习题12。4求下列微分方程的通解

习题12。4求下列微分方程的通解
习题12。4求下列微分方程的通解

习题12-4

1. 求下列微分方程的通解:

(1)x e y dx

dy -=+; 解 )()()(C x e C dx e e e C dx e e e y x x x x dx x dx +=+?=+???=-----?

?. (2)xy '+y =x 2+3x +2;

解 原方程变为x x y x y 2

31

++=+'.

])23([1

1C dx e x x e y dx x dx x +?

?++?=?-

])23([1

])23([12C dx x x x C xdx x x x +++=+++=??

x C

x x C x x x x +++=+++=22331)22331(1223.

(3)y '+y cos x =e -sin x ;

解 )(cos sin cos C dx e e e y xdx x dx +???=?--

)()(sin sin sin sin C x e C dx e e e x x x x +=+?=---?.

(4)y '+y tan x =sin 2x ;

解 )2sin (tan tan C dx e x e y xdx xdx +???=?-

)2sin (cos ln cos ln C dx e x e x x +?=?-

?+?=)cos 1

cos sin 2(cos C dx x x x x

=cos x (-2cos x +C )=C cos x -2cos 2x .

(5)(x 2-1)y '+2xy -cos x =0;

解 原方程变形为1cos 1222-=-+'x x

y x x

y .

)1cos (1221222C dx e x x e y dx x x

dx x x +??-?=?---

)(sin 11

])1(1cos [11

2222C x x C dx x x x

x +-=+-?--=?.

(6)23=+ρθ

ρd d ; 解 )2(33C d e e d d +???=?

-θρθθ )2(33C d e e +=?

-θθθ θθθ33332)32(--+=+=Ce C e e .

(7)x xy dx

dy 42=+; 解 )4(22C dx e x e y xdx xdx +???=?

- )4(22C dx e x e x x +?=?- 2222)2(x x x Ce C e e --+=+=.

(8)y ln ydx +(x -ln y )dy =0;

解 原方程变形为

y x y y dy dx 1ln 1=+. )1(ln 1

ln 1C dy e y

e x dy y y dy y y +???=?- )ln 1(ln 1C ydy y

y +?=

? y

C y C y y ln ln 21)ln 21(ln 12+=+=. (9)3)2(2)2(-+=-x y dx

dy x ; 解 原方程变形为2)2(221-=--x y x dx dy . ])2(2[21

221C dx e x e y dx x dx x +??-?=?--- ?+-?--=]2

1)2(2)[2(2C dx x x x =(x -2)[(x -2)2+C ]=(x -2)3+C (x -2).

(10)02)6(2=+-y dx

dy x y .

解 原方程变形为

y x y dy dx 213-=-. ])2

1([33C dy e y e x dy y dy y +??-?=?- )121(33C dy y y y +?-

=? 3232

1)21(Cy y C y y +=+=. 2. 求下列微分方程满足所给初始条件的特解:

(1)x x y dx

dy sec tan =-, y |x =0=0; 解 )sec (tan tan C dx e x e y xdx xdx +???

=?- )(cos 1)cos sec (cos 1C x x

C xdx x x +=+?=?. 由y |x =0=0, 得C =0, 故所求特解为y =x sec x .

(2)x

x x y dx dy sin =+, y |x =π=1; 解 )sin (1

1C dx e x x e y dx x dx x +???=?- )cos (1)sin (

1C x x

C xdx x x x +-=+?=?. 由y |x =π=1, 得C =π-1, 故所求特解为)cos 1(1x x y --=π. (3)x e x y dx dy cos 5cot =+, 4|2

-==πx y ; 解 )5(cot cos cot C dx e e e y xdx x xdx +???=?

- )5(sin 1)sin 5(sin 1cos cos C e x

C xdx e x x x +-=+?=

?. 由4|2-==πx y , 得C =1, 故所求特解为)15(sin 1cos +-=x e x y . (4)83=+y dx

dy , y |x =0=2;

解 )8(33C dx e e y dx dx +???=?

- x x x x x Ce C e e C dx e e 333333

8)38

()8(---+=+=+=?. 由y |x =0=2, 得32

-=C , 故所求特解为)4(3

23x e y --=. (5)13232=-+y x

x dx dy , y |x =1=0. 解 )1(

3232323

2C dx e e y dx x x dx x x +???=?--- )2

1()1(22221

131313C e e x C dx e x e x x x x x +=+=--?. 由y |x =1=0, 得e

C 21-=, 故所求特解为)1(211132--=x e x y . 3. 求一曲线的方程, 这曲线通过原点, 并且它在点(x , y )处的切线斜率等于2x +y . 解 由题意知y '=2x +y , 并且y |x =0=0.

由通解公式得

)2()2(C dx xe e C dx xe e y x x dx dx +=+??=?

?-- =e x (-2xe -x -2e -x +C )=Ce x -2x -2.

由y |x =0=0, 得C =2, 故所求曲线的方程为y =2(e x -x -1).

4. 设有一质量为m 的质点作直线运动, 从速度等于零的时刻起, 有一个与运动方向一至、大小与时间成正比(比例系数为k 1)的力作用于它, 此外还受一与速度成正比(比例系数为k 2)的阻力作用. 求质点运动的速度与时间的函数关系.

解 由牛顿定律F =ma , 得v k t k dt dv m

21-=, 即t m k v m k dt dv 12=+. 由通解公式得

)()(222211C dt e t m k e C dt e t m k e v t m k t m k dt m k

dt m k +?=+???=??-- )(222

22121C e k m k te k k e t m k

t m k t m k +-=-.

由题意, 当t =0时v =0, 于是得22

1k m k C =. 因此 )(22

122121222k m k e k m k te k k e v t m k t m k t m k +-=- 即 )1(222

121t m k e k m k t k k v ---=. 5. 设有一个由电阻R =10Ω、电感L =2h(亨)和电源电压E =20sin5t V (伏)串联组成的电路. 开关K 合上后, 电路中有电源通过. 求电流i 与时间t 的函数关系.

解 由回路电压定律知

0102

5sin 20=--i dt di t , 即t i dt di 5sin 105=+. 由通解公式得

t dt dt Ce t t C dt e t e i 5555cos 5sin )5sin 10(--+-=+???=?

. 因为当t =0时i =0, 所以C =1. 因此

)4

5sin(25cos 5sin 55π

-+=+-=--t e e t t i t t (A).

6. 设曲dy x x xf dx x yf L ])(2[)(2-+?在右半平面(x >0)内与路径无关, 其中f (x )可导, 且f (1)=1, 求f (x ).

解 因为当x >0时, 所给积分与路径无关, 所以

])(2[)]([2x x xf x

x yf y -??=??, 即 f (x )=2f (x )+2xf '(x )-2x ,

或 1)(21)(=+'x f x

x f . 因此 x C x C dx x x C dx e e x f dx x dx x +=+=+???=??-32)(1)1(

)(2121. 由f (1)=1可得31

=C , 故x

x x f 3132)(+=. 7. 求下列伯努利方程的通解:

(1))sin (cos 2x x y y dx

dy -=+;

解 原方程可变形为

x x y

dx dy y sin cos 112-=+, 即x x y dx y d cos sin )(11-=---. ])cos sin ([1C dx e x x e y dx dx +??-?=--?

x Ce C dx e x x e x x x sin ])sin (cos [-=+-=?

-, 原方程的通解为

x Ce y x sin 1-=. (2)23xy xy dx

dy =-; 解 原方程可变形为

x y x dx

dy y =-1312, 即x xy dx y d -=+--113)(. ])([331C dx e x e y xdx xdx +??-?=?

--

)(222323C dx xe e x x +-=?- 3

1)31(222232323-=+-=--x x x Ce C e e , 原方程的通解为311223

-=-x Ce y . (3)4)21(3

131y x y dx dy -=+; 解 原方程可变形为

)21(3

1131134x y dx dy y -=+, 即12)(33-=---x y dx y d . ])12([3C dx e x e y dx dx +??-?=--?

x x x Ce x C dx e x e +--=+-=?

-12])12([, 原方程的通解为1213

--=x Ce y x .

(4)5xy y dx

dy =-; 解 原方程可变形为

x y

dx dy y =-4511, 即x y dx y d 44)(44-=+--. ])4([444C dx e x e y dx dx +??-?=?

-- )4(44C dx xe e x +-=?

- x Ce x 441-++-=, 原方程的通解为

x Ce x y 44

411-++-=.

(5)xdy -[y +xy 3(1+ln x )]dx =0.

解 原方程可变形为 )ln 1(11123x y

x dx dy y +=?-?, 即)ln 1(22)(22x y x dx y d +-=+--. ])ln 1(2[2

22C dx e x e y dx x dx x +??+-?=?-- ])ln 1(2[122C dx x x x ++-=

?

x x x x C 94ln 3

22--=, 原方程的通解为x x x x C y 94ln 32122--=. 8. 验证形如yf (xy )dx +xg (xy )dy =0的微分方程, 可经变量代换v =xy 化为可分离变量的方程, 并求其通解.

解 原方程可变形为

)

()(xy xg xy yf dx dy -=. 在代换v =xy 下原方程化为

)

()(22v g x v vf x v dx dv x -=-,

dx x

du v f v g v v g 1)]()([)(=-, 积分得 C x du v f v g v v g +=-?ln )]()([)(, 对上式求出积分后, 将v =xy 代回, 即得通解.

9. 用适当的变量代换将下列方程化为可分离变量的方程, 然 后求出通解:

(1)2)(y x dx

dy +=; 解 令u =x +y , 则原方程化为

21u dx du =-, 即21u du dx +=. 两边积分得

x =arctan u +C .

将u =x +y 代入上式得原方程的通解

x =arctan(x +y )+C , 即y =-x +tan(x -C ).

(2)11+-=y

x dx dy ; 解 令u =x -y , 则原方程化为

111+=-u

dx du , 即dx =-udu . 两边积分得 1221

C u x +-=.

将u =x +y 代入上式得原方程的通解

12)(21C y x x +--=, 即(x -y )2=-2x +C (C =2C 1).

(3)xy '+y =y (ln x +ln y );

解 令u =xy , 则原方程化为

u x u x u x u dx du x x ln )1(2=+-, 即du u

u dx x ln 11=. 两边积分得

ln x +ln C =lnln u , 即u =e Cx .

将u =xy 代入上式得原方程的通解

xy =e Cx , 即Cx e x

y 1=.

(4)y '=y 2+2(sin x -1)y +sin 2x -2sin x -cos x +1;

解 原方程变形为

y '=(y +sin x -1)2-cos x .

令u =y +sin x -1, 则原方程化为

x u x dx du cos cos 2-=-, 即dx du u =2

1. 两边积分得 C x u +=-1

.

将u =y +sin x -1代入上式得原方程的通解

C x x y +=-+-

1sin 1, 即C x x y +--=1sin 1.

(5)y (xy +1)dx +x (1+xy +x 2y 2)dy =0 .

解 原方程变形为

)

1()1(22y x xy x xy y dx dy +++-=. 令u =xy , 则原方程化为

)

1()1(1222u u x u u x u dx du x +++-=-, 即)1(1223u u x u dx du x ++=. 分离变量得 du u

u u dx x )111(123++=. 两边积分得 u u

u C x ln 121ln 21+--=+. 将u =xy 代入上式得原方程的通解 xy xy y x C x ln 121ln 221+--

=+, 即 2x 2y 2ln y -2xy -1=Cx 2y 2(C =2C 1).

第七章 微分方程经典例题

第七章 微分方程 例7 有高为1米的半球形容器,水从它的底部小孔流出,小孔横截面积为1平方厘米. 开始时容器内盛满了水, 求水从小孔流出过程中容器里水面的高度h (水面与孔口中心间的距离)随时间t 的变化规律. 解 由力学知识得,水从孔口流出的流量为 62.0dt dV Q ?== 孔口截面面积 重力加速度 ,12cm S = .262.0dt gh dV =∴ ① 设在微小的时间间隔],,[t t t ?+水面的高度由h 降至,h h ?+则,2dh r dV π-= ,200)100(100222h h h r -=--= .)200(2dh h h dV --=∴π ② 比较①和②得: ,262.0)200(2dt gh dh h h =--π 即为未知函数得微分方程. ,)200(262.03dh h h g dt --- =π ,1000==t h ,1015 14 262.05?? = ∴g C π 所求规律为 ).310107(265.45335h h g t +-?= π 例10 求解微分方程 .2222xy y dy y xy x dx -=+- 解 原方程变形为=+--=222 2y xy x xy y dx dy ,1222 ? ?? ??+--??? ??x y x y x y x y 令,x y u =则,dx du x u dx dy +=方程化为,1222u u u u dx du x u +--=+ 分离变量得? ? ????-+--??? ??--112212121u u u u ,x dx du = 两边积分得 ,ln ln ln 2 1 )2ln(23)1ln(C x u u u +=----

二次微分方程的通解

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐 次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将 y e rx 代入方程 y py qy 0 得 (r 2 pr q )e rx 0 由此可见 只要r 满足代数方程r 2 pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2 pr q 0叫做微分方程y py qy 0的特征方程 特征方程 的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无 关的解

这是因为 函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0 )()2(121111=++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且 x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的 两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关 的实数形式的解 函数y 1e ( i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e ( i )x e x (cos x i sin x ) y 1y 22e x cos x ) (2 1cos 21y y x e x +=βα y 1y 22ie x sin x ) (21sin 2 1y y i x e x -= βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解

【习题】第二章一阶微分方程的初等解法

第二章 一阶微分方程的初等解法 x 2-1已知f(x) f(t)dt 1, x 0,试求函数f (x)的一般表达式。 0 x 解 对方程f(x) f (t)dt 1,两边关于x 求导得 x f (x) f (t)dt f 2(x) 0, f (X)丄 f(x) f 2(x) 0 , 分离变量,可求得 代入原方程可得 C 0,从而f(x)的一般表达式为f (x) 评注:本题中常数的确定不能直接通过所给积分方程得到, 确定。 解由导数的定义可得 x(t s) x(t) x (t) lim s 0 s 2 |im x(s) x (t)x(s) s 0 [1 x(t)x(s)]s lim 丄辿型 s 01 x(t)x(s) s 显然可得x(0) 0,故 分离变量,再积分可得 x(t) [1 2 x (t)] !i 叫 x(s) x(0) s x (0) [1 x 2(t)] f(x) 、2(x C)' 1 2x 。 而是需将通解代回原方程来 2-2求具有性质x(t S) x(t) x(s) 1 x(t)x(s) 的函数x(t),已知x (0)存在。

x(t) tan[x(O)t C], 再由x(0) 0,知C 0,从而x(t) ta n[x(0)t]。 评注:本题是函数方程的求解问题,利用导数定义建立微分关系,转化为求解常微分方程的初值问题。 2-3 若M(x,y)x N(x,y)y 0,证明齐次方程M (x, y)dx N(x,y)dy 0 有积分因 1 xM(x,y) yN(x, y) 证方法1用凑微分法求积分因子。 我们有恒等式 M (x, y)dx N (x, y)dy 1 dx dv 2 {(M(x,y)x N(x,v)v)U 寺(M(x,v)x 鱼din (xy), x y 空翌din仝, x y y 所以原方程变为 -{( M (x, y)x N (x, y)y)d ln(xy) (M (x, y)x N (x, y)y)d ln —} 0。 2 y 1 1 M (x, y)x N(x, y)y「x -d ln(xy) d in 0, 2 2 M(x,y)x N(x,y)y y 由于M( x ,y) x N(x, y)y 为零次齐次函数,故它可表成仝的某一函数,记为f (上),M (x,y)x N(x, y)y y y I X MX" N(x,y)y % 巧F(in^), M(x,y)x N(x,y)y y y N (x,y)y)(¥3)} y 用(x,y) 1 M(x,y)x 乘上式两边,得 N(x,y)y

二次微分方程的通解

教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐 次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将 y e rx 代入方程 y py qy 0 得 (r 2 pr q )e rx 0 由此可见 只要r 满足代数方程r 2 pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2 pr q 0叫做微分方程y py qy 0的特征方程 特征方程 的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无 关的解 这是因为

函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0 )()2(121111=++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的 两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关 的实数形式的解 函数y 1e ( i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e ( i )x e x (cos x i sin x ) y 1y 22e x cos x ) (2 1cos 21y y x e x +=βα y 1y 22ie x sin x ) (21sin 21y y i x e x -=βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解 因此方程的通解为

微分方程例题选解

微分方程例题选解 1. 求解微分方程3ln (ln )0,|2 x e x xdy y x dx y =+-==。 解:原方程化为 x y x x dx dy 1ln 1=+, 通解为 ?+? ?=-]1[ln 1ln 1C dx e x e y dx x x dx x x ?+=]ln [ln 1C dx x x x ]ln 21[ln 12C x x += 由e x =,23=y ,得1=C ,所求特解为 11 ln ln 2 y x x = +。 2. 求解微分方程22'0x y xy y -+=。 解:令ux y =,u x u y '+=',原方程化为 2 u u u x u -='+, 分离变量得 dx x u du 1 2 =-, 积分得 C x u +=ln 1 , 原方程的通解为 ln x y x C = +。 3. 求解微分方程dy y y x dx xy x )()(3223+=-。 解:此题为全微分方程。下面利用“凑微分”的方法求解。 原方程化为 03 2 2 3 =---dy y ydy x dx xy dx x , 由 dy y ydy x dx xy dx x 3 2 2 3 --- 42222441 )(2141dy dy x dx y dx -+-= )2(41 4224y y x x d --=, 得 0)2(4 224=--y y x x d , 原方程的通解为 C y y x x =--4 2 2 4 2。 注:此题也为齐次方程。 4. 求解微分方程2''1(')y y =+。 解:设y p '=,则dx dp y ='',原方程化为 21p dx dp +=, 分离变量得 dx p dp =+2 1,积分得 1arctan C x p +=, 于是 )tan(1C x p y +==', 积分得通解为 12ln cos()y x C C =-++。 5. 求解微分方程''2'20y y y -+=。 解:特征方程为 0222 =--r r ,特征根为 i r ±=1, 通解为12(cos sin )x y e C x C x =+。

微分方程练习题基础篇答案

常微分方程基础练习题答案 求下列方程的通解 1.dy xy dx = 分离变量 dy xdx y =,2 2x y Ce =,C 为任意常数 2.0xydx = 分离变量 dy y = ,y =C 任意常数 3.ln 0xy y y '-= 分离变量 1 ln dy dx y y x =,x y Ce = 224.()()0xy x dx x y y dy ++-= 分离变量 22 11ydy xdx y x =+-,22 (1)(1)y x C +-= 2 5.(25)dy x y dx =++ 令25u x y =++则2du dy dx dx =+,22du dx u =+ 1x C =+ 6.dy x y dx x y +=-,原方程变为11y dy x y dx x + =-,令y u x =,dy du u x dx dx =+,代入得22111u du dx u x -=+ 2arctan ln u u x C -=+ , y u x = 回代得通解 2arctan ln y y x C x x =++ 7.0xy y '-= 方程变形为0dy y dx x =+=,令y u x = dx x = arctan ln u x C =+, y u x = 回代得通解arctan ln y y x C x x =++ 8.ln dy y x y dx x =,方程变形为ln dy y y dx x x =,令y u x =,(ln 1)du dx u u x =-,1 Cx u e +=,1Cx y xe +=

9.24dy xy x dx +=,一阶线性公式法222(4)2xdx xdx x y e xe dx C Ce --??=+=+? 210.2dy y x dx x -=,一阶线性公式法112 3(2)dx dx x x y e x e dx C x Cx -??=+=+? 2211.(1)24x y xy x '++=,方程变形为2 222411x x y y x x '+=++一阶线性公式法3 2 14()13 y x C x =++ 212.(6) 20dy y x y dx -+=,方程变形为312dx x y dy y -=-一阶线性公式法2312y y Cy =+ 2 13.3y xy xy '-=,方程变形为2113dy x x y dx y -=伯努利方程,令12,dz dy z y y dx dx --==-代入方程得 3dz xz x dx +=-一阶线性公式法再将z 回代得23 2 113x Ce y -=- 411 14. (12)33 dy y x y dx +=-,方程变形为4 3 1111(12)33dy x y dx y +=-伯努利方程,令 34, 3dz dy z y y dx dx --==-代入方程得21dz z x dx -=-,一阶线性公式法再将z 回代得3121x Ce x y =-- 15.560y y y '''++=,特征方程为2560r r ++=,特征根为122,3r r =-=-,通解 2312x x y C e C e --=+ 16.162490y y y '''-+=,特征方程为2 162490r r -+=,特征根为1,23 4 r =,通解 34 12()x y C C x e =+

一阶微分方程典型例题

一阶微分方程典型例题 例1 在某一人群中推广新技术是通过其中掌握新技术的人进行的.设该人群的总人数为N ,在0=t 时刻已掌握新技术的人数为0x ,在任意时刻t 已掌握新技术的人数为)(t x (将)(t x 视为连续可微变量),其变化率与已掌握新技术的人数和未掌握新技术人数之积成正比,比例常数0>k ,求)(t x . 解 由题设知未掌握新技术人数为)(t x N ?,且有 )(x N kx dt dx ?=,00x x t == 变量分离后,有 kdt x N x dx =?)(,积分之,kNt kNt ce cNe x +=1,由00x x t ==,求得 0 0x N x c ?= 例2 求2 sin 2sin y x y x y ?=++′的通解. 解:利用三角公式将方程改写为2sin 2cos 2y x y ?=′.当02 sin ≠y 时,用它除方程的两端,得变量分离方程dx x y dy 2cos 22 sin ?=, 积分之,得通积分 2 sin 44tan ln x c y ?=. 对应于02 sin =x ,再加特解 ),2,1,0(2"±±==n n y π. 在变量分离时,这里假设02sin ≠y ,故所求通解中可能会失去使 02 sin =y 的解.因此,如果它们不能含于通解之中的话,还要外加上这种形式的特解. 例3 求微分方程 x xe y y x =+′ 满足条件11==x y 的特解.

解法1 把原方程改写为x e y x y =+′1,它是一阶线性方程,其通解为 ()11()()1()1dx dx p x dx p x dx x x x x y e q x e c e e e dx c x e c x ????∫∫??∫∫??=+=?+=?+?????????? ∫∫ 用1,1==y x 代入,得 1=c ,所以特解为x e x x y x 11+?=. 解法2 原方程等价于x xe xy dx d =)(,积分后,得c e x xy x +?=)1(. 当 1,1==y x 时, 1=c 故所求特解为x e x x y x 11+?=. 例4 求方程 0)cos 2()1(2=?+?dx x xy dy x 满足初始条件 10 ==x y 之特解. 解 将原方程改写为1 cos 1222?=?+x x y x x dx dy . 于是,通解为 ????????+∫?∫=∫??? c dx e x x e y dx x x dx x x 12212221cos 即 1sin 2?+=x c x y , 由01x y ==,得1c =?,故特解为2sin 11 x y x ?=?. 例5 求方程 4y x y dx dy +=的通解. 解 将原方程改写成以 为未知函数的方程 31y x y dx dy =?. 于是,由一阶线性方程的通解公式,得 ?? ????+=????????+∫∫=∫?c y y c dy e y e x dy y dy y 313131 在判断方程的类型时,不能只考虑以y 为因变量的情况.因有些方程在以 x 为因变量时方能为线性方程或伯努利方程,解题时必须全面分析.

微分方程习题及答案

微分方程习题 §1 基本概念 1. 验证下列各题所给出的隐函数是微分方程的解. (1)y x y y x C y xy x -='-=+-2)2(,22 (2)?'=''=+y 0 222t -)(,1e y y y x dt 2..已知曲线族,求它相应的微分方程(其中21C , ,C C 均为常数) (一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.) (1)1)(22=++y C x ; (2)x C x C y 2cos 2sin 21+=. 3.写出下列条件确定的曲线所满足的微分方程。 (1)曲线在()y x , 处切线的斜率等于该点横坐标的平方。 (2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。 (3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。 §2可分离变量与齐次方程 1.求下列微分方程的通解 (1)2211y y x -='-; (2)0tan sec tan sec 22=?+?xdy y ydx x ; (3) 23xy xy dx dy =-; (4)0)22()22 (=++-++dy dx y y x x y x . 2.求下列微分方程的特解 (1)0 ,02=='=-x y x y e y ; (2)2 1 ,12= =+'=x y y y y x

3. 求下列微分方程的通解 (1))1(ln +='x y y y x ; (2)03)(233=-+dy xy dx y x . 4. 求下列微分方程的特解 (1) 1 ,0 22=-==x y y x xy dx dy ; (2)1 ,02)3(0 22==+-=x y xydx dy x y . 5. 用适当的变换替换化简方程,并求解下列方程 (1)2)(y x y +='; (2))ln (ln y x y y y x +=+' (3)11 +-= 'y x y (4)0)1()1(22=++++dy y x xy x dx xy y 6. 求一曲线,使其任意一点的切线与过切点平行于y 轴的直线和x 轴所围城三角形面积等于常数2a . 7. 设质量为m 的物体自由下落,所受空气阻力与速度成正比,并设开始下落时)0(=t 速度为0,求物体速度v 与时间t 的函数关系. 8. 有一种医疗手段,是把示踪染色注射到胰脏里去,以检查其功能.正常胰脏每分钟吸收掉%40染色,现内科医生给某人注射了0.3g 染色,30分钟后剩下0.1g ,试求注射染色后t 分钟时正常胰脏中染色量)(t P 随时间t 变化的规律,此人胰脏是否正常? 9.有一容器内有100L 的盐水,其中含盐10kg ,现以每分钟3L 的速度注入清水,同时又以每分钟2L 的速度将冲淡的盐水排出,问一小时后,容器内尚有多少盐?

【典型例题】 第三章 一阶微分方程的解的存在定理

第三章 一阶微分方程的解的存在定理 例3-1 求方程 22y x dx dy += 满足初始条件0)0(=y 的解的逐次逼近)(),(),(321x y x y x y ,并求出h 的最大值,其中h 的意义同解的存在唯一性定理中的h 。 解 函数2 2 ),(y x y x f +=在整个平面上有意义,则在以原点为中心的任一闭矩形区域 b y a x D ≤≤,:上均满足解的存在唯一性定理的条件,初值问题?????=+=0 )0(22y y x dx dy 的解在],[h h -上存在唯一,其中)(max ),, min(22),(y x M M b a h D y x +==∈。 因为逐次逼近函数序列为 ?-+=x x n n dx x y x f y x y 0 ))(,()(10, 此时,2 200),(,0,0y x y x f y x +===,所以 0)(0=x y , ?=+=x x dx x y x x y 03 2 02 13 )]([)(, | 63 3)]([)(7 032 12 2x x dx x y x x y x +=+=?, ?? +++=+=x x dx x x x x dx x y x x y 0 14 1062 2 223)3969 18929()]([)( 59535 20792633151173x x x x +++=。 现在求h 的最大值。 因为 ),, min(2 2b a b a h += 对任给的正数b a ,,ab b a 22 2 ≥+,上式中,当 b a = 时, 2 2b a b +取得最大值

a ab b 21 2= 。 此时,)21,min()2, min(a a ab b a h ==,当且仅当a a 21 = ,即22==b a 时,h 取得最大值为 2 2 。 评注:本题主要考查对初值问题的解的存在唯一定理及其证明过程的基本思想(逐次逼近方法)的理解。特别地,对其中的b y a x D y x f M M b a h D y x ≤≤==∈,:),,(max ),, min(),(等常数意义的理解和对逐次逼近函数列? -+=x x n n dx x y x f y x y 0 ))(,()(10的构造过程的理 解。 例3-2 证明下列初值问题的解在指定区间上存在且唯一。 1) 2 1 0,0)0(cos 2 2≤ ≤=+='x y x y y ,。 2) 32 2 )2 1 (0,0)0(≤≤=+='x y y x y , 。 | 证 1) 以原点为中心作闭矩形区域1,2 1 :≤≤ y x D 。 易验证2 2 cos ),(x y y x f +=在区域D 上满足解的存在唯一性定理的条件,求得 2cos m ax 22),(=+=∈x y M D y x ,则2 1 )21,21min(==h 。 因此初值问题 ?? ?=+='0 )0(cos 2 2y x y y 的解在]21,21[- 上存在唯一,从而在区间]2 1 ,0[上方程 cos 22, x y y +='满足条件0)0( =y 的解存在唯一。 2) 以原点为中心作闭矩形区域b y a x D ≤≤,:。 易验证x y y x f +=2 ),(在D 上满足解的存在唯一性定理的条件,并求得 22),(m ax b a x y M D y x +=+=∈,

习题12。4求下列微分方程的通解

习题12-4 1. 求下列微分方程的通解: (1)x e y dx dy -=+; 解 )()()(C x e C dx e e e C dx e e e y x x x x dx x dx +=+?=+???=-----? ?. (2)xy '+y =x 2+3x +2; 解 原方程变为x x y x y 2 31 ++=+'. ])23([1 1C dx e x x e y dx x dx x +? ?++?=?- ])23([1 ])23([12C dx x x x C xdx x x x +++=+++=?? x C x x C x x x x +++=+++=22331)22331(1223. (3)y '+y cos x =e -sin x ; 解 )(cos sin cos C dx e e e y xdx x dx +???=?-- )()(sin sin sin sin C x e C dx e e e x x x x +=+?=---?. (4)y '+y tan x =sin 2x ; 解 )2sin (tan tan C dx e x e y xdx xdx +???=?- )2sin (cos ln cos ln C dx e x e x x +?=?- ?+?=)cos 1 cos sin 2(cos C dx x x x x =cos x (-2cos x +C )=C cos x -2cos 2x . (5)(x 2-1)y '+2xy -cos x =0; 解 原方程变形为1cos 1222-=-+'x x y x x y . )1cos (1221222C dx e x x e y dx x x dx x x +??-?=?--- )(sin 11 ])1(1cos [11 2222C x x C dx x x x x +-=+-?--=?.

用Matlab软件求常微分方程的解或通解

《高等数学》实验报告 实验人员:系(班): 学号: 姓名: 实验地点:电教楼五号机房 实验名称:Matlab 高等数学实验 实验时间:2014-6-3 16:30--18:30 实验名称:用Matlab 软件求常微分方程的解(或通解) 实验目的:熟练掌握Matlab 软件求常微分方程的解(或通解) 实验内容:(给出实验程序与运行结果) 1、求微分方程的特解. 1、?? ?? ?===+-10)0(,6)0(034'2 2y y y dx dy dx y d 程序:>> dsolve('D2y-4*Dy+3*y','y(0)=6,Dy(0)=10','x') ans = 4*exp(x)+2*exp(3*x) 吕梁学院《高等数学》实验报告 情况试高中

2、?? ???===++0)0(,2)0(044'2 2y y y dx dy dx y d 程序:>>dsolve('4*D2y+4*Dy+y','y(0)=2,Dy(0)=0','x') ans = 2*exp(-1/2*x)+exp(-1/2*x)*x 3、?? ???===++15)0(',0)0(029422y y y dx dy dx y d 程序:>>dsolve('D2y+4*Dy+29*y=0','y(0)=9,Dy(0)=15','x') ans = 33/5*exp(-2*x)*sin(5*x)+9*exp(-2*x)*cos(5*x) 4、?? ???===+-3)0(',0)0(013422y y y dx dy dx y d 程序:>>dsolve('D2y-4*dy+13*y=0','y(0)=0','Dy(0)=3','x') ans = 3/13*sin(13^(1/2)*x)*13^(1/2)-4/13*cos(13^(1/2)*x)*dy+4/13*dy 5、?? ???-===--5)0(',0)0(04322y y y dx dy dx y d 程序:>>dsolve('D2y-3*Dy-4*y','y(0)=0,Dy(0)=-5','x') ans = exp(-x)-exp(4*x)

微分方程例题选解演示教学

微分方程例题选解

微分方程例题选解 1. 求解微分方程3ln (ln )0,|2x e x xdy y x dx y =+-== 。 解:原方程化为 x y x x dx dy 1ln 1=+, 通解为 ?+??=-]1[ln 1ln 1C dx e x e y dx x x dx x x ?+=]ln [ln 1C dx x x x ]ln 2 1[ln 12C x x += 由e x =,23=y ,得1=C ,所求特解为 11ln ln 2 y x x =+。 2. 求解微分方程22'0x y xy y -+=。 解:令ux y =,u x u y '+=',原方程化为 2u u u x u -='+, 分离变量得 dx x u du 12=-, 积分得 C x u +=ln 1, 原方程的通解为 ln x y x C =+。 3. 求解微分方程dy y y x dx xy x )()(3223+=-。 解:此题为全微分方程。下面利用“凑微分”的方法求解。 原方程化为 03223=---dy y ydy x dx xy dx x , 由 dy y ydy x dx xy dx x 3223--- 4222244 1)(2141dy dy x dx y dx -+-= )2(4 14224y y x x d --=, 得 0)2(4224=--y y x x d , 原方程的通解为 C y y x x =--42242。 注:此题也为齐次方程。 4. 求解微分方程2''1(')y y =+。 解:设y p '=,则dx dp y ='',原方程化为 21p dx dp +=, 分离变量得 dx p dp =+2 1,积分得 1arctan C x p +=, 于是 )tan(1C x p y +==', 积分得通解为 12ln cos()y x C C =-++。 5. 求解微分方程''2'20y y y -+=。 解:特征方程为 0222=--r r ,特征根为 i r ±=1,

微分方程(习题及解答)0001

2 第十二章 微分方程 § 微分方程基本概念、可分离变 量的微分方程、 、单项选择题 1.下列所给方程中,不是微分方程的是 (A) xy 2y ; (C) y y 0 ; 4 2?微分方程5y y xy (A) 1 ; (B) 2 ; 3. 下列所给的函数,是微分方程 (A) y C i cosx ; (C) y cosx Csinx ; 齐次微分方程 2y (3) ( x 2 (7x (B) (D) 0的阶数是( (C) 3 ; y (B) (D) 4. 下列微分方程中,可分离变量的方程是 (A) y e x y ; (B) xy (C) y xy 1 0 ; (D) (x ). 2 2 y C ; 6y)dx (x y)d y ). (D) 4 ; 0的通解的是( ). C 2 sin x ; G cosx ( ). y x ; y)dx (x 5. 下列微分方程中,是齐次方程是微分方程的是 (A) y (C) y 、填空题 c x y e ; xy x 0 ; (B) xy (D) (x 答(B). 答(C). C 2 si nx 答(D). y)dy 0. 答(A). ( 2 y x y)dx 答(D). 1. 函数y 5x 2是否是微分方程 xy 2y 的解? 答: 是. 2 . 微分方程 dx dy 0, y x 3 4的解是 .答: 2 x 2 y 25 . y x 3 x 2 冬C . 3 . 微分方程 3x 2 5x 5y 0的通解是 . 答: y 5 2 4 . 微分方程 xy y ln y 0的通解是 答: y Cx e . 5 . 微分方程 1 2 x y -1 y 2的通解是 . 答: arcsin y arcsin x 6 . 微分方程 xy y y(ln y ln x)的通解是 . 答: _y x Cx e 三、解答题 y); C . xy a(y 2 (x y)d y 1?求下列微分方程的通解. ⑵ (1) sec xtanydx s ec ytanxdy 0 ; 解: 解: dy 心y ⑶ —10 ; ⑷ dx 解: 解: 2 . 求下列微分方程满足所给初始条件的特解: (1) 2x y y e , y x 0 0 ; (2) 解 : 解: ⑶ xdy 2ydx 0, y x 2 1; ⑷ 解: 解: y (y 2 x 3 o. y si nx yl ny

(整理)微分方程的例题分析及解法

微分方程的例题分析及解法 本单元的基本内容是常微分方程的概念,一阶常微分方程的解法,二阶常微分方程的解 法,微分方程的应用。 一、常微分方程的概念 本单元介绍了微分方程、常微分方程、微分方程的阶、解、通解、特解、初始条件等基 本概念,要正确理解这些概念;要学会判别微分方程的类型,理解线性微分方程解的结构定 理。 二、一阶常微分方程的解法 本单元介绍了三种类型的一阶微分方程的求解方法:变量可分离型,齐次型,线性方程。 对于一阶微分方程,首先要看是否可以经过恒等变形将它的变量分离; 对于一阶线性微分方程,先用分离变量法求解其相应的齐次方程,再用常数变易法求解 非齐次方程;当然也可直接代下列通解公式: ()()?? ????+??=?-C dx e x q e y dx x p dx x p )( 齐次型微分方程 )(x y f y =' 令x y u =,则方程化为关于未知数u 与自变量x 的变量可分离的微分方程。 三、二阶微分方程的解法 1.特殊类型的二阶常微分方程 本章介绍了三种特殊类型的二阶方程的求解方法: (1))(x f y ='',直接积分; (2)),(y x f y '='',令p y =', (3)),(y y f y '='',令p y =',则p dy dp y ='' 这三种方法都是为了“降价”,即降成一阶方程。 2.二阶线性常系数微分方程 二阶线性常系数微分方程求解的关键是:

(1)特征方程 对于相应的齐次方程,利用特征方程 02=++q p λλ 求通解: (2)对于非齐次方程,根据下列形式自由项的特点 )()(x P e x f m x μ= 和 []x x p x x P e x f n l ax ββsin )(~ cos )()(+= 设置特解* y 的形式,然后使用待定系数法。 四、微分方程的应用 求解应用问题时,首先需要列微分方程,这可根据有关科学知识,分析所研究的变量应 该遵循的规律,找出各量之间的等量关系,列出微分方程,然后根据微分方程的类型的用相 应的方法求解,还应注意,有的应用问题还含有初始条件。 一、疑难解析 (一)一阶微分方程 1.关于可分离变量的微分方程 可分离变量的微分方程是一阶微分方程中的一种最简单的方程,形如 0)()()()(2211=+dy y g x f dx y g x f (1) 的微分方程称为变量可分离的微分方程,或称可分离变量的微分方程,若 0)()(12≠y g x f ,则方程(1)可化为变量已分离的方程 dx x f x f dy y g y g ) ()()()(2112-= 两端积分,即得(1)的通解: C x F y G +=)()( (2) (2)式是方程(1)的通解(含有一个任意常数),但不是全部解,用分离变量法可求 出其通解为)sin(c x y +=,但显然1±=y 也是该方程的解,却未包含在通解中,从这个例 子也可以理解通解并不是微分方程的全部解,本课程不要求求全部解。 有些看上去不能分离变量的微分方程,通过变量代换可以化为可分离变量的方程来求 解。如齐次型微分方程。 )(x y f y ='或)(x y f dx dy = (3) 可用代换ux y =化为

微积分微分方程练习题及答案

一、 选择题: 1、 一阶线性非齐次微分方程)()(x Q y x P y +=' 的通解是( ). (A)?+??=-])([)()(C dx e x Q e y dx x P dx x P ; (B)???=-dx e x Q e y dx x P dx x P )()()(; (C)?+??=-])([)()(C dx e x Q e y dx x P dx x P ; (D)? =-dx x P ce y )(. 2、方程y y x y x ++='22是( ). (A)齐次方程; (B)一阶线性方程; (C)伯努利方程; (D)可分离变量方程 . 3、2)1(,022==+y x dx y dy 的特解是( ). (A)222=+y x ; (B)933=+y x ; (C)133=+y x ; (D)13 333=+y x . 4、方程 x y sin ='''的通解是( ). (A) 322121cos C x C x C x y +++=; (B)32212 1sin C x C x C x y +++=; (C)1cos C x y +=; (D)x y 2sin 2=. 5、方程0='+ '''y y 的通解是( ). (A)1cos sin C x x y +-=; (B)321cos sin C x C x C y +-=; (C)1cos sin C x x y ++=; (D)1sin C x y -=.

6、若1y 和2y 是二阶齐次线性方程0)()(=+'+''y x Q y x P y 的两个特解,则 2211y C y C y +=(其中21,C C 为任意常数)( ) (A)是该方程的通解; (B)是该方程的解; (C)是该方程的特解; (D)不一定是该方程的解. 7、求方程0)(2='-'y y y 的通解时,可令( ). (A)P y P y '=''='则,; (B) dy dP P y P y =''='则,; (C)dx dP P y P y =''='则,; (D)dy dP P y P y '=''='则,. 8、已知方程02=-'+''y y x y x 的一个特解为x y =,于是方程的通解为( ). (A)221x C x C y +=; (B)x C x C y 121+=; (C)x e C x C y 21+=; (D)x e C x C y -+=21. 9、已知方程0)()(=+'+''y x Q y x P y 的一个特1y 解为, 则另一个与它线性无关的特解为( ). (A) ??=- dx e y y y dx x P )(21 121; (B) ??=dx e y y y dx x P )(21 121 ; (C) ??=-dx e y y y dx x P )(1 121; (D) ??=dx e y y y dx x P )(1 121. 10、方程x e y y y x 2cos 23=+'-''的一个特解形式是 ( ). (A) x e A y x 2cos 1=; (B) x xe B x xe A y x x 2sin 2cos 11+=; (C) x e B x e A y x x 2sin 2cos 11+=; (D) x e x B x e x A y x x 2sin 2cos 2121+=.

(完整版)常微分方程习题及解答

常微分方程习题及解答 一、问答题: 1.常微分方程和偏微分方程有什么区别?微分方程的通解是什么含义? 答:微分方程就是联系着自变量,未知函数及其导数的关系式。常微分方程,自变量的个数只有一个。偏微分方程,自变量的个数为两个或两个以上。常微分方程解的表达式中,可能包含一个或几个任意常数,若其所包含的独立的任意常数的个数恰好与该方程的阶数相同,这样的解为该微分方程的通解。 2.举例阐述常数变易法的基本思想。 答:常数变易法用来求线性非齐次方程的通解,是将线性齐次方程通解中的任意常数变易为待定函数来求线性非齐次方程的通解。 例:求 ()()dy P x y Q x dx =+的通解。 首先利用变量分离法可求得其对应的线性齐次方程的通解为()P x dx y c ?=l ,然后将 常数c 变易为x 的待定函数()c x ,令()()P x dx y c x ? =l ,微分之,得到 ()()()()()P x dx P x dx dy dc x c x P x dx dx ?? =+l l ,将上述两式代入方程中,得到 ()()()()()()()()() P x dx P x dx P x dx dc x c x P x dx c x P x Q x ??+?=+l l l 即 ()() ()P x dx dc x Q x dx -? =l 积分后得到()()()P x dx c x Q x dx c -?=+? %l 进而得到方程的通解 ()()(()) P x dx P x dx y Q x dx c -? ?=+?%l l 3.高阶线性微分方程和线性方程组之间的联系如何? 答:n 阶线性微分方程的初值问题 ()(1) 11(1) 01020()...()()()(),(),....()n n n n n n x a t x a t x a t x f t x t x t x t ηηη---'?++++=??'===?? 其中12()(),...(),()n a t a t a t f t ,是区间a t b ≤≤上的已知连续函数,[]0,t a b ∈, 12,,...,n ηηη是已知常数。它可以化为线性微分方程组的初值问题

相关文档
最新文档