中断服务程序汇编源文件

中断服务程序汇编源文件

E:\stc_example_new\例子7-8\main.a51

Page 1

简单的客户服务流程规范

第一章服务体系 良好的客服形象良好的技术 良好的客户关系良好的品牌 一、“5S4E”服务 “5S4E”的宗旨是“客户永远是第一位”,从客户的实际需求出发,为客户提供真正有价值的服务,帮助客户更好地使用产品。体现了“良好的客服形象、良好的技术、良好的客户关系、良好的品牌”的核心服务理念,要求以最专业性的服务队伍,及时和全方位地关注客户的每一个服务需求,并通过提供广泛、全面和快捷的服务,使客户体验到无处不在的满意和可信赖的贴心感受。 通过建立一个完善的服务体系和服务质量监督体系,从而能为用户提供“亲切、快捷、专业”的体验。 通过建立一个良好的内部激励机制,培养一支充满活力的、能兢兢业业为客户服务的“友好、高效、专业”的客户服务队伍。 二、“5S4E”服务体系简介

“5S4E服务”提出了坚持服务质量和服务满意度的5个标准及客户服务将要达到的4个核心目的,即要以smiling(微笑)和sincere(诚挚)的服务态度,客户的服务需求在第一时间得到响应,得到充分的重视;要以speciality(专业)和speedy(快速)的服务水准,建构我们规范和专业的服务体系,第一时间解决客户应用中的问题,为客户提供量身定做的专业性服务;通过长期不懈、坚持永续的服务,持续提升客户服务价值,达到客户satisfied(满意)的服务效果。最终为客户提供快捷而不失其细心,专业而不失其亲切,持续而不失其稳定的高质量服务,提供品牌的认知度。也就是我们的核心“excellent customer service visualization(良好的客服形象)、excellent technology(良好的技术)、excellent customer relationship(良好的客户关系)及excellent brand(良好的品牌)” 客户服务部:是“5S4E”服务体系的最高管理机构,负责制定“5S4E”整体发展规划、客户服务规范与管理程序、XXXX各维修及销售类产品线服务政策、对各地维修站提供支持与监督工作。同时负责处理用户投诉及800免费技术咨询热线、互联网网上技术支持的日常运作。 各地维修站及技术工程部:是XX在全国各地的服务机构,负责为所在区域的XX 客户提供全方位的技术服务,并对相关产品维护人员提供适当培训。目前XX已在全国各地建立40个维修中心,覆盖面正逐步扩大。 三、“5S4E”特色 从客户的实际需求出发,努力探寻对客户真正有价值的新的服务内容与服务方式,形成有别于业界其他厂家的服务特色,是“5S4E”的不懈追求。

PIC——MCC18中断写法

PIC——MCC18中断写法 MPLABC18 不自动把中断服务程序放在中断向量处。通常将GOTO 指令 放在中断向量处,从而把控制权转交给相应的中断服务程序。PIC18 系列的低 优先级中断入口地址在0x0018 地址,下面的代码是在入口地址处放置一个向 量函数,这个向量函数里就是一个内嵌汇编的GOTO 指令,GOTO 到低优先级 的中断服务函数InterruptHandlerLow。//----------------------------低优先级中断入 口-----------------------------------1#pragmacodeInterruptVectorLow=0x18//用#pragma 伪指令定义一个名字叫InterruptVectorLow 的段,并把这个段放到0x18 地址起 始的代码空间2voidInterruptVectorLow(void)//低优先级中断向量函数3{4 _asm5gotoInterruptHandlerLow//内嵌汇编指令6_endasm7} 8#pragmacode//这里不是多余的,它是告诉连接器回到默认的代码段,如果不 加的话,连接器就会傻傻地把后面的代码紧跟着上面的代码一直放下去。而 LKR 文件里定义了向量区最多到0x29 地址,所以如果没加此行通常会报错 910#pragmainterruptlowInterruptHandlerLow//这里使用interruptlow 这个关键词 来声明InterruptHandlerLow 这个函数是低优先级中断服务函数,用了关键词后,这个函数将会由编译器自动产生基本的现场保护,并且这个函数的返回将是使 用RETFIE 返回的。111213voidInterruptHandlerLow(void)14{15/*低优先级服务 函数的代码写在这里*/16}PIC18 系列的高优先级中断入口地址在0x0008 地址, 下面的代码是在这个入口地址处放置一个向量函数,这个向量函数里就是一个 内嵌汇编的GOTO 指令,GOTO 到高优先级的中断服务函数InterruptHandlerHigh。 //----------------------------高优先级中断入口----------------------------------- 1#pragmacodeInterruptVectorHigh=0x08//用#pragma 伪指令定义一个名字叫

在编写单片机的程序中中断服务程序中可以定义变量如果

在编写单片机的程序中,中断服务程序中可以定义变量,如果希望下一次再进入中断的时候还可以保留变量原来的值,就需要把它设置为static型的。比如,定义一个bit型变量作为某种判断的标志。关于好不好的问题,以我现有的知识,好像是解决不了的,很抱歉 一个中断的处理过程大概是这样的: 1、现行指令结束,且没有更紧急的服务请求。 2、关CPU中断,CPU不能再响应其他任何中断源的中断请求。 3、保存中断点,通常是指保存程序计数器PC中的内容,把它压入到系统堆栈中,以便在终端服务完成后返回到原来的程序中去。 4、撤销设备的中断服务请求,如果这个中断源的中断请求不撤销的话,那么在开CPU中断后,它必然将再次请求终端服务。 5、保存硬件现场。 6、识别中断源。 7、改变设备的屏蔽状态。 8、转向中断服务程序入口,一般还要在中断服务程序中通过软件才能找到具体中断源的中断服务程序入口。 9、保存软件现场,主要指保存将要被中断服务程序破坏的通用寄存器中的内容等。 10、开CPU中断,CPU可以响应其他更高级中断源的终端服务请求,中断源之间可以实现中断嵌套。 11、执行中断服务程序。 12、关CPU中断,CPU不响应任何中断源的中断服务请求。在下一次开CPU中断之前,正在运行的程序不允许被中断。 13、恢复软件现场,恢复被中断服务程序破坏的通用寄存器中的内容等。 14、恢复屏蔽状态。 15、恢复硬件现场,主要指恢复处理机状态字PSW及堆栈指针SP等中的内容,准备返回中断点。 16、开CPU中断。 17、返回到中断点。 其中红字的部分一般用硬件实现,蓝字的部分一般用软件实现,其他可以用硬件也可以用软件实现。 从上面这个过程似乎可以得到,在执行中断服务程序之前,很多东西都被保护起来了,所以执行中断程序的时候不必担心破坏什么东西。我们可以对全局变量进行操作,也可以定义一个新的变量,这只是占用了一定的存储空间和时间的问题。 恩,我也不知道自己理解的对不对,毕竟计算机系统结构是很复杂的哈,还希望大家帮忙理解一哈

单片机_C语言函数_中断函数(中断服务程序)

单片机_C语言函数_中断函数(中断服务程序) 在开始写中断函数之前,我们来一起回顾一下,单片机的中断系统。 中断的意思(学习过微机原理与接口技术的同学,没学过单片机,也应该知道),我们在这里就不讲了,首先来回忆下中断系统涉及到哪些问题。 (1)中断源:中断请求信号的来源。(8051有3个内部中断源T0,T1,串行口,2个外部中断源INT0,INT1(这两个低电平有效,上面的那个横杠不知道怎么加上去))(2)中断响应与返回:CPU采集到中断请求信号,怎样转向特定的中断服务子程序,并在执行完之后返回被中断程序继续执行。期间涉及到CPU响应中断的条件,现场保护,现场恢复。 (3)优先级控制:中断优先级的控制就形成了中断嵌套(8051允许有两级的中断嵌套,优先权顺序为INT0,T0,INT1,T1,串行口),同一个优先级的中断,还存在优先权的高低。优先级是可以编程的,而优先权是固定的。 80C51的原则是①同优先级,先响应高优先权②低优先级能被高优先级中断③正在进行的中断不能被同一级的中断请求或低优先级的中断请求中断。 80C51的中断系统涉及到的中断控制有中断请求,中断允许,中断优先级控制 (1)3个内部中断源T0,T1,串行口,2个外部中断源INT0,INT1 (2)中断控制寄存器:定时和外中断控制寄存器TCON(包括T0、T1,INT0、INT1),串行控制寄存器SCON,中断允许寄存器IE,中断优先级寄存器IP 具体的是什么,包括哪些标志位,在这里不讲了,所有书上面都会讲。 在这里我们讲下注意的事项 (1)CPU响应中断后,TF0(T0中断标志位)和TF1由硬件自动清0。 (2)CPU响应中断后,在边沿触发方式下,IE0(外部中断INT0请求标志位)和IE1由硬件自动清零;在电平触发方式下,不能自动清楚IE0和IE1。所以在中断返回前必须撤出INT0和INT1引脚的低电平,否则就会出现一次中断被CPU多次响应。 (3)串口中断中,CPU响应中断后,TI(串行口发送中断请求标志位)和RI(接收中断请求标志位)必须由软件清零。 (4)单片机复位后,TCON,SCON给位清零。 C51语言允许用户自己写中断服务子程序(中断函数) 首先来了解程序的格式: void 函数名() interrupt m [using n] {} 关键字 interrupt m [using n] 表示这是一个中断函数 m为中断源的编号,有五个中断源,取值为0,1,2,3,4,中断编号会告诉编译器中断程序的入口地址,执行该程序时,这个地址会传个程序计数器PC,于是CPU开始从这里一条一条的执行程序指令。 n为单片机工作寄存器组(又称通用寄存器组)编号,共四组,取值为0,1,2,3 中断号中断源 0 外部中断0 1 定时器0 2 外部中断1 3 定时器1中断 4 串行口中断 (在上一篇文章中讲到的ROM前43个存储单元就是他们,这5个中断源的中断入口地址为: 这40个地址用来存放中断处理程序的地址单元,每一个类中断的存储单元只有8B,显然不

中断服务程序流程图

第一讲: 第六章I/O接口原理-接口、端口、编址 回顾:微机系统的层次结构,CPU、主机、接口电路及外部设备之间的结构关联,输入/输出的一般概念。 重点和纲要:微机系统主机与外部设备之间的数据传送,包括I/O端口的寻址方式,输入/输出的传送控制方式。 讲授内容: 6. 1 输入/输出数据的传输控制方式 一、输入/输出的一般概念 1.引言 输入/输出是微机系统与外部设备进行信息交换的过程。输入/输出设备称为外部设备,与存储器相比,外部设备有其本身的特点,存储器较为标准,而外部设备则比较复杂,性能的离散性比较大,不同的外部设备,其结构方式不同,有机械式、电动式、电子式等;输入/输出的信号类型也不相同,有数字信号,也有模拟信号;有电信号,也有非电信号;输入/输出信息的速率也相差很大。因此,CPU与外部设备之间的信息交换技术比较复杂。 CPU与外设之间的信息交换,是通过它们之间接口电路中的I/O端口来进行的,由于同一个外部设备与CPU之间所要传送的信息类型不同,方向不同,作用也不一样(例如数据信息、状态信息、控制信息、输入/输出等),所以接口电路中可以设置多个端口来分别处理这些不同的信息。 2.输入/输出端口的寻址方式 微机系统采用总线结构形式,即通过一组总线来连接组成系统的各个功能部件(包括CPU、内存、I/O端口),CPU、内存、I/O端口之间的信息交换都是通过总线来进行的,如何区分不同的内存单元和I/O端口,是输入/输出寻址方式所要讨论解决的问题。

根据微机系统的不同,输入/输出的寻址方式通常有两种形式:(1).存储器对应的输入、输出寻址方式 这种方式又称为存储器统一编址寻址方式或存储器映象寻址方式。 方法:把外设的一个端口与存储器的一个单元作同等对待,每一个I/O端口都有一个确定的端口地址,CPU与I/O端口之间的信息交换,与存储单元的读写过程一样,内存单元与I/O端口的不同,只在于它们具有不同的的地址。优点: ①CPU对I/O端口的读/写操作可以使用全部存储器的读/写操作指令,也可 以用对存储器的不同寻址方式来对I/O端口中的信息,直接进行算术、逻辑运算及循环、移位等操作。 ②内存与外设地址的分配,可以用统一的分布图。 ③不需要专门的输入、输出操作指令。 缺点: ①内存与I/O端口统一编址时,在地址总线根数一定的情况下,使系统中 实际可以直 接寻址的内存单元数减少。 ②一般情况下,系统中I/O端口数远小于内存单元数,所以在用直接寻址方 式来寻址这些端口时,要表示一个端口地址,必须用与表示内存单元地址相同的字节数,使得指令代码较长,相应地读/写执行时间也较长,这对提高系统的运行速度是不利的。 Mortorola公司的M6800CPU等均采用这种寻址I/O端口的方式。 3. CPU与外设之间所传送的信息类型 CPU与I/O端口之间所交换的信息,可以有下列几种类型: ①数据信息:包括数字量、模拟量、开关量等,可以输入、也可以输出 ②状态信息:这是I/O端口送给CPU的有关本端口所对应的外设当前状态 的信息。供CPU进行分析、判断、决策。 ③控制信息:这是CPU送给I/O端口的控制命令,使相应的外部设备完成 特定的操作。 数据信息、状态信息和控制信息是不同类型的信息,它们所起的作用也不一样。但在8086/8088微机系统中,这三种不同类型的信息的输入、输出过程是相同的。为了加以区分,可以使它们具有不同的端口地址,在端口地址相同的情况下,可以规定操作的顺序,或者在输入/输出的数据中设置特征位。

计算机组成原理中断实验报告

北京建筑大学 2015/2016 学年第二学期 课程设计 课程名称计算机组成原理综合实验 设计题目微程序控制器设计与实现 系别电信学院计算机系 班级计141 学生姓名艾尼瓦尔·阿布力米提 学号 完成日期二〇一六年七月八日星期五 成绩 指导教师 (签名) 计算机组成综合实验任务书

指令执行流程图; ?5、利用上端软件,把所编写的微程序控制器内容写入实验台中控制器中。 ?6、利用单拍测试控制器与编程的要求是否一致。如果有错误重新修改后再写入控制器中。 7、编写一段测试程序,测试控制器运行是否正确。 实验目的 1.融合贯通计算机组成原理课程,加深对计算机系统各模块的工作原理及相互联系(寄存器堆、运算器、存储器、控制台、微程序控制器)。 2.理解并掌握微程序控制器的设计方法和实现原理,具备初步的独立设计能力;3.掌握较复杂微程序控制器的设计、调试等基本技能;提高综合运用所学理论知识独立分析和解决问题的能力。 实验电路 1. 微指令格式与微程序控制器电路 2.微程序控制器组成 仍然使用前面的CPU组成与机器指令执行实验的电路图,但本次实验加入中断系统。这是一个简单的中断系统模型,只支持单级中断、单个中断请求,有中断屏蔽功能,旨在说明最基本的原理。

中断屏蔽控制逻辑分别集成在2片GAL22V10(TIMER1 和TIMER2)中。其ABEL语言表达式如下: INTR1 := INTR; INTR1.CLK = CLK1; IE := CLR & INTS # CLR & IE & !INTC; IE.CLK= MF; INTQ = IE & INTR1; 其中,CLK1是TIMER1产生的时钟信号,它主要是作为W1—W4的时钟脉冲,这里作为INTR1的时钟信号,INTE的时钟信号是晶振产生的MF。INTS微指令位是INTS机器指令执行过程中从控制存储器读出的,INTC微指令位是INTC机器指令执行过程中从控制存储器读出的。INTE是中断允许标志,控制台有一个指示灯IE显示其状态,它为1时,允许中断,为0 时,禁止中断。当INTS = 1时,在下一个MF的上升沿IE变1,当INTC = 1时,在下一个MF的上升沿IE变0。CLR信号实际是控制台产生的复位信号CLR#。当CLR = 0时,在下一个CLK1的上升沿IE变0。当 CLR=1 且INTS = 0 且 INTC = 0时,IE保持不变。 INTR是外部中断源,接控制台按钮INTR。按一次INTR按钮,产生一个中断请求正脉冲INTR。INTR1是INTR经时钟CLK1同步后产生的,目的是保持INTR1与实验台的时序信号同步。INTR脉冲信号的上升沿代表有外部中断请求到达中断控制器。INTQ是中断屏蔽控制逻辑传递给CPU的中断信号,接到微程序控制器上。当收到INTR脉冲信号时,若中断允许位INTE=0,则中断被屏蔽,INTQ仍然为0;若INTE =1,则INTQ =1。

51单片机串行口中断服务程序

51单片机串行口中断服务程序 ---------------------------------------------------------------------------- //串口中断服务程序,仅需做简单调用即可完成串口输入输出的处理 //编程:聂小猛。该资料来自“51单片机世界”https://www.360docs.net/doc/2710881717.html,/~dz2000,欢迎访问。 //出入均设有缓冲区,大小可任意设置。 //可供使用的函数名: //char getbyte(void);从接收缓冲区取一个byte,如不想等待则在调用前检测inbufsign是否为1。 //getline(char idata *line, unsigned char n); 获取一行数据回车结束,已处理backspce和delete,必须定义最大输入字符数 //putinbuf(uchar c);模拟接收到一个数据 //putbyte(char c);放入一个字节到发送缓冲区 //putbytes(unsigned char *outplace,j);放一串数据到发送缓冲区,自定义长度 //putstring(unsigned char code *puts);发送一个字符串到串口 //puthex(unsigned char c);发送一个字节的hex码,分成两个字节发。 //putchar(uchar c,uchar j);发送一个字节数据的asc码表达方式,需要定义小数点的位置 //putint(uint ui,uchar j);发送一个整型数据的asc码表达方式,需要定义小数点的位置 //CR;发送一个回车换行 //************************************************************************* #include //该头文件包括了51,52,80320的特殊寄存器,用在51,52上也可 #define uchar unsigned char #define uint unsigned int #define OLEN 64 /* size of serial transmission buffer */ idata unsigned char outbuf[OLEN]; /* storage for transmission buffer */ unsigned char idata *outlast=outbuf; //最后由中断传输出去的字节位置 unsigned char idata *putlast=outbuf; //最后放入发送缓冲区的字节位置 #define ILEN 2 /* size of serial receiving buffer */ idata unsigned char inbuf[ILEN]; unsigned char idata *inlast=inbuf; //最后由中断进入接收缓冲区的字节位置 unsigned char idata *getlast=inbuf; //最后取走的字节位置 bit outbufsign; //输出缓冲区非空标志有=1 bit inbufsign; //接收缓冲区非空标志有=1 bit inbufful; //输入缓冲区满标志满=1 #define CR putstring("\r\n") //CR=回车换行 //***************************** //放入一个字节到发送缓冲区 putbyte(char c) {uchar i,j; ES=0; /*暂停串行中断,以免数据比较时出错? */ if (outlast==putlast ) { i=(0-TH1); do{i--;j=36; do {j--;}while(j!=0);

Vxworks中断服务程序解析

Vxworks中断服务程序解析 中断服务程序用来处理来自硬件的中断,是设备驱动程序的重要组成部分。为及时响应外部中断,防止中断丢失.中断服务程序应该尽量的小,只把最必要的任务放在中断服务程序里面执行。一般在系统启动,硬件设备成功初始化之后将ISR与中断向量挂上:也可以在系统启动后的任何时刻挂中断向量。调试中经常采用后一种方式。在VxWorks中有两个不同的函数可提供挂中断:intConnect和pciIntConnect。两者的区别是intConnect使用的中断向量是独占的,pcilntConnect则可在各个不同的ISR之间共享中断向量。实际上pcilntConnect 内部调用了 intConnect函数,在内部使用一个链表来管理多个不同的ISR。pcilntConnect 要求每次进入ISR都要检查硬件的寄存器,证实中断的确是由ISR服务的硬件产生。如果硬件的寄存器表明该硬件并未产生中断,则ISR立即退出,以让挂在同一个中断向量上的其它ISR有机会检查是否有中断产生。pcilntLib.c中的代码清楚的说明了这个问题:void pciInt (int irq ){ PCLlNT RTN *pRtn; for (pRm = (PCI_INT_RTN*)DLL_FIRST(&pcilntList[irq]); pRtn!=NULL; pRtn =(PCI_INT_RTN*)DLL_NEXT(&pRtn->node)) (*pRtn->routine) (pRtn->parameter); } 当PCI总线上有中断发生时,系统调用void pcilnt(int irq)函数,再由pciInt使用内部的链表来依次调用挂在该中断上的ISR。如果某个ISR不能正常退出,就会影响到其它ISR的运行。在调试时为了检查中断向量是否已经和ISR可靠的连接上,可以在命令行上或程序中直接调用pciInt来查看ISR是否被触发。在硬件确定的情况下,可以小心设计保证各个硬件使用不同的中断,这样对PCI上的设备也可直接使用intConnect来挂中断。 需要说明的是ISR挂上中断向量的过程不是简单的在向量表中设置中断向量值。VxWorks 除了设置中断向量值以外,还在与中断向量相连的ISR加上了一层薄薄的包装,包括IsR执行前保存寄存器值.设置堆栈以及IsR执行后恢复寄存器和堆栈。在中断频繁的场合,系统中中断堆栈有可能被耗尽而溢出。为了避免上述情况发生,必须修改系统的中断堆栈大小,即在config.h中加入以下代码: #define INCLUDE_KERNEL #define ISR_STACK_SIZE 0xl000 //表示系统中中断堆栈的大小为4k 由于中断处理程序的特殊性,中断处理程序中不能使用可能导致阻塞的函数,如printf,semTake等,具体不可使用的函数列表可以在<>中查到。有时候为了调试方便,希望在ISR中打印一些信息,系统提供了一个与prinf等价的函数sysLog,该函数可接受 7个参数。它是非阻塞的。比较而言,prinf函数要在打印任务完成后才返回,sysLog只把打印任务放到系统的打印队列中就返回。在ISR中虽然不可以使用semTake,但可以使用semGive(互斥类型的除外)。一般使用semTake和semGive在ISR和普通程序间通信:当一个中断产生,ISR 完成必要的任务后,调用semGive通知另外一个使用semTake等待ISR信号的任务,该任务收到semGive释放的信号后,继续完成ISR中不便处理的任务。

单片机外部中断详解及程序

单片机外部中断详解及程序 单片机在自主运行的时候一般是在执行一个死循环程序,在没有外界干扰(输入信号)的时候它基本处于一个封闭状态。比如一个电子时钟,它会按时、分、秒的规律来自主运行并通过输出设备(如液晶显示屏)把时间显示出来。在不需要对它进行调校的时候它不需要外部干预,自主封闭地运行。如果这个时钟足够准确而又不掉电的话,它可能一直处于这种封闭运行状态。但事情往往不会如此简单,在时钟刚刚上电、或时钟需要重新校准、甚至时钟被带到了不同的时区的时候,就需要重新调校时钟,这时就要求时钟就必须具有调校功能。因此单片机系统往往又不会是一个单纯的封闭系统,它有些时候恰恰需要外部的干预,这也就是外部中断产生的根本原由。 实际上在第二个示例演示中,就已经举过有按键输入的例子了,只不过当时使用的方法并不是外部中断,而是用程序查询的方式。下面就用外部中断的方法来改写一下第二个示例中,通过按键来更改闪烁速度的例子(第二个例子)。电路结构和接线不变,仅把程序改为下面的形式。 #include ;

unsigned int t=500; //定义一个全局变量t,并设定初始值为500次 //===========延时子函数,在8MHz晶振时约 1ms============= void delay_ms(unsigned int k) { unsigned int i,j; for(i=0;i

定时中断T0服务程序参考框图

软件程序: ORG 0000H LJMP MAIN ORG 000BH LJMP PIT0 ORG 001BH LJMP PIT1 ORG 0100H MAIN: MOV SP,#FH ;设堆栈指针 MOV SCON,#00H ;设置串行口为方式0 MOV TMOD,#11H ;T0和T1初始化为方式1 MOV TH0, #3CH ;置时间常数,T0和T1定时100ms MOV TL0, #OB0H MOV TH1, #3CH MOV TL1, #0B0H MOV 50H, #96H ;T0中断次数计数单元 MOV 51H,#14H ;T1中断次数计数单元 MOV R1, #00H MOV R2, #00H MOV R0, #40H ;显示缓冲单元起始地址 DISP0:MOV @R0, #00H ;显示缓冲单元清零 INC R0 CJNE R0, #4CH,DISP0 MOV 44H,#01H ;设置通道号的显示缓冲单元 MOV 48H,#02H MOV R7,#40H ;置当前通道显示缓冲单元首址 MOV 53H,#40H SETB ETO ;开中断 SETB ET1 SETB EA SETB TR0 ;启动定时器 SETB TR1 LP: MOV R7, 53H ;调显示子程序 ACALL DISP AJMP JP 定时器TO中断服务程序 PIT0: MOV TH0, #3CH ;重置时间常数 MOV TL0, #OBOH DJNZ 50H,#96H PUSH ACC PUSH 03H ACALL WDXJ ;调温度巡检子程序 POP 03H POP ACC

DH0: RET1 定时器T1中断服务程序 PIT1: MOV TH1,#3CH ;重置时间常数 MOV TL0, #OBOH DJNZ 51H,DH1 ;计数20次即定时2S MOV 51H,#14H INC R2 CJNE R2,#03H,CNL0 ;根据R2中的内容确定显示缓冲区首址 MOV R2,#00H CNL0: CJNE R2,#00H,CNL1 MOV 53H,#40H SJMP DH1 CNL1: CJNE R2,#01H,CNL2 MOV 53H,#40H SJMP DH1 CNL2: MOV 53H,#48H DH1: RETI 显示子程序 DISP: CLR P3.7 ;输出锁存 MOV R3,#01H ;置显示字位码 MOV DPTR,#TAB DISP1:MOV A,R3 MOV SBUF,A ;字位码送串行口 JNB T1,$ ;等待串行转送结束 CLR T1 ;清串行中断标志 MOV A,R7 MOV R0,A MOV A,@RO ;取代显示的数据 MOVC A,@R0 ;查表求字段码 MOV SBUF, A ;字段码送串行口, JNB T1,$ ;等待串行中断标志 SETB P3.7 ;允许输出显示 ACALL DEL ;调延时子程序 MOV A,R3 JB ACC.3,DISP2 ;4位显示完否 RL A MOV R3,A INC R7 CLR P3.7 ;输出锁存 AJNP DISP1 DISP2:RET TAB : DB 3FH,06H,5BH,4FH,66H DB 6DH,7DH,07H,7FH,6FH DEL: PUSH 07H ;延时子程序

第5章 中断服务程序设计

第5章中断服务程序设计 中断服务程序(ISR)是嵌入式应用系统获取各种事件的基本手段,而“事件”是实时性问题的讨论基础和时间计算的起点。ISR的设计质量直接影响到系统的实时性指标和操作系统的工作效率。 只要没有关中断,中断服务程序可以中断任何任务的运行,可将中断服务程序可成比最高优先级(0级)还高的“任务”。 5.1中断优先级安排原则 中断源是系统及时获取异步事件的主要手段,其优先级安排原则如下: ●紧迫性:触发中断的事件允许耽误的时间越短,设定的中断优先级就越高。 ●关键性:触发中断的事件越关键(重要),设定的中断优先级就越高。 ●频繁性:触发中断的事件发生越频繁,设定的中断优先级就越高。 ●快捷性:ISR处理越快捷(耗时短),设定的中断优先级就越高。 中断服务程的功能应尽量简单,只要将获取的异步事件通信给关联任务,后续处理由关联任务完成。 5.2不受操作系统管理的中断服务程序 正常情况下,ISR应受操作系统的管理,因很多任务是靠ISR触发的。 但在两种情况下ISR不受操作系统管理:①没有必要;②操作系统没有对该ISR进行管理。 实时操作系统uC/OS-Ⅱ移植到ARM7体系的CPU上时,没有对FIQ进行处理,即FIQ 是不受操作系统管理的。 选用FIQ来响应实时性要求最高的高速采样操作是一个有效措施,保护现场的工作量很小(FIQ专有的8个寄存器不需要保护)。 在工程模板的系统启动文件Startup.s中,已经把汇编代码部分处理好,用户只需要用C 语言编写快速中断服务函数FIQ_Exception()即可,不需考虑保护现场和恢复现场的问题。 程序:Startup.s中队FIQ的处理 Reset ;异常向量表 LDR PC,ResetAddr ;跳转到复位入口地址 LDR PC,UndefinedAddr LDR PC,SWI_Addr ;跳转到软件中断入口地址 LDR PC,PrefetchAddr LDR PC,DataAbortAddr DCD 0xb9205f80 LDR PC,[PC,#-0xff0] ;跳转到向量中断入口地址(向量中断控制器) LDR PC,FIQ_Addr ;跳转到快速中断入口地址 ResetAddr DCD ResetInit UndefinedAddr DCD Undefined SWI_Addr DCD SoftwareInterrupt PrefetchAddr DCD PrefetchAbort Nouse DCD 0

定时器中断c语言程序

定时器中断c语言解析interrupt x using y interrupt 表示中断优先级,using表示所用工作寄存器组。 interrupt x using y 跟在interrupt 后面的xx 值得是中断号,就是说这个函数对应第几个中断端口,一般在51中 0 外部中断0 1 定时器0 2 外部中断1 3 定时器1 4 串行中断 其它的根据相应得单片机有自己的含义,实际上c在编译的时候就是把你这个函数的入口地址放到这个对应中断的跳转地址 using y 这个y是说这个中断函数使用的那个寄存器组就是51里面一般有4个r0 -- r7寄存器,如果你的终端函数和别的程序用的不是同一个寄存器组则进入中断的时候就不会将寄存器组压入堆栈返回时也不会弹出来节省代码和时间 外部中断INT0 void intsvr0(void) interrupt 0 using 1 定时/计数器T0 void timer0(void) interrupt 1 using 1 外部中断INT1 void intsvr1(void) interrupt 2 using 1 定时/计数器T1 void timer1(void) interrupt 3 using 1 串口中断 void serial0(void) interrupt4 using 1 单片机的C语言 HNBCC培训 电话:137******** 一,中断的概念 中断:当计算机执行正常程序时,系统中出现某些急需处理的异常情况和特殊请求. 中断的执行:当CPU正在执行某一程序时,若有中断响应,则CPU转而执行中断服务程序,当中断服务程序执行完毕后,CPU自动返回原来的程序继续执行. 中断服务程序的语句写法与函数的写法完全相同,所以,中断服务程序也是函数,只在函数头部有不同(后续). 中断服务程序的执行与函数的执行不同:函数的执行是有固定位置的,是通过函数的调用来完成的;而中断服务程序的执行是不固定位置的,只要有中断响应,在一定条件下都会去响应中断,即执行中断服务程序. 二,中断源 中断源:任何引起计算机中断的事件,一般一台机器允许有许多个中断源. 8051系列单片机至少有5个可能的中断(8052有6个,其它系列成员最多可达15个).下面以5个中断源为例.

中断处理程序设计

课程实验报告 课程名称:汇编语言程序设计 实验名称:实验四 实验时间: 2015-6-16,14:30-17:30 实验地点:南一楼804室 指导教师:李专 专业班级:学号: 姓名: 同组学生: 报告日期: 成绩: 计算机科学与技术学院

一、原创性声明 本人郑重声明:本报告的内容由本人独立完成,有关观点、方法、数据和文献等的引用已经在文中指出。除文中已经注明引用的内容外,本报告不包含任何其他个人或集体已经公开发表的作品或成果,不存在剽窃、抄袭行为。 特此声明! 学生签字: 日期: 二、评语与成绩评定 1.指导老师评语 2.实验成绩评定 实验完成质量得分(70分)(实验步骤清晰详细深入,实验记录真实完整等)报告撰写质量得分(30分) (报告规范、完整、通顺、 详实等) 总成绩(100分) 指导教师签字: 日期:

目录 1.实验目的 (1) 2.实验内容 (1) 2.1任务一 (1) 2.2任务二 (1) 2.3任务三 (2) 2.4任务四 (2) 3实验过程 (2) 3.1任务一 (2) 3.1.1实验要求 (2) 3.1.2实验结果 (2) 3.2任务二 (4) 3.2.1设计思想及存储分配 (4) 3.2.2程序框图 (5) 3.2.3源程序代码 (6) 3.2.4实验结果 (7) 3.3任务三 (7) 3.3.1源程序代码 (7) 3.3.2实验结果 (11) 3.4任务四 (12) 3.4.1源程序代码 (12) 3.4.2实验结果 (16) 4.实验体会 (16)

1.实验目的 (1) 掌握中断矢量表的概念 (2)掌握中断处理程序设计的技巧 (3)掌握简化段定义、函数调用伪指令 (4)了解Win32程序的编程方法及编译、链接方法 2.实验内容 2.1任务一 用三种方式获取中断类型码10H对应的中断处理程序的入口地址。 要求:(1) 直接运行调试工具(TD.EXE),观察中断矢量表中的信息; (2) 编写程序,用 DOS功能调用方式获取,观察相应的出口参数与(1) 中看到的结果是否相同(使用TD观看即可) (3) 编写程序,直接读取相应内存单元,观察读到的数据与(1)看到的结 果是否相同(使用TD观看即可)。 2.2任务二 编写一个中断服务程序并驻留内存,要求在程序返回DOS操作系统后,键盘的按键A变成了按键B、按键B变成了按键A。 提示:(1) 对于任何DOS程序,不管其采用什么方法获取按键,最后都是通过执行16H号软中断的0号和10H号功能调用来实现的。所以,你只需接 管16H号软中断的0号和10号功能调用并进行相应的处理; (2) 获得一个按键扫描码的方法:在TD中执行16H中断的0号和10H号 功能调用,按相应的键,观察AH中的内容。 资料:16H中断的0号和10H号功能 功能描述:从键盘读入字符 入口参数:AH = 00H——读键盘 = 10H——读扩展键盘 出口参数:AH =键盘的扫描码 AL =字符的ASCII码

子程序及中断实验

成绩:计算机原理实验室实验报告 课程:汇编语言与微机原理 姓名: 专业:网络工程 学号: 日期:2016年12月9日 太原工业学院 计算机工程系

实验五:子程序及中断实验 实验环境PC机+Win 2007+emu8086+proteus仿真器实验日期2016.12.9 一.实验内容 实验目的: 实现子程序和中断服务子程序的设计 编写主程序实现子程序和中断服务子程序的调用 实验内容: 编写子程序设置40H中断为自定义中断服务子程序 编写中断服务子程序实现AX=AX+BX或功能自拟。 编写主程序调用子程序和中断 二.理论分析或算法分析 1.中断向量表 表的地址位于内存的00000H~003FFH,大小为1KB,用于存放256个中断的中断服务程序的入口地址;每个入口占用4 Bytes,低字为段内偏移,高字为段基址。中断向量表如下图所示: 内部中断服务程序 编写内部中断服务程序与编写子程序类似,利用过程定义伪指令PROC/ENDP 结构实现,最后用IRET指令中断返回;主程序利用INT n指令调用中断服务程序,调用前需要设置中断向量。 中断服务程序的装载方法 将已经编写好的中断服务程序的入口地址写入中断向量表中。注意:向量表所在的段地址=0;若中断类型号为n,则新偏移地址写入4×n处,新段地址写入4×n+2处即可,直接写入法或利用系统功能调用都可实现地址写入CPU执行INT N指令的过程 CPU取出INT N指令,经指令译码获知这是一条中断指令。N就是该软件中断的中断向量码。执行中断指令,首先自动将PSW、CS和IP压入堆栈保护起来,并关中断。然后,将中断向量码N乘4得到中断向量表偏移地址(段地址为0000H),从该地址开始的顺序两个单元的内容送IP,下两个单元的内容送CS。即找到服务程序入口地址,进而转向中断服务程序。服务结束后通过IRET返回断点继续执行下面的指令。

uCOSii中断处理过程详解

一. UCOSII的中断过程简介 系统接收到中断请求后,如果CPU处于开中断状态,系统就会中止正在运行的当前任务,而按中断向量的指向去运行中断服务子程序,当中断服务子程序运行完成后,系统会根据具体情况返回到被中止的任务继续运行,或转向另一个中断优先级别更高的就绪任务。 由于UCOS II是可剥夺型的内核,所以中断服务程序结束后,系统会根据实际情况进行一次任务调度,如果有优先级更高的任务,就去执行优先级更高的任务,而不一定要返回被中断了的任务。 二.UCOSII的中断过程的示意图 三.具体中断过程 1.中断到来,如果被CPU识别,CPU将查中断向量表,根据中断向量表,获得中断服务子程序的入口地址。 2.将CPU寄存器的内容压入当前任务的任务堆栈中(依处理器的而定,也可能压入被压入被中断了的任务堆栈中。

3.通知操作系统将进入中断服务子程序。即:调用OSIntEnter()或OSIntNesting直接 加1。 4.If(OSIntNesting==1){OSTCBCur->OSTCBStrPtr=SP;} //如果是第一层中断,则将堆栈指针保存到被中断任务的任务控制块中 5.清中断源,否则在开中断后,这类中断将反复的打入,导致系统崩贵 6.执行用户ISR 7.中断服务完成后,调用OSIntExit().如果没有高优先级的任务被中断服务子程序激活而进入就绪态,那么就执行被中断了的任务,且只占用很短的时间. 8.恢复所有CPU寄存器的值. 9.执行中断返回指令.

四.相关代码 与编译器相关的数据类型: typedef unsigned char BOOLEAN; typedef unsigned char INT8U; typedef unsigned int OS_STK; //堆栈入口宽度为16 位(一) void OSIntEnter (void)的理解 uCOS_II.H中定义:

单片机流程图

单片机总流程图

主函数程序 #include #include #define uchar unsigned char #define uint unsigned int #define OSC_FREQ 12000000 #define __10ms (65536 - OSC_FREQ/(12000000/9970)) #define COM8255 XBYTE[0XFFF3] #define PA8255 XBYTE[0XFFF0] #define PB8255 XBYTE[0XFFF1] #define PC8255 XBYTE[0XFFF2] uchar code tab[]={0xFC,0x60,0xDA,0xF2,0x66,0xB6,0xBE,0xE0,0xFE,0xF6}; uchar code dis_HELLO[]={0x89,0x86,0xc7,0xc7}; uchar code dis_op51[]={0xc0,0x8c,0x92,0xf9}; uchar code dis_code[]={0xcf,0xa4,0xcf,0xa4}; uchar ucCnt_10ms=99; uchar i=0; uchar J=0; uchar n=0; uchar led1; uchar led2; sbit P2_4=P2^4; sbit P3_7=P3^7; sbit P1_0=P1^0; sbit P1_1=P1^1; sbit P1_2=P1^2; void Disp_op51 (); void Disp_HELLO(); void Set_Init_Xint(); void Set_Init_Timer(); void Disp_t(); void DelayX1ms(uint count); void Disp_8255(); void main() { for(;;) { Set_Init_Xint(); Set_Init_Timer(); Disp_8255(); //ucCnt_10ms =99; //ucLed1 = 6;

相关文档
最新文档