搜寻太阳系外行星的方法

搜寻太阳系外行星的方法
搜寻太阳系外行星的方法

搜寻太阳系外行星的方法

人类对于太阳系外行星探测与研究的兴趣和热情逐渐高涨,投入也逐年加大。据非官方统计,目前世界科技发达国家如欧美在天文学领域大约有1/3的财力、物力和人才投入到这个领域,探索这些神秘的”新世界”(The New World)也成为美国下一个十年重点发展的天文学研究项目之一。在这样的大背景下,我们如能利用力所能及的条件,开展一些可行的太阳系外行星的探测与性质研究,无疑是很有意义和价值的。

探测新的太阳系外行星并研究其重要物理性质如质量、半径、密度、轨道特征等的技术方法主要有以下几种:

1.天体测量法

天体测量法是搜寻系外行星最早期的方法。在双星系统中,两星围绕着共同的质心转动,每颗星的轨迹都是周期性的。如果双星中一颗恒星很亮,而另一颗伴星太暗难以观测,那么我们可以用观测到的亮星的周期性摆动轨迹的天体测量资料,利用牛顿的引力定律和开普勒定律来推算出暗伴星的轨道及质量。如果由摆动轨迹推算出伴星的质量远小于恒星的质量下限,那么这颗暗伴星就很可能是行星。这种方法虽然原理简单,但由于恒星位置的摆动太过微小,实际观测是非常困难的。所以这种方法更适于离我们更近的、轨道面近于垂直视线且轨道半径大的恒星-行星系统。

2.直接摄像法

顾名思义,直接摄像法即从行星反射其主恒星的光来观测行星,利用大口径或空间望远镜高分辨率高对比度成像仪及星冕仪对太阳系外行星进行直接成像。但由于行星比其环绕的主恒星暗得多而不容易观测,且由于恒星-行星视角距很小而难于分辨。难度很高,中小口径望远镜无法实现。

3.视向速度法

如果双星的轨道面并不垂直于我们的视线,而是呈一定角度,由于两颗恒星围绕公共质心旋转且位于公共质心的两侧,当它们依次周期性地向我们走进和走远.由于多普勒效应,当一颗恒星向我们走近时,光谱线紫移;当它远离时,光谱线红移。从恒星光谱线的位移可以推算其视向速度。当前是发现及研究太阳系外行星系统的主要方法,已发现的500多颗系外行星中有400多颗为此种方法所发现。但此方法的实现需要高精度的高分辨率光谱仪设备和较大口径的望远镜,难度较高。

4.微引力透镜法

利用背景恒星发出的星光受前景行星引力影响发生偏转(爱因斯坦的广义相

九大行星资料

水星 水星是九大行星中最靠近太阳的行星,:它是太阳系中运动最快的行星。水星公转平均速度为每秒48公里,公转周期约为88天。它的半径为2440公里,是地球半径的38.3%。水星的体积是地球的5.62%,质量是地球的0.05倍。水星外貌如月,内部却像地球,也分为壳、幔、核三层。天文学家推测水星的外壳是由硅酸盐构成的,其中心有个比月球还大的铁质内核。 水星的自转周期为58.646日,自转方向与公转方向相同。由于自转周期与公转周期很接近,所以水星上的一昼夜比水星自转一周的时间要长得多。它的一昼夜为我们的176天,白天和黑夜各88天。 金星 金星是距太阳的第二颗行星,是天空中最亮的星,亮度最大时为-4.4等,比著名的天狼星还亮14倍。金星是地内星系,故有时为晨星,有时为昏星。至今尚未发现金星有卫星。由于金星和地球在大小、质量、密度和重量上非常相似,而且金星和地球几乎都由同一星云同时形成,占星家们将它们当作姐妹行星。然而不久前科学家们发现,事实上金星与地球非常不同。金星上没有海洋,它被厚厚的主要成份为二氧化碳的大气所包围,一点水也没有。它的云层是由硫酸微滴组成的。在地表,它的大气压相当于在地球海平面上的92倍。 由于金星厚厚的二氧化碳大气层造成的“温室效应”,金星地表的温度高达482°C左右。阳光透过大气将金星表面烤热。地表的热量在向外辐射的过程中受到大气的阻隔,无法散发到外层空间。这使得金星比水星还要热。金星上的一天相当于地球上的243天,比它225天的一年还要长。金星是自东向西自转的,这意味着在金星上,太阳是西升东落的。 金星的表面随机布满了许多小型陨石坑。由于金星的浓厚大气,直径小于2公里的陨石坑几乎无法保留下来。而当大型陨石在小型陨坑形成前撞击金星表面,其产生的碎片在地表产生了例外的陨石坑群。火山及火山活动在金星表面为数很多。至少85%的金星表面覆盖着火山岩。大量的熔岩流经几百公里,填满低地,形成了广阔的平原。除了几百个大型火山,100000多座小型火山口点缀在金星表面。从火山中喷出的熔岩流产生了长长的沟渠,范围大至几百公里,其中一条的范围超过7000公里。 地球 地球简单介绍:依照太阳由近及远,地球是第三颗行星,与太阳的平均距离约1.496亿千米;地球围绕太阳公转的轨道是椭圆的;地球公转速度以在近日点为最大,每秒30.3千米,在远日点为最小,每秒29.78千米,平均速度为29.79千米/秒。地球绕太阳公转1周的时间为1年,自转1周的时间为1日。由于地球内部和外部的原因,地球的转动非常复杂,表现在自转轴方向的变化及自转速度的变化上。 它最显著的特征就是有生命(在太阳系内可能是唯一的现象)等等。 火星 火星是一颗引人注目的火红色星球。他荧荧如火,位置不定,亮度时有变化,中国古代称之为“荧惑”,古罗马用战神马尔斯命名它。1877年,意大利天文学家斯基亚帕雷利观测到火星上密布有规则的线条,他说那是“运河”,在火星上发现了人工开凿的运河成了当时轰动世界的新闻,此后,人们纷纷幻想有“火星人”。20世纪以来,对于火星有无生命的争论始终没有停止。瑞士物理学家马孛·比孛夫分析了从火星上拍回来的照片后说:在这个红色星球的表面,建筑了纵横交错的运河,河里还挤满了无数的鱼类。1976年美国的两个“海盗”号探测器在火星上着陆,它们在火星表面上进行了预定的考察和实验,确认火星上根本不存在“运河”,大概没有生命。苏联在62-73年间也多次发射了“火星”号探测器。 火星是一个直径为6787千米的寒冷荒芜的星球。大气非常稀薄,二氧化碳占了96%。又少量的水气和

八大行星详细资料

水星: 水星基本参数: 轨道半长径:5791万千米(0.38 天文单位) 公转周期:87.70 日 平均轨道速度:47.89 千米/每秒 轨道偏心率:0.206 轨道倾角:7.0 度 行星赤道半径:2440 千米 质量(地球质量=1):0.0553 密度:5.43 克/立方厘米 自转周期:58.65 日 卫星数:无 水星是最靠近太阳的行星,它与太阳的角距从不超过28°。古代中国称水星为辰星,西方人则称它为墨丘利(Mercury)。墨丘利(赫尔莫斯)是罗马神话中专为众神传递信息的使者,神通广大,行走如飞。水星确实象墨丘利那样,行动迅速,是太阳系中运动最快的行星。水星的密度较大,在九大行星中仅次于地球。它可能有一个含铁丰富的致密内核。水星地貌酷似月球,大小不一的环形山星罗棋布,还有辐射纹、平原、裂谷、盆地等地形。水星大气非常稀薄,昼夜温差很大,阳光直射处温度高达427℃,夜晚降低到-173℃。 直到20世纪60年代以前,人们一直认为, 水星自转一周与公转一周的时间是相同的, 从而使面对太阳的那一面恒定不变。这与月球总是以相同的半面朝向地球很相似。但在1965 年,借助美国阿雷西博天文台世界最大的射电望远镜,测量了水星两个边缘反射波间的频率差,成功地测量了水星的自转周期为58.65日,恰好是公转周期的2/3。 II 金星: 金星基本参数: 轨道半长径:1082万千米(0.72 天文单位) 公转周期:224.70 日 平均轨道速度:35.03 千米/每秒 轨道偏心率:0.007 轨道倾角:3.4 度 行星赤道半径:6052千米 质量(地球质量=1):0.8150 密度:5.24 克/立方厘米 自转周期:243.01 日 卫星数:无 金星是天空中除了太阳和月亮外最亮的星,亮度最大时比全天最亮的恒星天狼星亮14倍,我国古代称它为“太白”,罗马人则称它为维纳斯(Venus)-爱与美的女神。 在地球上看金星和太阳的最大视角不超过48度,因此金星不会整夜出现在夜空中,我国民间称黎明时分的金星为启明星,傍晚时分的金星为长庚星。金星自转一周比公转一周还慢,

搜寻太阳系外行星的方法

搜寻太阳系外行星的方法 人类对于太阳系外行星探测与研究的兴趣和热情逐渐高涨,投入也逐年加大。据非官方统计,目前世界科技发达国家如欧美在天文学领域大约有1/3的财力、物力和人才投入到这个领域,探索这些神秘的”新世界”(The New World)也成为美国下一个十年重点发展的天文学研究项目之一。在这样的大背景下,我们如能利用力所能及的条件,开展一些可行的太阳系外行星的探测与性质研究,无疑是很有意义和价值的。 探测新的太阳系外行星并研究其重要物理性质如质量、半径、密度、轨道特征等的技术方法主要有以下几种: 1.天体测量法 天体测量法是搜寻系外行星最早期的方法。在双星系统中,两星围绕着共同的质心转动,每颗星的轨迹都是周期性的。如果双星中一颗恒星很亮,而另一颗伴星太暗难以观测,那么我们可以用观测到的亮星的周期性摆动轨迹的天体测量资料,利用牛顿的引力定律和开普勒定律来推算出暗伴星的轨道及质量。如果由摆动轨迹推算出伴星的质量远小于恒星的质量下限,那么这颗暗伴星就很可能是行星。这种方法虽然原理简单,但由于恒星位置的摆动太过微小,实际观测是非常困难的。所以这种方法更适于离我们更近的、轨道面近于垂直视线且轨道半径大的恒星-行星系统。 2.直接摄像法 顾名思义,直接摄像法即从行星反射其主恒星的光来观测行星,利用大口径或空间望远镜高分辨率高对比度成像仪及星冕仪对太阳系外行星进行直接成像。但由于行星比其环绕的主恒星暗得多而不容易观测,且由于恒星-行星视角距很小而难于分辨。难度很高,中小口径望远镜无法实现。 3.视向速度法 如果双星的轨道面并不垂直于我们的视线,而是呈一定角度,由于两颗恒星围绕公共质心旋转且位于公共质心的两侧,当它们依次周期性地向我们走进和走远.由于多普勒效应,当一颗恒星向我们走近时,光谱线紫移;当它远离时,光谱线红移。从恒星光谱线的位移可以推算其视向速度。当前是发现及研究太阳系外行星系统的主要方法,已发现的500多颗系外行星中有400多颗为此种方法所发现。但此方法的实现需要高精度的高分辨率光谱仪设备和较大口径的望远镜,难度较高。 4.微引力透镜法 利用背景恒星发出的星光受前景行星引力影响发生偏转(爱因斯坦的广义相

1太阳系和地球系统元素的丰度详解

第一章 太阳系和地球系统的元素丰度 元素丰度是每一个地球化学体系的基本数据,可在同一或不同体系中用元素的含量值来进行比较,通过纵向(时间)、横向(空间)上的比较,了解元素动态情况,从而建立起元素集中、分散、迁移活动等一系列地球化学概念。从某种意义上来说,也就是在探索和了解丰度这一课题的过程中,逐渐建立起近代地球化学。 研究元素丰度是研究地球化学基础理论问题的重要素材之一。宇宙天 体是怎样起源的?地球又是如何形成的?地壳中主要元素为什么与地幔中的不一样?生命是怎么产生和演化的?这些研究都离不开地球化学体系中元素丰度分布特征和规律。 1.1 基本概念 1.地球化学体系 按照地球化学的观点,我们把所要研究的对象看作是一个地球化学体系。每个地球化学体系都有一定的空间,都处于特定的物理化学状态(C 、T 、P 等),并且有一定的时间连续。 这个体系可大可小。某个矿物包裹体,某矿物、某岩石可看作一个地球化学体系,某个地层、岩体、矿床(某个流域、某个城市)也是一个地球化学体系,从更大范围来讲,某一个区域、地壳、地球直至太阳系、整个宇宙都可看作为一

地球化学的基本问题之一就是研究元素在地球化学体系中的分布(丰度)、分配问题,也就是地球化学体系中元素“量”的研究。 2.分布与丰度 所谓元素在体系中的分布,一般认为是元素在这个体系中的相对含量(以元素的平均含量表示),即元素的“丰度”。其实“分布”比“丰度”具有更广泛的涵义: 体系中元素的丰度值实际上只是对这个体系里元素真实含量的一种估计,它只反映了元素分布特征的一个方面,即元素在一个体系中分布的一种集中(平均)倾向。但是,元素在一个体系中,特别是在较大体系中的分布决不是均一的,还包含着元素在体系中的离散(不均一)特征,因此,元素的分布包括: ①元素的相对含量(平均含量=元素的“丰度”);②元素含量的不均一性(分布离散特征数、分布所服从的统计模型)。 需要指出的是,从目前的情况来看,地球化学对元素特征所积累的资料(包括太阳系、地球、地壳)都仅限于丰度的资料,关于元素分布的离散程度及元素分布统计特征研究,仅限于在少量范围不大的地球化学体系内做了一些工作。 3.分布与分配 元素的分布指的是元素在一个化学体系中(太阳、陨石、地球、地壳、某地区等)的整体总含量; 元素的分配指的是元素在各地球化学体系内各个区域或区段中的含量; 分布是整体,分配是局部,两者是一个相对的概念,既有联系又有区别。 例如,地球作为整体,元素在地壳中的分布,也就是元素在地球中分配的表现,把某岩石作为一个整体,元素在某组成矿物中的分布,也就是元素在岩石中分配的表现。 4.绝对含量和相对含量 各地球体系中常用的含量单位有两类,绝对含量和相对含量。 1.2太阳系的组成和元素丰度

九大行星名字由来

水星的英文名字Mercury来自罗马神墨丘利。符号是上面一个圆形下面一个交叉的短垂线和一个半圆形 (Unicode: ?). 是墨丘利所拿魔杖的形状。在第5世纪,水星实际上被认为成二个不同的行星,这是因为它时 常交替地出现在太阳的两侧。当它出现在傍晚时,它被叫做墨丘利;但是当它出现在早晨时,为了纪念太阳 神阿波罗,它被称为阿波罗。毕达哥拉斯后来指出他们实际上是相同的一颗行星。中国古代则称水星为“辰星”。 金星中国古人称金星为“太白”或“太白金星”,也称“启明”或“长庚”。古希腊人称为阿佛洛狄特,是希腊神话 中爱与美的女神。而在罗马神话中爱与美的女神是维纳斯,因此金星也称做“维纳斯”。金星的天文符号用维 纳斯的梳妆镜来表示。金星的位相变化金星同月球一样,也具有周期性的圆缺变化(位相变化),但是由于金 星距离地球太远,用肉眼是无法看出来的。关于金星的位相变化,曾经被伽利略作为证明哥白尼的日心说的 有力证据。 地球是太阳系中行星之一,按离太阳由近及远的次序排列为第三。它是太阳系类地行星中最大的一颗,也 是现代科学目前确证目前惟一存在生命的行星。行星年龄估计大约有45亿年(4.5×109)。在行星形成后不久, 即捕获其惟一的天然卫星-月球。地球上惟一的智慧生物是人类。 火星因为它在夜空中看起来是血红色的,所以在西方,以罗马神话中的战神玛尔斯(或希腊神话对应的阿瑞斯) 命名它。在古代中国,因为它荧荧如火,故称“荧惑”。火星有两颗小型天然卫星:火卫一Phobos和火卫二Deimos(阿瑞斯儿子们的名字)。两颗卫星都很小而且形状奇特,可能是被引力捕获的小行星。英文里前缀areo- 指的就是火星。 木星是太阳系九大行星之一,按离太阳由近及远的次序排列为第五颗。它也是太阳系最大的行星,自转最 快的行星。中国古代用它来纪年,因而称为岁星。在西方称它为朱庇特,是罗马神话中的众神之王,相当 于希腊神话中的宙斯。 土星是一个巨型气体行星,是太阳系中仅次于木星的第二大行星。土星的英文名字Saturn(以及其他绝大部 分欧洲语言中的土星名称)是以罗马神的农神萨杜恩命名的。中国古代称之为镇星或填星。 天王星是太阳系的九大行星之一,排列在土星外侧、海王星内侧而名列第七,颜色为灰蓝色,是一颗巨型 气体行星(Gas Giant)。以直径计算,天王星是太阳系第三大行星;但若以质量计算,则比海王星轻而排行第 四。天王星的命名,是取自希腊神话的天神乌拉诺斯。 海王星为太阳系九大行星中的第八个,是一个巨行星。海王星是第一个通过天体力学计算后被发现的行星。 因为天王星的轨道与计算的不同,1845年约翰·可夫·亚当斯和埃班·勤维叶推算了在天王星外的一个未知行星 可能的位置。1846年9月23日柏林天文台台长约翰·格弗里恩·盖尔真的在这个位置发现了一颗新的行星:海王 星。目前海王星是太阳系内离太阳第二远的行星。海王星的名字是罗马神话中的海神涅普顿(Neptune)。 冥王星是太阳系九大行星中离开太阳最远、最小的一颗行星,1930年被发现。因为它离太阳最远,因此也非常寒冷,这和罗马神话中的冥王普鲁托所住的地方很相似,因此称为“Pluto”。 1

人类发现系外行星的七种途径

自从1992年第一颗围绕恒星运转的系外行星被发现后,天文学家们已陆续确认了超过800个地球的“同类”。那么,他们是如何取得这些成果的呢?现有的技术手段可谓各有利弊,美国太空网日前专门针对科学家找寻系外行星时主要采用的7种技术方法,逐一予以解读。 方法一:天体测量学 天体测量学,主要通过精密追踪一颗恒星在天空中运行轨迹的变化,来确定受其引力拖曳的行星所在。这与径向速度法的原理很类似,只不过天体测量学并不涉及恒星光芒中的多普勒频移。 天体测量学可不是从1992年才开始为人所用的。它其实是搜寻系外行星最古老,并且起初也是最常用的方法——早期都是以肉眼和手写来记录的。但在近几十年历史中,科学家们在应用该方法发现行星的过程中取得的成果寥寥,且常富于争议。2010年10月发现的HD 176051b,是目前唯一一颗已经确认的、借由天体测量方法发现的系外行星。 不过,即将于2013年10月发射升空的欧洲空间局(ESO)“盖亚”项目(Gaia,即第二个天体测量卫星),或许可以令这种古老的方式告别自己寒酸的过往。该卫星将在5年任务期间将测绘银河系之内以及附近区域的10亿颗恒星,确定它们的亮度、光谱特征以及三维位置和运动情况。除此之外,三维星图还将帮助人们揭开银河系组分、起源与演化的秘密。 而据研究人员估计,“新”的天体测量学有望帮助他们找到数万颗新的系外行星。 方法二:利用狭义相对论 这是人类宇宙探索“技术库”里增添的一个新手段。作为新的研究方法,它指导天文学家们去关注恒星的亮度因行星运动而发生的变化——后者的引力作用引发相对论效应,导致组成光的光子以能量的形式“堆积”,并集中于恒星运动的方向。 其实,运用该方法来寻找行星,在理论上提出已逾10年。但直到最近,开普勒-76b (Kepler-76b)行星的发现,才算正式应用了这种方法。开普勒-76b是距离地球2000光年外天鹅座一颗质量大约是木星两倍的太阳系外行星,作为第一颗应用爱因斯坦的狭义相对论发现的系外行星,它得到一个别名:“爱因斯坦的行星”,这也使它变得声名远扬。 这一成果的真实性,随后已被径向速度法所证实。与其他已有的行星定位方法相比,“狭义相对论”法既有着自己的优势也存在一些不足,但它让人们相信,随着科学家对这一理论掌握得日臻成熟,会有更多此类发现不断出现。 方法三:脉冲星计时法 这种方法特别适用于发现围绕脉冲星运动的行星。所谓脉冲星,是由恒星衰亡后的残余形成的密度极高的星体。它在高速自转的同时,会发射出强烈脉冲——且由于一颗脉冲星的自转本质上是非常稳定的,所以这种辐射因为自转而非常规律。 脉冲星计时法最初并不是设计来检测行星的,但是因为它的灵敏度很高,所以能比其他

幼儿园大班教案——太阳系九大行星

幼儿园大班教案——太阳系九大行星 设计构想: 随着神舟五号的顺利登空,吸引着世界各国的关注目光,杨利伟,这个本来陌生的名字,现已变得耳熟能详。神秘的太空、美丽的地球,使孩子们发生了浓烈的兴趣。因此,我便萌生了这个活动设计的念头。 活动目标: 1、巩固认识太阳系的九大行星,并通过游戏,学习九大行星的排列位置; 2、大胆想象、动手制作飞船,愿意在集体面前展示并讲述句型:我驾着飞船飞到×星上,因为……。 3、鼓励幼儿大胆创造肢体语言,表现各行星的特征。 4、培养幼儿从小爱祖国、爱科学的情感。 活动准备: 1、数码相机、电视机; 2、地球照片; 3、太阳系照片; 4、太阳系轨道图; 5、事先在教室里划好轨道; 6、各星球字卡及图片; 7、板上布置好星空背景图,图上画有行星; 8、收集的纸盒若干(保证每个幼儿有5个盒子)、各颜色吸管、各种小瓶子、双面胶、透明胶、剪刀。活动过程: 一、引起兴趣。 1、请幼儿观看地球的照片——美丽的地球。 师:唉!我国有个航天英雄,他是我们国家第一个载人航天飞行取得圆满成功的航天员,他驾的飞船叫做什么?(神舟五号)他是叫什么名字呢?(杨利伟叔叔)杨利伟叔叔从小就爱学习、爱科学,长大要成为对社会、对国家有贡献的人。结果,他实现了他的理想,做了一名出色的宇航员。我们也要向杨利伟叔叔学习,将来也做一个有用的人,好不好? 杨利伟叔叔还拍了一张很美丽的照片,你们看,这是什么?这是杨利伟叔叔在神舟五号的机舱里拍的,漂亮吧。他还拍下我们广州在地球上的样子呢。你们看!好神奇哦!所以,我们要爱我们的城市我们的家——广州!爱我们的地球,保护它、珍爱它,因为我们只有一个地球。他还告诉我们,地球有一个很美丽、很大的家,它的家叫做太阳系,地球在这个家里排行第三,她有九个兄弟姐妹。哪九个呢? 2、提出问题:你想知道这九个兄弟姐妹在太阳系的位置吗?下面,让我们一起去看看吧。

600亿年以后,地球脱离太阳系

孙四周的推算公式 注:t:时间 H:哈勃常数 RO:太阳半径 ln:自然对数 M:太阳质量 G:牛顿万有引力常数 好莱坞灾难大片《2012》、玛雅的2012世界末日预言,让很多人对未来充满恐慌。2012真的是世界末日吗?昨日,江苏教育学院附属高级中学孙四周老师,用数学公式向记者演绎了宇宙的未来,按照他的计算,在5000年后,太阳和现在相比几乎没有变化。 这些成果出现在孙四周新近出版的专著《空间相对论膨胀宇宙的数学原理》一书中。在孙四周老师的身上,数学几乎是个“万能工具”。此前,他曾用几何方法证明了周正龙拍摄的华南虎为假,并因此而名声大噪。 有人说世界末日是2012 霍金说大约在200年后 孙四周说,都错了! 近年来,世界末日论一直是热门话题。随着好莱坞灾难大片《2012》的热映和持续传播,2012更是被确切地指认为“世界末日”。这一论断和神秘的玛雅预言不谋而合,因而在世界范围内,不少公众因此恐慌莫名。 世界各国的不少科学家都投入到“世界末日”这一问题的研究中。据媒体报道,有着“自爱因斯坦以来最伟大的物理学家”之称的英国传奇人物霍金,也曾就此焦点问题发表看法,他出面辟谣说:2012不是世界的末日,我们不必惊慌。宇宙的末日会在大约200年以后到来,因此我们这一辈人是安全的。 “此言一出,无异于火上浇油。把宇宙的寿命向后推延200年,仍然没有卸去人们心头的重压。霍金的良苦用心显然没有起到预想的结果。”孙四周老师表示。 近日,孙四周出版了《空间相对论膨胀宇宙的数学原理》个人专著。在这本书中,他用5个公理和1个定义,揭示宇宙演化的数学原理。“由此得到的太阳系寿命等的计算结果,符合美国、德国等国科学家的最新预测。”孙四周表示。 根据孙四周的计算,他对本报记者说:“我们的太阳系现在正处于演化成熟期,相当于人类的30多岁。它仍然在膨胀,但是它很平稳。” “太阳系的消亡肯定不是在2012年,也不是在这以后200年左右。撇开电影的夸张和艺术化不说,科学大师霍金这次是错定了。”孙四周笃定地说。 究竟怎样计算宇宙的寿命? 究竟怎样计算宇宙的寿命?孙四周介绍,科学研究表明,宇宙在空间上是有限的,在时间上是有起点和终点的。我们的宇宙是从很小的一个点开始,扩大而成现在这个规模。最初的宇宙,可以想象成比原子还小。经过膨胀,才有今天的太阳系、银河系、河外星云、星际空间等等。 孙四周介绍说,根据爱因斯坦的相对论可推得,宇宙从最初的膨胀到现在,大约用了137亿年。但是,实际的观测资料不断刷新,现在已经有观测到200亿年以外的星云的记录。尽管如此,科学界还是普遍认为时间总有一个起点,就是以宇宙从一个点开始膨胀那一刻为0时刻。 宇宙的膨胀,到现在也没有停止,而且有证据表明膨胀在加速。在孙四周的著作《空间相对论膨胀宇宙的数学原理》中,有一个公式可以计算宇宙在任意时刻的膨胀速度。孙四周介绍,这个公式是他根据相关的公理和定义推证出来的,通过这个公式,可以计算任意一个星系从小到大的膨胀过程,从而轻易地计算出星系解体的时间表。 “这样的公式在世界上是第一个,我感到很幸运”,孙四周自豪是自己发现

太阳系外行星列表

公转的恒星所属星座赤经赤纬距离(ly) 恒星光谱行星行星质量(×木星质量) 轨道周期(天) 离恒星平均距离(AU) 轨道离心率轨道倾角(度) 发现年份 WASP-1 仙女座00h 20m 40s +31°59′24″1031 F7V WASP-1b 0.89 2.51997 0.0382 0 83.9 2006 υ仙女座仙女座01h 36m 48s +41°24′20″43.9 F8V υ仙女座b 0.687–1.37 4.617113 0.0595 0.023 >30 1996 HD 17156 仙后座02h 49m 44s +71°45′12″255.2 G0 HD 17156b 3.111 21.21725 0.1594 0.6717 88.23 2007 ε波江座波江座03h 32m 55s ?09°27′29″10.5 K2V ε波江座b 1.55 2502 3.39 0.702 30.1 2000 XO-2 天猫座07h 48m 07s +50°13′33″486 K0V XO-2b 0.57 2.615838 0.0369 0 >88.58 2007 OGLE-TR-211 船底座10h 40m 15s ?62°27′20″5300 F OGLE-TR-211b 1.03 3.67724 0.051 0 >87.2 2007 OGLE-TR-132 船底座10h 50m 34s ?61°57′25″7110 F OGLE-TR-132b 1.14 1.689868 0.0306 0 85 2003 OGLE-TR-113 船底座10h 52m 24s ?61°26′48″1800 K OGLE-TR-113b 1.32 1.4324757 0.0229 0 89.4 2004 OGLE-TR-111 船底座10h 53m 1s ?61°24′20″5000 G or K OGLE-TR-111b 0.53 4.01610 0.047 0 88.1 2002 TW 长蛇座长蛇座11h 1m 52s ?34°52′17″176 K8V TW 长蛇座 b 9.8 0.041 3.56 0.04 7 2007 OGLE-TR-182 船底座11h 09m 19s -61°05′43″12700 G OGLE-TR-182b 1.01 3.9791 0.051 0 85.7 2007 格利泽436 狮子座11h 42m 11s +26°42′23″33.48 M2.5 格利泽436b 0.0673 2.64385 0.0291 0.150 86.5 2004 2M1207 半人马座12h 07m 33s ?39°32′54″173 M8 2M1207b 3.3 620000 41 2004 PSR B1257+12 室女座13h 00m 03s +12°40′57″980 pulsar PSR B1257+12B 0.014 66.5419 0.36 0.0186 53 1992 PSR B1257+12 室女座13h 00m 03s +12°40′57″980 pulsar PSR B1257+12C 0.012 98.2114 0.46 0.0252 47 1992 GSC 03466-00819 大熊座13h 44m 23s +48°01′43″457 K HAT-P-3b 0.61 2.899703 0.03894 0 87.24 2007 BD+36°2593 牧夫座15h 19m 58s +36°13′47″1010 F HAT-P-4b 0.68 3.056536 0.0446 0 89.9 2007 Lupus-TR-3 豺狼座15h 30m 19s ?42°58′46″8950 K1V Lupus-TR-3b 0.81 3.91405 0.0464 0 88.3 2007 XO-1 北冕座16h 02m 12s +28°10′11″600 G1V XO-1b 0.9 3.941534 0.0488 0 87.7 2006 HD 147506 武仙座16h 20m 36s +41°02′53″440 F8 HAT-P-2b 9.04 5.63341 0.0685 0.520 90 2007 HD 149026 武仙座16h 30m 29s +38°20′50″257 G0IV HD 149026 b 0.36 2.8766 0.042 0 85.3 2005 OGLE-TR-10 人马座17h 51m 28s ?29°52′34″5000 G or K OGLE-TR-10 b 0.63 3.10129 0.04162 0 84.5 2002 GSC 03089-00929 武仙座17h 52m 07s +37°32′46″1300 G TrES-3 1.92 1.30619 0.0226 0 82.15 2007 GSC 02620-00648 武仙座17h 53m 13s +37°12′42″1400 F TrES-4 0.84 3.553945 0.0488 0 82.81 2007 OGLE-TR-56 人马座17h 56m 35s ?29°32′21″4892 G OGLE-TR-56b 1.29 1.211909 0.0225 0 78.8 2003 SWEEPS-04 人马座17h 58m 54s ?29°11′21″6500 SWEEPS-04b <3.8 4.2 0.055 >87 2006 SWEEPS-11 人马座17h 59m 03s ?29°11′54″6500 SWEEPS-11b 9.7 1.796 0.03 >84 2006 OGLE 2003-BLG-235L 人马座18h 05m 16s ?28°53′42″19000 K OGLE 2003-BLG-235 Lb 2.6 4.3 2004 GSC 02634-01087 天琴座18h 17m 37s +36°37′16″1110 G HAT-P-5b 1.06 2.788491 0.04075 0 86.75 2007 GSC 02652-01324 天琴座19h 04m 09s +36°37′57″512 K0V TrES-1 0.61 3.030065 0.0393 0.135 88.2 2004 GSC 03549-02811 天龙座19h 07m 14s +49°18′59″718 G0V TrES-2 1.28 2.47063 0.0367 0 83.9 2006 HD 189733 狐狸座20h 00m 43s +22°42′39″62.9 K1–K2 HD 189733 b 1.15 2.219 0.0313 0.00 85.3 2005 WASP-2 海豚座20h 30m 54s +06°25′46″493 K1V WASP-2b 0.88 2.152226 0.0307 0 87 2006 HD 209458 飞马座22h 03m 10s +18°53′04″154 G0V HD 209458 b 0.69 3.52474541 0.045 0.00 86.1 1999 ADS 16402 B 蝎虎座22h 57m 47s +38°40′30″453 G0V HAT-P-1b 0.59 4.46529 0.0551 0 85.9 2006 WASP-4 凤凰座23h 34m 15s ?42°03′41″851 G7V WASP-4b 1.2704 1.3382277 0.0230 0 87.54 2007 GSC 03239-00992 仙女座23h 39m 06s +42°27′58″650 F HAT-P-6b 1.057 3.852985 0.05235 0 85.51 2007

系外行星探测方法

系外行星探测方法 系外行星是围绕太阳以外恒星运行的行星或行星系统。太阳以外的恒星距离地球都比较远,例如距离地球最近的南门二(被称为比邻星)到地球的距离也达4.22光年,比太阳远27万多倍!因此,探测系外行星很不容易。系外行星的探测方法分为两类:地面观测和空间探测。早期探测都在地面进行,使用的方法是天文观测中常用的方法。 天体测量法精确测量恒星在天空的位置及观测其位置随时间的变动。如果恒星周围有一颗行星,则行星引力将使恒星在一条微小的圆形轨道上出现移动。利用这种方法,需要观测数年乃至数十年才能得出结果。 视向速度法此方法与天体测量法相似,即利用恒星在行星引力作用下在一条微小的圆形轨道上的移动。但是,此方法是运用多普勒效应测出恒星在观测者视线方向上的运动速度,测量原理是恒星光谱线的“红移”或“蓝移”(请参见相关链接:《多普勒效应与“红移”》)。这个方法是迄今为止在地面寻找系外行星方面用得最多的一种。 凌日法当金星或水星从太阳与地球之间穿过,把太阳表面光线挡住,使太阳表面出现一个黑点时,就出现金星凌日或水星凌日现象。同样,系外行星从其母恒星前面穿过,

从而遮挡母恒星表面光线时,也会出现“凌日”现象。对这种现象进行观测,就可以发现系外行星的存在。使用“凌日法”可估计行星直径。“凌日法”与“视向速度法”联用,有助于估计行星的真实质量。然而,行星从其母恒星和地球之间穿过时,其光度减弱程度与母恒星及行星大小有关,一般情况下光度减弱都不大,例如HD 209458的光度只下降了1.7%,这样的光度变化很难测量出来。 脉冲计时法脉冲星是一种旋转速度特别快、具有极其稳定的旋转周期的星。这种星的发现本身就是天文学上的新成果,更何况在它周围发现了围着它旋转的行星,因而这一方法倍受关注。脉冲星是超新星爆发以后留在原地的超高密度的中子星,能发射出极有规律的快速电磁脉冲。这种天体与其他天体一样,转动速度也可受绕其转动的行星影响,因此,通过测量其脉冲的变动,就可以估计其行星性质。与其他方法相比,这个方法灵敏度极高,能测量出只相当于0.1个地球质量的行星和行星系统内彼此之间的引力扰动。用这种方法可以得到有关行星本身、行星轨道等多方面的资料。但由于脉冲星稀少,用这种方法不容易发现大量行星。再者,脉冲星附近有极强的高能辐射,因而它们周围很难有生命存在。 引力微透镜法引力微透镜是引力透镜的一种。所谓引力透镜,是指远方星球的光线经过大质量天体附近时发生改

太阳系教学设计

5、太阳系 【教学目标】 科学概念: 太阳和围绕它运动的行星、矮行星和小天体组成了太阳系。太阳系是一个较大的天体系统。 过程与方法: 1、收集资料认识和了解太阳系。 2、按一定比例对数据进行处理,并在此基础上用一定的材料建立太阳系的模型。情感态度与价值观: 1、认识到收集和整理资料,并进行交流,是科学学习的一种方式。 2、学会与他人合作,并能在合作中发挥自己的作用。 3、意识到太阳系中天体的运动是有规律的,并可以逐渐被人们认识的。 【教学重点】太阳和围绕它运动的行星、矮行星和小天体组成了太阳系。 【教学难点】根据八大行星距太阳的平均距离及各行星赤道直径数据表建立太阳系的模型。 【教学准备】 教师准备:太阳系图片、多媒体资料、八大行星数据表、八个铁丝制成的支架、橡皮泥、小皮球、直尺等;教师事先考察制作太阳系模型的室外场地。 学生准备:课前收集有关太阳系的资料,小组内先进行交流。 【教学过程】 一、认识太阳系。 1、提出问题:地球在不停的围绕太阳运动,那么还有哪些天体也在不停地围绕着太阳运动呢? 2、课前同学们都进行了有关太阳系资料的收集,现在让我们来开个有关太阳系的交流会,请各组派代表进行全班交流,资料可以是文字的,也可以用图片的形式展示。说说: (1)哪些天体在围绕着太阳运动? (2)这些天体有哪些特点? (3)它们之间是如何排列的? 3、教师展示自己收集的资料做补充。(最好是有关太阳系的科普录像资料) 4、小结:太阳系是以太阳为中心,包括围绕它转动的八大行星(及围绕行星转动的卫星)、矮行星、小天体(包括小行星、流星、彗星等)组成的天体系统。 二、建立太阳系模型。 1、谈话:我们已经对太阳系有了初步的了解,为了能更好地认识太阳系,让我们用橡皮泥捏成球表示八大行星,按照一定的顺序和比例,试着建一个太阳系的模型。 2、讨论:怎样才能建好模型?需要哪些相关数据才能保证我们建的模型相对准确? 3、阅读课本56页有关八大行星的数据资料。 4、尝试根据八大行星与太阳的距离来建模型,思考: (1)如何在桌面上将八大行星摆列出来? (预设:把表中行星与太阳的距离按相同比例缩小,将“太阳”及“八大行星”在桌子上排开。) (2)如果要对八大行星与太阳距离的数据进行处理,该如何处理?

太阳系九大行星介绍

太阳系九大行星介绍 一个帮助你想象太阳系中各成员相对大小的方法是:将实际图大小缩小十亿倍(1e9),这样地球直径大约为1.3厘米(一颗葡萄的大小);月球轨道宽则在一个成人脚印外;太阳直径则为1.5米(大约一个人高),离地球150米(相当于一个街区);土星直径15厘米(一个大葡萄轴的大小),离太阳五个街区远;土星(桔子般大小)则离太阳十个街区远;天王星和海王星(柠檬)离太阳分别为20及30街区远;一个人在此情况下的比例为一个原子;最近的一颗恒星将在40000公里以外。 在上面插图中未显示的是大量的栖居在太阳系中的小物体:行星的卫星;大量的绕太阳公转的小行星(小石块构成),大多数在火星及土星之间,其他则分散在各个角落;在太阳系内延大大延伸的轨道运动的彗星(小冰块构成),对黄道面来讲具有上下随机的运动方向。行星卫星绕轨道运行时同行星般大致与黄道同一平面,很少有例外,但通常彗星与小行星不是这样。 分类 这些物体的分类是次要的争论。按传统说法,太阳系被分为行星(绕太阳公转的大物体),它们的卫星(如月球,绕行星公转的各种大小的星体),小行星(小型的密集的绕太阳公转的星体)和彗星(小个体的冰质的绕高度偏心轨道公转的星体)。不幸的是,太阳系远比这里提到的复杂: 有几个卫星比冥王星大,并有两个大于水星; 有几个小卫星很有可能是被吸引到的小行星; 彗星有时与小行星进行区别; Kuiper带物体和别的类似Chiron的物体运行不太符合计算; 地球/月球和冥王星/冥卫一的运动系统有时被认为是“双星系统”。 别的分类是以化学组成为基础的,或以起源假说为基础,这个正在试图以自然规律加以证实,但它们常常由于太多的级别或太多的例外而终止使用。大多数星体是独一无二的;我们当前所理解的是不足以建立清楚的分类的。在随后的几页,我将使用常用的分类。 这九大行星通常按以下几个方法分类: 根据组成: 固态的由石头构成的行星:水星,金星,地球和火星: 固态行星主要由岩石与金属构成,高密度,自转速度慢,固态表面,没有光环,卫星较少。较大的气态行星:木星,土星,天王星和海王星: 气态行星主要由氢和氦构成,密度低,自转速度快,大气层厚,有光环和很多卫星。 冥王星。 根据大小: 小行星:水星,金星,地球,火星和冥王星。 小行星的直径小于13000公里。 巨行星:木星,土星,天王星和海王星。 巨行星的直径大于48000公里。

太阳系形成与地球诞生

南日中学师生共用导学稿 班级姓名 年级:初三年级学科:科学整理:钱敏达审核: 内容:§1.2太阳系的形成与地球的诞生课型:新授时间: 学习目标 1、知道托勒密与“地心说”;哥白尼与“日心说”。 2、了解关于太阳系形成的主要学说——星云说。 3、知道地球是随太阳系的形成而诞生的。 学习重点难点 1、重点:地心说、日心说、星云说。 2、难点:星云说。 课后作业 1.提出黑洞理论和无边界设想的科学家是( ) A、哈勃 B、霍金 C、伽利略 D、哥白尼 2. 目前被人们广为接受的一种宇宙起源学说是(勒梅特于1931年创建)。 其主要观点——大约年前,我们所处的宇宙全部以粒子的形式、极高的温度和密度,被挤压在一个“”中。 拓展与提高 1.英国人提出的理论和的设想成了现代宇宙学的重要基石。他的宇宙无边界设想是这样的:第一,; 第二,宇宙不是的一般系统。 新课预习 一、太阳系的形式与地球的诞生 1.“地心说”:公元2世纪,希腊科学家在总结前人学说的基础上,创立了“”宇宙体系学说。 2.“日心说”:16世纪,波兰天文学家依据大量精确的观测资料,建立了 “”宇宙体系学说。 3. 太阳系:太阳系的九大行星,由内向外,有水星、、、、木 星、、、和冥王星,它们都在接近同一平面的近圆轨道上,朝同一方向绕太阳公转。

二、太阳系的形成 1. “康德——拉普拉斯星云说”:太阳系是由一块收缩形成的,先形成的是, 然后,剩余的进一步收缩演化,形成地球等。理论依据:太阳系的行星绕日运行的特征:同向性—公转方向与自转相同;共面性—公转轨道平面大多接近于;轨道的近圆性—公转轨道是。 三、其它学说: (1)灾变说:也叫撞击说,认为慧星等其它天体和太阳相撞后,它们的残骸渐成行星。(2)遭遇说:其他天体经过太阳附近,吸引出太阳内部物质形成行星。 课堂练习 1.当代英国最伟大的科学家霍金的黑洞理论和宇宙无边界设想已成了现代宇宙学说最重要的基石,关于黑洞,下列说法得不到支持的是…………………………………( )。 A、是质量为太阳的l、44到2倍的恒星在晚年爆发形成超红巨星后塌缩而成 B、是质量比太阳大得多的恒星在晚年爆发形成超红巨星后塌缩而成 C、黑洞直径仅几千米,但密度大得难以想像,它能把靠近它的一切东西永久吞没 D、人们看不见黑洞,但天文学家能测出它的存在 2.下列说法不是太阳系中行星运动的共同特点的是() A、八大行星绕日公转的方向和自转的方向一致 B、八大行星绕日公转的轨道平面大多接近同一平面 C.除了水星和金星,其他行星都有卫星绕转,而且绕转的方向一致 D.八大行星绕日公转的轨道是在以太阳为中心的一个球面上 3.下列说法不正确的是() A、宇宙是原始火球大爆炸形成的 B.星云是指由气体和尘埃组成的巨大云雾状天体,星云很庞大C.太阳系是由受太阳引力约束的天体组成的系统 D.八大行星都是主要由石质和铁质构成的 4.“地心说”的集大成者是希腊科学家___。“地心说”的核心是地球是宇宙的___,太阳和其他天体都是_________。 5.16世纪,波兰天文学家____,建立了____宇宙体系学说,核心是:太阳是宇

太阳系各行星以及卫星中英对照

1. 水星mercury 无卫星 2. 金星venus 无卫星 3. 地球earth 卫星 moon 4. 火星mars 火卫1Phobos 火卫2 Deimos 5. 木星jupiter 6. 土星saturn 7. 天王星uranus 8. 海王星neptune 冥王星pluto 妊神星Haumea 谷神星Ceres 阋神星Eris 木卫1Io 木卫2Europa 木卫3Ganymede 木卫4 Callisto(这四个最大,也叫伽利略卫星) 木卫5Amalthea 木卫6Himalia 木卫7Elara 木卫8Pasiphae 木卫9Sinope(最外层) 木卫10Lysithea 木卫11Carme 木卫12Ananke 木卫13Leda 木卫14Adrastea 木卫15Adrastea 木卫16Metis 木卫17Callirrhoe 木卫18Themisto 木卫19Megaclite 木卫20Taygete

21Chaldene 22Harpalyke 23Kalyke 24Iocaste 25Erinome 26Isonoe 27Praxidike 28Autonoe 29Thyone 30Hermippe 31Aitne 32 Eurydome 33 Euanthe 34 Euporie 35 Orthosie 36 Sponde 37 Kale 38 Pasithee 39 Hegemone 40 Mneme 41 Aoede 42 Thelxinoe 43 Arche 44 Kallichore 45 Helike 46 Carpo 47 Eukelade 48 Cyllene 49 Anthe 50 Herse 土卫1Mimas 土卫2Enceladus 3Tethys 4Dione 5Rhea 6Titan 7Hyperion 8Iapetus或Japetus 9Phoebe 10Janus

1太阳系和地球系统元素的丰度

第一章太阳系和地 球系统的元素丰度 元素丰度是每一个地球化学体系的基本 数据,可在同一或不同体系中用元素的含量 值来进行比较,通过纵向(时间)、横向 (空间)上的比较,了解元素动态情况,从 而建立起元素集中、分散、迁移活动等一系 列地球化学概念。从某种意义上来说,也就 是在探索和了解丰度这一课题的过程中,逐 渐建立起近代地球化学。 研究元素丰度是研究地球化学 基础理论问题的重要素材之一。宇宙天 体是怎样起源的?地球又是如何形成的?地 壳中主要元素为什么与地幔中的不一样?生 命是怎么产生和演化的?这些研究都离不开 基础概念太阳系的组成及元素丰度地球的结构和化学成分 地球化学体系中元素丰度分布特征和规律。 1.1基本概念 地壳元素的丰度区域中元素分布的研究 1. 地球化学体系 按照地球化学的观点,我们把所要研究 的对象看作是一个地球化学体系。每个地球 化学体系都有一定的空间,都处于特定的物 理化学状态(C T、P等),并且有一定的 时间连续。 这个体系可大可小。某个矿物包裹体, 某矿物、某岩石可看作一个地球化学体系, 某个地层、岩体、矿床(某个流域、某个城 市)也是一个地球化学体系,从更大范围来 讲,某一个区域、地壳、地球直至太阳系、 整个宇宙都可看作为一个地球化学体系。

地球化学的基本问题之一就是研究元素在地球化学体系中的分布(丰度)、 分配问题,也就是地球化学体系中元素“量”的研究。 2. 分布与丰度 所谓元素在体系中的分布,一般认为是元素在这个体系中的相对含量(以元素的平均含量表示),即元素的“丰度”。其实“分布”比“丰度”具有更广泛的涵义:体系中元素的丰度值实际上只是对这个体系里元素真实含量的一种估计,它只反映了元素分布特征的一个方面,即元素在一个体系中分布的一种集中(平均)倾向。但是,元素在一个体系中,特别是在较大体系中的分布决不是均一的,还包含着元素在体系中的离散(不均一)特征,因此,元素的分布包括:①元素的 相对含量(平均含量=元素的“丰度”);② 元素含量的不均一性(分布离散特征数、分布所服从的统计模型)。 需要指出的是,从目前的情况来看,地球化学对元素特征所积累的资料(包括太阳系、地球、地壳)都仅限于丰度的资料,关于元素分布的离散程度及元素分布统计特征研究,仅限于在少量范围不大的地球化学体系内做了一些工作。 3. 分布与分配 元素的分布指的是元素在一个化学体系中(太阳、陨石、地球、地壳、某地区等)的整体总含量; 元素的分配指的是元素在各地球化学体系内各个区域或区段中的含量; 分布是整体,分配是局部,两者是一个相对的概念,既有联系又有区别。 例如,地球作为整体,元素在地壳中的分布,也就是元素在地球中分配的表现,把某岩石作为一个整体,元素在某组成矿物中的分布,也就是元素在岩石中分配的表现。 4. 绝对含量和相对含量 各地球体系中常用的含量单位有两类,绝对含量和相对含量 1.2太阳系的组成和元素丰度

相关文档
最新文档