风电并网对电力系统的影响分析开题报告

风电并网对电力系统的影响分析开题报告
风电并网对电力系统的影响分析开题报告

毕业设计(论文)开题报告书

课题名称风电并网对电力系统的影响分析

学生姓名黄志勇

学号0741227305

系、年级专业电气工程系、07电气工程及其自动化

指导教师袁旭龙副教授

2010年12 月20 日

一、课题的来源、目的意义(包括应用前景)、国内外现状及水平

课题来源:

风能作为一中清洁的能源受到了全世界普遍的青睐,但是风能发电也存在这一些难以解决的问题,如风电并网对系统的影响以及风力发电的规划是摆在眼前的现实问题。风力发电并网后会对电力系统产生不小的影响,会影响到电网的稳定性、电网电压,电能质量和继电保护装置,还会造成谐波污染。其中由风电并网所引起的电压波动和闪变是风电并网的主要负面影响。虽然现在风力发电机组大都采用软并网方式,但是启动时仍会产生较大的冲击电流,使得风电机组输出的功率不稳定,进而会导致电压的波动和闪变。电压的波动和闪变会使电灯闪烁,电视机画面不稳定,电动机转速变化严重影响到工业产品的质量,在某些特殊行业电压不稳会使一些精密的仪器出现测量错误,严重时还会引发重大事故。风能作为一种间歇性能源,加之风能资源的预测准确度并不能完全符合电力系统对电能质量的要求,所以寻求新途径新思路解决风电对系统的影响也自然成了许多电力行业工作人员的目标。

目的意义:

综合运用所学的理论知识,使理论与实践相结合,尽快适应生产实际;提高动手能力和分析问题、解决问题的能力;增强工程观念;提高查阅资料和阅读专业英语资料的能力。

随着世界能源日益紧缺和全球气候变暖趋势增强,新能源、可再生资源的开发利用成为了解决上述问题的主要手段之一。风力发电是目前可再生能源各种技术中发展最快、技术最为成熟、最具大规模和商业化前景的产业,是最有可能成为主流电源的可再生能源技术之一。所以采取措施改善风电并网对电力系统的一些负面影响,积极促进风电的开发利用,是优化能源结构,保障能源安全,缓解能源利用造成的环境污染,促进能源与经济、能源与环境协调发展的重要的选择,是建设资源节约型、环境友好型社会和实现可持续发展的重要途径。

国内现状及水平:

我国是世界上利用风能最早的国家之一,可以开发利用的风能资源仅次于前苏联和美国,为世界第三位。目前,我国已经拥有750kw以下各类风电设备的制造能力,兆瓦级风力发电机组正在研究试验阶段,风电机组正由定桨矩型向变桨矩型过渡。

国内风电场装机大多数为mw级以下的定桨距定速型风机。其中,600kw和750kw 的国内生产厂家超过数十家,而且占据了市场的80%以上,国产化率已达90%;mw

级以上的生产厂家以国外为主,国内仅有为数不多的几家能够生产,但拥有自主知识产权的仅有新疆金风科技风电有限公司和沈阳工业大学两家,其他厂家都是引进国外技术或以生产许可证方式与国外风电厂商进行合作。从2006年国内主要风电机组供应商及其主流技术来看,可见,mw级以上的机型中,采用双馈发电机变桨距变速恒频技术的机型正成为主流,以金风科技为代表,采用永磁同步电机的直驱式风电机组也有很大的发展空间。但在上述mw级国产风电机组中,大于2mw的机组还正在研发,对于大容量风电系统的设计能力还不够,特别是关键部件的设计和生产能力还比较落后,比较突出的是叶片、齿轮箱和电控系统,与国外产品存在较大差距;此外,风电机组用轴承,特别是主轴轴承,绝大部分还依赖进口。2006年,我国新增风机市场mw级以上还不到30%,累计mw级机组只占总机组数量的11%;mw级以下机组多采用定桨距定速恒频技术,运行效率较低,而mw级以上变桨距变速恒频风电机组还处于试运行阶段,其国产化率为70%左右,关键部件的生产还依赖国外。

尽管我国的mw级风电技术还刚刚起步,但我国的风电厂商也注意到海上风电场的发展潜力,首个海上风电场项目已经启动,风电系统正朝着更大容量的方向发展。国外现状及水平:

国外风电技术的发展起步较早,风电技术朝着提高单机容量,减轻单位千瓦重量,提高转换效率,提供系统可靠性的方向发展。目前,国际上主流的风力发电机组已达到2~3mw,平均单机容量从上世纪90年代的600kw增加到1800kw以上,2005年以来,mw级以上单机装机容量均超过当年装机总容量的75%;在已安装的风电机组中,变速恒频和变桨距技术得到快速推广,国外大多数风电机组开发制造厂商都推出了变桨变速风电机组,据统计,2004年上半年,在德国所安装的风电机组中,有91.2%的风电机组采用的是变桨距调节方式,2004年和2005年,全球所安装的风电机组中,有92%的风电机组采用了变速恒频技术,而且这个比例正在逐渐提高。

目前,国外风电机组普遍为mw级以上,并且采用了变桨变速的先进技术。2006年市场上前十位的全球风电机组供应商及其主流技术如表2所示,可见传统的恒速恒频技术不再是主流,仅有siemens公司和suzlon公司的部分早期机型采用了此技术;采用双馈发电机的变速恒频技术已比较成熟,成为当前风电市场的主流;采用同步发电机的直驱式变速恒频技术由于省去了齿轮箱,具有一定的发展潜力;为提高风电系统控制灵活性和可靠性,所有风电厂商都采用了变桨距技术。随着风电机组单机容量的不断增大,国外的风电场正逐渐从陆上向海上发展。与陆上相比,海上风速较高、风电机组距离海岸较远,视觉干扰很小、允许机组制造更为大型化,从而可以增加单

位面积的总装机量、机组噪音排放的控制问题也不那样突出。目前,英国、丹麦、荷兰、德国等欧洲国家已建成若干海上风电场,并且提出了海上风电场规划的战略目标。例如,德国计划在2030年前建成总容量为25gw的海上风电场,其中1gw以上的至少12个,发电量将占总发电量的15%。针对海上风电场,德国repower公司已生产出5mw 风机,enercon公司的6mw的风机也已推出,美国gewind公司的7wm风机也在设计和开发,预计到2010年单机容量可上升至10mw。

随着电网内风电容量的增加,风电系统对电网的影响也日益增加,为提高电网运行的可靠性,国外如丹麦、德国和西班牙等国的电网运营商已开始制定新的风电场并网规范,包括并网电压、频率、有功、无功功率的范围和风电系统不断网运行要求等。新的并网规范使得国外风电技术从单纯的单机优化控制向风电场多机协调控制发展,如enercon公司通过集中控制各个风电机组的功率因数,实现了电网的有源功率因素校正和谐波补偿。

世界风电技术的发展趋势在于提高风电系统的效率、可靠性和降低风电成本。相应地,风电机组正朝着大容量化的变桨矩变速系统发展;更大容量的风电系统设计是目前风电技术的一大挑战;海上风电场是风电技术的发展方向之一,但系统的可靠性设计、海上风电场的输电技术、系统的保护技术等还有待进一步研究;随着电网内风电容量的增加,风电场的协调控制,包括风电场有功、无功功率控制、故障穿越控制等将是风电技术的又一大挑战。国外已有研究机构对风电场输出功率水平控制进行了初步研究,通过额外的柔性输电设备,如svc、stacom等控制风电场的输出无功功率水平[26,27];通过增加蓄电池组等辅助存储系统,或控制部分风机低载运行,控制风电场的输出有功功率水平。但上述方法会增加系统成本或降低系统的使用效率,因而还未见在实际风电系统中得到应用。

二、课题研究的主要内容、研究方法或工程技术方案和准备采取的措施

主要内容:

介绍世界风力发电现状和各种不同类型风力发电机并网方式;建立风电机模型,对风电场并网产生的影响进行分析;在分析结论的基础上提出相应的改善措施。

工程技术方案和准备采取的措施:

1、无功补偿技术:改善风电系统运行性能的无功补偿技术包括风电场出口安装动态的无功调节装置(SVC),具有有功无功综合调节能力的的超导储能(SMES)装置等措施。静止无功补偿器(SVC)可以快速平滑地调节无功补偿功率的大小,提供动态的电压支援,改善系统的稳定性。将SVC安装在风电场的出口,根据风电场接入点的电压偏差量来控制SVC补偿的无功功率,能够稳定风电场节点电压,降低风电功率波动对电网电压的影响;SMES可以在四象限灵活调节有功和无功功率,为系统提供功率补偿。在风电场出口安装SMES可以降低风电场输出功率的波动,稳定风电场电压。

2、风电场通过轻型直流输电(HVDC Light)与电网相连:轻型直流输电(HVDC Light)是在电压源换流器(VSC)技术、门极可关断晶闸管(GTO)及绝缘栅双极晶闸管(IGBT)等全控型功率器件基础上发展起来的。由于使用了基于PWM控制的VSC结构,HVDC Light具有直流输电的优点。不仅解决了分散电源接入的输电走廊问题,而且其灵活的无功、电网调压能力,打破了短路容量比对风电场容量的限制,同时也改善了交流系统的稳定性和电能质量。

3、变速恒频风力发电机组:随着电力电子元件的性价比不断提高,未来几年变速恒频电机、双馈电机等新型发电机组开始在风机上推广应用,风电场可以像常规机组一样,承担电压及无功控制的任务,以最大限度提高风能的利用效率。采用通过电力电子装置与电网相连的同步发电机;或者采用变速恒频双馈风力发电机,实现风机以最佳叶尖比运行。

三、现有基础和具备的条件

现有基础:

本人在大学期间系统地学习了《发电厂电气主接线》、《电力系统分析》、《电力系

统继电保护》、《电力系统自动化》和《电力电子》和等专业课程,并掌握一定的MATLAB软件计算和简单的仿真方法。也在校图书馆和校外图书城广泛地查阅了大

量的资料文献,基本上掌握了课题的设计思路和设计流程,为课题的实施提供了前期

准备。同时指导老师袁书记在这方面有着较强的理论基础和设计经验,为课题的顺利

开展提供了指导方向上的保障。

具备的条件:

可供参考的资料:

[1]范锡普.发电厂电气部分[M].第二版.北京:中国电力工业出社,2002.70-80.

[2]王成熙.风力发电[M].北京:中国电力出版社,2003.52-62.

[3]吴俊玲.大型风电场并网运行的技术问题研究[D].中国电力出版社,2004.11-13.

[4]徐浩,李杨.风力发电对电力系统运行的影响[J].江苏出版社,2007.15-20.

[5]雷亚洲.与风电并网相关的研究课题[J].电力系统自动化,2003.8-11.

[6]李再华,李小伟.电力系统谐波问题研究[J].电气时代,2007.3-6.

[7]刘文洲.风力发电机[M].中国电力出版社,2002.50-54.

[8]余贻鑫,陈礼义.电力系统的安全性和稳定性[M].科学出版社,1988.21-23.

[9]张红光,张粒子.风电场接入电网的安全稳态分析[J].中国电力,2007. 105-109.

[10]孙元章,吴俊,李国杰.风力发电对电力系统的影响[J].电网技术,2007.55-62 .

四、总的工作任务,进度安排以及预期结果

总的工作任务:

通过所学专业知识和查阅资料,了解风电并网运行的工作原理和运行方式,建立风电机模型,分析出风电并网对电力系统的影响,主要有对电网稳定性的影响,对电网电压的影响,对电能质量的影响,对继电保护装置的影响以及产生谐波污染。然后通过仿真软件采取一些措施进行改善。

进度安排:

2010年11月15日~2010年12月20日:熟悉课题,找参考资料,完成开题报告;

2011年12月21日~2011年1月9日:熟悉MATLAB软件;

2011年1月10日~3月13日:完成课题调研

2011年3月14日~3月20日:完成方案比较及选出最优方案,建立风电机模型;

2011年3月21日~3月27日:分析出对电网电压的影响并找出改善措施;

2011年3月28日~4月3日:分析出对电网稳定性的影响并找出改善措施;

2011年4月4日~4月17日:分析出对电能质量的影响并找出改善措施;

2011年4月18日~5月2日:分析出对继电保护装置的影响并找出改善措施;

2011年5月2日~5月15日:整理并完成论文初稿,并翻译成英语;

2011年5月15日~5月22日:课题送审,修改论文,完成论文撰写;

2011年5月23日~5月30日:论文答辩。

预期结果:

建立风电机模型,通过改善措施的仿真运行减小了风电并网对电网稳定性、电网电压、电能质量和继电保护装置等一些负面影响。通过这个设计,不仅巩固了自己以前所学的专业知识,同时也在查找资料的过程中学到了很多的新知识,拓展了知识面,也为自己即将走上社会工作打下了一定的知识基础。

五、指导教师审阅意见

指导教师(签名)

年月日六、教研室审查意见

教研室主任(签名)

年月日七、系审查意见

主管系领导(签名)

年月日备注

风电并网对电力系统的影响及改善措施标准版本

文件编号:RHD-QB-K4609 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 风电并网对电力系统的影响及改善措施标准版 本

风电并网对电力系统的影响及改善 措施标准版本 操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 [摘要]:由于风电场是一种依赖于自然能源的分散电源,同时目前大多采用恒速恒频异步风力发电系统,其并网运行降低了电网的稳定性和电能质量。着眼于并网风电场与电网之间的相互影响,特别是对系统稳定性以及电能质量的影响,对大型风电场并网运行中的一些基础性的技术问题进行了研究。 [关键词]:风电场;并网;现状分析。 一、引言 风力发电作为一种重要的可再生能源形式,越来越受到人们的广泛关注,并网型风力发电以其独特的

能源、环保优势和规模化效益,得到长足发展,随着风电设备制造技术的日益成熟和风电价格的逐步降低,近些年来,无论是发达国家还是发展中国家都在大力发展风力发电。 风力发电之所以在全世界范围获得快速发展,除了能源和环保方面的优势外,还因为风电场本身所具有的独特优点:(1)风能资源丰富,属于清洁的可再生能源;(2)施工周期短,实际占地少,对土地要求低;(3)投资少,投资灵活,投资回收快;(4)风电场运行简单,风力发电具有经济性;(5)风力发电技术相对成熟。 自20世纪80年代以来,大、中型风电场并网容量发展最为迅猛,对常规电力系统运行造成的影响逐步明显和加大,随着风电场规模的不断扩大,风电特性对电网的负面影响愈加显著,成为制约风电场建

风电新能源及其并网技术的发展现状

风电新能源及其并网技术的发展现状 为进一步响应国家可持续发展的号召,提倡低碳生活,大力发展风电资源是我国可持续发展道路上的重点之一,众所周知,煤炭资源属于不可再生资源,生成周期非常长,甚至需要上千年的生成周期。因此,风电新能源的开发与利用成为我国资源可持续发展的重要选择之一。风能是一种洁净能源,可以说是取之不竭、用之不尽,我国沿海地区、草原地区、山区以及高原地区等严重缺乏煤炭资源和水资源,但是这些地区的风能资源丰富,依据不同地区的优势资源来带动当地的发展,已经成为是我国可持续发展战略的重要组成部分之一。 标签:风电新能源;并网技术;发展探究 中图分类号:F726 文献标识码:A 引言 当今人类生存和发展急需解决的是能源和环境问题。进入21世纪以来,世界各国为了保证各自的能源安全并应对气候变化,纷纷调整能源战略,加大可再生能源的开发和建设力度,尤其是风能的开发和利用。风力发电作为一种可再生的绿色能源,以其无污染、储量丰富、成本低廉、使用前景广阔的优势倍受世界各国的重视。我国由于海域面积辽阔,风能储量很大且分布较广,开发潜力很大。近年来,在能源和环境危机日趋紧迫的情况下,我国政府实施了一系列新的能源战略,对能源结构进行了调整,风电产业及技术水平得到了飞速发展,但在风电并网技术方面还存在一些问题,总结并分析如何解决这些问题,对深入推进风电产业的健康、可持续发展意义非凡。 1风电新能源存在的问题 1.1风能不稳定、不可控 风能的能量密度低,具有不确定性和随机性,因此对风能的利用在调节和控制方面不易掌控,对风能的开发利用有一定的阻碍。 1.2风力发电厂的位置偏远 我国的风力资源较为丰富的地区都比较偏远,对于资源短缺地区的距离较远,风电的外送被电网的输电能力所限制,中国风能资源的大规模开发,需要加强电网的建设。 1.3风能的能量密度不大

风电并网对电网的影响及其策略

风电并网对电网的影响及其策略-机电论文 风电并网对电网的影响及其策略 李梦云 (武汉理工大学自动化学院,湖北武汉430070) 【摘要】目前,中国风电已超核电成为第三大主力电源。但风力电场等分布式电源对电力网络的日益渗透的同时,给现代电力系统带来了很多方面的影响,比如改变了电力网络中能量传递的单向性,对现有配电网的稳定性产生较大的影响(尤其是对电网电压稳定性的影响)。因此,对风电并入配电网后产生的影响及其应对策略进行相关的研究是非常具有现实意义的。介绍了风力发电目前的发展状况和风电接入电网后对电力系统带来的影响,尤其是针对风电场并网后对电网的稳态电压的稳定性,以风速和风电机组的功率因数作为影响因素,从原理上,分别分析其对含风电场的电网的稳态电压的影响。最后在此基础上,提出初步的应对策略。 关键词风力发电;电网;稳态电压;影响;策略 0 前言 随着日益增长的电力负荷、能源的短缺、环境恶化的愈发严重,以及用户要求电能质量的提高,大家越来越关注DG(分布式发电)。研究表明,分布式发电的发展可以反映能源的综合运用、电力行业的服务程度和环境保护的提升。尤其是其中的风力资源,因为其是可再生能源、开发潜力大、环境和经济效益好,因此得到了广泛的应用,使风力发电成为分布式发电中重要的发展方向,同时也使其成为一种当今新型能源中发展迅速的发电方式。 1 风电并网对电力系统的影响

风电场并入配电网,使输电网对部分地区的电力输送压力得到缓解和电力系统的网损得到改善的同时,也对电力系统产生了许多不好的影响如电压波动、闪变等。 同时由于风具有随机性,其输入电网的有功和无功有很大的波动性。风速的不可预测这一特性,使我们不能对风电进行准确而又可靠地出力预测,我们需要更加注重负荷跟踪、备用容量等,提高了风电场的运行成本。 风电并网增加电力系统调峰调频的难度,不仅需要风电场容量,而且需要风电场快速响应负荷变化;风电机组并网时,会不可避免的对电网有冲击电流。风电场与电网的联络线的潮流的双向性,使并网后的电网的继电保护的保护配置提高了要求。 2 风电并网对电网电压的影响 配电网的电压分布情况由电力系统的潮流所决定,当电力网络中电源功率和负荷发生变化时,将会引发电力网络各个母线的节点产生变化。对风电并网的配电网来说,风电场的功率的波动会影响电网电压出现偏移。由于风电场接入配电网后,风电场的接入点的变化、有功功率和无功功率的不平衡等,会导致无功功率从无功源流向负荷。风电场的电压偏移会影响风电场的接入容量和风电并网后电力系统的安全运行。 2.1 风速变化对配电网电压的影响 将接入风电场的配电网系统的供电线路作等值电路,则风电场并网点至无限大系统两端的电压降落为: U1-U2=I(R1+R2+jX1+ jX2) (1) 上式中,U1为风电场的输出电压,U2为电网电压,R1、X1表示风电场的电

风电并网对电力系统稳定性的影响

风电并网对电力系统稳定性的影响 【摘要】风电作为一种重要的新能源,若能实现大规模利用对于解决当前全球性的能源危机有着重要意义。风电本身的波动性和间隙性给风电并网带来了很大的难度,本文将深入探究风电并网对电力系统的影响,旨在为同行进一步解决风电的合理并网问题提供一个有益的参考。 【关键词】风电并网;风电特性;电力系统稳定性 引言 保证电力系统的稳定性是电能生产、运输和利用的基本要求。风电作为一种新型能源,可控性较差,其本身的很多特性具有高度的随机性,因此,风电的大规模并网会对电力系统的安全运行产生很大的影响[1],风电并网已经成为制约风电发展的重要因素。 1.风电特性 风电特性是研究风电并网的基础。风电特性主要包括波动性和间歇性。波动性,又称脉动性,是指风电功率在时间尺度上具有沿某条均线不断上下跳变的特性,其特性可以通过波动幅值和波动频率表征。间歇性是指风电功率在时间尺度上具有不连续性。风电的这两个特性具有高度的随机性,从而是风电的可控性较差。风电功率的这些特性是由风力本身决定的,如风速,风向等。 2.风电并网对电力系统的影响 风电并网会使风电场对电力系统的安全稳定运行产生很大的影响。本文认为其主要影响包括以下几个方面: (1)对电压稳定的影响 由于风电功率具有波动性和间歇性,进而会导致电压出现波动和闪变。文献[2]详细研究了风电功率的间歇性对电力系统电压稳定性的影响,指出保证电压稳定性的关键问题是对风力发电机组的速度增量进行有效控制,对电压稳定性影响最大的区域分布在风电场及其附近的节点区域。 (2)对频率稳定的影响 风电的发电功率不稳定,具有间歇性和波动性,从而使其发电量也不稳定,输出功率不是恒定值。风速发生变化时其输出有功功率就会波动,进而导致电网内的有功也发生变化,有功会影响电网的频率。如果一个地区的风电所占份额过大,某一时刻有功频率变动过大将会导致频率崩溃,甚至会使得整个电网瘫痪。

风电并网技术标准(word版)

ICS 备案号: DL 中华人民共和国电力行业标准 P DL/Txxxx-200x 风电并网技术标准 Regulations for Wind Power Connecting to the System (征求意见稿) 200x-xx-xx发布200x-xx-xx实施中华人民共和国国家发展和改革委员会发布

DL/T —20 中华人民共和国电力行业标准 P DL/Txxxx-2QQx 风电并网技术标准 Regulations for Wind Power Connecting to the System 主编单位:中国电力工程顾问集团公司 批准部门:中华人民共和国国家能源局 批准文号:

前言 根据国家能源局文件国能电力「2009]167号《国家能源局关于委托开展风电并网技术标准编制工作的函》,编制风电并网技术标准。《风电场接入电力系统技术规定》GB/Z 19963- 2005于2005年发布实施,对接入我国电力系统的风电场提出了技术要求。该规定主要考虑了我国风电尚处于发展初期,风电机组制造产业处于起步阶段,风电在电力系统中所占的比例较小,接入比较分散的实际情况,对风电场的技术要求较低。根据我国风电发展的实际情况,各地区风电装机规模和建设进度不断加快,风电在电网中的比重不断提高,原有规定已不能适应需要。为解决大规模风电的并网问题,在风电大规模发展的情况下实现风电与电网的协调发展,特编制本标准。 本标准土要针对大规模风电场接入电网提出技术要求,由风电场技术规定、风电机组技术规定组成。 本标准由国家能源局提出并归口。 本标准主编单位:中国电力工程顾问集团公司 参编单位:中国电力科学研究院 本标准主要起草人:徐小东宋漩坤张琳郭佳李炜李冰寒韩晓琪饶建业佘晓平

风电接入对电力系统的影响及控制措施

风电接入对电力系统的影响及控制措施 互联网环境下,电力网络日趋复杂,使电网维护和管理难度增加,很容易出现电网瘫痪情况,造成严重的经济损失。在电力系统中接入风电,能够减少停电损失和故障发生率,使电力网络管理效率得到明显提升。文章简要论述风电场特点及风力发电机组故障情况,分析风电接入对电力系统的影响,提出具体控制方法。 标签:风电接入;电力系统;保护装置 前言: 风力发电属于可再生能源发电技术,应用日益普遍。风力资源丰富,但开发难度大。一些地区虽然适合风电大规模开发,但都处于电网末端,网架结构简单,一旦把风电接入电网,不仅影响电能质量、继电保护等,还会导致电网稳定性差。明确风电接入对电力系统的影响,采取专业技术手段加以控制,优化电力系统性能,为客户提供优质电力服务。 1风电场及风力发电机组故障 1.1风电场特点 风能具备随机性和不可控性,也不能够存储,很难像常规火电厂一样,通过调节汽轮机汽门,对出力进行有效控制,故而,风电机组发出的电能具备波动性和随机性特征。因风能具备不可控特征,无法依据负荷调度风力发电,使调度难度增加。当前,风电机组以异步发电机为主,尽管把无功补偿电容器组装设在机端出口,有功功率输出过程中,发电机会以系统为载体,对无功功率进行吸收,而无功需求受有功输出变化影响。 1.2风力发电机组故障特征 风力发电机组应用时间并不是很长,尚存在诸多技术桎梏,其故障特征主要表现在以下方面。具体而言,将控制技术和运行特征作为划分依据,可把风力发电机细分为变速恒频和衡速衡频两类。前者有双馈式风力发电机、永磁直驱式风力发电机等,后者则以鼠笼式感应风力发电机为主[1]。在风电故障点、接入点位置已知,且保持不变时,短路电流会受接入的风电机组类型影响,表明不同类型风电机组故障特征存在差异。 2风电接入对电力系统的影响 在电力系统中接入风电,会对继电保护产生影响,还容易干扰电网稳定性、电能质量等,甚至影响电流保护。具体如下:

风力发电对电力系统的影响学习资料

风力发电对电力系统 的影响

风力发电对电力系统的影响 摘要 风力发电总是依赖于气象条件,并逐渐以大规模风电场的形式并入电网,给电网带来各种影响。因此,电网并未专门设计用来接入风电,如果要保持现有的电力供应标准,不可避免地需要进行一些相应的调整。本论文依据正常条例讨论了风电设计和设备网络的开发所遇到的一些问题和解决风电场并网时遇到的各种问题。由于风力发电具有大容量、动态和随机性的特性,它给电力系统的有功/无功潮流、电压、系统稳定性、电能质量、短路容量、频率和保护等方面带来影响,针对这些问题提出了相应的对策,以期待更好地利用风力发电。 关键词:风力发电;电力系统;影响;风电场 1. 引言 人们普遍接受,可再生能源发电是未来电力的供应。由于电力需求快速增长,对以化石燃料为基础的发电是不可持续的。相反的,风电作为一种有发展前景的可再生能源备受人们关注。当由于工业发展和世界大部分地区经济的增长而引起电力的需求稳步增长时,它有抑制排放和降低不可替代燃料储备消耗的潜力。 当大型风电场(几百兆瓦)成为一个主流时,风力发电越来越受欢迎。2006年间,包括世界上超过70个国家在内的风能发展,装机容量从2005年的59091兆瓦达到74223兆瓦。2006年的巨大增长表明,决策者们开始重视风能

发展能够带来的好处。由于到2020年12%的供电来于1250Gw的安装风电装机,将积累节约10771百万吨的二氧化碳,这个报道是人类减少温室气体排放的一个重要手段。 大型风电场的电力系统具有很高的容量、动态随机性能,这将会挑战系统的安全性和可靠性。而提供电力系统清洁能源的同时,风电场也会带来一些对电力系统不利的因素。随着风力发电的膨胀和风电在电力系统中比重的增加,影响将很可能成为风力集成的技术性壁垒。因此,应该探讨其影响并提出解决这些问题的对策。 风能已经从25年前的原型中走了很长的路,而且在未来的二十年里它也会继续前进。有一系列的问题与风电系统的运作和发展。虽然风力发电的渗透可能会取代传统的植物产生大量的能量,关注的重点是风力发电和电网之间的相互作用。本文提供了一个概述风力发电对电力系统的影响,并建议相应的对策来处理这些问题,以适应电力系统中的风力发电。 根据上述问题,本文从总体上讨论了风力发电项目开发过程中遇到的问题,以及在处理项目时,将风电场与电力系统相结合的问题。由于风力发电具有容量大、动态、随机性等特点,其影响主要包括有功、无功功率流、电压、系统稳定性、电能质量、短路容量、系统备用、频率和保护。针对这些问题,提出相应的对策建议,以适应电力系统的风力发电。 本文的组织如下。第2节给出了风力发电的发展情况。在第3节介绍了风力发电的特点。在4节中,详细讨论了风力发电对电力系统的影响。在第5节中,提出了减少风力发电的影响的对策。最后,第6节总结本文。

风电并网对电力系统的影响分析开题报告

毕业设计(论文)开题报告书 课题名称风电并网对电力系统的影响分析 学生姓名黄志勇 学号0741227305 系、年级专业电气工程系、07电气工程及其自动化 指导教师袁旭龙副教授 2010年12 月20 日

一、课题的来源、目的意义(包括应用前景)、国内外现状及水平 课题来源: 风能作为一中清洁的能源受到了全世界普遍的青睐,但是风能发电也存在这一些难以解决的问题,如风电并网对系统的影响以及风力发电的规划是摆在眼前的现实问题。风力发电并网后会对电力系统产生不小的影响,会影响到电网的稳定性、电网电压,电能质量和继电保护装置,还会造成谐波污染。其中由风电并网所引起的电压波动和闪变是风电并网的主要负面影响。虽然现在风力发电机组大都采用软并网方式,但是启动时仍会产生较大的冲击电流,使得风电机组输出的功率不稳定,进而会导致电压的波动和闪变。电压的波动和闪变会使电灯闪烁,电视机画面不稳定,电动机转速变化严重影响到工业产品的质量,在某些特殊行业电压不稳会使一些精密的仪器出现测量错误,严重时还会引发重大事故。风能作为一种间歇性能源,加之风能资源的预测准确度并不能完全符合电力系统对电能质量的要求,所以寻求新途径新思路解决风电对系统的影响也自然成了许多电力行业工作人员的目标。 目的意义: 综合运用所学的理论知识,使理论与实践相结合,尽快适应生产实际;提高动手能力和分析问题、解决问题的能力;增强工程观念;提高查阅资料和阅读专业英语资料的能力。 随着世界能源日益紧缺和全球气候变暖趋势增强,新能源、可再生资源的开发利用成为了解决上述问题的主要手段之一。风力发电是目前可再生能源各种技术中发展最快、技术最为成熟、最具大规模和商业化前景的产业,是最有可能成为主流电源的可再生能源技术之一。所以采取措施改善风电并网对电力系统的一些负面影响,积极促进风电的开发利用,是优化能源结构,保障能源安全,缓解能源利用造成的环境污染,促进能源与经济、能源与环境协调发展的重要的选择,是建设资源节约型、环境友好型社会和实现可持续发展的重要途径。 国内现状及水平: 我国是世界上利用风能最早的国家之一,可以开发利用的风能资源仅次于前苏联和美国,为世界第三位。目前,我国已经拥有750kw以下各类风电设备的制造能力,兆瓦级风力发电机组正在研究试验阶段,风电机组正由定桨矩型向变桨矩型过渡。 国内风电场装机大多数为mw级以下的定桨距定速型风机。其中,600kw和750kw 的国内生产厂家超过数十家,而且占据了市场的80%以上,国产化率已达90%;mw

风电光伏技术标准清单

风力发电工程 序号专用标准名称标准编号备注 一综合管理 1 风力发电工程质量监督检查大纲国能安全[2016]102号2016-04-05实施 2 风力发电工程建设监理规范NB/T 31084-2016 2016-06-01实施 3 风力发电工程施工组织设计规范DL/T 5384-2007 4 风电场工程劳动安全与工业卫生验收规范NB/T 31073-20152015-09-01实施 5 风力发电企业科技文件归档与整理规范NB/T 31021-2012 二社会监督 1 电力业务许可证管理规定国家电监会令第9号2005-10-13实施 关于印发风电场工程竣工验收管理暂行办法和风电场项目后评 2 国能新能[2012]310号 价管理暂行办法的通知 三消防工程 1 风力发电机组消防系统技术规程CECS 391:20142015-05-01实施四风电工程专用标准 1 设计标准 风电场工程勘察设计收费标准NB/T 31007-2011 风电场工程可行性研究报告设计概算经编制办法及计算标准FD 001-2007 风电场工程等级划分及安全标准(试行)FD 002-2007 风电机组地基基础设计规定(试行)FD 003-2007 风电场工程概算定额FD 004-2007 风力发电场设计规范GB 51096-20152015-11-01实施风力发电厂设计技术规范DL/T 5383-2007 风电场设计防火规范NB 31089-20162016-06-01实施风力发电机组雷电防护系统技术规范NB/T 31039-2012 风电机组低电压穿越能力测试规程NB/T 31051-2014 风电机组电网适应性测试规程NB/T 31054-2014 风力发电机组接地技术规范NB/T 31056-2014 风力发电场集电系统过电压保护技术规范NB/T 31057-2014

风力发电对电力系统的影响

风力发电对电力系统的影响 摘要 风力发电总是依赖于气象条件,并逐渐以大规模风电场的形式并入电网,给电网带来各种影响。因此,电网并未专门设计用来接入风电,如果要保持现有的电力供应标准,不可避免地需要进行一些相应的调整。本论文依据正常条例讨论了风电设计和设备网络的开发所遇到的一些问题和解决风电场并网时遇到的各种问题。由于风力发电具有大容量、动态和随机性的特性,它给电力系统的有功/无功潮流、电压、系统稳定性、电能质量、短路容量、频率和保护等方面带来影响,针对这些问题提出了相应的对策,以期待更好地利用风力发电。 关键词:风力发电;电力系统;影响;风电场 1. 引言 人们普遍接受,可再生能源发电是未来电力的供应。由于电力需求快速增长,对以化石燃料为基础的发电是不可持续的。相反的,风电作为一种有发展前景的可再生能源备受人们关注。当由于工业发展和世界大部分地区经济的增长而引起电力的需求稳步增长时,它有抑制排放和降低不可替代燃料储备消耗的潜力。 当大型风电场(几百兆瓦)成为一个主流时,风力发电越来越受欢迎。2006年间,包括世界上超过70个国家在内的风能发展,装机容量从2005年的59091兆瓦达到74223兆瓦。2006年的巨大增长表明,决策者们开始重视风能发展能够带来的好处。由于到2020年12%的供电来于1250Gw的安装风电装机,将积累节约10771百万吨的二氧化碳,这个报道是人类减少温室气体排放的一个重要手段。 大型风电场的电力系统具有很高的容量、动态随机性能,这将会挑战系统的安全性和可靠性。而提供电力系统清洁能源的同时,风电场也会带来一些对电力系统不利的因素。随着风力发电的膨胀和风电在电力系统中比重的增加,影响将很可能成为风力集成的技术性壁垒。因此,应该探讨其影响并提出解决这些问题的对策。 风能已经从25年前的原型中走了很长的路,而且在未来的二十年里它也会继续前进。有一系列的问题与风电系统的运作和发展。虽然风力发电的渗透可能会取代传统的植物产生大量的能量,关注的重点是风力发电和电网之间的相互作用。本文提供了一个概述风力发电对电力系统的影响,并建议相应的对策来处理这些问题,以适应电力系统中的风力发电。 根据上述问题,本文从总体上讨论了风力发电项目开发过程中遇到的问题,以及在处理项目时,将风电场与电力系统相结合的问题。由于风力发电具有容量大、动态、随机性等特点,其影响主要包括有功、无功功率流、电压、系统稳定性、电能质量、短路容量、系统备用、频率和保护。针对这些问题,提出相应的对策建议,以适应电力系统的风力发电。 本文的组织如下。第2节给出了风力发电的发展情况。在第3节介绍了风力发电的特点。在4节中,详细讨论了风力发电对电力系统的影响。在第5节中,提出了减少风力发电的影响的对策。最后,第6节总结本文。

有关风电新能源发展与并网技术的探讨

有关风电新能源发展与并网技术的探讨 发表时间:2018-07-31T12:46:23.827Z 来源:《建筑模拟》2018年第10期作者:乔健邓高 [导读] 能源紧张和环境污染问题现在已被世界公认为一大难题,可再生能源的开发和利用越来越受到各界人士的青睐。 国家电投集团河南新能源有限公司河南郑州 450000 摘要:风电新能源因其自身独特的优势和我国地理位置优越性,开发和利用风电新能源具有一定的优势,但由于风电难以储存、风能不稳定、风电场位置分布不均匀,在风电并网方面存在一定的难度,本文中通过探讨风电新能源发展与并网技术,为我国新能源风电的发展提供一定的理论依据。 关键词:风电新能源;发展;并网技术 能源紧张和环境污染问题现在已被世界公认为一大难题,可再生能源的开发和利用越来越受到各界人士的青睐。在可再生能源中,风力发电因技术相对其它新能源来说相对成熟,因此在我国也受到了更多的重视和关注,应用也越来越广泛。加之,风能资源实际上也是在间接利用太阳能,本身具有污染小、占地少、储量大的优点,我国具有较大的地理面积和较长的海岸线,因此,在我国推行风力发电具有一定的有利条件。本文中笔者通过探讨风电新能源与并网技术在新能源风力发电中的应用,重点突出并网技术对于风力发电的影响。 一制约我国风力发电机装机规模的因素 风力发电因其独特的优势,被越来越多的开发者所重视,得到了较好的发展,我国沿海地区和内部大陆风能资源比较丰富的地方,都逐步在加快风能资源的开发和利用,建立了一定数量的风电场,现在风力发电也形成一定的规模,逐步向产业化发展。这对于我国调整产业结构、转变经济结构、治理大气环境具有一定的优势和意义。 中国风电新装机容量在2016年达到了2337万kw,数量已经很大,远远超过世界发达国家,已成为世界第五大风电开发国之一。但是我国风电设备技术相对落后,而且在供电方面,我国的电力系统主要是恒温恒频异步风电系统,而风电比较依赖自燃资源,电源比较分散,这就造成了风电并网电网后,降低了电网的稳定性和质量,很多企业不愿意风电入网。因此,在我国要不断发展风电事业,就必须首要解决风电入网问题。 1.1 风能在储存方面较难 风电在存储过程中成本较高,风电相较于火力发电成本就较高,同时,相比较储电成本,发电成本更高,这就导致基本上不储电的现状。 1.2 不稳定的风能 对于风能来说,主要利用自然资源,风向和风速都是不确定因素,属于过程性能源,因此,随机性和不稳定性的特点,风力发电过程中也较难控制。因此,通过风力发电,电能波动性较大,也比较随机。 1.3 分布不均匀的风电场 我国地理位置大,风能资源分布不均匀,风能资源较丰富的地区与负荷中心距离较远,当需要开发大规模风电时,就需要相应配套的风电输送设备,同时配合强化电网建设。 二解决我国风电并网技术难题的有效途径 2.1 科学合理管理电力项目工程 风电工程是可持续发展的一个重要战略和举措,因此要不断深入和发展风力发电项目,在建设和使用过程中,一旦出现问题,要深度剖析原因,使得风力发电项目向着健康有序的方向发展。同时加大监督检查施工现场,若与设计存在偏差,要及时记录分析,综合考虑各方面因素,及时调整施工,减少工程变更,使后续工程有序开展进行。 2.2 合理规划建设、优化布局结构 闭环结构开环运行的方式应该为电网建设所使用,采用此方式,可以有效提高电网的稳定性。换言之,网络建设主要为环形状,出现故障时转变为辐射状,线路出现故障,技术人员就必须能够通过合理使用开关,选择其它线路供电,用来保证电路的稳定性。因此,在开发风力发电时,也要采取这种手段,这样有利于风力发电入网建设,这就需要结合具体实际情况,合理进行规划,形成自己的布局结构,以创造更大的经济效益。 2.3 通过降低功率损耗来降低电网压力 有功损耗和无功损耗是电网中的两种损耗形式。因此要通过功率计算来深化研究功率损耗,采用降低损耗的方式可以有效减少用电负荷,进一步延长了用电设备的使用寿命。换言之,我们在设计电路时,要合理选择导线的路径,减少电路中电阻的功率损耗,这个主要通过有功功率的计算来实现。 在考虑无功功率的损耗问题时,这就在于专业变压器的选择问题,这也是要求在我国建设和发展电网事业时,要不断实现电网资源的整合,采取静止无功补偿器、同步调相机、并联电容器等方法,来实现有针对性的无功补偿。对于我国来说,要结合自身电网特点,建设和选择设备时进行有针对性的选择,不断降低电网运行过程的负荷问题,这样有利于新能源风电事业的发展,从而创造出更大更多的经济效益。 2.4 不断提高风电设备技术,延长使用寿命 我国风能资源较丰富的地方与用电负荷距离较远,就存在必须进行输电,输电线路长,就不可避免得电能损耗,从而造成一定的资源浪费现象。与此同时,在输电线路上的电能损耗,电压就存在了偏低的现象,这就造成电力系统不能在正常负载下正常运行。电灯在使用的过程中,因为这一原因,低电压造成感应电机的温度上升,使得电灯没有达到使用寿命,就降低了其亮度。在采用风力发电的过程中,可以采用在变压器上设置开关的方法,有效避免电压过低,从而降低电能损耗。这就需要电力行业发展时,要不断为风力发电提供一定的技术、资金支持,完善电网基础设施建设。 2.5 多能互补政策的实施 风力发电不稳定,电速过快电压过高,就会停止设备运行。为了能够解决在风力发电并网后存在的技术问题,我国政府要不断为风力发电配套电力调度,完善市场机制,可以在条件允许的情况下,采取多种能源互补的运行模式,促进电网消耗风电的能力,探索我国自身

风电相关国家标准整理

国家相关标准 风力发电机组功率特性测试 主要依照IEC61400-12-1:2005风电机组功率特性测试是目前唯一一个正式版本电流互感器级别应满足IEC 60044-1 电压互感器级别应满足IEC 60186 功率变送器准确度应满足GB/T 13850-1998要求,级别为0.5级或更高 IEC 61400-12-1 功率曲线 IEC 61400-12-1 带有场地标定的功率曲线 IEC 61400-12-2 机舱功率曲线 IEC 61400-12 新旧版本区别 对于垂直轴风电机组,气象桅杆的位置不同 改变了周围区域的环境要求 改变了障碍物和临近风电机组影响的估算方法 使用具有余弦相应的风速计 根据场地条件将风速计分为A、B、S三个等级 根据高风速切入和并网信号可以得到两条功率曲线 风速计校准要符合MEASNET规定 风速计需要分级 电网频率偏差不超过2HZ 场地标定只能通过测量,不能用数值模拟 场地标定的每一扇区分段至少为10° 可以同步校准风速计 改进了对风速计安装的描述 通过计算确定横杆长度 增加针对小型风机的额外章节 MEASNET标准和旧版IEC61400-12标准区别 使用全部可用的测量扇区,否则在报告中说明 不允许使用数值场地标定 场地标定更详细的描述,包括不确定度分析 只允许将风速计置于顶部 风速计的校准必须符合MEASNET准则 不使用AEP不完整标准 轮毂高度、风轮直径、桨角只能通过测量来判定,不能按照制造商提供的判定报告中必须提供全方位的照片 IEC61400-12-1:Power performance measurement for electricity producing wind turbine(2005)风电机组功率特性测试 可选择:场地标定 IEC61400-12-2:Power curve verification of individual wind turbine,单台风电机组功率曲线验证(未完成)

风电并网对电力系统的影响

风电并网对电力系统的影响 发表时间:2017-12-11T17:26:36.300Z 来源:《电力设备》2017年第23期作者:崔强谷岩刘志明[导读] 摘要:由于风速具有波动性和间歇性,风力发电具有较强的不确定性。为了确保电力系统的安全、稳定运行,研究风电并网对电力系统的影响是非常必要的。 (新疆新能源(集团)有限公司 830011) 摘要:由于风速具有波动性和间歇性,风力发电具有较强的不确定性。为了确保电力系统的安全、稳定运行,研究风电并网对电力系统的影响是非常必要的。本文分析了风电并网对电力系统的影响,之后提出了解决问题的措施,以供参考。关键词:风电并网;电力系统;影响;措施 随着现代工业的飞速发展和化石能源的日趋枯竭,能源和环境问题日益严峻,风电作为一种可再生的绿色能源,已成为世界上发展最快的可再生能源。我国风力发电建设进入了一个快速发展的时期,大规模的风力发电必须要实现并网运行。风电场接入电力系统的分析是风电场规划设计和运行中不可缺少的内容,是风力发电技术的三大课题之一。随着风电场容量在系统中所占比例的增加,风电场对系统的影响越来越显著。因此,必须深入研究这些影响,确保电力系统的安全、稳定运行。 1 风电并网对电力系统的影响 1.1 风电并网对系统稳定性的影响 一方面,风电并网引起的稳定问题主要是电压稳定问题。风力发电随风速大小等因素而变化,同时由于风能资源分布的限制,风电厂大多建设在电网的末端,网架结构比较薄弱,所以在风电并网运行时必然会影响电网的电压质量和电网的电压稳定性。同时大型风电厂的风力发电机几乎都是异步发电机,在其并网运行时需从电力系统吸收大量无功功率,增加电网的无功负担,有可能导致小型电网的电压失稳。 另一方面,风电并网改变了配电网的功率流向和潮流分布,这是既有的电网在规划和设计时未曾考虑的。因此,随着风电注入功率的增加,风电场附近局部电网的电压和联络线功率将超出安全运行范围,影响系统的稳定性。随着各地风力发电的蓬勃发展,风电场的规模不断扩大,风电装机容量在系统中所占的比例不断增加,风电输出的不稳定性对电网的功率冲击效应也不断增大,对系统稳定性的影响就更加明显。情况严重时,将会使系统失去动态稳定性,导致整个系统瓦解。 1.2 风电并网对系统运行成本的影响 风力发电的运行成本与火电机组相比很低,甚至可以忽略不计。但是风力发电的波动性和间歇性使风电场的功率输出具有很强的随机性,目前的预报水平难以满足电力系统实际的运行需要。为了保证风电并网后系统运行的可靠性,需要在原有运行方式基础上,额外安排一定容量的旋转备用,以维持电力系统的功率平衡与稳定。可见风电并网对整个电力系统具有双重影响:一方面分担了传统机组的部分负荷,降低了电力系统的燃料成本,另一方面又增加了电力系统的可靠性成本。 1.3 风电并网对电网频率的影响 当风速大于切入风速时,风电机组启动挂网运行;当风速低于切入风速时,风电机组停机并与电网解列。当风速大于切出风速时,为保证安全,风电机组必须停机。因此,受风速变化的影响,风电机组的出力也随时变化,一天内可能有多次启动并网和停机解列。风电场不稳定的功率输出会给电网的运行带来许多问题。如果风电容量在电网总装机容量中所占比例很小,风电功率的注入对电网频率影响甚微。但是,当风电场与其他发电方式的电源组成一个小型的孤立电网时,可能会对孤立系统的频率造成较大影响。随着电网中风力发电装机容量所占的比例逐步提高,大量风电功率的波动增大了系统调频的难度,而系统频率的变化又会对风电机组的运行状态产生影响。 1.4 风电并网对电能质量的影响 风能资源的不确定性和风电机组本身的运行特性使风电机组的输出功率是波动的,可能影响电网的电能质量,如电压波动和闪变、电压偏差以及谐波等。 电压波动及闪变,源于波动的功率输出。由风速动力特性诱发的有功功率波动取决于当地的风况和湍流强度,频率不定;风电机组输出功率的波动主要由风速快变、塔影效应、风剪切、偏航误差等因素引起,其波动频率与风力机的转速有关。固定转速风电机组引起的闪变问题相对较为严重,某些情况下已经成为制约风电场装机容量的关键因素。风电给系统带来谐波的途径主要有两种:一种是风力发电机本身配备的电力电子装置可能带来谐波问题;另外一种是风力发电机的并联补偿电容器可能和线路电抗发生谐振。电压偏差问题属于电网的稳态问题。大幅度波动的风速引起风电机组出力波动较大,所以风电功率的波动导致电网内某些节点电压偏差超出国家标准规定的限值。 发电机本身产生的谐波是可以忽略的,谐波电流的真正来源是风电机组中的电力电子元件,谐波干扰的程度取决于变流装置以及滤波系统的结构状况,而且与风速大小相关。对于固定转速风电机组,在持续运行过程中没有电力电子元件的参与,几乎不会产生谐波电流。实际需要考虑谐波十扰的是变速恒频风电机组,就是因为运行过程中变速恒频风电机组的变流器始终处于工作状态。 2 改善风电并网影响的措施 2.1 利用静止无功补偿器和超导储能装置改善系统稳定性 静止无功补偿器可以快速平滑地调节无功补偿功率的大小,提供动态的电压支撑,改善系统的运行性能。将静止无功补偿器安装在风电场的出口,根据风电场接入点的电压偏差量来控制静止无功补偿器补偿的无功功率,能够稳定风电场节点电压,降低风电功率波动对电网电压的影响。 具有有功和无功功率综合调节能力的超导储能装置,代表了柔性交流输电系统的新技术方向,将超导储能装置用于风力发电可实现对电压和频率的同时控制。超导储能装置能灵活地调节有功和无功功率,为系统提供功率补偿,跟踪电气量的波动。在风电场出口安装超导储能装置装置可充分利用其综合调节能力,降低风电场输出功率的波动,稳定风电场电压。超导储能装置是一种有源的补偿装置,与静止无功补偿器相比,其无功功率补偿量对接入点电压的依赖程度小,在低电压时补偿效果更好。 2.2 利用源滤波器、动态电压恢复器改善电能质量 源滤波器、动态电压恢复器装置的主要功能是抑制电压波动和闪变。

风力发电现况以及未来发展趋势

风力发电现况以及未来发展趋势 风能作为一种清洁的可再生能源,越来越受到世界各国的重视。其蕴量巨大,全球的风能约为2.74×10^9MW,其中可利用的风能为2×10^7MW,比地球上可开发利用的水能总量还要大10倍。风很早就被人们利用--主要是通过风车来抽水、磨面等,而现在,人们感兴趣的是如何利用风来发电。 一、国外发展状况 目前,中、大型风力发电机组已在世界上40多个国家陆地和近海并网运行,风电增长率比其它电源增长率高的趋势仍然继续。如表1所示,截止2005年12月31日世界装机容量已达58,982MW,年装机容量为11,310MW,增长率为24%;风力发电量占全球电量的1%,部分国家及地区已达20%甚至更多。2005年世界风电累计装机容量最多的十个国家见表2,前十名合计51750.9MW,约占世界总装机容量的87.7%。2005年国际风电市场份额的分布多样化进程呈持续发展趋势:有11个国家的装机容量已高于1,000MW,其中7个欧洲国家(德国、西班牙、意大利、丹麦、英国、荷兰、葡萄牙),3个亚洲国家(印度、中国、日本),还有美国。亚洲正成为发展全球风电的新生力量,其增长率为48%[5]。2002年欧洲风能协会(EWEA)与绿色和平组织(Greenpeace International)发表了一份标题为“风力12(Wind Force 12)”的报告,勾画了风电在2020年达到世界电量12%的蓝图。报告声明这份文件不是预测,而是从世界风能资源、世界电力需求的增长和电网容量、风电市场发展趋势和潜在的增长率、与核电和大水电等其他电源技术发展历程的比较以及减排CO2等温室气体的要求,论证了风电达到世界电量12%的可能性。 二、国内发展现状 经过前几年的低谷期,国内的风电市场正在迎来新的发展期,特别是在节能减排、环境治理的趋势下,国家出台的一系列政策,使得风电产业站上了风口。 (一)我国风电发展进入新阶段

风电接入对电网的影响

风电的接入对电网的影响 1.对电网频率的影响 风电出力波动将会产生严重的有功功率平衡问题。风电比例大小对系统调频影响严重,当电力系统中风电装机容量达到一定规模时,风电功率波动或者风电场因故整体退出运行,可能会导致系统有功出力和负荷之间的动态不平衡,当电网其他发电机组不能够快速响应风电功率波动时,则有可能造成系统频率偏差,严重时可能导致系统频率越限,进而危及电网安全运行[1]。因此,始终保持电力系统频率在允许的很小范围内波动,是电力系统运行控制的最基本目标,也是电力调度自动化系统的最重要任务。电力系统正常运行时,频率始终保持在50Hz±0.2Hz 的范围内,当采用现代自动调频装置时,误差可以不超过0.05~0.15Hz。 2.对电网电压的影响 风电场并入电网后,由于风电具有间歇性和随机性的特点,使得当风电功率变化时,电网电压也将随之发生波动。随着风电注入功率的增加,风电场附近局部电网的电压和联络线功率将会超出安全范围,严重时会导致电压崩溃。影响电压波动有很多因素,例如风电机组类型、风况、所接入电网的状况和策略等,但最根本的原因是风速的波动带来的并网风电机组输出功率的变化。系统要求节点电压与额定值的偏差不允许超过一定的范围。因此,必须釆取适当的措施来防止偏差过大,维持系统的节点电压在限定的范围之内,防止与额定值的偏差超过允许范围。风电接入系统的所带来的电压与无功功率问题亟待解决。 综上所述,为保证大规模风电接入后电网的安全稳定运行,风电接入后的电网运行控制技术越来越重要,电网的稳定控制技术、运行控制技术、优化调度技术以及风电与电网的协调控制技术将成为风电并网控制技术中的关键技术[2,3]。 [1] 计崔. 大型风力发电场并网接入运行问题综述[J]. 华东电力, 2008, 36(10): 71-73. [2] 耿华, 杨耕, 马小亮. 并网型风力发电机组的控制技术综述[J]. 电力电子技术, 2007, 40(6): 33-36. [3] 王伟胜, 范高锋, 赵海翔. 风电场并网技术规定比较及其综合控制系统初探 [J]. 电网技术, 2007, 31(18): 73-77.

风力发电对电力系统运行的影响

风力发电对电力系统运行的影响 摘要:风力发电作为一种绿色能源有着改善能源结构,经济环保等方而的优势,也是未来能源电力发展的一个趋势,但风力发电技术要具备与传统发电技术相当的竞争力,还存在一些问题有待解决,本文从风力发电对电力系统的影响入手,总结了风电网并入电网主要面临的一些技术问题,如风力发电场的规模问题,对电能质量的影响,对稳定性的影响,对保护装置的影响等;然后针对这此技术问题,综合比较了各国研究和工程技术人员在理论和实际运行方面的相关解决方案,指出各方案的优缺点,期待更加成熟的风力发电技术的形成,以建设我国具有自主产权的风电产业。 关键词:风力发电,电能质量,稳定性,解决方案 0引言能源是推动社会进步和人类赖以生存的物质基础。目前,全球能源消耗速度逐年递增,大量能源的消耗,已带来十分严重的环境问题,如气候变暖、生态破坏、大气污染等,并且传统的化石能源储量有限,过度的开采利用将加速其耗竭的速度。在中国由于长期发电结构不合理,火电所占比例过大,由此带来了日益严重的燃料资源缺乏和环境污染问题。对于可再生能源的开发和利用变得颇为急切。 在各种可再生能源利用中,风能具有很强的竟争力。风能发电在技术上日趋成熟,商业化应用不断提高,是近期内最具有大规模开发利用前景的可再生资源。经济性方面,风力发电成本不断降低,同时常规能源发电由于环保要求增高使得成本进一步增加;而且随着技术的进步,风力发电的成本将有进一步降低的巨大潜力。 我国的海洋和陆地风能资源很丰富,江苏位于东南沿海,海上风能资源有很大的开发潜力。江苏省如东县建设了我国第一个风电场特许权示范项目。该项目是国内迄今为止最大的风电场项目,其一期建设规模为100MW,单机容量1MW,100台风机,全部采用双馈感应发电机。江苏省盐城也正在准备建风电场,但目前江苏乃至全国的风力发电技术都还不成熟。 大规模的风力发电必须要实现并网运行。风电场接入电力系统的分析是风电场规划设计和运行中不可缺少的内容,是风力发电技术的三大课题之一(其余两项为风能储量调查与风力发电机组技术)。尽管欧美的风电大国对风力发电的建设和运行已经有一些实际经验和技术规定,但由于和我国电网结构的实际情祝差别很大,并不能完全适合我国的情况。本文主要介绍风力风电并网对电力系统的影响。 1风力发电对电力系统的影响 风力发电在电力中的比例逐年增加,而在风力资源丰富地区,电网往往较弱,风力发电对电网间的影响也是应该考虑的问题。风电场并入电网主要会面临以下一些技术问题:风力发电场的规模问题,对电能质量的影响,对稳定性的影响,对保护装置的影响等。 1.1风力发电场的规模问题 目前,我国正在进行全国电网互联,电网规模日益增大。对于接入到大电网的风电场,其容量在电网总装机容量中占的比例很小,风电功率的注入对电网频率影响甚微,不是制约风电场规模的主要问题。然而,风能资源丰富的地区人口稀少,负荷量小,电网结构相对薄弱,风电功率的注入改变了电网的潮流分布,对局部电网的节点电压产生较大的影响,成为制约风电场规模的重要问题。 风力发电的原动力是自然风,因此风电场的选址主要受风资源分布的限制,在规划建设风电场时,首先要考虑风能储量和地理条件。然而风力资源较好的地区往往人口稀少,负荷量小,电网结构相对薄弱,风电功率的注入改变了局部电网的潮流分布,对局部电网的电压质量和稳定性有很大影响,限制了风电场接入系统的方式和规模。 另外风力发电的原动力是不可控的,它是否处于发电状态以及出力的大小都决定于风速的状况,风速的不稳定性和间歇性决定了风电机组的出力也具有波动性和间歇性的特点。在现有的技术水平下风力发电还无法准确预报,因此风电基木上是不可调度的。从电网的角度看,并网运行的风电场相当于一个具有随机性的扰动源,对电网的可靠运行造成一定的影响。由此可见,确定一个给定电网最大能够承受的风电注入功率成为风电场规划设计阶段迫切需要解决的问题。 1.2对电能质量的影响 风资源的不确定性和风电机组本身的运行特性使风电机组的输出功率是波动的,可能影响电网的电能质量,如电压偏差、电压波动和闪变、谐波以及周期性电压脉动等。电压波动和闪变是风力发电对电网电能质量的主要负面影响之一。电压波动的危害表现在照明灯光闪烁、电视机画面质量下降、电动机转速不均匀和影响电子仪器、计算机、自动控制设备的正常工况等。影响风力发电产生波动和闪变的因素有很多:随着风速的增大,风电机组产生的电压波动和闪变也不断增大。并网风电机组在启动、停止和发电机切换过程中也产生电压波动和闪变。风电机组公共连接点短路比越大,风电机组引起的电压波动和闪变越小。另外,风电机组中的电力电子控制装置如果设计不当,将会向电网注入谐波电流,引起电压波形发生不可接受的畸变,并可能引发由谐振带来的潜在问题。 异步电机作为发电机运行时,没有独立的励磁装置,并网前发电机本身没有电压,因此并网时必然伴随一个过渡过程,流过5~6倍额定电流的冲击电流,一般经过几百毫秒后转入稳态。风力发电机组与大电网并联时,合闸瞬间的冲击电流对发电机及电网系统安全运行不会有太大影响。但对小容量的电网而言,风电场并网瞬间将会造成电网电压的大幅度下跌,从而影响接在同一电网上的其他电器设备的正常运行,甚至会影响到整个电网的稳定与安全。 1.3对稳定性的影响 风力发电通常接入到电网的末端,改变了配电网功率单向流动的特点,使潮流流向和分布发生改变,这在原有电网的规划和设计时是没有预先考虑的。因此,随着风电注入功率的增加,风电场附近局部电网的电压和联络线功率将会超出安全范

相关文档
最新文档