(最新版)基于LabVIEW的温度控制系统毕业设计论文

(最新版)基于LabVIEW的温度控制系统毕业设计论文
(最新版)基于LabVIEW的温度控制系统毕业设计论文

引言

随着微电子技术、计算机技术、软件技术、网络技术和现代测量技术的迅速发展,一种新型的先进仪器——虚拟仪器成为当前系统研究的热点。虚拟仪器的出现开辟了仪器技术的新纪元,它是多门技术与计算机技术结合的产物,其基本思想逐步代替仪器完成某些功能,如数据的采集、分析、显示和存储等,最终达到取代传统电子仪器的目的。

虚拟仪器通过软件开发平台将计算机硬件资源与仪器硬件有机地融为一体,把计算机强大的数据处理能力和仪器硬件的测量、控制能力结合在一起,通过软件实现对数据的显示、存储及分析处理,并通过交互式图形界面实现系统控制和显示测量数据,并使用框图模块指定各种功能。采用集成电路温度传感器和虚拟仪器方便地构建一个测温系统,且外围电路简单,易于实现,便于系统硬件维护、功能扩展和软件升级。

本设计利用LabVIEW作为语言开发平台,设计了一个温度控制系统,并利用计算机串口与下位机串行通讯,能实现温度的实时测量与控制。

1 绪论

现代计算机技术和信息技术的迅猛发展,冲击着国民经济的各个领域,也引起了测量仪器和测试技术的巨大变革。人们曾为测量仪器从模拟化、数字化到智能化的进步而欣喜,也为自动测试技术的日新月异的发展所鼓舞,当今虚拟仪器技术的出现又使得测量仪器进步入了高科技的殿堂。

与传统的仪器不同,虚拟仪器(virtual instrument)是基于计算机和标准总线技术的模块化系统,通常它是由控制模块、仪器模块和软件组成,在虚拟仪器中软件是至关重要的,仪器的功能都要通过它来实现,因此软件是虚拟仪器的核心,―软件就是仪器‖,从本质上反映了虚拟仪器的特征。

从构成方式上讲,虚拟仪器可分为四大类:GPIB体系结构、PC-DAQ体系结构、VXI体系结构和PXI体系结构。

GPIB体系结构是通过GPIB总线将具有GPIB接口的计算机和仪器集成的测试系统。其优点是用户可以充分利用自己的计算机和仪器资源,且组建方便灵活、操作简单,曾是国际流行的自动测试系统。当今,在VXI为主的体系结构中,有时也采用GPIB 作为辅助,这样可以充分利用本单位仪器资源,或称补VXI仪器模块的不足。

VXI体系结构综合了。pib和vem总线的优点,它集成的系统硬件集成度高、数据传输率快、便携性好,是当今倍受业界关注的体系结构。

PXI体系结构是以PCI总线为基础的体系结构,由于其总线吞吐率高、硬件的价格较低被业内人士认为是符合国情的一种体系结构。

虚拟仪器应用程序的开发环境主要有两种=一种是基于传统的文本语言的软件开发环境,常用的有lab windowscvi、.visual basidc=vc++等:一种是基于图形化语言的软件开发环境,常用的有LabVIEW和hp vee。其中图形化软件开发系统是用工程人员所熟悉的术语和图形化符号代替常规的文本语言编程,界面友好,操作简便,可大大缩短系统开发周期,深受专业人员的青睐。

1.1 课题背景

随着世界经济的发展,工业的迅速扩张,政府和企业家们花在设备上的投入越来越多,这笔巨大的开销,极大地限制了企业的资金,从而制约着企业的发展。而虚拟仪器技术凭借着其开发容易、开发成本低、开发周期短等明显的优点,渐渐地在工业测控领

域崭露头角。

它的出现使企业家们看到了降低成本的希望。本设计将就虚拟仪器怎样用在工业测控中进行一番简单的探讨。

1.2 虚拟仪器简介

随着微电子技术、计算机技术、软件技术、网络技术和现代测量技术的迅速发展,一种新型的先进仪器——虚拟仪器成为当前系统研究的热点。

虚拟仪器通过软件开发平台将计算机硬件资源与仪器硬件有机地融为一体,把计算机强大的数据处理能力和仪器硬件的测量、控制能力结合在一起,通过软件实现对数据的显示、存储及分析处理。

在对大规模、集成化、智能化及数字电子仪器需求愈加迫切的形势下,计算机技术、仪器技术和通信技术相结合,产生了具有里程碑意义的新一代仪器——虚拟仪器。虚拟仪器的出现开辟了仪器技术的新纪元,它是多门技术与计算机技术结合的产物,其基本思想逐步代替仪器完成某些功能,如数据的采集、分析、显示和存储等,最终达到取代传统电子仪器的目的。

虚拟仪器是计算机硬件资源、仪器硬件、数据分析处理、软件、通信软件极图形用户界面的又效结合,具有传统仪器所具备的信号采集、信号处理分析、信号输出等功能。其基本构成包括计算机、虚拟仪器软件、硬件接口和测试仪器等。

虚拟仪器有以下优点:

(1)利用了计算机丰富的软件资源。实现了部分仪器硬件的软件化,节省了物质资源,增加了系统的灵活性。通过软件技术和相应数值算法,实时直接地对测试数据进行各种分析与处理。图形用户界面(GUI)技术的应用,真正的做到界面友好、人机交互。

(2)基于计算机网络技术和接口技术。虚拟仪器具有方便、灵活的互联能力(Connectivity),广泛支持诸如CAN、Field Bus、PROFIBUS等各种工业总线标准。因此,利用虚拟仪器技术可方便地构建自动测试系统,实现测量、控制过程的网络化。

(3)基于计算机的开放式标准体系结构。虚拟仪器的硬、软件具有开放性、模块化、可重复使用及互换性等特点,用户可根据自己上的需要,选用不同厂家的标准接口产品,使仪器的开发更为高效,缩短仪器组建、开发时间。

(4)具有很强的灵活性。虚拟仪器的功能由用户自己定义,这意味着可自由的组合计算机平台、硬件、软件以及各种实现应用系统所需要的附件。这种灵活性在由供应商定义、功能固定、独立的传统仪器是达不到的。从传统仪器的转变,为用户带来了更多

的实际利益。

上述虚拟仪器的特点不仅推进了仪器为基础的界面系统改造,同时也影响了以虚拟仪器为主的图形构造方法的进化。过去独立分散、互不相干的许多领域,虚拟仪器通过软件开发平台将计算机硬件资源与仪器硬件有机地融为一体,把计算机强大的数据处理能力和仪器硬件的测量、控制能力结合在一起,通过软件实现对数据的显示、存储及分析处理。

虚拟仪器的出现是仪器发展史上的一场革命,代表着仪器发展的最新方向和潮流,是信息技术的一个重要领域,必将对科学技术的发展和工业生产产生不可估量的影响。

1.2.1虚拟仪器的概念、发展

传统仪器一般是一台独立的装置,从外观上看,它是一般由操作面板、信号输入端口、检测结果输出这几个部分组成。操作面板上一般有一些开关、按钮、旋钮等。检测结果的输出方式有数字显示、指针式表头显示、图形显示及打印输出等。

从功能方面分析,传统仪器可分为信号的采集与控制、信号的分析与处理、结果的表达与输出这几个部分。传统仪器的功能都是通过硬件电路或固化软件实现的,而且由仪器生产厂家给定,其功能和规模一般都是固定的,用户无法随意改变其结构和功能。传统仪器大都是一个封闭的系统,与其它设备的连接受到限制。

另外,传统仪器价格昂贵,技术更新慢,开发费用高。随着计算机技术、微电子技术和大规模集成电路技术的发展,出现了数字化仪器和智能仪器。尽管如此,传统仪器还是没有摆脱独立使用和受同操作的模式,在较为复杂的应用场合或测试参加较多的情况下,使用起来就不太方便。

这三方面的原因,使传统仪器很难事业信息时代对仪器的需求。那么如何解决这个问题呢?可以设想,在必要的数据采集硬件和通用计算机支持下,通过软件来实现仪器的部分或全部功能,这就是设计虚拟仪器的核心思想。

所谓虚拟仪器,就是在通用的计算机平台上定义和设计仪器的功能,用户操作计算机的同时就是在使用一台专门的电子仪器。虚拟仪器以计算机为核心,充分利用计算机强大的图形界面和数据处理能力,提供对测量数据的分析和显示功能。虚拟仪器技术给用户一个充分发挥自己的才能、想象力的空间。用户可以随心所欲地根据自己的需求,设计自己的仪器系统,满足多种多样的用户需求。表 2.1 为传统仪器与虚拟仪器的比较一览表。

虚拟仪器作为一种新型的仪器种类,具有以下特点:

(1)强调―软件即仪器‖的概念,软件充当了仪器中相当重要的且以往由硬件充当的角色。

(2)打破了传统仪器小而全的现状,可以将信号的分析、显示、存储、打印和其它管理利用计算机来完成。

(3)便于工作和管理,虚拟仪器技术是仪器的设计和管理统一到虚拟仪器的标准,使得仪器管理规范,使用简便,维护费用低。

(4)仪器自定义,科研和工程人员自己设计自己的仪器。由于虚拟仪器的开放性,用户可以方便地修改测试方案,构成各种专用仪器。仪器的开发周期短,升级容易,节省了硬件开发和生产的费用。

(5)便于组成自动测试系统。虚拟仪器充分利用计算机技术,可以对测试方案进行编程;而且数据的远程传输、数据在软件之间的交换等,都使系统组建变得灵活;计算机的存储、打印和网络化等功能也进一步增进了虚拟仪器的功能。

电子仪器发展至今,大体可分为四代:模拟仪器、数字仪器、智能仪器和虚拟仪器。第一代模拟仪器

第一代模拟仪器如指针式万用表、晶体管电压表等,它们的基本结构是电磁机械式的,借助指针来显示最终结果。

第二代数字化仪器

数字化仪器目前相当普及,如数字电压表等。这类仪器将模拟信号的测量转化为数字信号的测量,并以数字方式输出最终结果,实用于快速响应和较高准确度的测量。

第三代智能要求

智能仪器内置微处理器,既能进行自动测试,又具有一定的数据处理,可取代部分脑力劳动,习惯上称为智能仪器。它的功能块全部都是以硬件的形式存在,无论是开发还是应用,都缺乏灵活性。

第四代虚拟仪器

虚拟仪器是现代计算机教技术和测量技术相结合的产物,是传统仪器观念的一次巨大变革,是将来虚拟产业发展的一个重要方向。

从1988年开始,陆续有虚拟仪器产品面市。此后,虚拟仪器产品的陆续飞速增加。

1.2.2虚拟仪器的工作原理

虚拟仪器以透明的方式把计算与传统仪器一样。虚拟仪器同样划分为数据采集与控制、数据分析与处理、结果表达三大功机资源和仪器硬件的测试能力结合起来,实现了

仪器功能的运作。虚拟仪器的功能模块如图所示。

虚拟仪器用各种图标或控件来虚拟传统仪器面板上的各种器件。由各种开关图标实现仪器电源的通断;由各种按钮图标来设置被测信号的―放大倍数‖、―通道‖等参数;由各种显示控件以数值或波形的方式显示测量或分析结果;由计算机的鼠标和键盘操作来模拟传统仪器面板上的实际操作;以对图形化软件流程图的编程来实现各种信号测量和数据分析功能。

图1.1 虚拟仪器的功能模块

1.2.3虚拟仪器与传统仪器的比较

传统仪器和虚拟仪器的比较

1.3 图形化编程语言LabVIEW的简介

LabVIEW(laboratory virtual instrument engineering workbench)是一种图形化的编程语言和开发环境,它广泛地被工业界、学术界和研究实验室所接收,被公认为是标准的数据采集和仪器控制软件。LabVIEW不仅提供了与遵从GPIB,VXI,RS-232和RS-485协议的硬件及数据采集卡通信的全部功能,还布置了支持TCPIP,ActiveX等软件标准的库函数,而且图形化的编程界面使编程过程变得生动有趣。LabVIEW是一个功能强大且灵活的软件,利用他可以方便的建立自己的虚拟仪器。

以LabVIEW为代表的图形化编程语言,又称为―G‖语言。使用这种语编程时,基本上不需要编写程序代码,而是―绘制‖程序流程图。LabVIEW尽可能利用工程技术人员所熟悉的术语、图标和概念,因而它是一种面向最终用户的开发工具,可以增强工程人员构建自己的科学和工程系统的能力,提供了实现仪器编程和数据采集系统的便捷途径。使用它进行原理研究、设计、测试并实现仪器系统时,可以大大提高工作效率。

利用LabVIEW,可产生独立运行的可执行文件。LabVIEW是真正的32位编译器。像其他软件一样,LabVIEW提供了Windows,UNIX,Linux和Macintosh等多种版本。

1.4 论文各章节的安排

在本论文中,作者将先在第二章中介绍一下本设计中所使用的一些基本原理和器件的一些知识,然后提出自己的软硬件设计方案的思路。然后在第三章介绍LabVIEW的一些编程的基本知识。在第四章中,将讨论LabVIEW的仪器控制和驱动。在第五章和第六章中,将分别就自己的硬软件设计方案提出论述。最后将谈一下自己的系统制作和调试过程中的一些问题和解决方法。

1.5 本论文任务

(1)设计一个由微控制器控制的温度采集装置,使其能够准确地采集环境温度。

(2)通过某种通信协议,将采集到的温度送往上位机进行显示和处理。

(3)用LabVIEW编写上位机的程序,使其能够接受下位机发送来的温度信息数据,并作出处理想,同时显示在PC屏幕上。

(4)使用LabVIEW编写PID控制程序,能实现对温度的比较准确的控制。

(5)使用LabVIEW编写模糊控制程序,能实现对温度的控制。

图1.2 上位机界面

图1.2 硬件实物图

2 温度控制设计方案

本设计采用LabVIEW和A VR单片机组成系统的主要模块。由下位机把单线式温度传感器DS18B20测量到的温度,通过串口发送到的由LabVIEW构建的上位机去。然后在上位机中进行处理和显示,通过PID或者模糊算法,计算出要输出的控制量,再由串口将数据发送到下位机,交由下位机处理。下位机根据一定的关系,输出一定的信号来控制固态继电器的通断。固态继电器的交流端就会因为通断而控制水泥电阻工作与否,以此达到控制温度的目的。

2.1 硬件及软件的选择

2.1.1硬件的选择

系统的硬件设计主要分为四个部分:主控部分、DS18B20测温部分、通信部分、程序下载部分。

在下位机控制器上,由于需要采用PWM技术对加热装置进行控制,而传统的51系列单片由于其内部并不具有专门的PWM模块,当从上位机发送控制数据时,就必须采取中断才能执行这个过程。由于A VR系列单片机内部均有现成的PWM模块,可以在进行采集温度的同时,进行PWM控制。所以,本设计选择Atmel公司生产的ATMega16八位高性能微处理器。A VR单片机是1997年由ATMEL公司研发出的增强型内置Flash的RISC(Reduced Instruction Set CPU) 精简指令集高速8位单片机。A VR 的单片机可以广泛应用于计算机外部设备、工业实时控制、仪器仪表、通讯设备、家用电器等各个领域,它与51单片机、PIC单片机相比具有一系列的优点:

(1)在相同的系统时钟下A VR运行速度最快;

(2) 芯片内部的Flsah、EEPROM、SRAM容量较大;

(3)所有型号的Flash、EEPROM都可以反复烧写、全部支持在线编程烧写(ISP);

(4)多种频率的内部RC振荡器、上电自动复位、看门狗、启动延时等功能,零外围电路也可以工作;

(5)每个IO口都可以以推换驱动的方式输出高、低电平,驱动能力强;

(6)内部资源丰富,一般都集成AD、DA模数器、PWM、SPI、USART、TWI、I2C 通信口、丰富的中断源等。

目前支持A VR单片机编译器的语言主要有汇编语言、C语言、BASIC语言等。其中C编译器主要有CodeVisionA VR、A VRGCC、IAR、ICCA VR等,C语言编译器由于它具有功能强大、运用灵活、代码小、运行速度快等先天性的优点,使得它在专业程序设计上具有不可代替的地位。

测温部分,本设计采用美国DALLAS公司生产的一线式温度传感器DS18B20。数字式温度传感器DS18B20是美国DALLAS公司推出的一种可组网数字式温度传感器,采用1-wire总线接口,测温范围为-55℃—+125℃,精度可达0.067 5℃,最大转换时间为200ms 。DS18B20能够直接读取被测物体的温度值,体积小,电压适用范围宽(3V~5V),用户还可以通过编程实现9--12位的温度读数,即具有可调的温度分辨率。DS18B20与单片机的接口简单,只需将信号线与单片机的一位双向端口相连即可。系

统中DS18B20采用外接电源方式,VDD端用3V~5.5V电源供电。由于其测温分辨率较高(12位),因此对时序及电特性参数要求较高,必须严格按照时序要求操作。其数据的读写是由主机读写特定时间片来完成的,包括初始化、读时间片和写时间片。

DS18B20的主要特征:

全数字温度转换及输出。

先进的单总线数据通信。

最高12位分辨率,精度可达土0.5摄氏度。

12位分辨率时的最大工作周期为750毫秒。

可选择寄生工作方式。

检测温度范围为–55°C ~+125°C (–67°F ~+257°F)

内置EEPROM,限温报警功能。

DS18B20引脚功能:

·GND 电压地·DQ 单数据总线·VDD 电源电压图2.1 DS18B20 功率控制部分,本设计采用无锡天豪公司生产的GTJ24-2A固态继电器。GTJ24-2A 系列产品用于可编程序控制,各种自动化控制装置及计算机输出控制接口等;用于各种需双路控制的场合。其电气参数为:输入控制电压3-14VDC(自动限流),关断电压1.2VDC,开启电流5mA,控制电流<25mA,工作电压24-240V AC。该固态继电器为过零型继电器,在电流过零时导通,过零时关断。相对于随机型的固态继电器,使用过零型的固态继电器可以使本设计比较方便地控制固态继电器中双向晶闸管的导通周期数,从而控制加热元件的工作时间。

通信部分,由于温度变化并不是一个很快的过程,所以并不需要很高的数据采集和发送速度。而且,计算机的各种通信方式中,尤以串口通信方式最为简单,因此本设计采用传统的RS-232串口通信。由于单片机的工作电平TTL电平,它要与计算机上的串口进行通信,就必须转换成相应的计算机串口电平,也就是RS-232电平。在本设计中采用美国MAXIM公司生产的MAX232进行电平转换。

2.1.2软件的选择

软件选择包括下位机程序的编译软件和上位机的编程软件。

下位机的编译软件,通常有ICC A VR、WinA VR(也就是通常所说的GCC)、IAR A VR、CodeVision A VR、ATman A VR,在这里使用ICC A VR和A VR Studio的组合。这是因为市面上(大陆)的教科书使用ICC A VR作为例程的较多,集成代码生成向导,

虽然它的各方面性能均不是特别突出,但使用较为方便;而A VR Studio集软硬件仿真、调试、下载编程于一体,有效弥补了ICC A VR仿真能力的不足,同时还可以有效地对程序进行调试。

上位机方面,本设计采用目前NI最新的LabVIEW 8.6进行编程。结合上NI为工业控制而开发的PID和模糊逻辑控制包,可以轻松地实现PID或模糊控制。

2.2 硬件及软件设计方案

2.2.1硬件设计方案

下图给出系统硬件组成框图,由计算机、单片机、测温电路及温度控制电路组成。该系统集计算机、强大的图形化编程软件和模块化硬件于一体,建立灵活且以计算机为基础的测量及控制方案,构建出满足需要的系统。利用传感器获取温度信号,再由单片机组成的小系统对温度信号进行采集、处理和转换,然后通过RS-232串口将数据送给计算机.并通过计算机运行的LabVIEW程序来分析处理输入数据.最终由计算机显示结果。同时,通过计算机串口采样输入信号,利用LabVIEW中的PID控制算法,求出系统输出信号的大小,再由串口将输出信号传输至外部温度控制电路,以实现温度控制。

图2.2 系统组成框图

2.2.2软件设计方案

(1)PID控制

在自动控制中,一个系统的运行要求能够满足给定的性能指标,具有抗干扰能力和稳定性。对于被控制的对象,其本身的物理结构和工作过程是一定的,在给定信号作用时,对象的输出并不一定能满足系统的性能要求,所以需要加入一个控制器。控制器与被控对象以闭环的形式构成系统,以帮助整个系统的输出满足给定的性能指标,而控制器运用的控制规律多种多样。

PID(Proportional Integral Derivative比例微分积分)控制是控制工程中技术成熟,应用广泛的一种控制策略,它经过长期工程实践,已形成了一套完整的控制方法和典型的结构。

PID控制器结构简单、稳定性好、工作可靠、调整方便。当被控对象的结构和参数不能完全被掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。因此当不能完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系

统参数时,就是PID的用武之地。

图2.3 PID控制系统

PID顾名思义,就是根据系统误差利用比例,微分,积分计算出控制量进行控制。比例,积分,微分这三个环节又相互独立,有各自不同的作用,在现场也可以根据实际情况来选择使用。

P控制(比例控制)

如果控制器的输出仅仅与误差成正比关系,即u(t)= Kpε(t),便构成了一个比例控制器,可见比例控制器实际上是一个增益可调的放大器。比例控制器通过改变比例放大系数Kp调节输出,对误差的反应很快,但是其输出与期望值之间总是存在一个稳态误差,必须使用手动复位来消除,在实际运用中很不方便。提高Kp值可以增加系统的开环增益,使稳态误差减小,还能够增加系统的快速性;但容易使系统的稳定程度变差,振荡变多。而当Kp值小时,又会使系统动作变得缓慢,所以校正系统很少单独使用P控制。

图2.4 比例控制

I控制(积分控制)

由于P控制存在稳态误差需要手动复位,人们发现可以通过引入一个积分项来消除稳态误差。积分控制器的输出与误差信号的积分成正比,即,所以PI 控制器的输出有:

积分项对误差进行积分,随着时间的增加积分项增大,只要误差还存在,就会不断输出。这样,即便误差很小,积分项也会随着时间的增加而加大,推动控制器的输出增大使稳态误差进一步减小,直到等于零,以达到消除稳态误差的目的。因此,PI控制器,可以使系统在进入稳态后无稳态误差。但是对时间的积分必将影响系统的快速动态性能,对于一些系统会出现超调过大的现象,严重的甚至引起系统崩溃。

D控制(微分控制)

积分控制的动态性能不好,而微分项恰好可以弥补这点。微分控制器的输出和误差信号的微分成正比,即,所以PD控制器的输出有:

微分作用反映的是误差信号的变化率,所以对系统控制具有预见性,能预见误差的变化趋势,因此能产生超前的控制作用。甚至在误差形成之前,可能已被微分调节作用消除。所以如果微分时间选择合适,可以减少超调和系统调节时间,使系统的动态性能大大提高。微分控制在实际运用中经常用来抵消积分控制产生的不稳定趋势,但因其反应的是误差的变化率,所以仅对动态过程作用,通常不单独使用。而且微分控制对噪声干扰有放大作用,过强地调节微分项对系统抗干扰能力不利。

PID控制

PID控制即比例控制、积分控制、微分控制的组合,综合了3种控制器的优点。实际运用中,有时也不需要用到全部的三个部分,只有比例控制单元是必不可少的。对于PID控制器,输出为:

PID控制实际就是根据经验,对Kp,Ti,Td这3个参数进行整定,以得到合适的输出值对系统进行控制。具体如何整定,根据不同的现场有所不同。目前PID不仅应用广泛,发展也很快,已研究出很多对这3个参数进行自整定的智能控制器。在和计算机这样的数字控制器结合后,还出现了数字PID的设计方法,不过具体原理还是遵循于传统。

(2)模糊控制

模糊控制是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制。通常是一类缺乏精确数学模型的被控过程,采用模糊集合的理论,总结人们对系统的操作和控制经验。用模糊条件语句写出控制规律,再用算法语言来编写程序,按此程序对生产过程进行自动控制。模糊控制同常规的控制方案相比,主要特点有:

①模糊控制只要求掌握现场操作人员或有关专家的经验、知识或操作数据,不需要建立过程的数学模型,所以适用于不易获得精确数学模型的被控过程,或其结构参数不很清楚等场合。

②模糊控制是一种语言变量控制器,其控制规律只用语言变量的形式定性地表达,不用传递函数与状态方程,只要对人们的控制经验加以总结,进而从中提炼出规则,直接给出语言变量,再应用推理方程进行观察与控制。

③系统的鲁棒性强,尤其适用于时变、非线性、时延系统的控制。

④从不同的观点出发,可以设计不同的目标函数,其语言控制规则分别是独立的,但是整个系统的设计可得到总体的协调控制。

模糊控制的理论基础是模糊集合理论,模糊集合是一种介于严格变量与定性间的数学表达形式,例如变量的数值分为正大(PL)、正中(PM)、正小(PS)、零(O)、负小(NS)、负中(NM)、负大(NB)等。其中P=Posive,B=Big,M=Medium,S=Small,O=Zero,N=Negative。模糊集合理论的核心是对复杂的系统或过程建立一种语言分析的数学模式,提供一个严格的数学框架,使日常生活中的自然语言能直接转化为计算机所能接受的算法语言。

模糊集合理论的一个基本概念是函数或称隶属度。它表示某一个元素与模糊子集的关系(即隶属度),并用或表示。所有隶属度均满足下列要求,即

,表示隶属于;,则表示不属于。

模糊子集可表示成

其中的U为论域(指被考虑过程的所有元素的全体)。式中的“+”号表示列举,并不是加号;作用每项中的分式也不表示相除,分母表示元素名称,分子表示该元素的隶属度。

模糊子集不仅可用隶属度来描述,也可用模糊向量(即隶属度向量)来表示,即

下图为模糊控制系统原理框图。

图2.5 模糊控制系统

3 LabVIEW集成开发环境

使用LabVIEW开发平台编制的程序称为虚拟仪器程序,简称为VI。设计程序主要是在以下两个窗口中进行的:

前面板设计窗口(Front Panel):它是与用户直接接触的图形用户界面,即VI的虚拟仪器面板。

后面板编辑窗口(Block Diagram):它是用户为完成特定功能而编写的程序,即VI 的图形化源代码。

3.1 LabVIEW前台显示面板

程序前面板是图形用户界面,这一界面上有用户输入控制和输出显示两类对象,用于模拟真实仪表的前面板。控制和显示是用各种各样的图标形式出现在前面板,具体

表现为旋钮、开关、图形、图标以及其他的控制(Control)和显示(Indicator)对象等,这使得用户界面更加直观易懂。

3.2 LabVIEW后台控制面板

后面板即是程序编辑窗口。流程图提供VI的图形化源程序,可以理解为传统程序的源代码。在流程图中队VI进行编程,以实现程序的输入和输出功能

流程图由端口、节点、图框和连线构成。

LabVIEW有三类端口:前面板对象端口、全局变量与局部变量端口和常量端口。对象端口被用来与程序前面板上的控制件或显示件传递数据;常量端口只能在程序中作为数据流起点;全局变量和局部变量端口是LabVIEW用力啊传递数据的工具。

节点类似于文本语言的函数或子程序,LabVIEW有两种节点类型:功能函数节点或子VI节点,二者的区别在于功能函数节点是LabVIEW本身提供给用户使用的,不可以对它进行修改;子VI则是用户可以进入并根据实际需要对其加以修改。

图框被用来实现结构化控制命令,例如循环控制、顺序控制以及条件分支等;此外还有MATLAB脚本、HiQ脚本以及调用C语言编程的CIN节点等。

连线用于代表程序执行过程中的数据流,它类似于文本程序的变量,数据是单向流动的。这些都是编程必须有的东西。

3.3 LabVIEW程序执行流程

宏观上讲,LabVIEW的运行机制已经不是传统上的冯·诺依曼式计算机体系结构的执行方式了。传统计算机语言(如C语言)中的顺序执行结构在LabVIEW中被并行机制所代替。而且,对于那些数学和逻辑运算过程较复杂的程序,用花可以选择使用VC或者Matlab等开发工具将数学分析和处理过程编写为专用的动态链接库,LabVIEW提供了专门的接口函数可以调用之。这样,可以结合图形语言和文本语言各自优点,更为灵活、高效、易用。

3.4 LabVIEW中的仪器控制和驱动

虚拟仪器是仪器的未来,但在工作台上还有很多非虚拟仪器,毫无疑问需要用LabVIEW控制他们。对仪器的驱动是虚拟仪器实现对真实物理信号采集的基础,当仪器驱动后,才能由软件进行数据的分析处理进而实现某种测温功能,并求取测量结果。并且,有时使用外部仪器也是可以的。

3.4.1仪器驱动的概念

仪器驱动也称为仪器驱动器模式完成对某一特定仪器控制与通信的软件程序集,也

可以认为是仪器的软件描述,它是应用程序实现仪器控制的桥梁。每个仪器模块都有自己的仪器驱动器,厂商将仪器驱动以源代码提供给用户。由于虚拟仪器需要提供模拟实际仪器操作面板的虚拟面板,因此虚拟仪器驱动器不仅是实施仪器控制的程控代码,还是仪器程控代码、高级软件编程与先进人机交互三者相结合的产物,是一个包含实际仪器使用和操作信息的软件模块。上层是一系列按工程分组的主副软面板,软面板又由一些按键、旋钮、表头等控件组合而成,每个控件对应不同的功能,及其程控代码相异。底层部分则基于一组IO函数和测试接口,实时模式下,测试人员对软面板上控件的操作将直接反映到真实仪器上。和用户直接打交道的部分是操作接口,及虚拟软面板和面板上的控件。

应用软件建立在仪器驱动程序之上,直接面对操作用户,通过提供友好直观的测控操作界面、丰富的数据分析和处理功能,来完成自动测试任务。仪器驱动程序模块负责处理与某一专门设备通信和控制的具体过程,通过封装复杂的仪器编程细节,为用户使用仪器提供简单的函数接口,用户不必对各种仪器硬件有专门的了解,就可以通过仪器驱动程序来使用这些仪器硬件。一般由仪器厂商以动态链接库的形式提供给用户。当需要更换新的仪器硬件时,只需要更新相应的驱动程序,并保证它对上层的接口保持不变,新的硬件就能在原系统中正常运行。

3.4.2常用的仪器通信方式

GPIB:通用接口总线(General Purpose Interface Bus)。有时候成为HP-IB (Hewlett-Packard Interface Bus)和IEEE 488.2总线(Institute of Electronic Engineer standard 488.2),它几乎是任何仪器与计算机通信的世界标准。

IVI:可交换虚拟仪器(Interchangeable Virtual Instrument)。可以与许多不同的仪器协调工作的仪器驱动程序(用来控制外部仪器的软件)标准。

LXI:LAN在仪器领域的扩展(LAN eXtension for Instrumentation)。LXI协会给予工业标准以太网技术,为小型和中型系统提供模块化、灵活性和性能的仪器平台建议标准。

RS-232:232号推荐标准(Recommended Standard #232)。美国仪器协会为串行通信提出的建议标准。可以与术语“串行通信”互换使用,尽管串行通信一般指的是一次传输一位。也许还会看到其他一些标准如RS-485、RS-422和RS-432。

SCPI:可编程仪器标准命令(Standard Commands for Programmable Instrumentation)。SCPI协会的一个建议标准,该标准使用简单、直观的ASCII命令

为仪器通信制定了结构和语法。

USB:通用串行总线(Universal Serial Bus),大多数PC与外部设备互联的标准总线。

VISA:虚拟仪器标准体系结构(Virtual Instrument Standard Architecture),NI公司研发的一种驱动软件体系结构。其目的是尽量统一一起软件标准,不论仪器使用GPIB、PXI、VXI,还是串行接口(RS)。

3.4.3 LabVIEW支持的GPIB、VXI、标准串口IO仪器的驱动

通常LabVIEW有两张安装光盘,其中一张就是设备驱动盘,它包含了一个仪器驱动库,该库为NI生产的各种程控仪器(GPIB仪器、VXI仪器和串行仪器等)提供仪器驱动程序,例如HP34401A数字万用表的仪器驱动程序。仪器驱动程序在功能模块~Instrument IO—Instrument Drivers子模板中。对于非NI公司生产的上述IO接口仪器设备,可用Instrument IO子模板上提供的VISA图标来进行驱动。利用这些仪器驱动器,用户可以很容易地控制各种仪器,并将主要精力放在仪器功能的实现上,而不必关心具体的编程细节,这一点是LabVIEW强大功能的体现。

3.4.4 VISA简介

VISA是NI公司发布的为统一软件标准的驱动软件体系结构。它是与驱动软件通信的LabVIEW 仪器驱动VI 中的底层函数。VISA 本身不提供仪器编程功能。VISA 是一个调用低层驱动程序的高层API。VISA 能够控制VXI、GPIB、串口或者基于计算机的仪器,并能根据所用仪器的类型来调用合适的驱动程序。下表给出了本系统用到的几个通信模块的基本属性的描述。

3.5 本章小结

本章先介绍了LabVIEW软件编程的前后面板、执行机理,然后就其与外部仪器通信使用的GPIB、串口、以太网接口硬件方面做了简单的说明。同时学习了如何使用Instrument IO Assistant Express VI快速与仪器通信,以及如何使用仪器通信函数的VISA框架。这些都是LabVIEW中与仪器通信需要用到的工具。有了VISA,用户可以使用LabVIEW与多种连接类型的众多仪器进行通信,如GPIB、以太网、TCPIP、串口、USB等。

4LabVIEW PID和模糊控制模块简介

NI公司为工程人员可以方便地进行工业控制,特地开发了LabVIEW环境下的PID 控制和模糊控制模块——NI LabVIEW PID and Fuzzy Logic Toolkit工具包。其中包含各种常用的PID控制模块和模糊控制模块。由于其使用极其方便,所以本设计采用你进行PID和模糊控制。

4.1 PID控制模块简介

NI提供了在LabVIEW中使用的PID控制工具包,可帮助工程师结合NI数据采集设备快速有效地搭建一个数字PID控制器,精确可靠地完成系统需求。

安装NI光盘Tookit Software中的LabVIEW PID Control Tookit,即可在LabVIEW中生成该工具包。安装完成后打开一个新的VI,右击程序框图,在“函数”面板上选择“控制设计与仿真”,即可看到PID工具包,该工具包由10个VI组成。

图4.1 PID工具包

利用PID.vi即可搭建一个简单的PID控制器,在该vi的输入端给入PID的3个参数值(PID gains),系统反馈值(process variable),实际期望值(setpoint)以及微分时间(dt),便能得到需要的输出值(output)。该vi还能控制输出值的范围。

图4.2 PID的使用范例

PID Advanced.vi是为专家PID设计的vi,增加了一些高级的功能,如可以设定期望值的范围(setpoint range),手动控制(manual control),线性化(linearity)等功能。PID Autotuning.vi是为需要自整定的PID系统设计的,在给出一些基本要求后,具有自整定的功能。

图4.3 PID Autotuning.vi

PID LeadLag.vi可以对PID控制器前端由系统反馈来的输入信号做动态补偿。PID Setpoint Profile.vi可以在期望值间断性变化时使其变得平滑。PID Control Input Filter.vi是一个五阶的低通滤波器,放在PID控制器的process variable前端,可以滤去小于采样率十分之一的输入值。PID Gain Schedule.vi可以写入几组增益参数,并给出条件,执行时当输入信号达到条件,便使用对应的一组参数给入到PID控制器的PID Gains上。PID Output Limiter.vi对PID控制器输出信号的变化速率进行控制,以保证外部接受控制信号部件的安全。PID EGU to %.vi和PID % to EGU.vi负责对实际数值和其在设定工程单元范围内占的百分比进行转换。

图4.4构建PID控制系统

4.2 模糊控制模块简介

安装NI光盘Tookit Software中的LabVIEW PID Control Tookit,即可在LabVIEW 中生成该工具包。安装完成后打开一个新的VI,右击程序框图,在Functions Palette 上选择Control Design&Simulation,即可看到Fuzzy Logic工具包,该工具包由3个VI组成(图3)。安装工具包后,可以使用LabVIEW创建.fc格式的文件。.fc文件是NI自定义的一种文件格式,用于仿真模糊控制器推理机中的知识库。

图4.5 Fuzzy Logic工具包

创建一个.fc文件步骤如下:打开一个新的VI,在任务栏依次点击Tools——Control Design and Simulation——Fuzzy Logic Controller Design…,接着在弹出的Fuzzy Logic Controller Design对话框的状态栏上点击File——New,即打开了一个新的.fc文件。

图4.6 Fuzzy Logic Controller Design

接着弹出一个Fuzzy Set Editor对话框,这是仿真模糊推理器中的数据库。工程师可根据专家经验绘制出输入和输出量的隶属函数图,绘制完成后点击Quit;接着弹出Rulebase Editor对话框(图6),这是仿真模糊推理器的规则库。工程师根据实际情况

将制定好的规则写入,完成后点击Quit;最后点击File——Save,给出保存位置和文件名,一个.fc文件就创建完成了。

图4.7 Fuzzy Set Editor

图4.8 Rulebase Editor

.

fc文件使用工具包Fuzzy Logic中的Load Fuzzy Controller.vi加载,该VI加载后将数据传送到Fuzzy Controller.vi中。Fuzzy Controller.vi接收输入信号(最多可接受4维输入),根据.fc文件进行模糊推理,并计算出合适的输出信号值(图7)。工具包中的另一个VI是Test Fuzzy Controller.vi,它可以通过手动输入算出输出响应值,已到达调试.fc 文件中规则和隶属度函数的目的。

5下位机的设计

5.1 下位机设计方案

下位机上,本设计采用Atmega16控制DS18B20采集温度,并将采集到的温度通过串口发送到上位机,以便处理。在上位机发回控制信息后,单片机将收到的信息按照一定的规则处理后,将其送入功率控制设备。此功率设备为过零型固态继电器,在电流过零处导通或关断,易于实现PWM的控制。

5.2下位机的硬件设计

硬件部分分为四个部分:主控部分、DS18B20测温部分、通信部分、程序下载部分。

5.2.1主控部分

由于需要进行串口通信,所以单片机的晶体振荡器我们选择用的比较多的7.3728MHz的外部晶振。

图5.1 主控部分

5.2.2 DS18B20测温部分

本来在DS18B20的数据脚上应该接一个4.7K的上拉电阻,可是由于Atmega16中的数据脚上已经有了内部的上拉电阻,我们就不需要在外部再加。这样不仅降低了成本,最大程度利用了Atmega16的强大功能,而且降低了电路的复杂性,使布线更加方便。

图5.2 测温部分

5.2.3通信部分

图5.3 串口通信部分

5.2.4程序下载部分

图5.4 程序下载部分

5.3 下位机的软件设计

系统模型如下

图5.5 下位机系统模型

5.3.1DS18B20工作原理及应用

DS18B20的温度检测与数字数据输出全集成于一个芯片之上,从而抗干扰力更强。其一个工作周期可分为两个部分,即温度检测和数据处理。在讲解其工作流程之前有必要了解DS18B20的内部存储器资源。DS18B20共有三种形态的存储器资源,它们分别是:

ROM 只读存储器,用于存放DS18B20ID编码,其前8是单线系列编码(DS18B20的编码是19H),后面48位是芯片唯一的序列号,最后8位是以上56的位的CRC码(冗余校验)。数据在出产时设置不由用户更改。DS18B20共64位ROM。

RAM 数据暂存器,用于内部计算和数据存取,数据在掉电后丢失,DS18B20共9个字节RAM,每个字节为8位。第1、2个字节是温度转换后的数据值信息,第3、4个字节是用户EEPROM(常用于温度报警值储存)的镜像。在上电复位时其值将被刷新。第5个字节则是用户第3个EEPROM的镜像。第6、7、8个字节为计数寄存器,是为了让用户得到更高的温度分辨率而设计的,同样也是内部温度转换、计算的暂存单元。第9个字节为前8个字节的CRC码。

EEPROM 非易失性记忆体,用于存放长期需要保存的数据,上下限温度报警值和校验数据,DS18B20共3位EEPROM,并在RAM都存在镜像,以方便用户操作。

控制器对18B20操作流程:

(1)复位:首先必须对DS18B20芯片进行复位,复位就是由控制器(单片机)给DS18B20单总线至少480uS的低电平信号。当18B20接到此复位信号后则会在15~60uS

单片机温度控制系统毕业论文

论文设计 设计(论文)题目:基于单片机的温度控制系统 院系:电子信息工程学院 专业班级:电子信息工程11-01 学生姓名:张战锋 指导教师:耿鑫

郑州轻工业学院 二〇一四年十月二十日

基于单片机的温度控制系统 摘要 温度是日常生活中无时不在的物理量,温度的控制在各个领域都有积极的意义。很多行业中都有大量的用电加热设备,如用于热处理的加热炉,用于融化金属的坩锅电阻炉及各种不同用途的温度箱等,采用单片机对它们进行控制不仅具有控制方便、简单、灵活性大等特点,而且还可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量。因此,智能化温度控制技术正被广泛地采用。 本温度设计采用现在流行的AT89S51单片机,配以DS18B20数字温度传感器,该温度传感器可自行设置温度上下限。单片机将检测到的温度信号与输入的温度上、下限进行比较,由此作出判断是否启动继电器以开启设备。 本设计还加入了常用的数码管显示及状态灯显示灯常用电路,使得整个设计更加完整,更加灵活。该设计已应用于花房,可对花房温度进行智能监控。 【关键词】温度箱,AT89S51,单片机,控制,模拟

目录 1 引言 (3) 1.1 温度控制系统设计的背景、发展历史及意义 (3) 1.2 温度控制系统的目的 (4) 1.3 温度控制系统完成的功能 (4) 2 总体设计方案 (4) 3 DS18B20温度传感器简介 (11) 3.1 温度传感器的历史及简介 (11) 3.2 DS18B20的工作原理 (11) 3.2.1 DS18B20工作时序 (11) 3.2.2 ROM操作命令 (14) 3.3 DS18B20的测温原理 (14) 3.3.1 DS18B20的测温原理: (14) 3.3.2 DS18B20的测温流程 (16) 4.1 设计原则 (16) 4.2 引脚连接 (17) 4.2.1 晶振电路 (17) 4.2.2 串口引脚 (17) 5 系统整体设计 (18)

(整理)基于LabVIEW和DAQmx的温度采集与控制系统1.

基于LabVIEW和DAQmx的温度采集与控制系统 学院:工程学院 专业:电子信息工程 姓名: 学号: 指导教师:

摘要 虚拟仪器的技术基础是计算机技术,核心是计算机软件技术。随着现代测试技术的不断发展,以LABVIEW为软件平台虚拟仪器测量技术正在现代测控领域占据越来越重要的位置。本次设计报告首先给出了虚拟温度测量系统总体方案的设计,然后对数据采集模块和LABVIEW的软件模块进行了设计。基LabVIEW为软件平台,通过热电偶冷端补偿的方法进行温度测量。有效地运用了LabVIEW虚拟仪器技术,将诸多重要步骤都在配备硬件的普通PC电脑上完成,与传统的温度测量仪表相比,该系统具有结构简单、成本低、构建方便、工作可靠等特点.具有较高应用价值,是虚拟仪器技术应用于温度测量领域的一个典型范例。 关键词:温度测量;LabVIEW虚拟仪器;热电偶;冷端补偿

目录 一、设计任务 (4) 二、设计所需设备 (5) 三、设计要求: (5) 四、设计步骤 (6) 五、总体方案的设计................................................................................... 错误!未定义书签。 六、LABVIEW软件模块的设计 (7) 6.1 温度信号处理的设计 (7) 6.1.1 前面板设计 (7) 6.1.2 框图程序设计(这里要根据我们的图描述) (7) 七、系统调试及结果分析 (10) 结论及尚存在的问题..................................................................................... 错误!未定义书签。课程设计感想 (12)

单片机温度控制系统毕业设计论文.doc

题目基于单片机的温度控制系统 英文题目Temperature control system based on single chip 学生姓名: 学号: 专业: 指导老师: 职称 系别:机械与电子工程系 2012年5月1日

摘要 温度是日常生活中无时不在的物理量,温度的控制在各个领域都有积极的意义。很多行业中都有大量的用电加热设备,如用于热处理的加热炉,用于融化金属的坩锅电阻炉及各种不同用途的温度箱等,采用单片机对它们进行控制不仅具有控制方便、简单、灵活性大等特点,而且还可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量。因此,智能化温度控制技术正被广泛地采用。 本温度设计采用现在流行的AT89S51单片机,配以DS18B20数字温度传感器,该温度传感器可自行设置温度上下限。单片机将检测到的温度信号与输入的温度上、下限进行比较,由此作出判断是否启动继电器以开启设备。 本设计还加入了常用的数码管显示及状态灯显示灯常用电路,使得整个设计更加完整,更加灵活。 关键字:单片机温度控制继电器

ABSTRACT The temperature is constantly in the daily life of physical and temperature controls in various fields have a positive meaning. A lot of businesses have a lot of power heating equipment, such as that used for the heat treatment furnace, for melting metal crucible resistance heaters and the various uses of temperature bins, SCM using their right to control not only easy to control, simple, such as the characteristics of flexibility, but can also significantly increase the temperature was charged with the technical indicators, which can greatly enhance the quality of the products. Therefore, intelligent temperature control technology is being widely adopted. The temperature was designed with the now popular AT89S51 SCM, and with DS18B20 digital temperature sensor, The temperature sensor can set up their own temperature collars. SCM will detect that the temperature of the input signal and temperature, the lower comparisons this judgment whether to activate the relay to open the equipment. The design also includes commonly used digital display and control state lights commonly used circuit, making the whole design more complete, more flexible. Key words:Single chip microcomputer Temperature control SSR

labview的毕业设计

labview的毕业设计 【篇一:定稿 labview毕业设计】 基于labview的图像分割程序设计 [摘要] 现在图像处理技术已经应用于多个领域当中,其中,纸币识别,车牌识 别,文字识别和指纹识别已为大家所熟悉。图像分割是一种重要的图像技术,它不仅得到了人们的广泛重视和研究,也在实际中得到了大量的应用。它是处理图像的基本问题之一,是图像处理图像分析的关键步骤。图像识别的基础是图像分割,其作用是把反映物体真实情况的,占据不同区域的,具有不同性质的目标区分开来,并形成数字特性。关于图像分割的方法已有上千种,本文将介绍几种主流的方法,并分析各自的特性,利用labview平台实现两种阈值方法分割图像,展现实验现象,比较两种方法的处理结果。 [关键词] 图像分割阈值法大津法双峰法 labview the program designing of image segmentation based on labview [abstract] image processing technology has been used in many fields, the banknote recognition, license plate recognition, character recognition and fingerprint recognition has been familiar to everyone. image segmentation is an important image technology, people not only attach importance to it and research it,but also use it in many place. it is one of the basic problems of the image processing, and it is a key step of the image processing image analysis. the image recognition based on image segmentation, the function of which is making a distinction between the area of objects real situation,the area in different places and the area with different characteristic and forming a digital characteristic. there are thousands of methods of image segmentation, this article will introduce several mainstream method, and analyze their respective characteristics, use this two ways to make image segmentation with labview,and show the phenomenon of experiment,campare the treatment result of the two methods. [keyword] image segmentation threshold otsu bimoda labview

基于单片机的温度检测与控制系统的设计(论文)开题报告

河南中医学院 本科生毕业设计(论文)开题报告 题目:基于单片机温度检测与控制系统设计 院系:信息技术学院 专业:计算机科学与技术 班级:2010级计科班 学号:2010180042 学生姓名:郭文珠 指导教师:谢志豪 2013年11月13日 一、立题依据(包括研究的目的与意义及国内外现状): 研究的目的与意义 这次毕业设计选题的目的主要是让我们将所学的知识应用与生活当中,掌握系统总体设计的流程,方案的论证,选择,实施与完善。通过对温度控制系统的设计、制作、控制、测试的全过程,提高对单片机的认识和实际操作的能力,初步培养在完成工程项目中所应具备的基本素质和要求,培养自己的研发能力,提高自己的查阅资料,语言表达和理论联系实际的能力。 温度控制无论在日常生活还是工业生产中都有分厂重要的作用,随着社会经济的高速发展,更多方面对温度控制的可靠性和稳定性有了更高的要求,而单片机进行温度的调节就具备很高的可靠性[1]。 国内外现状 国外对温度控制技术研究较早,始于20世纪70年代。先是采用模拟式的组合仪表,采集现场信息并行指进示、记录和控制。80年代末出现了分布式控制系统[2]。目前正开发和研制计算机数据采集控制系统的多因子综合控制系统。现在世界各国的温度测控技术发展很快,一些国家在实现自动化的基础上正向着完全自动化、无人化的方向发展[3]。我国对于温度测控技术的研究较晚,始于20世纪80年代。我国工程技术人员在吸收发达国家温度测控技术的基础上,才掌握了温度室内微机控制技术,该技术仅限于对温度的单项环境因子的控制。我国温度测控设施计算机应用,在总体上正从消化吸收、简单应用阶段向实用化、综合性应用阶段过渡和发展[4]。在技术上,以单片机控制的单参数单回路系统居多,尚无真正意义上的多参数综合控制系统,与发达国家相比,存在较大差距。我国温度测量控制现状还远远没有达到工厂化的程度,生产实际中仍然有许多问题困扰着我们,存在着装备配套能力差,产业化程度低,环境控制水平落后,软硬件资源不能共享可靠性差等缺点[5]。在今后的温控系统的研究中会趋于智能化,集成化,系统的各项性能指标更准确,更加稳定可靠。 二、研究主要内容(包括计划解决的具体问题或实现的基本功能,研究中的重难点分析、实用性及创新性分析,预期达到的成果等。不得低于800字): 计划实现的基本功能 温度控制系统主要是完成温度信号采集、处理、显示等功能[6]。设 计叙述了基于单片机的温度检测与控制系统的设计,包括硬件的设计以 及软件的设计,该系统在硬件设计上主要是通过温度传感器对温度进行 采集,把温度转成变化的电压,然后由放大器将信号放大,通过转化器

基于labview的温度采集系统

目录 1 绪论 0 1.1 课题背景 0 1.2 虚拟仪器简介 0 1.3 图形化编程语言LabVIEW的简介 (2) 1.4 本论文任务 (2) 2 温度控制设计方案 (4) 2.1 硬件及软件的选择 (4) 2.1.1硬件的选择 (4) 2.1.2软件的选择 (5) 2.2 硬件及软件设计方案 (5) 2.2.1硬件设计方案 (6) 2.2.2软件设计方案 (6) 3 LabVIEW 开发环境以及PID和模糊控制模块简介 (10) 3.1 LabVIEW前台显示面板与后台控制面板 (10) 3.1.1 LabVIEW前台显示面板 (10) 3.1.2 LabVIEW后台控制面板 (10) 3.2 LabVIEW程序执行流程 (10) 3.3 LabVIEW中的仪器控制和驱动 (10) 3.3.1常用的仪器通信方式 (11) 3.3.2 LabVIEW支持的GPIB、VXI、标准串口I/O仪器的驱动 (11) 3.3.3 VISA简介 (11) 3.4 PID控制模块简介 (12) 3.5 模糊控制模块简介 (13) 4 以单片机为核心的下位机的设计 (16) 4.1 下位机设计方案 (16) 4.2下位机的硬件设计 (16) 4.2.1主控部分 (16) 4.2.2 DS18B20测温部分 (16) 4.2.3通信部分 (17) 4.2.4程序下载部分 (17) 4.3 下位机的软件设计 (17) 4.3.1DS18B20工作原理及应用 (18) 4.3.2单片机串口通信部分 (19) 4.3.3单片机PWM功率控制部分 (19) 5 基于PC的上位机编程设计 (22) 5.1 方案设计与选择 (22) 5.2 上位机各模块设计 (22) 5.2.1串口通信模块设计 (22) 5.2.2数据处理部分设计 (22) 5.2.3 PID控制部分设计 (23) 6 总结 (24) 参考文献 (25) 谢辞 (26) 附录 (27)

本科毕业设计论文--虚拟仪器课程设计基于labview的打地鼠小游戏

虚拟仪器 成绩评定表 设计课题:基于labview的打地鼠小游戏 学院名称:电气工程学院 专业班级:测控技术与仪器1403 学生姓名: 学号: 指导教师:

虚拟仪器课程设计任务书

摘要: 主要介绍了通过LabView研发打地鼠小游戏的过程。 关键词:Labview 打地鼠 一、设计任务 1设计目标: 设计一个打地鼠(僵尸)的小游戏。 2设计基本要求及发挥: (1)初步实现打地鼠功能。 (2)增加积分和等级统计功能。 (3)美化程序界面,添加音效。 二、方案论证 1.地鼠部分 方案一:运用事件,实现点击的确认,并利用随机来判定哪个口有地鼠。 方案二:调用ActiveX控件,采用更简单的语句编写,例如Flash。 鉴于此次想要练习Labview的应用,选用了方案一。 https://www.360docs.net/doc/2710979530.html,BVIEW程序设计 初步的设计并不理想,不能实现地鼠自动消失以及乱点鼠标的惩罚。 经过多次调整方案,最后采用了对于事件进行详尽分类,将地鼠的出现与消失编入事件,后来加入开始结束按键以后,问题变得更加复杂,于是在调用子VI的基础上,又增加了“等待开始”与“失败”两个事件,在此基础上重新调整了每一个参数在不同事件中的传递以及累计运算,最后实现了数据的统计。 在等待地鼠出现的事件中加入了难度的递增判断。对于同类数据隐藏,并把相同分类的编入簇处理,以简化框图。 3.界面美化 初步美化界面,个性化了按键,对于某些按键加入特效。最终加入音效。

三、总体方案 1.工作原理: 简单来说,通过事件的触发和认证,实现了打地鼠功能。实际却比想象中的复杂很多。关键在于数据传递和算法的巧妙使用。 2.程序设计 对于框图已经做了整理,不方便再拆开了,整体来说,先从地鼠的触发开始,采用了自定义控件,地鼠按钮拥有三个态。地鼠采用随机触发,地鼠触发后判定是否点击相应地鼠,不点击延时后重新准备出地鼠,点击错误减时间,都是通过事件来完成的。比较复杂的是不同事件中的数据交换,除了统计数据的交换,还有事件真假的交换,这些都互相制约,而且根据嵌套决定了各自的优先级,这里不详细解释。最后就是在之前的基础上做了些小调整以消除bug。例如数据的初始化,还有数据的验证。在最后就是美化工作了,起初想应用同步时序实现更加复杂的音效效果,但是对于同步的几个控件理解不够深刻,经过多次尝试后还是采用了简单的方案。想应用ActiveX控件调用Flash实现动态地鼠,后查网说如果机器不安装Adobe Flash则控件不能正常显示,鉴于方便大家测试,作罢。美化工作其实不必程序设计简单,图片都要自己处理,声音也要自己剪裁和处理。经过这么多的努力才制作出一个这么简陋的小游戏,见笑。而且制作过程中为了美化删减掉许多功能,大家看到的最终版本并不代表所有汗水。 四设计步骤 1.1 前面板设计 根据在实际机器中的实物以及设计思路过程,大致需要地鼠、成绩显示屏、玩的过程中地鼠个数显示、时间的设置输入以及一些控制游戏始末的开关等。 在时间有限的情况下,没有能够自行设计一个控件,因此用布尔开关来模拟,当开关开时记作地鼠出现,关时记作地鼠消失,为进一步的区分这两种状态,可以让开与关时的布尔控件显示不同的颜色,如下图2-1-a。还是可以用布尔控件来控制类似的电源开与关、游戏的开始与结束。屏幕的显示用字符串显示控件可以满足。地鼠出现的总个数、打中的以及为打中的是数字的显示,用数字显示控件可以,如图2-1-a。当然时间的设置用数字输入控件好一些,为使时间的精度高一些,特以没0.1s来增加或减少。整体前面板控件如图2-1-a.

智能温度检测与显示系统的设计毕业设计论文

南京工程学院 自动化学院 本科毕业设计(论文)题目:智能温度检测与显示系统的设计专业:自动化

南京工程学院自动化学院本科毕业设计(论文) Graduation Design (Thesis) Design of Intelligent temperature examination and display system By Zhang zhe Supervised by Associate Prof. Song Lirong Department of Automation Engineering Nanjing Institute of Technology June, 2009

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

温度自动控制系统的设计毕业设计论文

北方民族大学学士学位论文论文题目:温度自动控制系统的设计 北方民族大学教务处制

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

基于LabVIEW的温度测量及数据采集系统设计

LabVIEW技术大作业 题目:基于LabVIEW的温度测量及数据采集系统设计学院(系):信息与通信工程学院 班级:通信133 学号:xxxxxxxxx 姓名:xxxxxx

一、设计背景 LABVIEW最初就是为测试测量而设计的,因而测试测量也就是现在LABVIEW最广泛的应用领域。经过多年的发展,LABVIEW在测试测量领域获得了广泛的承认。至今,大多数主流的测试仪器、数据采集设备都拥有专门的LabVIEW驱动程序,使用LabVIEW可以非常便捷的控制这些硬件设备。同时,用户也可以十分方便地找到各种适用于测试测量领域的LabVIEW工具包。这些工具包几乎覆盖了用户所需的所有功能,用户在这些工具包的基础上再开发程序就容易多了。有时甚至于只需简单地调用几个工具包中的函数,就可以组成一个完整的测试测量应用程序。 二、系统方案 本设计的程序框图和前面板图分别是图1.1和图1.2,“温度测量及数据采集系统.vi”是一个测量温度并将测试数据输出到文件的VI。此VI中的温度是用一个20至40的随机整数来代替的,测试及采集100个温度值,每隔0.25秒测一次,共测定25秒。在数据采集过程中,VI将在前面板的波形图上实时地显示测量结果。采集过程结束后,波形图上显示出温度数据曲线,数组中显示每次的温度测量数据,并在显示控件中显示测试中温度的最大值、最小值和平均值,同时把测量的温度值以文件的形式存盘。

图1.1温度测量及数据采集程序框图 1.2温度测量及数据采集前面板图

二、系统各模块介绍 2.1循环模块 For循环用于将某段程序循环执行指定的次数, 是总数接线端,指定For循环内部代码执行的次数。如将0或负数连接至总数接线端,For循环不执行。 是计数接线端,表示完成的循环次数。第一次循环的计数为0。 本设计使用for循环将循环内的程序循环100次。

智能温度控制系统毕业论文

目录 引言 (1) 1 系统的相关介绍 (2) 1.1 系统的目的及意义 (2) 1.2 设计要求 (2) 1.3 系统传感器DS18B20的介绍 (2) 1.3.1 DS18B20的主要特性 (2) 1.3.2 DS18B20的外形和部结构 (3) 2 系统分析设计 (4) 2.1 温度控制系统结构图及总述 (4) 2.2 系统显示界面方案 (4) 2.3 系统输入方案 (5) 2.4系统的功能 (5) 3 相关软件编译知识介绍 (5) 3.1 C语言简介 (5) 3.1.1 C语言的优点 (5) 3.1.2 C语言缺点 (6) 3.2 Keil简介 (6) 3.2.1 系统概述 (6) 3.2.2 Keil C51单片机软件开发系统的整体结构 (7) 4系统流程图设计 (7) 4.1主程序流程图 (7) 4.2 DS18B20控制程序流程图 (8) 4.2.1 DS18B20 复位程序流程图 (9) 4.2.2 DS18B20写数据程序流程图 (9) 4.2.3 DS18B20读数据程序流程图 (10) 4.3 温度读取及转换程序流程图 (12) 4.4 MAX7219驱动程序流程图 (13) 4.4.1 MAX7219写入一个字节数据程序流程图 (13) 4.4.2 MAX7219写入一个字数据程序流程图 (15) 4.5 数码管温度显示程序流程图 (16) 4.6 按键中断服务程序流程图 (17) 5 电路仿真 (19) 5.1 PROTEUS软件介绍 (19) 5.2 温度控制系统PROTEUS仿真 (19) 6总结 (20) 7参考文献 (21) 附录1 源程序代码 (22)

基于Labview的通信系统的设计_毕业设计论文

毕业设计论文 基于Labview的通信系统的设计 摘要 本设计基于LabVIEW仿真软件完成了基本通信系统和通信综合系统的构建。该系统涵盖了模拟调制,数字调制,模拟信号数字传输,信道编码,最佳接收系统几部分内容。通过系统仿真,实现了系统输入输出波形的直观显示,解决了教学中实验效果不理想,理论内容不好理解的问题。同时通过内置的Web Server 进行网页发布后,用户可以在客户端通过web浏览器远程调用并运行本系统,提高效率,节约成本。 关键词:通信系统;幅度调制;脉冲编码调制 ABSTRACT This design based on the completion of the basic LabVIEW simulation software communications system and the communication of the construction of the integrated system. This system covers analog modulation, digital modulation, analog signal digital transmission, channel coding, best the receiving system several parts content. Through the simulation, realize the system input/output waveform of visual display, solve the experiment teaching effect is not ideal, theory content of understanding of bad. And at the same time through built-in Web Server for Web publishing, users can in the client through the Web browser remote calls and run this system, improve efficiency, the cost savings. Keywords: communication system; Amplitude modulation; Pulse code modulation

医用体温监测系统毕业论文

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。 学位论文作者(签名): 年月

关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容: 按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期: 摘要 本人设计了一种医用体温监测系统,该系统通过以单片机AT89C51为核心的前端体温测量

温度控制系统毕业设计

摘要 在日常生活及工农业生产中,对温度的检测及控制时常显得极其重要。因此,对数字显示温度计的设计有着实际意义和广泛的应用。本文介绍一种利用单片机实现对温度只能控制及显示方案。本毕业设计主要研究的是对高精度的数字温度计的设计,继而实现对对象的测温。测温系数主要包括供电电源,数字温度传感器的数据采集电路,LED显示电路,蜂鸣报警电路,继电器控制,按键电路,单片机主板电路。高精度数字温度计的测温过程,由数字温度传感器采集所测对象的温度,并将温度传输到单片机,最终由液晶显示器显示温度值。该数字温度计测温范围在-55℃~+125℃,精度误差在±0.5℃以内,然后通过LED数码管直接显示出温度值。数字温度计完全可代替传统的水银温度计,可以在家庭以及工业中都可以应用,实用价值很高。 关键词:单片机:ds18b20:LED显示:数字温度. Abstract In our daily life and industrial and agricultural production, the detection and control of the temperature, the digital thermometer has practical significance and a wide range of applications .This article describes a programmer which use a microcontroller to achieve and display the right temperature by intelligent control .This programmer mainly consists by temperature control sensors, MCU, LED display modules circuit. The main aim of this thesis is to design high-precision digital thermometer and then realize the object temperature measurement. Temperature measurement system includes power supply, data acquisition circuit, buzzer alarm circuit, keypad circuit, board with a microcontroller circuit is the key to the whole system. The temperature process of high-precision digital thermometer, from collecting the temperature of the object by the digital temperature sensor and the temperature transmit ted to the microcontroller, and ultimately display temperature by the LED. The digital thermometer requires the high degree is positive 125and the low degree is negative 55, the error is less than 0.5, LED can read the number. This digital thermometer could

传感器课程设计(基于labview的pt100温度测量系统)

目录 第一章方案设计与论证 (2) 第一节传感器的选择 (2) 第二节方案论证 (3) 第三节系统的工作原理 (3) 第四节系统框图 (4) 第二章硬件设计 (4) 第一节PT100传感器特性和测温原理 (5) 第二节信号调理电路 (6) 第三节恒流源电路的设计 (6) 第四节TL431简介 (8) 第三章软件设计 (9) 第一节软件的流程图 (9) 第二节部分设计模块 (10) 总结 (11) 参考文献 (11)

第一章方案设计与论证 第一节传感器的选择 温度传感器从使用的角度大致可分为接触式和非接触式两大类,前者是让温度传感器直接与待测物体接触,而后者是使温度传感器与待测物体离开一定的距离,检测从待测物体放射出的红外线,达到测温的目的。在接触式和非接触式两大类温度传感器中,相比运用多的是接触式传感器,非接触式传感器一般在比较特殊的场合才使用,目前得到广泛使用的接触式温度传感器主要有热电式传感器,其中将温度变化转换为电阻变化的称为热电阻传感器,将温度变化转换为热电势变化的称为热电偶传感器。 热电阻传感器可分为金属热电阻式和半导体热电阻式两大类,前者简称热电阻,后者简称热敏电阻。常用的热电阻材料有铂、铜、镍、铁等,它具有高温度系数、高电阻率、化学、物理性能稳定、良好的线性输出特性等,常用的热电阻如PT100、PT1000等。近年来各半导体厂商陆续开发了数字式的温度传感器,如DALLAS公司DS18B20,MAXIM公司的MAX6576、MAX6577,ADI公司的AD7416等,这些芯片的显著优点是与单片机的接口简单,如DS18B20该温度传感器为单总线技术,MAXIM公司的2种温度传感器一个为频率输出,一个为周期输出,其本质均为数字输出,而ADI公司的AD7416的数字接口则为近年也比较流行的I2C总线,这些本身都带数字接口的温度传感器芯片给用户带来了极大的方便,但这类器件的最大缺点是测温的范围太窄,一般只有-55~+125℃,而且温度的测量精度都不高,好的才±0.5℃,一般有±2℃左右,因此在高精度的场合不太满足用户的需要。 热电偶是目前接触式测温中应用也十分广泛的热电式传感器,它具有结构简单、制造方便、测温范围宽、热惯性小、准确度高、输出信号便于远传等优点。常用的热电偶材料有铂铑-铂、铱铑-铱、镍铁-镍铜、铜-康铜等,各种不同材料的热电偶使用在不同的测温范围场合。热电偶的使用误差主要来自于分度误差、延伸导线误差、动态误差以及使用的仪表误差等。

基于LabVIEW的贪吃蛇游戏设计本科毕业设计

本科毕业设计(论文) 题目:基于Lab VIEW的贪 吃蛇游戏开发设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

温度检测系统的设计

毕业论文开题报告 机械设计制造及其自动化 温度检测系统的设计 一、选题的背景和意义 在当今社会里,温度和人类的生产、生活有着很密切的联系,同时在工业生产中也是一个很重要的基本工艺参数,例如在机械、石油、化工、电子等各类工业中经常需要对温度进行检测然后进行控制。如今人们的生活水平不断提高,自然也越来越开始关心自己的生活环境,空气中温度的改变会直接影响一个人的舒适感和情绪,所以对温度的检测和控制的研究非常需要的。总之,环境温度的检测仪器的设计和开发有着很好的市场前景和实用价值。 温度是生产生活中主要的环境参数,对其进行准确的检测有着很重要的意义。炼钢炉中温度不正常,会大大影响钢铁质量;人的体温不正常了,说明人生病了;蔬菜大棚中的温度不正常了,就可能引起蔬菜死亡或生长受影响。准确的获得温度值,能更好的提高生活质量和生产力。 二、研究目标与主要内容 本设计是基于AT89S52单片机为核心处理器的温度检测系统。系统采用AT89S52单片为主控CPU机,DS18B20为温度传感器,点阵字符形液晶显示器LCD1602,蜂鸣器,4个按键构成一个完整的温度检测系统。主要功能为:单片机读取DS18B20中的数据并转为温度数据,同时将温度值显示在LCD1602上,检测范围为0摄氏度到99摄氏度,精度为0.5摄氏度;温度报警功能,温度上限报警值可以通过按键进行调整,报警状态也可以通过设置按键进行选择。 1引言 1.1温度检测的研究背景 1.2温度检测的意义 1.3本论文研究的主要内容

2系统硬件设计 2.1系统方案论述 2.1.1单片机选择 2.1.2显示器件的选择2.1.3温度传感器选择2.2系统模块功能介绍2.2.1单片机模块 2.3.2温度传感器模块2.3.3按键模块 2.3.4液晶显示模块 2.3.5蜂鸣器报警模块 3系统软件设计 3.1系统软件整体设计3.2系统子模块程序设计3.2.1显示模块程序设计3.2.2测温模块程序设计3.2.3按键模块程序设计4系统软硬件调试 5实物制作及调试 参考文献 致谢

相关文档
最新文档