第9章 水中的有机物

水中有机物的去除方法

水中有机物的去除方法 学校: 漳州师范学院 系别:化学与环境科学系 班级:09环科一班 学号:090603101 姓名:钟燕平 摘要:介绍有机物的来源分类,有机物的组成及性质,并提出除去水中有机物的几种常用方法。 关键词: 有机物 随着工业发展,有机物造成饮用水水质恶化已成为当前水处理行业中的一大焦点。中国大多数饮用水水源普遍受到有机污染物的污染成为微污染源水,使用常规的水处理工艺已经不易有效地去除有机污染物,随着水质标准的提高和水源污染的加剧,针对各常规处理工艺的不足近些年来,针对有机物污染开发出许多工艺,例如预氧化工艺、活性炭吸附工艺、臭氧-生物活性炭工艺、生物预氧化技术等。 一.有机物的组成及性质 天然有机物(Natural organic matter,NOM)主要是指动植物在自然循环过程中经腐败分解所产生的一类大分子有机物,是天然水体中有机物的主要组成成分。主要包括腐殖质、微生物分泌物、溶解的动物组织等,其中以腐殖质为主,占 NOM 的 50%~90% [1]。如来自植物腐败分解产生的腐殖酸、富里酸,都是腐殖质的主要成分。NOM 是水体色度和臭

味产生的主要原因。同时,NOM 还参与水体中重金属离子的迁移、转化,影响颗粒沉降性,增强其迁移能力[2];与水中疏水性污染物发生吸附反应,增强水处理难度,增加水处理中絮凝剂和消毒剂的使用量。尤其是在饮用水的处理中,NOM 可与氯反应生成三氯甲烷(THMs)、卤乙酸(HAAs)等致癌、致畸物,是氯消毒副产物(DBPs)的主要前驱物[3-5],直接影响人类健康。 腐殖酸类物质有如下电化学性质: (1)胶体性质,腐植酸有可以游离出的官能团—COOH,—OH,显电负性。 (2)亲水性,其亲水性取决于缩合程度。 (3)具有巨大的表面积(330~340㎡/g)和表面能:由于具有能疏松的“海绵状”结构。(4)在氧化剂作用下可被氧化分解。 另外由于腐植酸中含有若干含氧功能团,使得腐植酸具有各种胶体性质如表面吸附,离子交换,络合作用,缓冲性能及氧化还原特性。 我们可以根据腐植酸的特性设计多种去除腐植酸的方法,从而达到去除天然水中有机物保证锅炉补给水水质的目的。 二、有机物的去除方法 1、吸附法去除水中天然有机物[6] 1.1 活性炭吸附剂 活性炭吸附剂一般利用其具有的丰富的微孔结构、较高的比表面积,因此具有很强的吸附力,广泛应用于水处理脱色、除臭以及有机物去除等方面。活性炭吸附剂吸附有机物的

【精品】有机物的溶解性规律

有机物的溶解性规律 一、相似相溶原理 1.极性溶剂(如水)易溶解极性物质(离子晶体、分子晶体中的极性物质如强 酸等); 2.非极性溶剂(如苯、汽油、四氯化碳、酒精等)能溶解非极性物质(大多数 有机物、Br2、I2等); 3.含有相同官能团的物质互溶,如水中含羟基(—OH)能溶解含有羟基的醇、酚、羧酸。 二、有机物的溶解性与官能团的溶解性 1.官能团的溶解性: (1)易溶于水的官能团(即亲水基团)有—OH、—CHO、—COOH、—NH2。(2)难溶于水的官能团(即憎水基团)有:所有的烃基(—CnH2n+1、—CH=CH2、—C6H5等)、卤原子(—X)、硝基(—NO2)等。 2.分子中亲水基团与憎水基团的比例影响物质的溶解性: (1)当官能团的个数相同时,随着烃基(憎水基团)碳原子数目的增大,溶解 性逐渐降低; ……,一般地,碳原子个数大于 例如,溶解性:CH3OH>C2H5OH>C3H7OH> 5的醇难溶于水。 (2)当烃基中碳原子数相同时,亲水基团的个数越多,物质的溶解性越大; 例如,溶解性: CH3CH2CH2OH

CH3COOCH2CH3(其中—CH3和—CH2CH3为憎水基团,—COO—为亲水基团)。 (4)由两种憎水基团组成的物质,一定难溶于水。 例如,卤代烃R-X、硝基化合物R-NO2 ,由于其中的烃基R—、卤原子—X和硝基—NO2均为憎水基团,故均难溶于水。 三、液态有机物的密度 1.难溶于水,且密度小于水的有机物 例如,液态烃(乙烷、乙烯、苯、苯的同系物……),液态酯(乙酸乙酯、硬脂酸甘油酯……),一氯卤代烷烃(1-氯乙烷……),石油产品(汽油、煤油、油脂……) 注:汽油产品分为直馏汽油和裂化汽油(含不饱和烃)。 2.难溶于水,且密度大于水的有机物 例如:四氯化碳、氯仿、溴苯、二硫化碳

高聚物与有机溶剂溶度参数及有机溶剂溶解性对照表

高聚物与有机溶剂溶度参数及有机溶剂溶解性对照表 溶剂δ/103(J/m3)1/2 聚合物δ/103(J/m3)1/2 溶剂δ/103(J/m3)1/2戊烷14.4(13.8) 聚乙烯15.8~17.0 水47.9 正已烷14.9 聚丙烯16.6~16.8 氨水25 环已烷16.8 聚氧化丙烯15.3~20.3 乙二醇32.1(29.0)正庚烷15.2 聚苯乙烯17.4~19.0 丙三醇33.8 正辛烷15.4 聚甲基丙烯酸甲酯18.6(26.2) 环已醇23.3 异辛烷14 聚氯乙烯19.2~19.8 甲醇29.7 正壬烷15.7 聚丙烯酸甲酯19.8~21.3 乙醇26 正癸烷15.9 聚偏二氯乙烯20.3~25.0 正丁醇23.3 正十四烷16.3 氯磺化聚乙烯16.4~20.5 正戊醇 22.3~21.6 丁二烯13.9 环氧树脂19.8~22.5 异戊醇19.6异戊二烯14.8 聚甲醛20.3~22.5 环已酮19 苯18.7 尼龙-66 27.8 四氢呋喃19 甲苯18.2 聚丙烯腈25.6~31.5 醋酸25.6(18.9)二甲苯17.9~18.4 酚醛树脂23.5 甲酸27.6 乙苯18 聚三氟氯乙烯14.7~16.2 甲酸甲酯21.9氯苯19.4(19.8) 聚四氟乙烯12.7 乙酸乙酯18.6 硝基苯20.5(19.6) 聚丁二烯16.6~17.6 甲基丙烯17.8乙醚15.7 天然橡胶16.2(16.7) 三乙胺14.9 正已醇21.9 氯丁橡胶16.8~18.8 苯甲醛22.1正辛醇21.1 丁苯橡胶16.6~17.6 乙醛20.1 正庚醇20.5 聚硫橡胶18.4~19.2 甲酰胺36.4苯胺16.1(24.3) 聚碳酸酯19.4~20.1 乙酰胺34.2丙烯腈21.4 丁基橡胶15.8 二乙酮18 DMF 24.8 聚醋酸乙酯19.2(22.5) 氰乙烯17.8 DMAC 22.7 丁腈橡胶19.4(18.9) 偏二氯乙烯17.6丙酮20.1(20.5) 聚硅氧烷19.2 氯丁二烯19 丁酮19 二硝基纤维素21.5(23.5) 二硫化碳20.5苯乙烯17.7(18.8) 醋酸纤维素22.3~23.3 二甲砜29.9二氯甲烷19.8(20.5) 聚氨基甲酸酯20.5 二甲亚砜27.4氯仿19 聚乙烯醇47.9(25.8) 萘20.3 四氯化碳17.6 乙丙橡胶16.2 溶纤剂19 三氯乙烯18.8 聚二甲基硅氧烷14.9~15.5 四氯乙烯19.1 聚对苯二甲酸乙二醇酯21.9(19.8) 四氯乙烷21.3(19.4) 聚二甲基硅氧烷14.9~15.5

挥发性有机物, 半挥发物和几乎不挥发

含有机物废水处理: .何谓挥发性有机物, 半挥发物和几乎不 挥发 既然所处理的水称之为废水,则其中有机物浓度不很高,比如重量百分比小于10%,小于5%,小于2%,或小于1%。所以这些废水可称之为有机物稀水溶液。则有机物废水处理也可视为有机物稀水溶液分离。 一. 挥发性有机物 鉴于很多分离技术主要利用有机物的挥发性来分离, 我们可以用有机物稀水溶液中有机物对水的相对挥发度来衡量. 狭义地讲, 在有机物浓度从0到2%的全范围内有机物/水的相对挥发度大于2的有机物, 我们称之为挥发性有机物。 为什么要强调从0到2%的范围内, 因为恰恰有些有机物在这个浓度范围内与水形成共沸物 (相对挥发度随浓度升高而变得小于1) 。强调有机物/水的相对挥发度大于2 是因为相对挥发度越打越容易用精馏/吹脱原理分开。 虽然有些化合物的纯物质饱和蒸汽压远小于同样温度下水的蒸汽压, 但是在低浓度下,亨利定律起作用。或者讲,这些有机物特别是非极性有机物在稀水溶液中的活度系数很大, 大到几十,几百,几千,甚至几万。这样, 有机物/水的相对挥发度挥发度大于1。

按这个狭义定义, 属于挥发性有机物的有: 1.几乎所有9个碳以下的烃; 2.几乎所有8个碳以下5个卤素原子以下的卤代烃(脂肪族和芳 香族); 3.几乎所有6个碳以下的(一元)醇; 4.几乎所有8个碳以下的(一元)醚; 5.除甲醛外的所有7个碳以下的(一元)醛和酮; 6.几乎所有8个碳以下的(羧酸的)酯; 7.几乎所有6个碳以下的腈类(RCN), 如乙腈, 丙腈, 丙烯腈等; 8.几乎所有8个碳以下的(一元)脂肪族胺类(包括含氮环类化合 物); 9.6个碳以下的脂肪族单硝基取代物; 10.芳香族单硝基取代物; 11.芳香族单卤单硝基取代物, 例如1-氯-2-硝基苯, 1-氯-3-硝 基苯, 1-氯-4-硝基苯; 12.芳香族二卤单硝基取代物; 例如1,4-二氯-4-硝基苯, 1,2-二 氯-2-硝基苯; 13.二甲基酚类, 乙基酚; 14.某些卤代酚, 如2-氯酚, 2,4-二氯酚, 2,4,6-三氯酚; 15. 2-硝基酚, 1-氯-2-硝基酚;

五种去除在自然水体中有机污染物的机理

水处理技术:生物或人类活动能产生很多的有机物污染对自然界产生影响,如农药PCB,洗涤剂TDE,医药残留物(pharmaceuticals),或内分泌紊乱化学品(EDC)、消毒副产物(DBP)、藻毒素、等等。虽然其中很多可能在现有的废水处理厂被去除,但排放到或已存在于自然水体的这些污染物仍可能对环境及未来对环境的使用产生负面影响。所以,有必要对这些物质在环境中的自然去除机理程度。此外,对自然机理的理解也能够促进人类对这些机理的有针对性使用,具有仿生学的重要意义。 吸附(adsorption): 吸附机理发生在有机物与水体内部或底部固体颗粒之间,在达到饱和之后,有机物将随固体颗粒的沉降被水体截留。决定该部分最重要的影响因素是有机物分离系数(Koc) 和水体颗粒的浓度。系数越大,水体可吸附颗粒越多,有机物被吸附的可能越大。在地表水体中,颗粒成分一般不超过10g/L,多数有机物的Koc 在10-3以下,所以有机物在地表水中被吸附的量一般不会超过10%。其影响力可以忽略不计。但在地下水,可吸附土壤超过1000g/L,停留时间超出百倍,故大多数有机物都能被地下含水层截留。 生物降解(biodegradation): 可分为有氧和无氧两种。前者一般存在于浅层地表水中,而后者多为地下中。由于微生物的无处不在,生物降解几乎发生在任何地方。它对有机物的去除速度受众多因素的影响,包括物理因素(如温度、阳光)、化学因素(如营养物的存在,氧气),生物因素(如微生物的种类、数目、驯化程度),等等。对此机理比较抗拒的有机物多为农药(如666),洗涤剂(TDE)等含氯程度比较高的物质。 气提(volatilization): 其主要影响因素有自身因素如亨利常数、在水中的扩散系数,也受水文因素(流动速度、搅拌程度),温度、及空气流动速度等因素的影响。这些因素的数值越大,一般就越容易被气提。所以,气提在自然界中主要存在于快速流动、搅动剧烈的水体中,如山泉、瀑布等。此外,以离子状态存在的有机物(如有机酸)有很强的亲水性能,也不容易被气提。所以有机物的酸碱分离常数pKa 也常常是鉴别有机物是否能被气提的标记。 水解(hydrolysis):

常见有机溶剂的溶解性汇总

常用溶剂的沸点、溶解性和毒性 溶剂名称沸点(101.3kPa)溶解性毒性 液氨-33.35℃特殊溶解性:能溶解碱金属和碱土金属剧毒性、腐蚀性 液态二氧化硫-10.08 溶解胺、醚、醇苯酚、有机酸、芳香烃、溴、二硫化碳,多数饱和烃不溶剧毒 甲胺-6.3 是多数有机物和无机物的优良溶剂,液态甲胺与水、醚、苯、丙酮、低级醇混溶,其盐酸盐易溶于水,不溶于醇、醚、酮、氯仿、乙酸乙酯中等毒性,易燃 二甲胺7.4 是有机物和无机物的优良溶剂,溶于水、低级醇、醚、低极性溶剂强烈刺激性 石油醚不溶于水,与丙酮、*****、乙酸乙酯、苯、氯仿及甲醇以上高级醇混溶与低级烷相似 ***** 34.6 微溶于水,易溶与盐酸.与醇、醚、石油醚、苯、氯仿等多数有机溶剂混溶*****性 戊烷36.1 与乙醇、*****等多数有机溶剂混溶低毒性员?婷疋0? 二氯甲烷39.75 与醇、醚、氯仿、苯、二硫化碳等有机溶剂混溶低毒,*****性强 二硫化碳46.23 微溶与水,与多种有机溶剂混溶*****性,强刺激性 溶剂石油脑与乙醇、丙酮、戊醇混溶较其他石油系溶剂大 丙酮56.12 与水、醇、醚、烃混溶低毒,类乙醇,但较大 1,1-二氯乙烷57.28 与醇、醚等大多数有机溶剂混溶低毒、局部刺激性 氯仿61.15 与乙醇、*****、石油醚、卤代烃、四氯化碳、二硫化碳等混溶中等毒性,强*****性甲醇64.5 与水、*****、醇、酯、卤代烃、苯、酮混溶中等毒性,*****性 四氢呋喃66 优良溶剂,与水混溶,很好的溶解乙醇、*****、脂肪烃、芳香烃、氯化烃吸入微毒,经口低毒己烷68.7 甲醇部分溶解,比乙醇高的醇、醚丙酮、氯仿混溶低毒。*****性,刺激性 三氟代乙酸71.78 与水,乙醇,*****,丙酮,苯,四氯化碳,己烷混溶,溶解多种脂肪族,芳香族化合物 1,1,1-三氯乙烷74.0 与丙酮、、甲醇、*****、苯、四氯化碳等有机溶剂混溶低毒类溶剂 四氯化碳76.75 与醇、醚、石油醚、石油脑、冰醋酸、二硫化碳、氯代烃混溶氯代甲烷中,毒性最强 乙酸乙酯77.112 与醇、醚、氯仿、丙酮、苯等大多数有机溶剂溶解,能溶解某些金属盐低毒,*****性 乙醇78.3 与水、*****、氯仿、酯、烃类衍生物等有机溶剂混溶微毒类,*****性 丁酮79.64 与丙酮相似,与醇、醚、苯等大多数有机溶剂混溶低毒,毒性强于丙酮 苯80.10 难溶于水,与甘油、乙二醇、乙醇、氯仿、*****、、四氯化碳、二硫化碳、丙酮、甲苯、二甲苯、冰醋酸、脂肪烃等大多有机物混溶强烈毒性 乙睛81.60 与水、甲醇、乙酸甲酯、乙酸乙酯、丙酮、醚、氯仿、四氯化碳、氯乙烯及各种不饱和烃混溶,但是不与饱和烃混溶中等毒性,大量吸入蒸气,引起急性中毒 异丙醇82.40 与乙醇、*****、氯仿、水混溶微毒,类似乙醇 1,2-二氯乙烷83.48 与乙醇、*****、氯仿、四氯化碳等多种有机溶剂混溶高毒性、致癌 乙二醇二甲醚85.2 溶于水,与醇、醚、酮、酯、烃、氯代烃等多种有机溶剂混溶。能溶解各种树脂,还是二氧化硫、氯代甲烷、乙烯等气体的优良溶剂吸入和经口低毒 三氯乙烯87.19 不溶于水,与乙醇.*****、丙酮、苯、乙酸乙酯、脂肪族氯代烃、汽油混溶有机有毒品_ 三乙胺89.6 水:18.7以下混溶,以上微溶。易溶于氯仿、丙酮,溶于乙醇、***** 易爆,皮肤黏膜刺激性强 丙睛97.35 溶解醇、醚、DMF、乙二胺等有机物,与多种金属盐形成加成有机物高度性,与氢氰酸相似 庚烷98.4 与己烷类似低毒,刺激性、*****性

物质溶解性大小的比较方法和规律

物质溶解性大小的比较方法和规律 陕西吴亚南主编 物质的溶解性大小到底和什么有关,存在什么样的规律可循,有什么好的方法来区分和记忆,作为一个中学生是迫切想知道的,现就此问题总结如下。 一、常见酸碱盐在水溶液中的溶解性(口歌) 钾,钠,铵,硝酸,醋酸,碳酸氢盐都是可熔盐, 硫酸盐里除去Ba,Ag,Ca和Pb 碳酸盐里除去钾钠铵其它都是不熔盐 氯化物中只有银沉淀 可溶碱有4种钾,钠,钡和铵 二、相似相溶原理:溶质与溶剂在结构上相似。可理解为极 性相同的物质间一般易于相溶。有机物质易溶于有机溶 剂,通常难溶于水。无机物在有机溶剂中一般难溶。如:氯化钠在水中易溶,但在酒精中却能形成胶体 三、物质的分子可与水分子间形成氢键时加大其溶解性。 如:NH3,C2H5OH,CH3OH 四、常温常压下在1体积水中氨气可溶700体积;氯化氢气 体可溶500体积;硫化氢气体可溶40体积;氯气可溶2 体积;二氧化碳可溶1体积 五、有机化合物中低级醇,多羟基物质可溶于水,有机酸多

溶于水但也不绝对。(个别例外) 六、无机酸中只有原硅酸,硅酸不溶于水。一般碳酸盐的溶解度小于碳酸氢盐。如:碳酸钙的小于碳酸氢钙的;碳酸镁的小于碳酸氢镁的;碳酸锂的小于碳酸氢锂的;但碳酸钠的却大于碳酸氢钠的(碳酸氢根离子的反极化作用) 七、物质间能发生反应时也可溶。如说铜能溶于硝酸,金可溶于王水 八、溶质和溶剂间能形成配位化合物时也能溶。如:氯化银可溶于氨水,溴化银可溶于浓氨水,而碘化银不溶于氨水,氢氧化铜可溶于氨水。 九、都是难溶物谁的溶解度更小,要在同类型分子的基础上在相同条件下比溶度积常数的大小。如:相同条件时氯化银,硫化铅和碳酸钙谁更难溶。 十、物质若与溶剂反应可增加容量,相对溶解的多些。如:I2在KI溶液中的溶解度大于在纯水中的溶解度。是因为I2和I-反应生成I3-从而溶解度增大。 十一、物质的溶解性与物质和溶剂有关外,还与外界的压强,温度等有关。 通常固体物质的溶解性随着温度的升高而加大,但也有反例如:氢氧化钙;气体的溶解性随温度的升高而减小,随压强的增大而增大。

饮用水中半挥发性有机物气相色谱质谱法测定

饮用水中半挥发性有机物气相色谱质谱法测 定 生活饮用水及饮水水源往往受到工业废水、农药和日用化学品等各种有机物的污染,其中有机磷农药、有机氯农药、多环芳烃、多氯联苯以及邻苯二甲酸酯类等半挥发性有机物严重危害人体健康。测定这些化合物常用的方法是将它们分类,液液萃取浓缩后,选用不同气相色谱的检测器分别测定,不仅费时费力,而且存在有机溶剂用量大、样品处理复杂等问题。本文建立了固相萃取技术与气质联用(GC/MS)的方法,同时测定水中100多种半挥发性有机物,不仅准确度高,而且还具有操作简单、效率高、溶剂使用少等优点。 1 材料与方法 1 1 主要试剂标准物质(美国AccuStandard公司),包括有机磷农药、有机氯农药、多环芳烃、多氯联苯、邻苯二甲酸酯类等化合物。标准物质编号分别为:M507A,M507B,M507C,M507D,M507E,M507F R2,M52515X,M5254R X,EPA525 Update phthalate Esters Mix,EPA 505/525 Update pesticides Mix B,共计109种化合物,各化合物的浓度为1000μg/ml。内标M5252IS含3种化合物,分别是十氚代二氢苊(Acenaphthene d10),十二氚代屈(Chrysene d12)和十氚代菲(Phenanthrene d10)。系统性能校准物质M5252TS包含十氟三苯基膦(DFTPP)、艾氏剂和4,4′DDT3种化合物。标准标记物M5252SS包含1,3二甲基2硝基苯、艹北d10和三苯基

膦3种化合物。 1 2 标准样品配制 12 1 内标及标准标记物溶液用乙酸乙酯将浓度为50μg/ml的二氢苊d10和氚代屈d12的内标标准溶液稀释10倍,配成浓度为500μg/ml内标工作液。用同样的方法配制标准标记物溶液。内标及标准标记物溶液放于安瓿中4℃保存。 12 2 GC/MS性能校准溶液用二氯甲烷将浓度为500μg/ml的十氟三苯基膦(DFTPP)、艾氏剂、4,4′DDT配制浓度为50μg/ml的仪器性能校准溶液,放于安瓿中4℃保存。 12 3 标准系统用乙酸乙酯将标准溶液配制成浓度为000,0050,010,050,10,20μg/ml标准系列溶液,加入内标溶液,使内标物质的浓度为20μg/ml。 1 3 仪器及条件 13 1 仪器 Trace GC Ultra Polaris Q离子阱气相色谱质谱仪(美国Thermo Finnigan公司);Xcalibur质谱数据工作站;固相萃取装置:Supelco VISIDRY;固相萃取柱:Supelco ENVI18(6ml,05g);N EVAP型氮吹仪;Scientific Industries 涡流振荡器。 13 2 色谱条件色谱柱:DB 5 MS型毛细色谱柱,30m×250μm×025μm;载气(氦气):10ml/min,恒流;气化室温度:280℃,无分流方式。柱温:起始温度45℃保持1min,以30℃/min 升温至130℃,保持3min,再以12℃/min升到180℃;再以7℃/min

水中有机物的去除方法

水中有机物的去除方法 Revised by Chen Zhen in 2021

水中有机物的去除方法 学校: 漳州师范学院 系别:化学与环境科学系 班级:09环科一班 学号:0 姓名:钟燕平 摘要:介绍有机物的来源分类,有机物的组成及性质,并提出除去水中有机物的几种常用方法。 关键词: 有机物 随着工业发展,有机物造成饮用水水质恶化已成为当前水处理行业中的一大焦点。中国大多数饮用水水源普遍受到有机污染物的污染成为微污染源水,使用常规的水处理工艺已经不易有效地去除有机污染物,随着水质标准的提高和水源污染的加剧,针对各常规处理工艺的不足近些年来,针对有机物污染开发出许多工艺,例如预氧化工艺、活性炭吸附工艺、臭氧-生物活性炭工艺、生物预氧化技术等。 一.有机物的组成及性质 天然有机物(Natural organic matter,NOM)主要是指动植物在自然循环过程中经腐败分解所产生的一类大分子有机物,是天然水体中有机物的主要组成成分。主要包括腐殖质、微生物分泌物、溶解的动物组织等,其中以腐殖质为主,占 NOM 的 50%~90% [1]。如来自植物腐败分解产生的腐殖酸、富里酸,都是腐殖质的主要成分。NOM 是水体色度和臭

味产生的主要原因。同时,NOM 还参与水体中重金属离子的迁移、转化,影响颗粒沉降性,增强其迁移能力[2];与水中疏水性污染物发生吸附反应,增强水处理难度,增加水处理中絮凝剂和消毒剂的使用量。尤其是在饮用水的处理中,NOM 可与氯反应生成三氯甲烷(THMs)、卤乙酸(HAAs)等致癌、致畸物,是氯消毒副产物(DBPs)的主要前驱物[3-5],直接影响人类健康。 腐殖酸类物质有如下电化学性质: (1)胶体性质,腐植酸有可以游离出的官能团—COOH,—OH,显电负性。 (2)亲水性,其亲水性取决于缩合程度。 (3)具有巨大的表面积(330~340㎡/g)和表面能:由于具有能疏松的“海绵状”结构。 (4)在氧化剂作用下可被氧化分解。 另外由于腐植酸中含有若干含氧功能团,使得腐植酸具有各种胶体性质如表面吸附,离子交换,络合作用,缓冲性能及氧化还原特性。 我们可以根据腐植酸的特性设计多种去除腐植酸的方法,从而达到去除天然水中有机物保证锅炉补给水水质的目的。 二、有机物的去除方法 1、吸附法去除水中天然有机物[6] 活性炭吸附剂

有机物的物理性质规律

有机物物理性质的主要规律 河北省宣化县第一中学栾春武 一、密度 物质的密度是指单位体积里所含物质的质量,它与该物质的相对分子质量、分子半径等因素有关。一般来说,有机物的密度与分子中相对原子质量大的原子所占质量分数成正比。例如,烷、烯、炔及苯的同系物等物质的密度均小于水的密度,并且它们的密度均随分子中碳原子数的增加和碳元素的质量分数的增大而增大;而一卤代烷、饱和一元醇随分子中碳原子数的增加,氯元素、氧元素的质量分数降低,密度逐渐减小。 二、溶解性 有机物一般不易溶于水,而易溶于有机溶剂,这是因为有机物分子大多数是非极性分子或弱极性分子,含有憎水基。根据“相似相溶”原理,水是极性分子,只有当某有机物分子中含有亲水基团时,则该有机物就可能溶于水。 亲水基一般包括:-OH、-CHO、COOH等;憎水基一般包括:-R、-NO2、-X、-COOR等。 1. 能溶于水的有机物: ① 小分子醇:CH3OH、C2H5OH、CH2OHCH2OH、甘油等; ②小分子醛:HCHO、CH3CHO、CH3CH2CHO等; ③小分子羧酸:HCOOH、CH3COOH、CH3CH2COOH等; ④低糖:葡萄糖(C6H12O6)、果糖(C6H12O6)、蔗糖(C12H22O11); ⑤氨基酸:CH3CH(NH2)COOH等。 一般来说,低级醇、低级醛、低级酸,单糖和二糖水溶性好,即亲水基占得比重相对较大,憎水基占得比重相对较小,故能溶于水。

2. 不易溶于水的有机物: ① 烷、稀、炔、芳香烃等烃类均不溶于水,因为其分子内不含极性基团; ② 卤代烃:CH3Cl、CHCl3、CCl4、CH3CH2Br、等均不溶于水; ③ 硝基化合物:硝基苯、TNT等; ④ 酯:CH3COOC2H5、油脂等; ⑤ 醚:CH3OCH3、C2H5OC2H5等; ⑥ 大分子化合物或高分子化合物:如高级脂肪酸、塑料、橡胶、纤维等。 一般来说,液态烃、一氯代烃、苯及其同系物、酯类物质不溶于水且密度比水小;硝基苯、溴苯、四氯化碳、氯仿、溴代烃、碘代烃不溶于水且密度比水大。 3. 有机物在汽油、苯、四氯化碳等有机溶剂中的溶解性与在水中的相反: 如乙醇是由较小憎水基团C2H5和亲水基团-OH构成,所以乙醇易溶于水,同时因含有憎水基团,所以必定也溶于四氯化碳等有机溶剂中。其它醇类物质由于都含有亲水基团-OH,小分子都溶于水,但在水中的溶解度随着憎水基团的不断增大而逐渐减小,在四氯化碳等有机溶剂中的溶解度则逐渐增大。 4. 特殊物质(苯酚)在常温时,在水里溶解度不大,当温度高于65℃ 时,能和水以任意比例互溶。 三、熔、沸点 熔、沸点是物质状态变化的标志,有机物熔、沸点的高低与分之间的相互作用、分子的几何形状等因素有关。 1. 结构相似的有机物,相对分子质量越大,分子间作用力越大,其熔、沸点越高。如链烃同系物的沸点,随着相对分子质量的增大而升高,状态由气态(分子中碳原子数小于等于4者及新戊烷通常为气态)到液态,最后变为固态。

有机物极性及溶解性解读

课外毒物https://www.360docs.net/doc/2614701203.html, 有机物极性及溶解性的教学讨论 有机化合物大多难溶于水,易溶于汽油、苯、酒精等有机溶剂。原因何在? 中学课本、大学课本均对此进行了解释。尽管措词不同,但中心内容不外乎是:有机化合物一般是非极性或弱极性的,它们难溶于极性较强的水,易溶于非极性的汽油或弱极性的酒精等有机溶剂。汽油的极性在课本中均未做详细说明,故而在教学中常常做如下解释:所有的烷烃,由于其中的O键的极性极小,以及结构是对称的,所以其分子的偶极矩为零,它是一非极性分子。烷烃易溶于非极性溶剂,如碳氢化合物、四氯化碳等。以烷烃为主要成分的汽油也就不具有极性了。确切而言,上述说法是不够严格的。 我们知道,分子的极性(永久烷极)是由其中正、负电荷的“重心”是否重合所引起的。根据其分子在空间是否绝对对称来判定极性,化学键极性的向量和——弱极矩μ则是其极性大小的客观标度. 常见烷烃中,CH4、C2H6分子无极性,C3H8是折线型分子,键的极性不能相互完全抵消,其μ≠为0.084D。至于其它不含支链的烷烃,分子中碳原子数为奇数时,一定不完全对称而具有极性;分子中碳原子数为偶数时,仅当碳原子为处于同一平面的锯齿状排布的反交叉式时,分子中键的极性才能相互完全抵消,偶极矩为零,但由于分子中C—C键可以旋转,烷烃分子(除 CH4)具有许多构象,而上述极规则的锯齿状反交叉式仅是其无数构象“平衡混合物”中的一种,所以,从整体来说,除CH4、C2H6外,不带支链的烷烃均有极性。带有支链的烷烃,也仅有CH4、C2H6等分子中H原子被—CH3完全取代后的产物尽其用,2—二甲基丙烷、2,2,3,3—四甲基丁烷等少数分子不显极性,余者绝大多数都有一定的极性。由于烷烃中碳原子均以SP3杂化方式成键,键的极性很小,加上其分子中化学键的键角均接近于109°28′,有较好的对称性(但非绝对对称)故分子的极性很弱,其偶极矩一般小于0.1D. 烷烃中,乙烯分子无极性,丙烯分子,1—丁烯分子均不以双键对称,μ分别为0.336D、0.34D。2—丁烷,顺—2—丁烯的μ=0.33D,反—2—丁烯的偶极矩为零,即仅以C=C对称的反式烯烃分子偶极矩为零(当分子中C原子数≥6时,由于C-CO键旋转,产生不同的构象,有可能引起μ的变化),含奇数碳原子的烯径不可能以C=C绝对对称,故分子均有极性。 二烯烃中,丙二烯(通常不能稳定存在)、1、3一丁二烯分子无极性,1、2一丁二烯分子μ为0.408D,2—甲基一1,3—丁二烯(异戊二烯)分子也为极性分子。炔烃中,乙炔、2—丁炔中C原子均在一条直线上,分子以C—C对称,无极性,但丙炔、1—丁炔分子不对称,其极性较大,μ分 课外毒物https://www.360docs.net/doc/2614701203.html, 别为0.78D和0.80D。

给水处理工程中去除有机物的方法

给水处理工程中去除有机物的方法 【摘要】随着社会经济的快速发展,人们的生活质量水平普遍提高,人们对自身生活用水的质量提出了更高的要求。因此给水处理工程中有机物的去除问题成为了水处理学术界的研究热点,由于给水处理工程中去除有机物的结果直接影响到水的质量,因此水处理工作者在深入研究和工程实践后,总结出一些给给水工程中去除有机物的方法,希望对这一领域的问题起到帮助。 【关键词】给水处理;有机物;去除 水资源一直是人类赖以生存的必需品,我们每天都要用水来补充身体能源,但随着工业化城市的发展,加剧了水质的污染程度,从而影响了人类的生活质量水平,因此,给水处理工程中去除有机物这一问题尤为重要,本文具体讲述了给水处理工程中有机物去除的意义和方法,从而更好的改善水质问题。 一、给水处理工程中去除有机物的意义 水质污染的因素有很多,但危害水质最严重的污染物是有机物。水体中的污染物有的是水体自身携带的,也有工农业生产或人类日常生活排放的有机物,经过一系列化学作用的变化,导致这些有机物成为水体中的有害物质。从而影响饮用者的身心健康和给水处理设备的使用,因此,国内外水处理工作者在对给水处理工程中有机会去除这一问题进行了深刻的研究摸索,发现了许多解决的方法和材料,并逐渐在市场中应用,相信在不断的完善摸索下,给水工程中有机物去除问题将会得以解决,从而提高水质质量,使工农业和饮用者都可以放心使用。 二、给水处理工程中去除有机物的方法 1、混凝处理 一般水体中有机物的形态主要分为:悬浮态、胶态和溶解态这三种形态。通过水的预处理,使水体中所含的有机物进入到处理设备中,从而提高水中有机物的去除率,因此,在预处理阶段,有机物的去除主要依靠混凝澄清,因为混凝澄清对悬浮态和胶态的有机会去除率较高,从而达到很好的有机物去除效果。而不同的水体中含有的有机物形态分布也不同,混凝澄清并完全去除水中的有机物,因此国内外水处理者也筛选并应用新型水处理药剂来去除水中的有机物,得到的效果却不理想。但是,近几年随着水处理学者的不断研究,混凝处理方法也在不断完善中,加强其防腐措施,并逐渐应用到实际生活中,从而到达了较高的有机会去除率,使水质得到了大大的改善。 2、吸附处理 活性炭作为吸附处理的代表,一直是去除水中有机物的有效方法,由于其原料多,表面积大,对于农药及其他有机会去除率较高,从而被普遍应用。通过研

120 (半)挥发性有机物试题(吹脱捕集气相色谱质谱法)

(半)挥发性有机物的测定复习试题 (吹脱捕集GC/MS 法) 一、填空题 1.有机物按物理性质可分为 、 和不挥发性有机物(NVOC ) 答:挥发性有机物(VOC );半挥发性有机物(SVOC ) 2.采集VOC 样品时,应将样品 地导入样品瓶中,尽量减少由于搅动引起的挥发性化合物 ,并避免将 引入采样瓶。 答:缓慢;逸出;空气泡。 3.吹脱捕集GC/MS 法测定水中挥发性有机物时,目标化合物的相对保留时间(RRT )一定要 在 RRT 单位内。RRT= 。 答:0.06;目标化合物的保留时间;相关联的目标化合物的保留时间 4.半挥发性有机物(SVOC )一般指沸点在 ℃,蒸气压在 mmHg 的有机化合物,这类有机物数量众多。 答:170~350;0.1~10-7。 5.连续校准实际是校准曲线的 ,其目的是评价仪器的 和 。 答:一个浓度点;灵敏度;反应液;80。 6. 内标法定量用于校正分析测试过程中的 (如进样量、温度漂移等)。内标物的性质在分析测试系统中与目标待测化合物 ,但又是样品中 的。 答:变化因素;相似;不会存在。 二、选择题 1.下列物质中, 属于挥发性有机物。 A 、多氯联苯; B 、卤代烃; C 、苯胺; D 、有机氯杀虫剂 答:B 2.下列物质中, 属于有机氯农药。 A 、敌敌畏; B 、乐果; C 、敌百虫; D 、狄氏剂 答:D ( ) ( )

三、判断题 1. 采集VOC样品时,每20mL样品中加入1滴盐酸(1+1)使pH值<4。() 2. SVOC在大气中是以气态和气溶胶两种状态存在。() 3.二氯甲烷对VOC的分析过程没有干扰。() 4.所有样品都要达到室温时才能分析。()答:⑴×⑵√⑶×⑷√ 四、问答题 1.吹脱捕集GC/MS测定水中挥发性有机物的方法原理是什么? 答:以氦气为载气,通过吹脱管将水样中的挥发性有机物吹脱出来,进入气相中,并通过氦气带入捕集阱,待水样中的挥发性有机物全部吹脱出来并被捕集后,停止吹脱,迅速加热捕集阱,使捕集阱中的有机物逐步脱附出来,进入到气相-质谱联用仪中分离测定。 2.吹脱捕集GC/MS测定挥发性有机物时,怎样减小免高浓度样品会对低浓度样品产生记忆效应的影响? 答:为减少记忆效应,在进样前应用空白试剂水清洗吹扫装置和注射器,无论何时,遇到一个高浓度样品时,随后要分析一个或更多空白样品,直至消除记忆效应(carryover)。3.质谱图上相对丰度的含义是什么? 答:相对丰度是把原始质谱图上最强的离子峰定为基峰,并规定其相对峰度为100%。其它离子峰以对此基峰的相对百值表示。 4.GC-MS测定中,定性的依据是什么? 答:用样品质谱与标准物质质谱相比较来鉴定一个待测物时必须满足两个标准: (1)样品组分和标准组分具有相同的GC相对保留时间(RRT); (2)样品组分和标准组分的质谱相一致。 5.为什么GC-MS在水污染分析中得到广泛应用? 答:(1)GC-MS能调查和鉴定水中许多有机物,并具有适当的灵敏度,其它方法不能与匹敌。 (2)通过使用单离子监测一类的专用技术,能发现极痕量的具体化合物。

锅炉给水中有机物的危害和去除方法

锅炉给水中有机物的危害和去除方法摘要:简单的介绍有机物的来源分类,分析水中有机物对热力设备和除盐系统的危害,并提出除去水中有机物的几种常用方法。 关键词:有机物混凝处理电厂补给水处理有机物危害 在火力发电厂水汽系统中有机物的危害问题已经引起人们越来越大的关注。而水中的有机物对热力设备和除盐系统的危害和有机物的去除方法也成为了人们研究的重点。 一、水中有机物的危害 1、水中有机物对热力设备的危害 有机物进入热力系统后,通过高温分解出低分子有机酸,如甲酸,乙酸等,造成炉水PH偏低,甚至酚酞碱度完全消失,PH偏低对炉水有很多危害。首先不利于炉内磷酸盐防垢处理,因为只有PH>0时才能形成以排除的水渣。 10Ca2+ +6PO43-+2OH-→Ca(OH)2(PO4)6 否则形成CaSiO4,CaSiO3等钙垢沉积物影响导热,若引起金属过热还会发生爆管。另外PH过低不仅会加剧炉内腐蚀,还会加剧二氧化硅的选择性携带和炉内有机物的挥发,造成蒸汽污染。危机汽轮机的安全运行,还会引起酸腐蚀问题。 2﹑水中有机物对除盐系统的危害 水中有机物对除盐系统的主要危害表现在使强碱阴离子交换树脂发生严重中毒,导致阴床和混床的出水水质变化。他包括物理和化学作用。 物理作用包括悬浮有机物的污染机理。有机物吸附在树脂表面覆盖一些离子交换功能基团。堵塞了所交换的离子向内部扩散,而一般再生过程又不会被OH-取代,使树脂交换容量下降。 化学作用主要是溶解有机物的污染。带负电的有机物由离子交换代入树脂微孔中用氢氧化钠再生时,生成有机物的钠盐,有机物的体积增大使它更难从树脂中分离。用反应式表示如下: RCOOH + NaOH→RCOONa + H2O 清洗时,它进行水解 RCOONa + H2O→RCOOH + NaOH 由于NaOH出现增加了出水电导率,延长了清洗时间。清洗水中的阴离子还会与树脂发生交换,从而又损耗了交换容量。 另外,当除盐水中有一定量有机物时,容易在冷却水系统尤其是连通管的出口处,滋生而行成黏糊状胶体,这些胶体物影响了发电机端子的绝缘强度,引起设备故障。 由于有机物对电厂的热力设备及除盐系统有严重危害,那么对它的去除是势

有机物溶解度

A物性类: 1、难溶于水且比水轻: 烃、高级脂肪酸、酯(油脂) 难溶于水且比水重: 氯仿、四氯化碳、溴苯、硝基苯、TNT等 2、常温下呈气态:C<4烃、一氯甲烷、甲醛 常温下呈固态:石蜡、冰醋酸、苯酚晶体、硬脂酸、软脂酸、脂肪、TNT等 3、属于混和物: 天然气、焦炉气、汽油、煤油、福尔马林、高分子化合物、裂解气、石油液化气、天然油脂(豆油、脂肪等) 4、属物理变化或化学变化: 石油分馏、煤的干馏、重油裂解、萘的升华、油脂氢化(硬化)等 5、两种有机物不论以何种比例混和,只要总质量一定,当含C%相同时生成CO2量一定;含H%相同时生成H2O量一定。 最简式相同的物质: 烯烃同系物之间、同分异构体之间、苯和乙炔 甲醛、乙酸和甲酸甲酯 乙醛、丁酸、乙酸乙酯、甲酸丙酯、丙酸甲酯 6.不同类有机物之间有分子量相等分子式不同: (1)烷烃与比它少一个C的饱和一元醛: 如乙烷和甲醛、丙烷和乙醛 (2)脂肪烃和芳香烃(氢原子数在于20个以上) 如C9H20和C10H8、C10H22和C11H10(即甲基萘) (3)饱和一元醇与比它少一个C的饱和一元酸: 如乙醇和甲酸、丙醇和乙酸B.化性类: 7.1体积烯烃和饱和一元醇蒸气完全燃烧时需要O2体积为1.5n 8.耗氧量问题:物质的量相等的烃完全燃烧时,耗氧量的多少决定于(X+Y/4)数值 质量相同的烃燃烧时,耗氧量的多少,决定于CHy中的数值,y值越大,耗氧量越多,反之越少 质量相同的烃燃烧时,生成CO2量决定于CxH中的值,x值越大,生 成CO2量越多,反之越少 9.实验问题: (1)需要用到温度计的实验: 苯的硝化、石油分馏、乙醇脱水、乙酸乙酯水解(2)需要用水浴加热的实验: 银镜反应、制硝基苯、制酚醛树脂、乙酸乙酯水解(3)导管起冷凝回流作用的实验: 制溴苯、制硝基苯、制酚醛树脂(4)导管口接近液面但不插入的实验: 制溴苯、制乙酸乙酯10.鉴别有机物时常用试剂: (1)溴水:烯炔烃、二烯烃、苯酚、天然橡胶、油酸、油脂、SO2 (2)酸性高锰酸钾溶液:烯炔烃、二烯烃、苯酚、天然橡胶、油酸、油脂、含醛基物质 (3)钠:醇、苯酚、低级羧酸(4)氢氧化钠:苯酚、羧酸、酯 (5)银氨溶液或新制氢氧化铜:含醛基物质、低级羧酸(6)氯化铁溶液:苯酚、KSCN溶液、KI溶液、氢硫酸 11.烃及含氧衍生物完全燃烧产物: VCO2:VH2O == 1:1 烯烃、饱和一元醛、饱和一元酸、饱和一元酯 VCO2:VH2O == 2:1 乙炔、苯、苯酚

有机物的溶解性规律相似相溶原理1

有机物的溶解性规律一、相似相溶原理 1.极性溶剂(如水)易溶解极性物质(离子晶体、分子晶体中的极性物质如强酸等); 2.非极性溶剂(如苯、汽油、四氯化碳、酒精等)能溶解非极性物质(大多数有机物、Br2、I2等) 3.含有相同官能团的物质互溶,如水中含羟基(OH)能溶解含有羟基的醇、酚、羧酸。 二、有机物的溶解性与官能团的溶解性 1.官能团的溶解性:(1)易溶于水的官能团(即亲水基团)有OH、CHO、COOH、NH2。(2)难溶于水的官能团(即憎水基团)有:所有的烃基( 有机物的溶解性规律 一、相似相溶原理 1.极性溶剂(如水)易溶解极性物质(离子晶体强碱(NaOH、KOH、)、活泼金属氧化物(Na2O、MgO、Na2O2)、大多数盐类(BaCl2、Pb(Ac)2等除外)以上仅作了解、。、分子晶体中的极性物质如强酸等); 自己做的分析:(H2O是折线型,不对称,所以是极性分子,作为溶剂称为极性溶剂。)百度上的.可是分子晶体中的极性物质居然有苯。这令我很迷茫。 如果苯属于极性 物质,那么水必然与之互溶.但下面也提到了苯是非极性溶剂 我自己做了简要的分析。——百度 苯分子是平面分子,12个原子处于同一平面上,6个碳和6个氢是均等的,C-H 键长为1.08Α,C-C键长为1.40Α,此数值介于单双键长之间。分子中所有键角均为120°…由上可知,苯中貌似无共用电子对偏移,所以苯是非极性溶剂。 问题1。但是如上所述,苯属于分子晶体中的极性物质。那这又是为什么呢?难道是百度错了? 问题3高中所要了解的极性溶剂都有哪些?水,还有什么。 2.非极性溶剂(如苯、汽油、四氯化碳、酒精等)能溶解非极性物质(大多数有机物、Br2、I2等) 问题4我都是从结构出发:探讨是否有共用电子对是否偏离来确定是否为极性溶剂或者非极性溶剂。这种想法是否正确。 ①苯若是非极性溶剂.如上

水体中污染物去除

污水中污染物去除 一、自然水体有机污染物降解 污染物的稀释降解过程主要是水体对污染物进行物理作用、化学作用和生物作用的共同结果。物理作用主要包括水体对污染物的稀释、吸附、沉淀、凝聚等方面,例如高浓度废污水进入水体后,首先会受到水体的混合、稀释,水量越大或径污比越大,稀释效果越好;污染物同时也会被水体中的悬浮物如泥沙所吸附、沉淀,致使污染物浓度下降;化学作用是污染物与水体组份发生化学反应,使污染物浓度降低,化学作用主要包括氧化、还原、分解等方面。例如水体中亚硝酸盐等一些还原性污染物会在氧的作用下,逐步氧化至硝酸盐;一些重金属离子如Fe、Pb等,在碱性水环境条件下(如黄河水体的PH值一般在8.0左右,呈弱碱性),会和水中的OH-结合产生沉淀,使水中重金属离子浓度下降;水体的生化作用是污染物被水体中各种微生物所分解的过程,如水中的好氧微生物会在氧的作用下,把一些有机物分解成无机物,如二氧化碳、水,把氨转化为硝酸盐,使水体得到净化。 有机污染物降解又称BOD降解。水体中有机污染物因氧化分解而发生的衰减变化过程。它是水体污染物发生化学或生物化学转化反应中最常见和最重要的一种,也是可为人们利用的自净作用。在有机物氧化降解时,将消耗水体中的溶解氧,当水体中的耗氧速率大于供氧速率时,水体将出现缺氧,以致使厌氧微生物大量繁殖,水体中可生成甲烷气等发臭气体,使鱼类乃至原生动物死亡。 污水生物处理时微生物在酶的催化作用下,利用微生物的新陈代谢功能,对污水中的污染物质进行分解和转化。微生物代谢由分解代谢(异化)和合成代谢(同化)两个过程组成,是物质在微生物细胞内发生一系列复杂生化反应的总称。微生物可以利用污水中大部分有机物和部分无机物作为营养源,这些可被微生物利用的物质,通常称之为底物或基质。或者更确切地说,一切在生物体内通过酶的催化作用而进行生物化学变化的物质都被称为底物。 分解代谢是微生物在利用底物的过程中,一部分底物在酶的催化作用下降解并同时释放能量的过程,这个过程也称作生物氧化。合成代谢是微生物利用一部分底物或分解代谢过程中产生的中间产物,在合成酶的作用下合成微生物细胞的过程,合成代谢所需要的能量是由分解代谢提供。污水生物处理过程中有机物的生物降解实际上是微生物将有机物作为底物进行分解代谢获取能量的过程。不同类型微生物进行分解代谢所利用的底物是不同的,异养微生物利用有机物,自养微生物则利用无机物。 有机底物的生物氧化主要以脱氢(包括失电子)的方式实现,底物氧化后脱下的氢可以表示为: 2H → 2H+ + 2e- 根据氧化还原反应中最终电子受体的不同,分解代谢可分为发酵和呼吸两种类型,呼吸又可分为好氧呼吸和缺氧呼吸两种方式。 二、有机物 2.1 COD:所谓化学需氧量(COD),是在一定的条件下,采用一定的强氧化剂处理水样时,所消耗的氧化剂量。它是表示水中还原性物质多少的一个指标。水中的还原性物质有各种有机物、亚硝酸盐、硫化物、亚铁盐等,但主要的是有机物。因此,化学需氧量(COD)又往往作为衡量水中有机物质含量多少的指标。化学需氧量越大,说明水体受有机物的污染越严重。

相关文档
最新文档