数学分析

数学分析
数学分析

第一讲 微积分思想的产生与发展历史 在微积分产生之前,数学发展处于初等数学时期。人类只能研究常量,而对于变量则束手无策。在几何上只能讨论三角形和圆,而对于一般曲线则无能为力。到了17世纪中叶,由于科学技术发展的需要,人们开始关注变量与一般曲线的研究。在力学上,人们关心如何根据路程函数去确定质点的瞬时速度,或者根据瞬时速度去求质点走过的路程。在几何上,人们希望找到求一般曲线的切线的方法,并计算一般曲线所围图形的面积。令人惊讶的是,不同领域的问题却归结为相同模式的数学问题:求因变量在某一时刻对自变量的变化率;因变量在一定时间过程中所积累的变化。前者导致了微分的概念;后者导致了积分的概念。两者都包含了极限与无穷小的思想。

1.极限、无穷小、微分、积分的思想在中国古代早已有之

公元前4世纪,中国古代思想家和哲学家庄子在《天下篇》中论述:“至大无外,谓之大一;至小无内,谓之小一。”其中大一和小一就是无穷大和无穷小的概念。而“一尺之棰,日取其半,万世不竭。”更是道出了无限分割的极限思想。

公元3世纪,中国古代数学家刘徽首创的割圆术,即用无穷小分割求面积的方法,就是古代极限思想的深刻表现。他用圆内接正多边形的边长来逼近圆周,得到了

142704.3141024.3<<π ,

并深刻地指出:“割之弥细,所失弥少;割之又割,以至于不可割,则与圆周合体而无所失矣。”

我国南北朝时期的数学家祖暅(中国古代数学家祖冲之之子)发展了刘徽的思想,在求出球的体积的同时,得到了一个重要的结论(后人称之为“祖暅原理”):“夫叠基成立积,缘幂势既同,则积不容异。”用现在的话来讲,一个几何体(“立积”)是由一系列很薄的小片(“基”)叠成的;若两个几何体相应的小片的截面积(“幂势”)都相同,那它们的体积(“积”)必然相等。

利用祖暅原理求球体的体积:取一个几何体为上半球体

{};将圆柱体 {2222,x y z R z ++≤≥0222x y R +≤,0z R ≤≤}减去

(即挖去)倒立的圆锥{222x y z +≤,0z R ≤≤}视为另一个几何体。则对任意的0z R ≤≤,过(0,0,)z 点作水平截面,得到的截口面积相等, 都为,由此得到球体的体积为(22R z π?)34

3

V R π=。 2.十七世纪前微分学与积分学的发展历史

公元前5世纪,古希腊数学家安提丰(Antiphon )创立了“穷竭法”,认为圆内接正多边形当边数不断增加,最后多边形就与圆相合。公元前2世纪,古希腊数学家阿基米德(Archimedes )对“穷竭法”作出了巧妙的应用,他在《论抛物线求积法》中用“穷竭法”求抛物弓形的面积,他构造一系列三角形使它们的面积和不断接近抛物弓形的面积,这就是极限理论的最初形式。在《论球和柱体》一书中,阿基米德首先得到了球和球冠的表面积、球和球缺的体积的正确公式。阿基米德的著作代表了古希腊数学的顶峰。

1615年,德国数学家开普勒(J. Kepler, 1571-1630)用无穷小微元来确定曲边形的面积与体积。他把圆看作边数无限多的多边形,圆

周上每一点看作是顶点在圆心高等于半径的极小等腰三角形的底,于是圆面积就等于圆周长与半径乘积之半。他把球看作面数无限多的多面体,球面上每一点看作是顶点在球心高等于半径的极小圆锥的底,于是球体积就等于球表面积与半径乘积之三分之一。他还用无穷小方法精确地计算出酒桶的体积,并写了《测量酒桶体积的新科学》,书中包含了87种不同的旋转体的体积计算。

开普勒最重要的贡献是提出了行星运行三大定律:(1)行星在椭圆轨道上绕太阳运动,太阳在此椭圆的一个焦点上。(2)从太阳到行星的向径在相等的时间内扫过相等的面积。(3)行星绕太阳公转周期的平方与其椭圆轨道的半长轴的立方成正比。可以说这是天文学上划时代的贡献,也是数学史上重要的里程碑。牛顿就是应用开普勒的行星运行三大定律,通过严格的数学推导,发现了万有引力定律。为了确定第二定律,Kepler将椭圆中被扫过的那部分图形分割成许多小的“扇形”,并近似地将它们看成一个个小的三角形,运用了一些出色的技巧对它们的面积之和求极限,成功地计算出了所扫过的面积。在其卓有成效的工作中,已包含了现代定积分思想的雏形。

积分学的历史可追溯至古希腊,它跨越了二千多年历史。而微分学的历史相对要短得多,这是因为积分学研究的问题是静态的,而微分学研究的问题是动态的,它涉及到运动。直到17世纪,微分学才得到重大突破。微分学主要来源于两个问题的研究:曲线的切线问题与函数的极大、极小问题。法国数学家费尔马(P. Fermat, 1744-1825)在这两个问题上作出了主要贡献。费尔马在处理这两个问题时,都是

先对自变量取增量,再让增量趋于零,这就是微分学的本质所在。费尔马也在积分学方面做了许多工作,如求面积、体积、重心等问题。但可惜的是他没有发现微分学与积分学这两类问题之间的基本联系。

另一位已经走到了微积分基本定理的门口的是英国数学家巴罗(I. Barrow, 1630-1677),他是牛顿的老师,是剑桥大学卢卡斯讲座教授,后来他认为牛顿已经超过了他,就把这一讲座教授的位置让给了牛顿。他在《光学和几何学讲义》一书中,已经把求曲线的切线与求曲线下区域的面积问题联系了起来,也就是说,他把微分学和积分学的两个基本问题联系了起来。但可惜的是巴罗没有从一般概念的意义下进一步深入地研究它们。

3.牛顿和莱布尼兹对微积分学科的功绩

微积分学科的建立,归功于两位伟大的科学先驱:牛顿和莱布尼兹。关键在于他们认识到,过去一直分别研究的微分和积分这两个运算,是彼此互逆的两个过程,它们是由牛顿—莱布尼兹公式联系起来的。

1669年英国大数学家牛顿(I. Newton, 1643-1727)提出微积分学说存在正反两个方面的运算,例如面积计算和切线斜率计算就是互逆的两种运算,即微分和积分互为逆运算,从而完成了微积分运算的决定性步骤。但由于种种原因,他决定不向外界公开他的数学成果,他的成果只是以手稿的形式在少数几个同事中传阅,而这一决定在以后给他带来了大麻烦。直到1687年,牛顿才出版了他的著作《自然哲学的数学原理》,在这个划时代的著作中,他陈述了他的伟大创造—

微积分,并应用微积分理论,从开普勒关于行星的三大定律导出了万有引力定律。牛顿还将微积分广泛应用于声学、光学、流体运动等学科,充分显示了微积分理论的巨大威力。

牛顿是人类历史上最伟大的数学家之一。英国著名诗人波普(Pope)是这样描述牛顿的:

自然和自然的规律

沉浸在一片混沌之中,

上帝说,生出牛顿,

一切都变得明朗。

牛顿本人却很谦虚:“我不知道世间把我看成什么人,但是对我自己来说,就象一个海边玩耍的小孩,有时找到一块比较平滑的卵石或格外漂亮的贝壳,感到高兴,而在我面前是未被发现的真理的大海。”

德国数学家莱布尼兹(G. W. Leibniz, 1646-1716) 也致力于研究切线问题和面积问题,并探索两类问题之间的关系。他把有限量的运算与无穷小量的运算进行类比,创立了无穷小量求商法和求积法,即微分和积分运算。1684年,他发表了论文《求极大值和极小值以及切线的新方法,对有理量和无理量都适用的,一种值得注意的演算》,两年后他又发表了他在积分学上的早期结果。

牛顿和莱布尼兹对微积分的研究都达到了同一目标,但两人的方法不同。牛顿发现最终结果比莱布尼兹早一些,但莱布尼兹发表自己的结论比牛顿早一些。关于谁是微积分的创始者,英国数学家与欧洲

大陆的数学家经历了一场旷日持久的论战,这场论战持续了100多年。

正是由于牛顿和莱布尼兹的功绩,微积分成为了一门独立的学科,求微分与求积分的问题,不再是孤立地进行处理了,而是有了统一的处理方法。虽然关于谁是微积分的创始者,英国数学家与欧洲大陆的数学家经历了100多年的论战,但公正的历史评价是不应该把发明微积分这一伟大的成就完全归功于一两个人的偶然的和不可思议的灵感,公正地说,微积分的产生历史,说明了这样一个真理:人类科技发展史上的任何一个进步,都是站在巨人的肩膀上取得的。牛顿说他就是站在巨人的肩膀上,在当时这个巨人已经形成,这个巨人包括了一大批微积分的先驱们,如:阿基米德、开普勒、费尔马、巴罗等数学家。

微积分的诞生具有划时代的意义,是数学史上的分水岭与转折点,是人类探索大自然的艰苦努力的一项伟大的成功,是人类思维的最伟大的成就之一。这个伟大发明所产生的新数学与旧数学有本质的区别:旧数学是关于常量的数学,新数学是关于变量的数学;旧数学是静态的,新数学是动态的;旧数学只涉及固定的和有限的量,新数学则包含了运动、变化和无限。

关于微积分的地位,恩格斯这样评论:“在一切理论成就中,未必再有什么象17世纪下半叶微积分的发现那样被看作人类精神的最高胜利了。如果在某个地方我们看到人类精神的纯粹的和唯一的功绩,那正是在这里。”

微积分诞生后,数学引来了一次空前的繁荣时期。18世纪被称为数学史上的英雄世纪。数学家们把微积分应用于天文学、力学、光学、热学等各个领域,获得了丰硕的成果。在数学本身,他们把微积分作为工具,又发展出微分方程、微分几何、无穷级数等理论分支,大大扩展了数学研究的范围。

4.微积分严格理论体系的完善

微积分建立之后,出现了两个极不协调的情景;一方面是微积分广泛应用于各个领域,取得了辉煌的成就;另一方面是人们对于微积分的基本概念的合理性提出了强烈的质疑。19世纪以前,无穷小量概念始终缺少一个严格的数学定义,因此导致了相当严重的混乱。1734年英国哲学家红衣主教贝克莱(G . Berkeley, 1685-1753)对微积分基础的可靠性提出强烈质疑,从而引发了第二次数学危机。他认为微积分的发展包含了偷换假设的逻辑错误。例如对求导数(当

时称为求流数),要先假设自变量有一个无穷小增量“”

,它不能为零,但在计算后半部,又要把这增量取为零:

3x y =02223

3300330

)0(x x x x x =+?+=?+。 所以他说:无论怎样看,牛顿的流数计算是不合逻辑的。

为了克服微积分运算在逻辑上的矛盾,为微积分学科建立严格的数学基础,数学家们又经历了长期而艰苦的努力。1750年法国数学家达朗贝尔(J. R. d’Alembert, 1717-1783)用极限方法取代无穷小量方法;后来法国数学家柯西(L. Cauchy, 1780-1857)在达朗贝尔通俗的极限基础上,从变量和函数角度出发给出极限的定义,从而把微积

分的基础严格地奠定在极限概念之上。最后德国数学家魏尔斯特拉斯(K. Weierstrass, 1815-1897)用静态的δ

ε?语言来刻画动态的极限与连续概念,使极限的定义达到了最清晰最严密的程度,直到如今人们仍然在使用他的定义。

由于严格的极限理论的建立,而无穷小量可用极限的语言清楚地加以描述,这才解决了有关的逻辑困难。而且由于δ

ε?语言的建立,又使得微积分的发展如虎添翼。

极限概念严格化以后,接下来的事情就是要建立实数理论,因为极限概念需要以实数理论为前提。由于实数具有连续性,所以才能以实数系作为平台,在这个平台上展开微积分的理论。这方面的工作是由德国数学家康托尔(G. Cantor, 1845-1918)、戴特金(R. Dedekind, 1831-1916)等一批数学家完成的。

从以上介绍,可以知道微积分发展的历史轨迹是:

积分学—微分学—微积分学—极限理论—实数理论

但从数学分析课程来看,它的理论体系应该是:

实数理论—极限理论—微分学—积分学—微积分学

数学分析试题库--证明题

数学分析题库(1-22章) 五.证明题 1.设A ,B 为R 中的非空数集,且满足下述条件: (1)对任何B b A a ∈∈,有b a <; (2)对任何0>ε,存在B y A x ∈∈,,使得ε<-x Y . 证明:.inf sup B A = 2.设A ,B 是非空数集,记B A S ?=,证明: (1){}B A S sup ,sup max sup =; (2){}B A S inf ,inf min inf = 3. 按N -ε定义证明 3 52325lim 22=--+∞→n n n n 4.如何用ε-N 方法给出a a n n ≠∞ →lim 的正面陈述?并验证|2n |和|n )1(-|是发散数列. 5.用δε-方法验证: 3) 23(2lim 221-=+--+→x x x x x x . 6. 用M -ε方法验证: 2 11lim 2- =-+-∞ →x x x x . 7 . 设a x x x =→)(lim 0 ?,在0x 某邻域);(10δx U ?内a x ≠)(?,又.)(lim A t f a t =→证明 A x f x x =→))((lim 0 ?. 8.设)(x f 在点0x 的邻域内有定义.试证:若对任何满足下述条件的数列{}n x , (1))(0x U x n ?∈,0x x n →, (2)0010x x x x n n -<-<+,都有A x f n n =∞ →)(lim , 则A x f x x =→)(lim 0 . 9. 证明函数 ? ? ?=为无理数为有理数x , x x x f ,0,)(3 在00=x 处连续,但是在00≠x 处不连续.

数值分析第1章习题

(A)1. 3.142和3.141分别作为π的近似数具有()和()为有效数字(有效数字) A. 4和3 B. 3和2 C. 3和4 D. 4和4 解..14159.3==*πx ,1103142.0?=a 时,1=m ,3102 1...00041.0)(-*?≤ =-=a x a E m-n= -3,所以n=4,即有4位有效数字。当1103141.0?=a 时,1=m , 2102 1005.0...00059.0)(-*?=≤=-=a x a E ,m-n= -2,所以n=3,即有3位有效数字。 (A)2. 为了减少误差,在计算表达式19992001-时,应该改为 199920012+计算,是属于()来避免误差。(避免误差危害原则) A.避免两相近数相减; B.化简步骤,减少运算次数; C.避免绝对值很小的数做除数; D.防止大数吃小数 解:由于2001和1999相近,两数相减会使误差大,因此化加法为减法,用的方法是避免误差危害原则。 (B)3.下列算式中哪一个没有违背避免误差危害原则(避免误差危害原则) A.计算123460.60.612345++- B.计算 25612520000450?- C.计算10.99994- D.计算11x x +- 解:A 会有大数吃掉小数的情况C 中两个相近的数相减,D 中两个相近的数相减也会增大误差 (D)4.若误差限为5105.0-?,那么近似数0.003400有()位有效数字。(有效数字) A. 5 B. 4 C. 7 D. 3 解:51021)(-?= a E 即m-n= -5,2103400.0-?=a ,m= -2,所以n=3,即有3位有效数字 (A)5.设*x 的近似数为40.32710a =?,如果a 具有3位有效数字,则a 的相对误差限为 ()(有效数字与相对误差的关系) A . 35103-g B. 33105-g C. 53105-g D. 5103 g -2 解:因为40.32710a =?所以31=a ,因为a 有3位有效数字,所以n=3,由相对误差和有效数字的关系可得a 的相对误差限为 31103510.5--?== n r a δ

数学分析公式

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x += =+-=+=, , , a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

Rudin数学分析原理第一章答案

The Real and Complex Number Systems Written by Men-Gen Tsai email:b89902089@https://www.360docs.net/doc/267412753.html,.tw 1. 2. 3. 4. 5. 6.Fix b>1. (a)If m,n,p,q are integers,n>0,q>0,and r=m/n=p/q,prove that (b m)1/n=(b p)1/q. Hence it makes sense to de?ne b r=(b m)1/n. (b)Prove that b r+s=b r b s if r and s are rational. (c)If x is real,de?ne B(x)to be the set of all numbers b t,where t is rational and t≤x.Prove that b r=sup B(r) where r is rational.Hence it makes sense to de?ne b x=sup B(x) for every real x. (d)Prove that b x+y=b x b y for all real x and y. 1

Proof:For(a):mq=np since m/n=p/q.Thus b mq=b np. By Theorem1.21we know that(b mq)1/(mn)=(b np)1/(mn),that is, (b m)1/n=(b p)1/q,that is,b r is well-de?ned. For(b):Let r=m/n and s=p/q where m,n,p,q are integers,and n>0,q>0.Hence(b r+s)nq=(b m/n+p/q)nq=(b(mq+np)/(nq))nq= b mq+np=b mq b np=(b m/n)nq(b p/q)nq=(b m/n b p/q)nq.By Theorem1.21 we know that((b r+s)nq)1/(nq)=((b m/n b p/q)nq)1/(nq),that is b r+s= b m/n b p/q=b r b s. For(c):Note that b r∈B(r).For all b t∈B(r)where t is rational and t≤r.Hence,b r=b t b r?t≥b t1r?t since b>1and r?t≥0.Hence b r is an upper bound of B(r).Hence b r=sup B(r). For(d):b x b y=sup B(x)sup B(y)≥b t x b t y=b t x+t y for all rational t x≤x and t y≤y.Note that t x+t y≤x+y and t x+t y is rational. Therefore,sup B(x)sup B(y)is a upper bound of B(x+y),that is, b x b y≥sup B(x+y)=b(x+y). Conversely,we claim that b x b r=b x+r if x∈R1and r∈Q.The following is my proof. b x+r=sup B(x+r)=sup{b s:s≤x+r,s∈Q} =sup{b s?r b r:s?r≤x,s?r∈Q} =b r sup{b s?r:s?r≤x,s?r∈Q} =b r sup B(x) =b r b x. And we also claim that b x+y≥b x if y≥0.The following is my proof: 2

数学分析1-期末考试试卷(A卷)

数学分析1 期末考试试卷(A 卷) 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。 (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。

(C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+=在3 π =x 处取得极值,则( )。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 30x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

第一章复习题解答(数学分析)

第一章复习题 一.填空 1、数集,...}2,1:)1({=-n n n 的上确界为 1 ,下确界为 -1 。 2、 =∈-=E R x x x E sup ,|][{则 1 , =E inf 0 ; 3、)(lim 2 n n n n -+∞ → = _______ 1 2 ________。 4、设数列}{n a 递增且 a a n n =∞ →lim (有限). 则有a = {}sup n a . 5. 设,2 12,21221 2n n n n n n x x +=-=- 则 =∞→n n x lim 1 二. 选择题 1、设)(x f 为实数集R 上单调增函数,)(x g 为R 上单调减函数,则函数 ))((x g f 在R 上( B )。 A、是单调递增函数; B、是单调递减函数; C、既非单调增函数,也非单调减函数 ; D、其单调性无法确定. 2、在数列极限的“δε-”极限定义中,ε与δ的关系是( B ) A 、 先给定ε后唯一确定δ; B 、 先给定ε后确定δ,但δ的值不唯一; C 、 先给定δ后确定ε; D 、 δ与ε无关. 3、设数列{}(0,1,2,...)n n a a n ≠=收敛,则下列数列收敛的是( D ) A 、}1 { 2n a ; B 、}1{a n ; C 、 }1{a n ; D 、}{n a . 4. 若数列}{n x 有极限a ,则在a 的ε邻域之外,数列中的点( B ) (A) 必不存在; (B) 至多只有有限多个; (C) 必定有无穷多个; (D) 可能有有限多个,也可能有无穷多个. 5.设a x n n =∞ →||lim ,则 ( D ) (A) 数列}{n x 收敛; (B) a x n n =∞ →lim ; (C) a x n n -=∞ →lim ; (D) 数列}{n x 可能收敛,也可能发散。 6. 设}{n x 是无界数列,则 ( D ) (A) ∞=∞ →n n x lim ; (B) +∞=∞ →n n x lim ;

数学分析(2)期末试题

数学分析(2)期末试题 课程名称 数学分析(Ⅱ) 适 用 时 间 试卷类别 1 适用专业、年级、班 应用、信息专业 一、单项选择题(每小题3分,3×6=18分) 1、 下列级数中条件收敛的是( ). A .1(1)n n ∞ =-∑ B . 1 n n ∞ = C . 21 (1)n n n ∞ =-∑ D . 1 1 (1)n n n ∞ =+∑ 2、 若f 是(,)-∞+∞内以2π为周期的按段光滑的函数, 则f 的傅里叶(Fourier )级数在 它的间断点x 处 ( ). A .收敛于()f x B .收敛于1 ((0)(0))2 f x f x -++ C . 发散 D .可能收敛也可能发散 3、函数)(x f 在],[b a 上可积的必要条件是( ). A .有界 B .连续 C .单调 D .存在原 函数 4、设()f x 的一个原函数为ln x ,则()f x '=( ) A . 1x B .ln x x C . 21 x - D . x e 5、已知反常积分2 0 (0)1dx k kx +∞>+?收敛于1,则k =( ) A . 2π B .22π C . D . 24π 6、231ln (ln )(ln )(1)(ln )n n x x x x --+-+-+收敛,则( ) A . x e < B .x e > C . x 为任意实数 D . 1e x e -<< 二、填空题(每小题3分,3×6=18分) 1、已知幂级数1n n n a x ∞ =∑在2x =处条件收敛,则它的收敛半径为 . 2、若数项级数1 n n u ∞ =∑的第n 个部分和21 n n S n = +,则其通项n u = ,和S = . 3、曲线1 y x = 与直线1x =,2x =及x 轴所围成的曲边梯形面积为 . 4、已知由定积分的换元积分法可得,10 ()()b x x a e f e dx f x dx =??,则a = ,b = . 5、数集(1) 1, 2 , 3, 1n n n n ?? -=??+? ? 的聚点为 . 6、函数2 ()x f x e =的麦克劳林(Maclaurin )展开式为 .

数学分析第一章

第一章 实数集与函数 §1 实数 Ⅰ.教学目的与要求 1.理解实数的概念,掌握实数的表示方法 2.了解实数的性质, 并在有关命题中正确地加以应用 3.理解绝对值的概念,掌握绝对值的性质,并在有关命题中正确地加以应用. Ⅱ.教学重点与难点 重点: 实数的定义及性质、绝对值与不等式. 难点: 实数的定义及其应用. Ⅲ.讲授内容 一 实数及其性质 实数的组成:实数由有理数与无理数两部分组成. 有理数的表示:有理数可用分数形式q p (p ?q 为整数,q ≠0)表示,也可用有限十进 小数或无限十进循环小数来表示. 无理数:无限十进不循环小数则称为无理数.有理数和无理数统称为实数. 有限小数(包括整数)也表示为无限小数.规定如下:对于正有限小数(包括整数)x,当x=a 0.a 1a 2n a 时,其中0,9≤≤i a i=1,2, n, na ,0≠0a 为非负整数,记x=a 0.a 1a 2-n a ( 1)?.999 9, 而当x=a 1为正整数时,则记x=(a 0—1).999 9…, 例如2.001记为2.000 999 9…;对于负有限小数(包括负整数)y ,则先将—y 表示为无限小数,再在所得无限小数之前加负号,例如—8记为—7.999 9…;又规定数0表示为0.000 0….于是,任何实数都可用一个确定的无限小数来表示. 我们已经熟知比较两个有理数大小的方法.现定义两个实数的大小关系. 定义1 给定两个非负实数 x= 0a .a a 1n a , y=,.210 n b b b b 其中00,b a 为非负整数,k k b a ,(k=1,2,…)为整数,0≤a k ≤9,0≤b k ≤9.若有==k b a k k ,0,1,2,, 则称x 与y 相等,记为x=y ;若00b a >或存在非负整数L ,使得 a k =b k (k=0,1,2,…,L)而11++>l l b a ,则称x 大于y 或y 小于x ,分别记为x>y 或y-,则分别称x=y 与xx).另外,自然规定任何非负实数大于任何负实数. 定义2 : x =a 0.a 1a 2n a 为非负实数.称有理=n x a 0.1a a 2n a 为实数

《数学分析》考试大纲 .doc

《数学分析》考试大纲 一、考试的性质 数学分析是大学数学系本科学生的最基本课程之一,也是大多数理工科专业学生的必修基础课。为帮助考生明确考试范围和有关要求,特制订出本考试大纲。 本考试大纲主要根据北京林业大学数学与应用数学本科《数学分析》教学大纲编制而成,适用于报考北京林业大学数学学科各专业(基础数学、概率论与数理统计、计算数学、应用数学)硕士学位研究生的考生。 二、考试内容和基本要求 1.实数集与函数 (1)确界概念,确界原理 (2)函数概念与运算,初等函数 要求:理解确界概念与确界原理,并能运用于有关命题的运算与证明。深刻理解函数的意义,掌握函数的四则运算。 2.数列极限 (1)数列极限的ε一N定义 (2)收敛数列的性质 (3)数列的单调有界法则,柯西收敛准则,重要极限 要求:深刻理解数列极限的ε一N定义,并会运用它验证给定数列的极限;掌握数列极限的性质,并会运用它证明或计算给定数列的极限;掌握数列极限存在的充要条件与充分条件,并能运用这些条件证明或判断数列极限的存在性;掌握重要极限并能运用它计算某些数列极限。 3.函数极限 (1) 函数极限的ε一M定义和ε一δ定义,单侧极限 (2) 函数极限的性质 (3) 海涅定理(归结原则),柯西收敛准则,两个重要极限 (4) 无穷小量与无穷大量的定义、性质,无穷小(大)量阶的比较 要求:理解各类函数极限的定义,并能按定义验证给定的函数极限;掌握函数极限的性质,并能用它证明或计算给定的函数极限。掌握函数极限的归结原则,并能用它来判断函数极限的存在性和计算某些数列极限。掌握函数极限的柯西准则,了解单侧极限的单调有界定理;熟练掌握两个重要极限,并运用它们进行有关函数极限的计算;掌握各类无穷小量与无穷大量的定义与性质,理解无穷小(大)量的阶的概念。 4.函数的连续性 (1) 函数在一点连续,单侧连续和在区间上连续的定义,间断点的类型 (2) 连续函数的局部性质。复合函数的连续性,反函数的连续性。闭区间上连续函数的性质。 (3) 一致连续的定义,初等函数的连续性 要求:深刻理解函数连续性概念,掌握间断点的概念及分类;掌握连续函数的局部性质以及复合函数和反函数的连续性,掌握闭区间上连续函数的性质;理解函数在区间上一致连续概念,并能用定义验证给定函数在某区间上为一致连续或非一致连续。

数学分析第三版答案下册

数学分析第三版答案下册 【篇一:2015年下学期数学分析(上)试卷a参考答案】> 一、填空题(每小题3分,共15分): 1、126; 2、2; 3、1?x?x2???xn?o(xn); 4、arcsinx?c (或?arccos x?c);5、2. 二、选择题(每小题3分,共15分) 1、c; 2、a; 3、a; 4、d; 5、b 三、求极限(每小题5分,共10分) 1??1、lim1?2? 2、limxlnx ?n??x?0 ?n? ? n 1?? ?lim?1?2?n??n?? 1 n n2? 1n 1 lnx(3分) ?lim?li?? x?0x?011 ?2 xx (3分) (?x)?0 (2分)?lime?1(2分) ?lim? n?? x?0 3n2 ?3 。四、利用数列极限的??n定义证明:lim2(10分) n??n?3 证明:当n?3时,有(1分) 3n299 (3分) ?3??22 n?3n?3n 993n2

因此,对任给的??0,只要??,即n?便有2 ?3?? (3分) n?n?3 3n2x{3,},当n?n便有2故,对任给的??0,取n?ma(2 分) ?3??成立。 ?n?3 9 3n2 ?3(1分)即得证lim2 n??n?3 五、证明不等式:arctanb?arctana?b?a,其中a?b。(10分) 证明:设f(x)?arctanx,根据拉格朗日中值定理有(3分) f(b)?f(a)?f?(?)(b?a)? 1 (b?a),2 1?? (a???b) (3分) 所以有 f(b)?f(a)?(b?a) (2分) bn?arctaan?b?a (2分)即 arcta 六、求函数的一阶导数:y?xsinx。(10分) 解:两边取对数,有: lny?sinxlnx (4分) 两边求一次导数,有: y??xsinx(cosxlnx? y?sinx (4分) ?cosxlnx? yx sinx )(2分) x 七、求不定积分:?x2e?xdx。(10分)解: 2?x2?x xedx?xde = (2分) ?? = ?x2e?x?2?xe?xdx (2分) = ?x2e?x?2?xde?x(2分) = ?x2e?x?2xe?x?2?e?xdx (2分) =?e?x(x2?2x?2)?c (2分) 15 八、求函数f(x)?|2x3?9x2?12x|在闭区间[?,]上的最大值与最小值。(10 42

数学分析试题及答案

(二十一)数学分析期终考试题 一 叙述题:(每小题5分,共15分) 1 开集和闭集 2 函数项级数的逐项求导定理 3 Riemann 可积的充分必要条件 二 计算题:(每小题7分,共35分) 1、 ? -9 1 31dx x x 2、求)0()(2 2 2 b a b b y x ≤<=-+绕x 轴旋转而成的几何体的体积 3、求幂级数 n n n x n ∑∞ =+1 2)11(的收敛半径和收敛域 4、1 1lim 2 2220 0-+++→→y x y x y x 5、2 2 ),,(yz xy x z y x f ++=,l 为从点P 0(2,-1,2)到点(-1,1,2)的方向, 求f l (P 0) 三 讨论与验证题:(每小题10分,共30分) 1、已知?? ???==≠+++=0 ,0001sin )(),(222 2 2 2y x y x y x y x y x f ,验证函数的偏导数在原点不连续, 但它在该点可微 2、讨论级数∑∞ =-+1 2211 ln n n n 的敛散性。 3、讨论函数项级数]1,1[)1( 1 1 -∈+-∑∞ =+x n x n x n n n 的一致收敛性。 四 证明题:(每小题10分,共20分) 1 若 ? +∞ a dx x f )(收敛,且f (x )在[a ,+∞)上一致连续函数,则有0)(lim =+∞ →x f x 2 设二元函数),(y x f 在开集2R D ? 内对于变量x 是连续的,对于变量y 满足Lipschitz 条件: ''''''),(),(y y L y x f y x f -≤-其中L D y x y x ,),(),,('''∈为常数证明),(y x f 在D 内连续。 参考答案 一、1、若集合S 中的每个点都是它的内点,则称集合S 为开集;若集合S 中包含了它的所有的聚点,则称集合S 为闭集。

数学分析知识点汇总

第一章实数集与函数 §1实数 授课章节:第一章实数集与函数——§1实数 教学目的:使学生掌握实数的基本性质. 教学重点: (1)理解并熟练运用实数的有序性、稠密性和封闭性; (2)牢记并熟练运用实数绝对值的有关性质以及几个常见的不等式.(它们是分析论证的重要工具) 教学难点:实数集的概念及其应用. 教学方法:讲授.(部分内容自学) 教学程序: 引言 上节课中,我们与大家共同探讨了《数学分析》这门课程的研究对象、主要内容等话题.从本节课开始,我们就基本按照教材顺序给大家介绍这门课程的主要内容.首先,从大家都较为熟悉的实数和函数开始. [问题]为什么从“实数”开始. 答:《数学分析》研究的基本对象是函数,但这里的“函数”是定义在“实数集”上的(后继课《复变函数》研究的是定义在复数集上的函数).为此,我们要先了解一下实数的有关性质. 一、实数及其性质

1、实数 (,q p q p ?≠??????有理数:任何有理数都可以用分数形式为整数且q 0)表示,也可以用有限十进小数或无限十进小数来表示.无理数:用无限十进不循环小数表示. {}|R x x =为实数--全体实数的集合. [问题]有理数与无理数的表示不统一,这对统一讨论实数是不利的.为以下讨论的需要,我们把“有限小数”(包括整数)也表示为“无限小数”.为此作如下规定: 01(1)9999n n a a --0,a =则记表示为无限小数,现在所得的小数之前加负例: 2.001 2.0009999→; 利用上述规定,任何实数都可用一个确定的无限小数来表示.在此规定下,如何比较实数的大小? 2、两实数大小的比较 1)定义1给定两个非负实数01.n x a a a =,01.n y b b b =. 其中 3 2.99992.001 2.0099993 2.9999→-→--→-; ;

数学分析教材和参考书-推荐下载

教材和参考书 教材: 《数学分析》(第二版),陈纪修,於崇华,金路编 高等教育出版社, 上册:2004年6月,下册:2004年10月 参考书: (1)《数学分析习题全解指南》,陈纪修,徐惠平,周渊,金路,邱维元高等教育出版社, 上册:2005年7月,下册:2005年11月 (2)《高等数学引论》(第一卷),华罗庚著 科学出版社(1964) (3)《微积分学教程》,菲赫金哥尔兹编,北京大学高等数学教研室译,人民教育出版社(1954) (4)《数学分析习题集》,吉米多维奇编,李荣译 高等教育出版社(1958) (5)《数学分析原理》,卢丁著,赵慈庚,蒋铎译 高等教育出版社(1979) (6)《数学分析》,陈传璋等编 高等教育出版社(1978) (7)《数学分析》(上、下册),欧阳光中,朱学炎,秦曾复编, 上海科学技术出版社(1983)

(8)《数学分析》(第一、二、三卷),秦曾复,朱学炎编, 高等教育出版社(1991) (9)《数学分析新讲》(第一、二、三册),张竹生编, 北京大学出版社(1990) (10)《数学分析简明教程》(上、下册),邓东皋等编 高等教育出版社(1999) (11)《数学分析》(第三版,上、下册),华东师范大学数学系, 高等教育出版社(2002) (12)《数学分析教程》常庚哲,史济怀编, 江苏教育出版社(1998) (13)《数学分析解题指南》林源渠,方企勤编, 北京大学出版社(2003) (14)《数学分析中的典型问题与方法》裴礼文编, 高等教育出版社(1993) 复旦大学数学分析全套视频教程全程录像,ASF播放格式,国家级精品课程,三学期视频全程 教师简介: 陈纪修-基本信息 博士生导师教授 姓名:陈纪修

数学分析试题及答案4

(十四) 《数学分析Ⅱ》考试题 一 填空(共15分,每题5分): 1 设=∈-=E R x x x E sup ,|][{则 1 , =E inf 0 ; 2 设 =--='→5 ) 5()(lim ,2)5(5 x f x f f x 则54; 3 设?? ?>++≤=0 , )1ln(,0, sin )(x b x x ax x f 在==a x 处可导,则0 1 , =b 0 。 二 计算下列极限:(共20分,每题5分) 1 n n n 1 )1 31211(lim ++++ ∞→ ; 解: 由于,n n n n 1 1)131211(1≤++++≤ 又,1lim =∞→n n n 故 。1)131211(lim 1 =++++∞→n n n 2 3 )(21lim n n n ++∞→; 解: 由stolz 定理, 3 )(21lim n n n ++∞→33)1()(lim --=∞→n n n n ) 1)1()(1(lim -+-+ -- =∞ →n n n n n n n n ) 1)1(2))(1(() 1(lim --+---+=∞→n n n n n n n n n .3 2)1)11(21 11lim 2=-- +- + =∞ →n n n n 3 a x a x a x --→sin sin lim ;

解: a x a x a x --→sin sin lim a x a x a x a x --+=→2sin 2cos 2lim .cos 2 2sin 2 cos lim a a x a x a x a x =--+=→ 4 x x x 10 ) 21(lim + →。 解: x x x 10 )21(lim +→.)21(lim 2 2 210e x x x =?? ??? ?+=→ 三 计算导数(共15分,每题5分): 1 );(),1ln(1)(22x f x x x x f '++-+= 求 解: 。 1 11 11 1 1221122)(2 2 2 22 2+-= +- +=++++ - +='x x x x x x x x x x x x f 2 解: 3 设。 求)100(2 ,2sin )23(y x x y -= 解: 由Leibniz 公式 )23()2(sin )23()2(sin )23()2(sin 2)98(2 1002)99(11002)100(0100)100(' '-+'-+-=x x C x x C x x C y 6)2sin(26)2sin(2100)23)(2sin(22 98982991002999922100100?+++?+-+=?πππx x x x x x x x x x 2sin 2297002cos 26002sin )23(298992100?-?--= 。 ]2cos 12002sin )22970812[(2298x x x x --= 四 (12分)设0>a ,}{n x 满足: ,00>x ,2,1,0),(211 =+= +n x a x x n n n ;sin cos 33 表示的函数的二阶导数求由方程???==t a y t a x , tan sin cos 3cos sin 3)cos ()sin (22 33t t t a t t a t a t a dx dy -=-=''=。t t a t t a t dx y d sin cos 3sec )cos (sec 223222='-=

数学分析(一)第一章复习题

第一章复习题 一.填空 1、数集,...}2,1:)1({=-n n n 的上确界为 ,下确界为 。 2、 =∈-=E R x x x E sup ,|][{则 , =E inf ; 3、)(lim 2n n n n -+∞ → = _______________。 4、设数列}{n a 递增且 a a n n =∞ →lim (有限). 则有a = . 5. 设,2 12,212212n n n n n n x x +=-=- 则 =∞→n n x lim 二. 选择题 1、设)(x f 为实数集R 上单调增函数,)(x g 为R 上单调减函数,则函数 ))((x g f 在R 上( )。 A、是单调递增函数; B、是单调递减函数; C、既非单调增函数,也非单调减函数 ; D、其单调性无法确定. 2、在数列极限的“δε-”极限定义中,ε与δ的关系是( ) A 、 先给定ε后唯一确定δ; B 、 先给定ε后确定δ,但δ的值不唯一; C 、 先给定δ后确定ε; D 、 δ与ε无关. 3、设数列{}(0,1,2,...)n n a a n ≠=收敛,则下列数列收敛的是( ) A 、}1{2n a ; B 、}1{a n ; C 、 }1{a n ; D 、}{n a . 4. 若数列}{n x 有极限a ,则在a 的ε邻域之外,数列中的点( ) (A) 必不存在; (B) 至多只有有限多个; (C) 必定有无穷多个; (D) 可能有有限多个,也可能有无穷多个. 5.设a x n n =∞ →||lim ,则 ( ) (A) 数列}{n x 收敛; (B) a x n n =∞ →lim ; (C) a x n n -=∞ →lim ; (D) 数列}{n x 可能收敛,也可能发散。 6. 设}{n x 是无界数列,则 ( ) (A) ∞=∞→n n x lim ; (B) +∞=∞ →n n x lim ;

数学分析试题及答案7

(二十一)数学分析期终考试题 一 叙述题:(每小题5分,共15分) 1 开集和闭集 2 函数项级数的逐项求导定理 3 Riemann 可积的充分必要条件 二 计算题:(每小题7分,共35分) 1、 ? -9 1 31dx x x 2、求)0()(222b a b b y x ≤<=-+绕x 轴旋转而成的几何体的体积 3、求幂级数 n n n x n ∑∞ =+1 2)11(的收敛半径和收敛域 4、1 1lim 2 2 220 0-+++→→y x y x y x 5、22),,(yz xy x z y x f ++=,l 为从点P 0(2,-1,2)到点(-1,1,2)的方向, 求f l (P 0) 三 讨论与验证题:(每小题10分,共30分) 1、已知?? ???==≠+++=0 ,0001sin )(),(222 2 2 2y x y x y x y x y x f ,验证函数的偏导数在原 点不连续,但它在该点可微 2、讨论级数∑∞ =-+1 2211 ln n n n 的敛散性。 3、讨论函数项级数]1,1[) 1(11 -∈+-∑∞ =+x n x n x n n n 的一致收敛性。 四 证明题:(每小题10分,共20分) 1 若 ? +∞ a dx x f )(收敛,且f (x )在[a ,+∞)上一致连续函数,则有0)(lim =+∞ →x f x 2 设二元函数),(y x f 在开集2 R D ?内对于变量x 是连续的,对于变量y 满足 Lipschitz 条件:''''''),(),(y y L y x f y x f -≤-其中L D y x y x ,),(),,(' ''∈为常数证 明),(y x f 在D 内连续。 参考答案 一、1、若集合S 中的每个点都是它的内点,则称集合S 为开集;若集合S 中包含了它的所有的聚点,则称集合S 为闭集。

数学分析试题库

数学分析题库 一. 选择题 1. 函数7 12arcsin 162-+-=x x y 的定义域为( ). (A )[]3,2; (B)[]4,3-; (C)[)4,3-; (D)()4,3-. 2. 函数)1ln(2++=x x x y ()+∞<<∞-x 是( ). (A )偶函数; (B)奇函数; (C)非奇非偶函数; (D)不能断定. 3. 点0=x 是函数x e y 1=的( ). (A )连续点; (B)可去间断点; (C)跳跃间断点; (D)第二类间断点. 4. 当0→x 时,x 2tan 是( ). (A )比x 5sin 高阶无穷小 ; (B) 比x 5sin 低阶无穷小; (C) 与x 5sin 同阶无穷小; (D) 与x 5sin 等价无穷小. 5. x x x x 2)1 (lim -∞→的值( ). (A )e; (B)e 1; (C)2e ; (D)0. 6. 函数f(x)在x=0x 处的导数)(0'x f 可定义 为( ). (A )0 0)()(x x x f x f -- ; (B)x x f x x f x x ?-?+→)()(lim 0 ; (C) ()()x f x f x ?-→?0lim 0 ; (D)()()x x x f x x f x ??--?+→?2lim 000. 7. 若()()2 102lim 0=-→x f x f x ,则()0f '等于( ). (A )4; (B)2; (C)21; (D)4 1,

8. 过曲线x e x y +=的点()1,0处的切线方程为( ). (A )()021-=+x y ; (B)12+=x y ; (C)32-=x y ; (D)x y =-1. 9. 若在区间()b a ,内,导数()0>'x f ,二阶导数()0>''x f ,则函数()x f 在区间内是( ). (A )单调减少,曲线是凹的; (B) 单调减少,曲线是凸的; (C) 单调增加,曲线是凹的; (D) 单调增加,曲线是凸的. 10.函数()x x x x f 933 123+-=在区间[]4,0上的最大值点为( ). (A )4; (B)0; (C)2; (D)3. 11.函数()x f y =由参数方程?????==-t t e y e x 35确定,则=dx dy ( ). (A )t e 253; (B)t e 53; (C) t e --5 3 ; (D) t e 253-. 12设f ,g 为区间),(b a 上的递增函数,则)}(),(max{)(x g x f x =?是),(b a 上的( ) (A ) 递增函数 ; ( B ) 递减函数; (C ) 严格递增函数; (D ) 严格递减函数. 13 .()n = (A ) 21 ; (B) 0; (C ) ∞ ; (D ) 1; 14.极限01lim sin x x x →=( ) (A ) 0 ; (B) 1 ; (C ) 2 ; (D )

数学分析第一章

Chapter1.Metric Spaces §1.Metric Spaces A metric space is a set X endowed with a metricρ:X×X→[0,∞)that satis?es the following properties for all x,y,and z in X: 1.ρ(x,y)=0if and only if x=y, 2.ρ(x,y)=ρ(y,x),and 3.ρ(x,z)≤ρ(x,y)+ρ(y,z). The third property is called the triangle inequality. We will write(X,ρ)to denote the metric space X endowed with a metricρ.If Y is a subset of X,then the metric space(Y,ρ|Y×Y)is called a subspace of(X,ρ). Example1.Letρ(x,y):=|x?y|for x,y∈I R.Then(I R,ρ)is a metric space.The set I R equipped with this metric is called the real line. Example2.Let I R2:=I R×I R.For x=(x1,x2)∈I R2and y=(y1,y2)∈I R2,de?ne ρ(x,y):= (x1?y1)+(x2?y2). Thenρis a metric on I R2.The set I R2equipped with this metric is called the Euclidean plane.More generally,for k∈I N,the Euclidean k space I R k is the Cartesian product of k copies of I R equipped with the metricρgiven by ρ(x,y):= k j=1(x j?y j)2 1/2 ,x=(x1,...,x k)and y=(y1,...,y k)∈I R k. Example3.Let X be a nonempty set.For x,y∈X,de?ne ρ(x,y):= 1if x=y, 0if x=y. In this case,ρis called the discrete metric on X. Let(X,ρ)be a metric space.For x∈X and r>0,the open ball centered at x∈X with radius r is de?ned as B r(x):={y∈X:ρ(x,y)0 such that B r(x)?A. 1

相关文档
最新文档