地下室抗浮设计

地下室抗浮设计
地下室抗浮设计

浅谈地下室抗浮设计

【摘要】简要介绍了地下室抗浮设计思路及方法,阐述了地下室抗浮基本受力原理,介绍了抗浮设计的基本参数及设计方法。

【关键词】抗浮设计;承载力;设防水位;静水压力

1.引言

随着沿河沿江建筑物的兴建,单纯地下室或高层建筑带地下室越来越多存在地下水位高于地下室底标高,由此带来地下室抗浮设计。忽视地下室抗浮设计导致许多工程事故,两层独立地下车库,如果地下水位较高,未进行专门抗浮设计的话,在施工及日后的使用过程中,有可能出现整体上浮或局部部位结构破坏,如地下室底板局部隆起,柱间板出现45°破坏性裂缝……造成财产的损失。因此抗浮设计在高地下水位区应予于重视。

2.抗浮关键参数

现结合具体工程实际对地下室抗浮设计进行讨论。工程概况:本工程位于四川省内江市滨江东路东北侧临街面与沱江河防洪堤之间,为两层地下室大底盘,地下室总高8.5米,上部3栋塔楼30层,结构总高96米,总建筑面积为96 000m2。建筑地下室底标高为298.50。勘察期间地下水位293.25~297.60米,地下室平面如下图所示。

图1

在设计之前先讨论下抗浮设防水位的确定。地下室抗浮设计首先应明确地下水抗浮设防水位,即指基础埋置深度内地下水层在建

地下室结构抗浮因素与预防技术措施

地下室结构抗浮因素与预防技术措施 摘要:本文结合多年的工作实践,对影响地下室抗浮因素进行分析,结合工程实践提出解决抗浮技术措施,以解决地下结构物的抗浮问题。 【关键词】地下室;抗浮;预防技术 Abstract: this paper combined with years of the worked the practice, analyzes the factors that influence the basement anti_floating, combined with the engineering practice, this paper proposes the measures to solve anti-uplift technology, in order to solve the problems of the underground structures engineer. 【key words 】the basement; Anti-uplift; Prevention technology 中图分类号:TU74文献标识码:A 文章编号: 1影响地下室结构上浮因素 1.1抗浮水位的影响与选取 建筑设防水位的确定对建筑物的安全和投资有着重要的影响。对于水头差,黄志仑《关于地下建筑物的地下水扬力问题分析》中认为水头差为地下水位与基础底面的差值。如高层楼房:假设其基础底面位于潜水层下h 处,由于水头差的存在,必然会有渗透,经过若干年,渗流将达到稳定。

假定原地面水位不变,若干年后的水头差应小于h,基础底面所受浮力就要减小。而对于临时性构筑物如基坑工程,一般基坑开挖时采用支挡和隔水措施,基坑内外因水头差而形成渗流,水头差就更难确定。在地面下数十米的深度内,存在多层地下水,其水头高差选择更要仔细研究,要确保安全情况下的经济合理。 1.2地下室上部结构荷载取值 对于于上部结构重力G,应结合具体情况考虑:当地下室面积与上部主体结构面积相等时,可比较地下室水浮力与建筑总荷重的关系,判断是否可能发生上浮。但当上部主体建筑有裙房时,采用地下室总荷重只能计算到裙房的楼层;当地下室面积大于上部主体建筑±0.00 层面积,或按裙房楼层比较浮力与建筑物总荷重,浮力大于建筑物总荷重时,应以竖向受力构件为单元分析浮力的平衡状态,特别是边柱、角柱和上部没有压重的单元;对于地下室层数较多而地上层数不多之建筑物,应慎重验算地下水之浮力作用,在验算建筑物抗浮能力时,应不考虑活载。 1.3地下室刚度 对于高层建筑下的地下室结构,传统设计方法将底板上的高层主楼、低层裙房和纯地下车库分别与地下水浮力进行比较计算,而实际上诸多设计人员仅用建筑物基底的平均荷载(基底平均反力)与浮力比较来决定考虑结构上浮问题。

浅谈几种常用的地下室抗浮措施

浅谈几种常用的地下室抗浮措施 摘要:本文对各种抗浮措施的原理、适用性、对工期的影响和工程造价进行了 总结。结合现有工程,就地下室设计中较为常见的几种抗浮措施进行分析对比, 总结出各种抗浮措施的优缺点供设计人员参考。 关键词:抗浮措施、配重法、盲沟排水法、抗拔桩法、抗浮锚杆 0 引言 随着城市现代化的不断发展,城市人口的不断增加,交通商业等基础设施的 不断建设,可供使用的土地面积越来越紧张。地下空间因为其可开发面积大,且 不对地上其它建筑功能产生影响而越来越受到重视,在一二线城市中,两层地下 室的高层建筑已非常常见,3~5层地下室的大型公共建筑也越来越多。地下水对 建筑物的影响已不可忽视,在有些区域甚至起到了控制作用,在各种多层地下商 场和车库的建设过程中,为了抵抗地下水的水浮力,人们根据不同的地质条件采 取了不同的抗浮措施。常见的基础抗浮措施主要有配重法、盲沟排水法、抗拔桩 法和抗浮锚杆四种。 本文选用深圳一项目作为案例,对四种抗浮措施进行了分析和比较,得出结 论和建议,以供设计人员参考。 1 工程案例背景 本项目分为一大一小两个地块,场地周边较为平坦,其中大地块有两层地下 室加一层半地下室,半地下室顶板上有1.5m覆土,经典柱跨为8mx8m,抗浮水 位约为9.5m,底板下强风化花岗岩土层埋深约10~30m;小地块有两层全埋地下室,顶板上覆土同样为1.5m,经典柱跨为8mx8m,抗浮水位约为8.4m,底板下 局部区域直接揭露强风化花岗岩土层,其他区域部分揭露了粉质黏土层和全风化 花岗岩土层,强风化花岗岩土层埋深最深达到30m。 2 常见的抗浮措施 2.1配重法 配重法的基本原理就是通过增加建筑物自身的重量来抵抗水浮力。为了不给 上部结构额外增加负担,通常选择在底板上增加重量来实现,具体的实施方法有:1)增加底板厚度;2)降低底板标高,并在底板上填土或浇筑毛石混凝土,再做 建筑面层;3)在底板下下挂配构造钢筋与底板相连的毛石混凝土。这种方法的 优势是简单灵活,直观有效,缺点是不管采用以上哪一种实施办法,都会同时增 加水浮力,相当于新增的混凝土或填土只能考虑浮容重来抗浮,会造成较大的材 料浪费。当地基承载力较差时,还需要考虑此部分附加重量带来的额外基础沉降。基于以上原因,配重法一般较少采用,多数时间用于水浮力较小或局部抗浮不足 的情况。 2.2盲沟排水法 盲沟排水法的基本原理就是通过在地下室底板及地下室外墙周边设置相互贯 通的排水盲沟来把水引走,从而实现减小水浮力,使主体结构满足抗浮的目的。 用于地下室抗浮的盲沟分为永久自流式和永久抽排式两种,其中永久自流式盲沟 适用于建筑场地位于单向斜坡地段,地下室两侧埋深存在一定差异,潜水水头线 同地表坡线大致平行的情况,这种盲沟的设计要考虑到周边场地的长期规划,保 证出水口通畅;永久抽排式盲沟适用于周围地势同拟建场地标高大致相当的情况,

地下室抗浮设计及计算

地下室抗浮设计及计算 Post time: 2010年5月20日 前一段时间做了几个项目,都涉及到地下室抗浮设计的问题,整理了一个大个地下室的计算思路。 先说一下规范的一些要求,规范对抗浮设计一直没有特别明确的计算建议,很多的设计建议都是编者自己的理解,所以大家的计算结果就会有很大差异。 1)《建筑结构荷载规范》GB 50009-2001(2006年版)第3.2.5条第3款规定:“对结构的倾覆、滑移或漂浮验算,荷载的分项系数应按有关的结构设计规范的规定采用”。 2)《砌体结构设计规范》GB 50003-2001第4.1.6条当砌体结构作为一个刚体,需验算整体稳定性时,例如倾覆、滑移、漂浮等,应按下式验算:γ0(1.2SG2k+1.4SQ1k+SQik) ≤ 0.8SG1k 式中SG1k----起有利作用的永久荷载标准值的效应; SG2k----起不利作用的永久荷载标准值的效应; 3)北京市标准《北京地区建筑地基基础勘察设计规范》DBJ 11-501-2009第8.8.2条,抗浮公式为: Nwk ≤γGk 式中Nwk——地下水浮力标准值; Gk——建筑物自重及压重之和; γ——永久荷载的影响系数,取0.9~1.0; 结合上述原则,计算目前在做的南方某大剧院舞台下台仓的抗浮情况,由于整个台仓位于城市河道边,且上部恒荷载的不确定性,因此永久荷载的影响系数取的是0.8,比北京规范还要低一些:

台仓深度较大,台仓底板顶标高为-14.8米,存在抗浮设计要求,根据 地质勘察报告数据,设计最高抗浮水位绝对标高为2.36米相对标高-1.54米, 经计算,上部结构传至台仓底板顶面处0.8倍恒荷载值为65200kN,台仓底板面积约为663平米,考虑台仓底板厚度为1.6米重力效应,尚有水浮力约为((14.8+1.6-1.54)×10-0.8×1.6×25)×663-65200=12106 kN。根据地质勘察报告提供的勘探点平面布置图,台仓位于18、19、25、26号孔附近,抗拔桩长为9.5米,直径0.4米,计算抗拔承载力特征值为220 kN,考虑结构重要性系数1.1,需要不少于60根抗拔桩。 考虑台仓底板承担水压情况,设置11X20=220根抗拔桩,抗拔桩间距为1.45X1.45米,则相应面积底板承担水压标准值为((14.8+1.6-1.54)×10-0.8×1.6×25)×1.45×1.45=245.2kN,减去抗拔桩抗拔值=245.2-220=25.2 kN,对应台仓底板承担水压标准值为1.1×60.6/(1.3×1.9)=27.5 kN/m2,其中1.1为结构重要性系数。 考虑群桩效应,群桩平面尺寸为16.8×28.5米,整个周边抗拔极限承载力为0.5Tgk =0.5×(0.70×55×1.2+0.75×50×7.1+0.65×85×0.7)× (16.8+28.5)×2=15900 kN,整个桩土浮容重为11×16.8×28.5×9=47400 kN,合计抗浮力为63300 kN,满足抗浮要求。 基础底板配筋计算:其中结构重要性系数为1.1,水浮力分项系数为1.20,抗拔桩安全系数取0.80,则台仓底板抗浮力设计值为1.1×(1.2× (14.8+1.6-1.54)×10-0.8×1.6×25-0.8×220/1.45/1.45)=68.88kN/m2,台仓底板按四边简支弹性楼板配筋设计结果如下: 1.1 基本资料 1.1.1 工程名称:台仓底板配筋 1.1.2 边界条件(左端/下端/右端/上端):铰支 / 铰支 / 铰支 / 铰支 1.1.3 荷载标准值 1.1.3.1 永久荷载标准值: gk = 0 1.1.3.2 可变荷载标准值 均布荷载: qk1 = 68.88kN/m ,γQ = 1,ψc = 0.7,ψq = 0.7 1.1.4 荷载的基本组合值 1.1.4.1 板面 Q = Max{Q(L), Q(D)} = Max{68.88, 48.22} = 68.88kN/m 1.1.5 计算跨度 Lx = 19950mm,计算跨度 Ly = 31900mm, 板的厚度 h = 1600mm (h = Lx / 12) 1.1.6 混凝土强度等级为 C35, fc = 16.72N/mm , ft = 1.575N/mm , ftk = 2.204N/mm 1.1.7 钢筋抗拉强度设计值 fy = 360N/mm , Es = 200000N/mm 1.1.8 纵筋合力点至截面近边的距离:板底 as = 25mm、板面 as' = 25mm 1.2 配筋计算 1.2.1 平行于 Lx 方向的跨中弯矩 Mx Mxk = 2291.29kN?m,Mxq = 1603.90kN?m; Mx = Max{Mx(L), Mx(D)} = Max{2291.29, 1603.9} = 2291.29kN?m Asx = 4159mm ,as = 25mm,ξ= 0.057,ρ= 0.26%; 实配纵筋: 32@100 (As = 8042);ωmax = 0.265mm 1.2.2 平行于 Ly 方向的跨中弯矩 My

地下室抗浮计算

建筑结构设计地下室抗浮怎么计算 首先要知道抗浮水位是多少,算出水浮力然后乘以1.05的系数。 算出地下室总得恒荷载(包括基础重和基础上的填土)如果恒荷载大于水浮力的1.05倍,可视为抗浮满足要求。如不能满足要求,可以降低基础底板,然后填土或素混凝土以增加基础的恒荷载。或者将筏板外挑,然后压上土以增加恒荷载。关于地下建筑抗浮设计的几点意见= ^NTH c^* 湖北省勘察设计协会袁内镇A3su !I2S 内容摘要 y'{*B( 本文根据作者的工作经验结合湖北省地方标准《建筑地基基础技术规范》DB42/242-2003以及相关标准的有关规定,对地下建筑物抗浮设计原则及一些具体问题进行了探讨,可供抗浮设计中参考。j o + - 关键词:抗浮设计、抗浮水位、抗浮稳定、水的浮力、抗拔构件] .( l^ W ①地下建筑物抗浮设计是一个复杂的技术问题,由于对抗浮设计的一些重要问题有不同看法,因此相关规范未对抗浮设计作出明确的具体规定,导致设计工作的困难。②抗浮水位不易确定。③抗浮现状——施工阶段浮起,使用阶段浮起,特殊情况浮起。④浮起底板未见开裂,柱上下端横向裂缝浮起时常发生倾斜,水位下到四周,等高,受力不均匀,形成与重心不重合。M t w7aK 为解决抗浮设计的操作问题,湖北省地方标准《建筑地基基础技术规范》DB42/242-2003[1]对抗浮设计作了原则的规定,但具体问题尚有一些歧意,地下建筑浮起破坏的现象仍时有发生。作者认为有必要对以下问题进行探讨,以求抗浮设计的合理完善。t0 H($ 至于地下建筑物基底及周边水在土中的渗流影响是深层次的抗浮机理问题。可以肯定,只要建筑物周边与土介质之间的水位达到一定高度,且水的补充速度大于水在土的渗流速度时建筑物即可能被浮起。 B3'; Tcs 2、抗浮设计应进行哪些验算?c

地下室底板抗浮观测方案2

地下室抗浮观测方案 一、工程概况 本工程设计±0.000相当于黄海高程4.450m,场地相对标高约为-1.75m。A标地下室建筑面积为32000平方,B标地下室建筑面积约18000平方,主楼均为11层小高层。B标装饰工程已经完成,地下室后浇带已经封闭,A标结构已经封顶,二结构正砌筑中,地下室后浇带正在清理,准备封闭施工。 本工程人防区和主楼底标设计厚度为400mm,其余部位底板厚度为350mm,设计底板面标高为-4.95m。垫层采用150厚C15砼垫层+150厚碎石垫层。 基础形式为预应力管桩基础,桩径为500mm,桩顶标高为-5.3m~-7.30m,有效桩长为45m(具体详见桩位图),桩顶锚入承台高度为50mm。 二、编制目的 因地下室底板后浇带即将全部封闭,外围的土方回填已经结束,且梅雨季节即将到来,地下水位将达到一年中的最高水位,而顶板覆土还未完成,为防止因地下水位的上涨而造成的地下室上浮从而破话地下室结构,防患于未来,在地下室底板上设置沉降观测点,当发现地下室明显上浮时可及时采取措施防止对地下室底板的进一步的破坏。 三、观测点设置

在地下室非主楼部分的底板及框架柱上设置观测点,设置的原则为间距不大于35米的柱、底板上各设置一个观测点,设置在后浇带之间的板中间位置(见附图) 四、观测方法 沉降点设置好后采用水准仪平均每周观测一次,特殊情况没二天观测一次(连续3天日降雨量超过100mm或观测到底板有数据不均匀上浮现象),观测到连续3天平均每天有超过2mm的上浮即为进入预警状态,应每天观测一次,并通报建设单位采取抗浮措施。 五、抗浮措施 1、压载: 发现底板上浮后,经设计确认需要压载,采用沙袋到地下室底板压载。

施工期间地下室抗浮施工方案

天水家园以北地段Ⅰ-2a地块 地 下 室 抗 浮 降 排 水 专 项 方 案 宁波建工股份有限公司 二零一四年三月

1、工程概况 、总体概况 本工程位于宁波市江北区,西至康庄南路,南至规划路,北临北环北路。天水家园以北1-2a地块总建筑面积136588平米,包括10幢14~18层高层、1幢3层幼儿园,2层商业用房,地下室32944平米。 、结构概况 1#~10#楼各设单层地下室,桩筏基础,地下室底板厚1000㎜,墙板厚300㎜,层高米,框剪结构;地下车库为桩筏基础,未设计抗拔桩,筏板厚400㎜,墙板厚300㎜,顶板厚400㎜,层高米,框剪结构-无梁楼盖体系,采用C35P6抗渗混凝土。 、基坑概况 1#~10#高层建筑地下室底标高为,基坑挖深为~。 地下车库基础底板面标高为,筏板底(包括垫层厚度,下同)标高为,基坑开挖深度为。 1#~10#楼及地下车库基坑支护由浙江华展工程研究设计院有限公司提供,基坑最长约207m,最宽约201m,地下室面积约32944㎡,周长约为816m,为不规则形状。 2、编制目的及依据 、编制目的

本工程1#~10#楼及地下室,针对工程特点,编制施工期间抗浮降排水专项方案。 、编制依据 (1)、天水家园以北地段1-2a项目地下室、地下车库基坑围护工程施工图纸、图纸会审、设计交底记录、技术核定单、工程联系单、基坑支护及降水专项施工方案、专家论证意见。 (2)、天水家园以北地段1-2a项目施工图纸、图纸会审及设计交底记录(3)、各项国家及地方规范、标准 (4)、天水家园以北地段1-2a项目工程施工组织设计 3、抗浮措施 根据《基坑支护总说明》中地三条:本项目场地地下水较浅,赋存于人工填土和土层中。人工填土结构松散,性质不均,易形成地下水流入基坑的通道,因此地下室基坑只需设置排水体系、做好防渗措施及地下室顶板标高处排水措施。、基坑支护设计抗浮措施(基坑排水体系,防渗措施) 、排水体系 1.坑外排水地表及边坡采用70~100mm厚C15素混凝土硬化封闭。在边坡顶四周做好300×300 mm的方形砖砌排水沟(沟侧边用M5水泥砂浆砌砖120mm厚,内侧与顶面批1:3水泥砂浆,纵向坡度%);每隔20m-25m设400×400×600mm 的砖砌集水井(240厚灰砂砖墙,M5水泥砂浆砌砖,内侧批25mm厚1:水泥砂

浅谈地下室结构抗浮设计问题分析

浅谈地下室结构抗浮设计问题分析 发表时间:2019-08-28T14:01:27.280Z 来源:《基层建设》2019年第16期作者:李坚 [导读] 摘要:近几年来,有不少地下室由于各种原因而造成工程事故,如某医院两层独立地下车库,在施工过程中,出现整体上浮;又如,某体育中心游泳馆,地下室上浮造成上部结构梁、板、柱产生大量裂缝;再如,某高层建筑地下室底板局部隆起高达350mm,柱间板出现45°破坏性裂缝等等问题经常性的发生,造成了严重的财产损失和经济损失。 广东建筑艺术设计院有限公司 510655 摘要:近几年来,有不少地下室由于各种原因而造成工程事故,如某医院两层独立地下车库,在施工过程中,出现整体上浮;又如,某体育中心游泳馆,地下室上浮造成上部结构梁、板、柱产生大量裂缝;再如,某高层建筑地下室底板局部隆起高达350mm,柱间板出现45°破坏性裂缝等等问题经常性的发生,造成了严重的财产损失和经济损失。本文就是针对这些事故的原因进行归纳和分析。 关键词:地下室;抗浮设计;抗水板 一、概述 随着国民经济的发展,城市建设的也得到迅速的发展。而城市土地资源的日益紧缺,建筑及城市交通逐步向地下发展。大商业建筑、高层及超高层建筑由于其功能和结构本身的需要,大多设置了地下室。随着建筑层数的日益增高,地下结构已向多层发展,其基坑支护、地下结构设计、地下室的施工及防水等日益成为建筑工程界关注的热点。由于地下室工程的施工环境特殊、隐蔽性大、涉及的工种多、施工复杂,也容易出现质量问题,因而对设计有一定的特殊要求。 二、地下室抗浮水位的合理选取 设防水位的确定对建筑物的安全和业主的投资有较大的影响。较多文献已指出岩土地基中的地下水浮力的确定,不能简单按静水压力公式计算,即地下水的水压力在垂直方向上并非随深度增加而线性增加。从《铁路桥涵设计规范》和《岩土工程手册》的规定中可以看出建筑物基础位于不同持力层时,浮力计算有差别。当位于粉土、粘土、砂土、碎石土和节理裂缝发育的岩石地基时,由于地层的透水性好,水浮力不应折减,而位于节理裂隙不发育的岩石地基时,甚至工程底板与岩石密贴时,可考虑水浮力的折减,甚至不考虑水浮力的作用。当建筑物位于黏土地基时,其浮力较难准确确定,应结合地区的实际经验考虑。 根据勘察单位提供的岩土工程勘察报告,确定地下室抗浮设防水位时,应根据设计规范中确定的原则:防水要求严格的地下室,其设防水位可按历年最高地下水位;对防水要求不严格的地下室其设防水位可参照近3~5年最高水位及勘查时的实测静止地下水位。 由此,如何合理确定抗浮水位的取值,应根据工程的特点、地理环境、地质情况及场地条件等因素,还有工程勘察报告中提供场区历年最高水位和近年的最高地下水位,并结合当地的工程经验综合考虑,确定建筑物的设防水位和抗浮设计水位,使设计做到经济、安全。 在建筑允许的情况下,尽可能提高基坑坑底的设计标高,间接降低抗浮设防水位。具体措施可采用平板式筏板,一般而言,平板式筏板基础的重量与“低板位”梁板式筏板基础上填覆土的重量基本相当,但后者的基础高度一般要比前者高。地下室楼盖提倡使用宽扁梁或无梁楼盖。宽扁梁的截面高度一般为跨度的1/16~1/22,宽扁梁的使用将有效地降低地下结构的层高,从而相对降低了抗浮设防水位。 三、地下室抗浮方案 目前针对地下室抗浮问题主要有增加自重法和设置抗拔桩这两种方案。 1、增加自重法方案 增加自重法包括地下室顶板压载、地下室底板加载及边墙加载等方法,增加地下结构物自身重量(即恒载),使其自身的重力始终大于地下水对结构物所产生的托浮力,确保结构物不上浮。这种方法的优点是:施工及设计较简单;缺点是:当结构物需要抵抗浮力较大时,由于需大量增加混凝土或相关配重材料用量,故费用增加较多。还可能影响对地下结构物室内使用净高。 1)顶部压载措施 顶部压载措施是将地下结构物顶板的混凝土加厚或增加其他压载材料,使自身重量(即恒载)增加以抵抗地下水的上浮力,但增加的混凝土却占去原有覆土的位置,所以增加的重量仅为混凝土与覆土重量之差。因为混凝土与覆土重量的差距不大,所以此法的效益不大,并且使地下结构与地表的距离拉近,由此减少了地下结构上方覆土厚度。此法一般用于埋深较浅、不需增加太厚压载物且其顶部有条件压载的地下结构物的抗浮,否则,其顶部有条件压载也会增加结构自身造价和基础造价,对规模较大、埋深较深的地下结构物的抗浮不宜采用此法作抗浮措施。 另外,当采用此法作抗浮措施时,施工时应避开雨季;因为刚封顶后地下室,还来不及做其他项目时,雨季使地下室处于其最不安全的时期。 2)底板加载措施 基板加载措施是将地下结构物底板的混凝土加厚,使自身重量增加以抵抗地下水的上浮力,但在增加混凝土的同时也增加了水的上浮力,所以它增加的重量是混凝土与水的重量之差。因为混凝土与水的重量差距远比混凝土与覆土的重量差距大,所以每增加单位体积的基底板混凝土,其抗浮效益比顶板压载法要大,但会提高工程造价,采用基板加载抗浮措施,不仅在地下室底板需浇筑大量的压载混凝土,在材料上造成极大的浪费,厚板给施工也带来非常大的困难和不便。因压载增加了地下室底板的厚度,造成地下室净空变小,给以后的使用带来不便。此方案造价很高既费钱又费工,此法一般用于埋深较浅、不需增加太厚混凝土的地下结构物的抗浮。 3)侧墙加载措施 侧墙加载措施是将地下结构物侧墙的混凝土加厚,这种做法虽然增加了水的上浮力,但也由此加宽了地下结构物上方覆土的范围。这种做法虽然也可得到较大的抗浮力,并且不需要加深基坑开挖,但开挖的范围却因此增宽,在地价昂贵的地区,经济效益也将因此折减。此法一般适用于不受场地限制、地价不贵地区的规模较小地下结构物的抗浮。 2、设置抗浮桩 目前,设置抗拔桩是在地下室抗浮设计中使用较为广泛的一种方法。但仔细分析,这种方法也有一定的局限性。因为地下室的抗浮设防水位是根据拟建场地历年最高水位,并结合近几年的水位变化情况提出来的,即使经过重新评估后确定的抗浮设防水位,也是按一定的统计规律得出的结论。显然,该方法确定的地下水位在一般的情况下是很难达到的;加之设计计算的不精确性,也使得抗拔桩都具有一定的安全储备,因此,“抗拔桩”实际上长期起着“抗压桩”的作用,这种“反作用”将阻碍有抗浮要求的地下室的合理沉降,而这种变化将会使不

浅析地下室抗浮设计原理

一、地下室整体抗浮设计的基本原理 1.地下室最主要破坏形态即为抗浮破坏,因此抗浮设计显得尤为重要。 2.水对地下建筑物的浮力大小遵循阿基米德原理,水对物体的浮力等于物体排开同体积水 的重量{即基底单位面积所受的水浮力为γh的(γ为水的重度,h为建筑物基底以上的水深)}。当水浮力强度大于地下建筑物单位面积的重量时,建筑物即可浮起,当水不断补充时,建筑物将不断上浮,所以,建筑物浮起是一个渐进过程。水量的大小只是控制着建筑物上浮速度和上浮量,而水位高低则是控制建筑物上浮的基本要素。 3.地下室与潜水艇的根本区别: 地下室底板除受水浮力外还受土反力,而潜水艇底板只有水浮力。(注意此时的地下室基础形式,若为独基+防水板,防水板是不允许受土反力的,而只受水浮力作用;基础范围均受土反力与水浮力。) 潜水艇完全沉没在海里面时,其所受总的浮力是个定值,因为此时排开水的体积不再变化,即为:顶板向下水的压力+自重=潜水艇底板向上水的压力。 地下室抗浮设计中,力的平衡公式: F顶板表面(定值)+G地下室自重(定值)=P基底土反力(不允许为0)+水浮力。从中得出:即随着地下水位的上升,水浮力逐渐增大,土反力逐渐减小,若基底土反力小于或等于0时,地下室出现整体抗浮破坏。当水位在地下室顶板或者超过顶板面时,地下室整体所受的水浮力是个定值。注意:地下室顶板所受的荷载大小是个定值,跟有没有水不相干;而地下室底板所受的水浮力(γh)大小只与水头高度相干,随着水头高度变化而变化。

4.在抗浮中起有利作用的及一些自身安全储备有: a. 地下室的自重和覆土重对抗浮有利; b. 地下室底板与土(存在水的情况)存在张力作用;侧壁的回填土(质量要有保证), 对侧壁有个摩擦力。 5.地下室抗浮验算: 《建筑结构荷载规范》GB 50009-2012的3.2.4条的第1.2款规定:“当永久荷载效应对结构有利时,组合分项系数不应大于1.0”。 在地下室整体抗浮验算中,永久荷载对结构有利,荷载分项系数一般应取1.0。 广东省标准《建筑地基基础设计规范》DBJ 15-31-2003第5.2.1条规定,地下室抗浮稳定性验算应满足式6.1.6的要求: W/F≥1.05 (6.1.6)(我院要求最少1.1倍) 式中 W——地下室自重及其上作用的永久荷载标准值的总和; F——地下水浮力。 【注意】:此处F应为地下水浮力的标准值。 二、抗浮水位的确定 《高层建筑岩土工程勘察规程》第8.6.2 场地地下水抗浮设防水位的综合确定宜符合下列规定: 1. 当有长期水位观测资料时,场地抗浮设防水位可采用实测最高水位;无长期水位观测资料或资料缺乏时,按勘察期间实测最高稳定水位并结合场地地形地貌、地下水补给、排泄条件等因素综合确定; 2. 场地有承压水且与潜水有水力联系时,应实测承压水水位并考虑其对抗浮设防水位的影响; 3. 只考虑施工期间的抗浮设防时,抗浮设防水位可按一个水文年的最高水位确定。 注:目前地质勘查单位提供的岩土工程勘查报告中一般会提出建议抗浮水位标高。 三、抗浮设计的措施 1.压重抗浮 抗浮失效(建筑物倾斜或出现裂缝)是由于建筑物自重小于地下水浮力造成的,因此解决此问题最简便的办法就是增加建筑物自重,比如在地下室顶板部位覆盖一定厚度的土层。对于土体的选择,不同地区可结合当地地质条件,就近选择可利用覆土材料。 2.工程桩抗浮 工程桩,就是在工程中使用的,最终在建构筑物中受力起作用的桩。按承载性状可分为摩擦型桩和端承型桩,工程桩基础大多是现浇大直径柱,整体性好,工程桩周围与土层间摩擦力大。但同时也应当注意工程桩在使用过程中经常会出现的裂缝及耐久性较差的问题,因此在地下室结构抗浮设计中使用工程桩抗浮应当对于使用过程中可能涉及到的桩体变形问题进行有效预估。 3.锚杆抗浮 锚杆抗浮是建筑工程地下结构抗浮措施的一种,在建筑物采用天然地基且基岩情况下,锚杆抗浮是地下室抗浮设计很好的选择,锚杆抗浮为抗拔桩体承受拉力,普通抗浮桩受力也是自桩顶向桩底传递,桩体受力大小随着地下水位的变化而变化,因此当地下水压力较大,松散砂层太厚,锚杆受到的拉力也随之发生变化,不宜采用锚杆抗浮,这种情况下如果采用锚杆,就会产生较大的变形,不利于结构稳定,造成抗浮失效此外,当软

地下室抗浮计算书

地下室抗浮验算 一、整体抗浮 裙房部分的整体抗浮(图一所示)图示标高均为绝对标高。底板板底标高为-6.400,地坪标高为:3.600,抗浮设防水位标高为2.5m,即抗浮设计水位高度为:8.9m。 裙房部分抗浮荷载: ①地上五层裙房板自重: 25×0.60=15.0kN/m2 ②地上五层梁柱折算自重: 25×0.60=15.0kN/m2 ③地下一顶板自重: 25×0.18=4.5 kN/m2 ④地下二顶板自重: 25×0.12=3.0 kN/m2 ⑤地下室梁柱折算自重: 25×0.3 =7.5 kN/m2 ⑥底板覆土自重: 20×0.4 =8.0 kN/m2 ⑦底板自重: 25×0.6 =15.0kN/m2 合计: 68.0kN/m2水浮荷载:8.9×10=89 kN/m2 68/89=0.764<1.05不满足抗浮要求。 需采取抗浮措施,因本工程为桩基础,固采用桩抗浮。 需要桩提供的抗拉承载力:89×1.05-68=25.45 kN/m2 单桩抗拔承载力特征值:450kN 取8.4m×8.4m的柱网,柱下4根桩验算: (4×450)/(8.4×8.4)=25.5 kN/m2>25.45 kN/m2 满足抗浮要求。

二、局部抗浮 无裙房处地下室的局部抗浮(图二所示)图示标高均为绝对标高。覆土厚度为:0.6m。 底板板底标高为-6.400,地坪标高为:3.600,抗浮设防水位标高为2.5m,即抗浮设计水位高度为:8.9m。 地下室部分抗浮荷载: ①顶板覆土自重 : 20×0.60=12.0kN/m2 ②地下一顶板自重: 25×0.25=6.25kN/m2 ③地下二顶板自重: 25×0.12=3.0kN/m2 ④梁柱折算自重: 25×0.3 =7.5kN/m2 ⑤底板覆土自重: 20×0.4 =8.0kN/m2 ⑥底板自重: 25×0.6 =15.0kN/m2 合计: 51.8kN/m2 水浮荷载:8.9×10=89kN/m2 51.8/89=0.58<1.05 不满足抗浮要求。 需采取抗浮措施,因本工程为桩基础,固采用桩抗浮。 需要桩提供的抗拉承载力:89×1.05-51.8=41.65 kN/m2 单桩抗拔承载力特征值:450kN ①内柱验算:取8.4m×6m的柱网,柱下5根桩验算 (5×450)/(8.4×6)=52.5 kN/m2>41.65 kN/m2 满足抗浮要求。 ②外墙验算:取墙下1根桩的负载面积验算 墙体自重 : 4.2×25×0.30×8.8=277.2kN 墙趾覆土自重: 4.2×18×0.40×9.4=284.3kN 水浮力: 4.2× 4 × 41.65 =700.0kN 700-(277.2+284.3)=138.5kN<450kN 满足抗浮要求。

地下建筑的抗浮技术措施

地下建筑的抗浮技术措施 摘要:叙述地下建(构)筑物在施工期的临时性抗浮措施,使用期的永久性抗浮措施,并分析其经济合理性。 关键词:地下建筑:临时抗浮措施;永久性抗浮构造 近年来,城市中地下车库、地下水池、地下商场、地下储液罐等地下建(构)筑物的建设项目同趋增多。这些地下建(构)筑物的上部建筑根据其周围环境的规划要求,分为有地上建筑和无地上建筑两类。后者多见于城市广场及住宅区中,地下建(构)筑物的顶板上覆土后作绿化和便道,供人们休闲观赏。这种地下建(构)筑物在施工中及竣工使用期的抗浮措施若无周密考虑,往往会产生上浮现象,导致地下墙体或底板开裂,直接危害使用及结构安全。下面根据宁波机场地下车库和某地下小商品城及游泳池工程情况,对其抗浮措施加以分析。 1 抗浮措施的经济合理性 选择地下建(构)筑物的抗浮措施,并做到经济合理性,首先应慎重分析工程地质和水文地质资料,并且区别施工阶段和竣工后使用阶段的不同工况。 众所周知,物体在水中所受到的浮力等于物体所排出的水重量,即地下室所受到的浮力等于地下水位以下至底板底这部分的水重量。根据宁波市一般的地质,浅层土为淤泥质粘土 或粘土,土层中多为非承压水、潜水和滞水,且土层的渗透系数低,大致≤cm/s范围。这种地质下的地下室在施工期间,虽然地下室顶板和覆土未完成,但只要及时排除地下室基坑中底板四周的水,就不会产生上浮现象。其排水方法常采用排水沟加集水井,再用潜水泵排出。地下建(构)筑物竣工后,只要伞部白重(包括顶板及覆土重)大丁地下水位下水的浮力,就可达到抗浮的目的。如果地下建(构)筑物的全部自重小于浮力,应采用一定长度的配筋沉管灌注桩增加抗浮力,而不必增厚底板。这些措施,达到了工程造价的经济合理性。 2 施工期间的抗浮措施 地下建(构)筑物若处于透水系数比较大的粉质粘土、粉土、砂土中,由于正值施工期间,地下室的顶板和覆土尚未完成,此时底板和外墙已施工完成,在地下水作用下,形成了一定的浮力。当浮力不大时,可利用排水明沟、集水井结合潜水泵排出基坑内的水,减小浮力。当土质的渗透系数大,即浮力较大时,应在地下室底板中设置后浇带,利用底板下的块石垫层作为倒滤层,在后浇带中插入轻型井点立管,不断地降水,如图1所示。根据坑底土质的不同,井点立管可插至底板垫层下的粉土层,也可以将滤管部分埋置于块石垫层中。浇筑后浇带中砼时,应在井点立管中焊上环形钢板止水环,然后继续降水,直至地下室顶板和板顶覆土完成后,再切割掉井点立管,管顶加盖板焊死。若设置后浇带有困难,则可以在底板中适当部位设几个深井点降水,挖土至设计标高后,焊上环形止水环,浇入底板砼中,其余处理同上述。 3 永久性的抗浮措施 3.1 常规构造抗浮措施 地下建(构)筑物永久性构造的抗浮措施一般有如下几种:如用加厚底板增加自重的方

抗浮计算

地下室抗浮计算 整体抗浮计算: 抗浮设计水头:7.4m,底板厚0.5m,底板上覆土1.9m,地下室顶板厚0.16m(梁板柱折算厚度0.4m),地下室顶板覆土1.5m。 单位面积水浮力:6.5x10=65KN 单位面积抗力:0.4x25+0.9x18+0.2x25+1.6x18+0.4x25=70KN>67 整体抗浮满足要求, 底板局部抗浮计算: 抗浮设计水头:6.5m,底板厚0.4m,底板上覆土1.1m。 单位面积水浮力:6.5x10=65KN 单位面积抗力:[0.4x25+0.9x18+0.2x25]x0.9=31.2KN 局部抗浮不满足。防水底板需计算配筋。 单位面积净浮力q为:65x1.2-31.2x1.2=40.56KN 按经验系数法计算:Mx=q*Ly*(Lx-2b/3)*(Lx-2b/3)/8 =40.56*8.4*(8.1-2*5/3)*(8.1-2*5/3)/8 =967.6KNm 柱下板带支座最大负弯矩M1为:M1=0.5*Mx=483.8KNm(跨中板带最大为0.17)柱下板带跨中最大正弯矩M2为:M2=0.22*Mx=212.9KNm(跨中板带最大为0.22)配筋为:下部为:As1=M1/(0.9*fy*h1*3.9) =483.8/(0.9*360*1150*3.9) =332.9mm <Ф16@200 As1’=M1/(0.9*fy*h1’*3.9) =483.8/(0.9*360*350* 3.9) =1039mm 基本等于Ф16@200 上部为:As2=M2/(0.9*fy*h2* 3.9) =212.9/(0.9*360*350* 3.9) =481.4mm <Ф16@200 上式配筋计算中分母3.9为柱下板带宽度。 原设计防水底板配筋满足要求。 独立基础计算 阶梯基础计算 项目名称_____________日期_____________ 设计者_____________校对者_____________ 一、设计依据 《建筑地基基础设计规范》 (GB50007-2002)① 《混凝土结构设计规范》 (GB50010-2002)② 二、示意图

地下室抗浮方案

地下室抗浮施工方案 一、工程概括 本工程名称为碧桂园·新城之光花园。本拟建工程为1栋29层、1栋30层洋房、4栋32层洋房、一栋4层幼儿园与2层商业楼及沿街商铺,型号分别有Y017、T3 、王字型等,总建筑面积为184503、97㎡。 建设单位为佛山市顺德区乐从碧桂园房地产开发有限公司,设计单位为广东博意建筑设计院有限公司,监理单位为广东国晟建设监理有限公司,施工单位为广东腾越建筑工程有限公司.拟建场地四周已进行平整,场地内已通水通电,场内主干道在地下室顶板,地下室顶板上行车重量不能超过30吨。 适用范围 本方案仅适用碧桂园·新城之光花园项目地下室得抗浮施工. 三、施工方案 (一)、原因得分析 地下室抗浮就是一个复杂得问题,场地土层差异性,场地地下水复杂多变性,给地下室抗浮水位得确定带来了较大困难,但抗浮又就是地下室抗浮设计中一个重要得参数。究竟如何做到既安全又合理得确定?勘察、设计人员应遵照《岩土工程勘察规范》(GB 50021)及《高层建筑岩土工程勘察规程》(JGJ72——2004)得相关规定进行勘察与分析,保证地下室得抗浮: (二)、抗浮验算得几个参数 《给排水工程构筑物结构设计规范》GB50069—2002第5、2、

2条与5、2、3条中比较清楚得表述了,对于抗浮结构得设计,地表水或地下水作用应就是第一可变荷载,在进行结构构件得强度计算时,它得分项系数取为1、27;即,在结构构件得强度计算时,结构有利组合时抗力得分项系数取1、0,水浮力得基本组合设计值为标准值乘上1、27。当计算整体抗浮得稳定性时,抵抗力只计入永久荷载,水浮力采用标准值乘以抗力系数Ks(取1、05)。但其水浮力得作用与结构得受力性能应就是相似得. (三)、地下水作用 真正处于静止状态得地下水就是很少得,水在土体中多就是流动状态(渗流),渗流就是复杂得三维空间课题,饱与土与非饱与土得渗流现象在工程性状上有很大得差异。 土中得孔隙就是下水储存得场所,又就是地下水运动得通道,由渗流分析引伸出得孔隙水压力分析,就是地下水对建筑工程作用分析得基础。 历史最高水位、近期最高水位,都不能直接作为抗浮水位提供。要提供一个比较客观得设计抗浮水位标高,必须要有长期观测资料,了解各层地下水得赋存形态与运动规律,作渗流分析求取地下水对基底得压力,按基底最大压力提供抗浮水位标高.也就就是说,正确确定基础底面处地下水得压力,就是提供建筑物设计抗浮水位标高得前提。 基底得水压力并不完全取决于水位得高低,还与水得存在形态相关。

地下室抗浮设计中的几个问题讨论 转载

地下室抗浮设计中的几个问题讨论转载

地下室抗浮设计中的几个问题讨论转 载 已发表于《中外建筑》2010年02月 近几年来,有不少地下室因地下水的作用而造成工程事故,如某医院两层独立地下车库,在施工过程中,出现整体上浮,最大上浮高度达1.42m;又如,某体育中心游泳馆,地下室上浮造成上部结构梁、板、柱产生大量裂缝;再如,某高层建筑地下室底板局部隆起高达350mm,柱间板出现45°破坏性裂缝…诸如此类问题时有发生,造成了财产的损失。本文对产生这些事故的原因归纳总结成以下四个方面,与同行们共同讨论: 一、抗浮设计中基本概念 在多个地下室因水浮力作用而引发的工程亊故中,我们发现有些设计人员对地下水的作用认识不足,抗浮设计的基本概念不够清晰,常见的有下列几种情况: 1)重视地下室的梁、板、柱、墙的结构构件设计,忽视整体抗浮验算分析,忽视施工的抗浮措施,总认为具有上万吨自重的地下室怎么会浮起来呢 2)地下室底板裂缝、漏水,甚至成为地下游泳池,把某些实质上是因为地下水的作用远大于设计荷载而造的工程事故,错判为温度应力作用、砼施工质量问题等。 3)对于基底为不透水土层的地基(基岩、坚硬粘土),深基坑支护又采用了止水帷幕或桩、锚、喷射混凝土联合支护,忽视水的浮力。 试想万吨级以上大船能在江、河、海中航行,可见水的作用力之大。地下室就像一条"船",地下室底板和侧墙形成一个密闭的船身,它的水浮力有多少

呢,是它浸泡在水中的体积乘以水容重,若一个50×100m的地下室,抗浮水位为5m,它的浮力为25000吨,可见水浮力之大。地下室的抗浮设计就是要使这个船既不上浮,船身又不破坏,因此,地下室的抗浮设计应进行整体抗浮和局部抗浮验算。 为防止地下室整体上浮我们通常采用两类做法,一类为"压",一类为"拉"。当采用"压"的做法时,利用建筑的自重(包括结构及建筑装修、上部覆土等,不含楼面活荷载)平衡地下室水的总浮力,当不能平衡时,必须增加"拉"的做法,即采用桩或锚杆等来抵抗地下水的浮力。无论是"压"还是"拉"的做法,都必须进行整体抗浮验算,保证抗浮力(压重+抗拉力)大于水的总浮力,即。 局部抗浮验算,除了梁板墙柱结构构件的强度验算、变形验算和裂缝验算,还应包括局部的抗浮验算,对于大面积地下室上建有多栋高层和低层建筑,建筑自重不均匀,当上部为高层或恒荷载较大时,该范围的整体抗浮能力可能较高,但上部没有建筑或建筑层数不多的局部范围,特别应进行分区、分块的局部抗浮验算,例如:柱、桩、墙的压力或拉力能否平衡它所影响区域里的水浮力总值。 然而有些设计人员对上述最基本的概念还不够清晰,例如,有些设计人员只对地下室底板的梁、板、墙在地下水浮力荷载作用下的强度计算,未做整体抗浮的认真分析,特别是独立地下室、水池等,造成地下室整体上浮,给地下室结构带来严重破坏,难以进行复原处理。又如有些设计人员利用上部结构自重抗浮,只计算上部结构总自重标准值大于总的水浮力设计值,就认为抗浮设计满足要求。既不分析其上部建筑荷载的分布,又未计算局部抗浮,局部范围因抗浮力小于水浮力,底板隆起、造成地下室及上部结构局部范围内大面积破坏。再如,在地下室底板计算中只验算强度不进行变形的裂缝宽度的计算,造成底板产生裂缝,漏水严重,形成"地下游泳池"。

(完整版)地下室底板抗浮锚杆施工方案最终版

湘质监统编 施2015-31 康桥美郡10、11号楼抗浮锚杆施工方案报审表 工程名称:康桥美郡10、11号楼编号:

株质安监统编 2008施管-11 康桥美郡10、11号楼抗浮锚杆施工方案审批表 工程名称:康桥美郡10、11号楼工程 302011□□

注:经过批准的施工组织设计(方案),不准随意变更修改,确因客观原因需修改时,应接原审核、审批程序办理。

目录第一章施工条件· 一、编制依据·· 二、工程概况·· 第二章抗浮桩(锚杆)设计·· 一、抗浮锚杆结构设计主要参数·· 二、抗浮锚杆拉力设计参数·· 第三章施工组织和措施· 一、施工准备· 二、施工进度安排·1 三、抗浮桩锚杆施工工艺流程、技术参数·· 第四章工程施工质量保证措施· 一、质量控制措施· 二、质量保证具体内容·· 三、材料质量要求及节约措施··5 第五章季节性施工措施·· 一、季节性施工进度保证措施·6 二、季节性施工质量保证措施·6 第六章文明施工与安全措施··7 一、安全生产、文明施工··7 二、安全保证体系及措施· 三、环保文明施工保证体系及措施·· 第七章锚杆平面布置图及结构详图··10

第一章施工条件 一、编制依据: 1、由北京世纪千府设计的《睿泰·康桥美郡10、11栋施工图纸》。 2、由湖南省地质工程勘察院提交的岩土工程勘察报告。 3、《岩土锚杆(索)技术规程》CECS22-2005。 4、《建筑边坡工程技术规范》GB50330-2013。 5、政府及行业行政主管部门对建筑施工管理的有关规定。 二、工程概况: 睿泰·康桥美郡10、11栋位于株洲市天元区,紧邻泰山西路,与湖南工业大学新校区隔泰山路相望。两栋均为高层现浇钢筋砼框架一剪力墙结构。 第二章抗浮桩(锚杆)设计与基本试验 一、抗浮锚杆结构设计主要参数: 1、抗浮锚桩(杆)总数:91根(见锚杆平面布置图)。 2、钻孔体:锚孔直径150mm,锚杆锚入完整中风化岩层不小于4m,锚杆长度不小于5.2m。 3、固结体:采用M30水泥沙浆,灰沙比宜为0.8~1.5,水灰比宜为0.38~0.50。 4、锚杆:采用锚筋3Ф25HRB400钢筋相互点焊。 5、根据地勘报告,本工程负二层地下室底板均已进入中风化泥质粉沙岩,抗浮水位高于地下室负二层结构底面6.3m。 6、抗浮基本试验锚杆共计5根(在锚杆正式施工前完成),场地分布有人工填土、强风化岩,因此在锚杆锚入完整中风化岩层不小于4m的条件下,锚杆长度将大于5.2m、具体长度依现场实际情况而定。 二、抗浮锚杆拉力设计参数 1、锚杆抗拔承载力特征值:单根锚杆抗拔承载力特征值为260KN。 2、通过基本试验,确定能满足设计承载力。 3、验收试验:锚杆验收抽样数为锚杆总数的5%,且不少于5根,最大试验荷载为390KN。 第三章施工组织和措施 一、施工准备 1、施工前准备工作内容: 1)完成施工现场的平面布置;

相关文档
最新文档