两角和的正弦,余弦,正切公式,导出二倍角的正弦,余弦,正切公式,了解它们的内在联系. 能利用上述公式进行简单的恒等变换(包括导出积化和差,和差化积,半角公式,但对这三种公式不要求记忆). 命题趋势探究 高考必考,在选择题,填空题和解答题中都有渗透,是三角函数的重要变形工具.分值与题型稳定,属中下档难度. 考题以考查三角函数式化简,求值和变形为主. 化简求值的核心是:探索已知角与未知角的联系,恒等变换(化同角同函). 知识点精讲 常用三角恒等变形公式 和角公式 sin()sin cos sin cos αβαβαβ+=+ cos()cos cos sin sin αβαβαβ+=- tan tan tan()1tan tan αβ αβαβ ++= - 差角公式 sin()sin cos sin cos αβαβαβ-=- cos()cos cos sin sin αβαβαβ-=+ tan tan tan()1tan tan αβ αβαβ --= + 倍角公式 sin 22sin cos ααα= 2222cos 2cos sin 2cos 112sin ααααα=-=-=- 22tan tan 21tan α αα =- 降次(幂)公式 2211cos 21cos 2sin cos sin 2;sin ;cos ;222 αα ααααα-+=== 半角公式 sin 2 2α α==

sin 1cos tan .21cos sin a α αα α-= =+ 辅助角公式 sin cos ),tan (0),b a b ab a ααα??+=+=≠角?的终边过点(,)a b ,特殊 地,若sin cos a b αα+=,则tan .b a α= 常用的几个公式 sin cos );4π ααα±=± sin 2sin();3 π ααα=± cos 2sin();6 π ααα±=± 题型65 两角和与差公式的证明 题型归纳及思路提示 思路提示 推证两角和与差公式就是要用这两个单角的三角函数表示和差角的三角公式,通过余弦定理或向量数量积建立它们之间的关系,这就是证明的思路. 例4.33 证明 (1):cos()cos cos sin sin ;C αβαβαβαβ++=- (2)用C αβ+证明:sin()sin cos sin S cos αβαβαβαβ++=+ (3)用(1)(2)证明tan tan :tan().1tan tan T αβαβ αβαβ +++= - 解析(1)证法一:如图4-32(a )所示,设角,αβ-的终边交单位圆于 12(cos .sin ),(cos(),sin()),P P ααββ--,由余弦定理得 2 221212122()PP OP OP OP OP cos αβ=+-?+ 22[cos cos()][sin sin()]22cos()αβαβαβ?--+--=-+ 22(cos cos sin sin )22cos()αβαβαβ?--=-+ :cos()cos cos sin sin .C αβαβαβαβ+?+=- 证法二:利用两点间的距离公式. 如图4-32(b )所示12(1,0),(cos ,sin ),(cos(),sin(),A P P αααβαβ++ 3(cos(),sin()),P ββ--由231;OAP OP P ???得,213.AP PP =故

三角恒等变换练习题一

三角恒等变换练习题一 一、选择题 1.(2014年太原模拟)已知53 )2sin(=+θπ,则=-)2(cos θπ( ) A. 2512 B .2512- C .25 7 - D. 257 2.若54cos -=α,且α在第二象限内,则)4 2cos(π α+为( ) A .50231- B. 50231 C .50217- D. 50 217 3.(2013年高考浙江卷)已知2 10 cos 2sin ,= +∈αααR ,则=α2tan ( ) A. 34 B. 43 C .34- D .4 3 - 4.已知),0(,2cos sin πααα∈=-,则=α2sin ( ) A .1- B .22- C. 2 2 D .1 5.(2014年云南模拟)已知53 )4sin(=-πx ,则x 2sin 的值为( ) A .25 7 - B. 257 C. 259 D. 2516 6.计算??-??13sin 43cos 13cos 43sin 的结果等于( ) A. 2 1 B.33 C.22 D.23 7.函数)sin (cos sin )(x x x x f -=的最小正周期是( ) A. 4π B. 2 π C .π D .π2 8.(2014年郑州模拟)函数)24(2cos 3)4(sin 2)(2π ππ≤≤-+=x x x x f 的最大值为( ) A .2 B . 3 C .32+ D .32- 9.(2010理)为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6 y x π =+的图像( ) A. 向左平移4π个长度单位 B. 向右平移4 π 个长度单位

三角恒等变换知识点总结详解

第三章 三角恒等变换 一、知识点总结 1、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβ αβαβ --= +? (()()tan tan tan 1tan tan αβαβαβ-=-+) ; ⑹()tan tan tan 1tan tan αβ αβαβ ++= -? (()()tan tan tan 1tan tan αβαβαβ+=+-) . 2、二倍角的正弦、余弦和正切公式: ⑴sin22sin cos ααα=.2 2 2 )cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±? ⑵2 222cos2cos sin 2cos 112sin ααααα=-=-=- ?升幂公式2 sin 2cos 1,2cos 2cos 12 2 α αα α=-=+ ?降幂公式2cos 21cos 2αα+= ,2 1cos 2sin 2 αα-=. ⑶2 2tan tan 21tan α αα = -. 3、 ? (后两个不用判断符号,更加好用) 4、合一变形?把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(??形式。()sin cos ααα?A +B = +,其中tan ?B = A . 5.(1)积化和差公式 sin α·cos β=21[sin(α+β)+sin(α-β)]cos α·sin β=21 [sin(α+β)-sin(α-β)] cos α·cos β=21[cos(α+β)+cos(α-β)]sin α·sin β= -2 1 [cos(α+β)-cos(α-β)] (2)和差化积公式 sin α+sin β= 2 cos 2 sin 2β αβ α-+sin α-sin β=2 sin 2 cos 2β αβ α-+ αααα ααα半角公式cos 1cos 12tan 2cos 12sin ;2cos 12cos : +-±=-± =+±=2 tan 12tan 1 cos ;2tan 12tan 2 sin : 2 2 2α α αααα万能公式+-=+=

相关文档
最新文档