数值分析(第五版)计算实习题第四章作业

数值分析(第五版)计算实习题第四章作业
数值分析(第五版)计算实习题第四章作业

第四章:

1、(1):复合梯形

建立m文件:

function t=natrapz(fname,a,b,n)

h=(b-a)/n;

fa=feval(fname,a);fb=feval(fname,b); f=feval(fname,a+h:h:b-h+0.001*h); t=h*(0.5*(fa+fb)+sum(f));

输入:

>> syms x

>> f=inline('sqrt(x).*log(x);'); >> natrapz(f,eps,1,10)

输出:

ans =

-0.417062831779470

输入:

>> syms x

>> f=inline('sqrt(x).*log(x);'); >> natrapz(f,eps,1,100)

输出:

ans =

-0.443117908008157

输入:

>> syms x

>> f=inline('sqrt(x).*log(x);'); >> natrapz(f,eps,1,1000)

输出:

ans =

-0.444387538997162

复合辛普森

建立m文件:

function t=comsimpson(fname,a,b,n)

h=(b-a)/n;

fa=feval(fname,a);fb=feval(fname,b);

f1=feval(fname,a+h:h:b-h+0.001*h);

f2=feval(fname,a+h/2:h:b-h+0.001*h);

t=h/6*(fa+fb+2*sum(f1)+4*sum(f2));

输入:

>> syms x

>> f=inline('sqrt(x).*log(x);');

>> format long;

>>comsimpson(f,eps,1,10)

输出:

ans =

-0.435297890074689

输入:

>>syms x

>>f=inline('sqrt(x).*log(x);');

>>comsimpson(f,eps,1,100)

输出:

ans =

-0.444161178415673

输入:

>>syms x

>>f=inline('sqrt(x).*log(x);');

>>comsimpson(f,eps,1,1000)

输出:

ans =

-0.444434117614180

(2)龙贝格

建立m文件:

function [RT,R,wugu,h]=Romberg(fun,a,b,wucha,m) %RT是龙贝格积分表

%R是数值积分值

%wugu是误差估计

%h是最小步长

%fun是被积函数

%a b是积分下、上限

%m是龙贝格积分表中行最大数目

%wucha是两次相邻迭代值的绝对误差限

n=1;h=b-a;wugu=1;x=a;k=0;RT=zeros(4,4);

RT(1,1)=h*(feval(fun,a)+feval(fun,b))/2;

while((wugu>wucha)&(k

k=k+1;h=h/2;s=0;

for j=1:n

x=a+h*(2*j-1);s=s+feval(fun,x);

end

RT(k+1,1)=RT(k,1)/2+h*s;n=2*n;

for i=1:k

RT(k+1,i+1)=((4^i)*RT(k+1,i)-RT(k,i))/(4^i-1);

end

wugu=abs(RT(k+1,k)-RT(k+1,k+1));

end

R=RT(k+1,k+1);

输入:

>>fun=inline('sqrt(x).*log(x)');

>> [RT,R,wugu,h]=Romberg(fun,eps,1,1e-5,13)

输出:

RT =

1 至5 列

-0.000000268546145 0 0 0

-0.245064670140209 -0.326752804004897 0 0

-0.358104125949240 -0.395783944552250 -0.400386020588741 0 0

-0.408090073087781 -0.424752055467295 -0.426683262861631 -0.427100679405645 0

-0.429474601629505 -0.436602777810080 -0.437392825966266 -0.437562819031419 -0.437603847029951

-0.438389494461832 -0.441361125405941 -0.441678348578999 -0.441746372747455 -0.441762778840459

6 列

-0.441766844267449

R =

-0.441766844267449

wugu =

4.065426989774412e-06

h =

0.031250000000000

(3)自适应辛普森

输入:

>> f=inline('sqrt(x).*log(x)');

>> q=quad(f,0,1,1e-4)

输出:

q =

-0.443975572951728

2.(1)

复合辛普森

建立m文件

function q=combinesimpson2(F,x0,a,b,n)

%复合Simpson多元求积公式

%F—被积函数

%x0—被积函数自变量

%[a,b]积分区间

%n—区间份数

x=linspace(a,b,n+1);

q=0;

for k=1:n

q=q+subs(F,x0,x(k))+4*subs(F,x0,(x(k)+x(k+1))/2)+subs(F,x0,x(k+1)); end

q=q*(b-a)/n/6;

输入:

>> clear

>> syms x y;

>> F=exp(-x.*y);

>> s=combinesimpson2(combinesimpson2(F,'x',0,1,4),'y',0,1,4)

输出:

s =

exp(-1)/576 + exp(-1/2)/144 + exp(-1/4)/72 + exp(-3/4)/144 + exp(-1/8)/36 +

exp(-3/8)/36 + exp(-5/8)/72 + exp(-7/8)/72 + (5*exp(-1/16))/144 + exp(-3/16)/24 + exp(-5/16)/36 + exp(-7/16)/36 + exp(-9/16)/144 + exp(-1/32)/36 + exp(-3/32)/18 + exp(-5/32)/36 + exp(-7/32)/36 + exp(-9/32)/36 + exp(-15/32)/36 + exp(-21/32)/36 + exp(-1/64)/36 + exp(-3/64)/18 + exp(-5/64)/18 + exp(-7/64)/18 + exp(-9/64)/36 + exp(-15/64)/18 + exp(-21/64)/18 + exp(-25/64)/36 + exp(-35/64)/18 + exp(-49/64)/36 + 47/576

>> double(s)

ans =

0.796599967946203

高斯求积公式

function q=gaussquad(F,x0,a,b,n)

%Gauss求积公式

%F—被积函数

%x0—被积函数自变量

%[a,b]积分区间

%n—节点个数

syms t;

F=subs(F,x0,(b-a)/2*t+(a+b)/2);

[x,A]=gausspoints(n);

q=(b-a)/2*sum(A.*subs(F,t,x));

输入:

>> clear

>> syms x y;F=exp(-x.*y);

>> s=gaussquad(gaussquad(F,x,0,1,4),y,0,1,4)

输出:

s =

0.7966

(2)复合辛普森

输入:

>> syms x y;

>> f=exp(-x.*y);

>> s=combinesimpson2(combinesimpson2(f,y,0,sqrt(1-x^2),4),x,0,1,4)

输出:

s =

(3^(1/2)*(exp(-3^(1/2)/4) + 2*exp(-3^(1/2)/8) + 2*exp(-3^(1/2)/16) + 2*exp(-(3*3^(1/2))/16) + 4*exp(-3^(1/2)/32) + 4*exp(-(3*3^(1/2))/32) + 4*exp(-(5*3^(1/2))/32) + 4*exp(-(7*3^(1/2))/32) + 1))/576 + (7^(1/2)*(exp(-(3*7^(1/2))/16) + 2*exp(-(3*7^(1/2))/32) + 2*exp(-(3*7^(1/2))/64) + 2*exp(-(9*7^(1/2))/64) + 4*exp(-(3*7^(1/2))/128) + 4*exp(-(9*7^(1/2))/128) + 4*exp(-(15*7^(1/2))/128) + 4*exp(-(21*7^(1/2))/128) + 1))/1152 + (15^(1/2)*(exp(-15^(1/2)/16) + 2*exp(-15^(1/2)/32) + 2*exp(-15^(1/2)/64) + 2*exp(-(3*15^(1/2))/64) + 4*exp(-15^(1/2)/128) + 4*exp(-(3*15^(1/2))/128) + 4*exp(-(5*15^(1/2))/128) + 4*exp(-(7*15^(1/2))/128) + 1))/1152 + (15^(1/2)*(exp(-(7*15^(1/2))/64) + 2*exp(-(7*15^(1/2))/128) + 2*exp(-(7*15^(1/2))/256) + 2*exp(-(21*15^(1/2))/256) + 4*exp(-(7*15^(1/2))/512) + 4*exp(-(21*15^(1/2))/512) + 4*exp(-(35*15^(1/2))/512) + 4*exp(-(49*15^(1/2))/512) + 1))/1152 + (39^(1/2)*(exp(-(5*39^(1/2))/64) + 2*exp(-(5*39^(1/2))/128) + 2*exp(-(5*39^(1/2))/256) + 2*exp(-(15*39^(1/2))/256) + 4*exp(-(5*39^(1/2))/512) + 4*exp(-(15*39^(1/2))/512) + 4*exp(-(25*39^(1/2))/512) + 4*exp(-(35*39^(1/2))/512) + 1))/1152 + (55^(1/2)*(exp(-(3*55^(1/2))/64) + 2*exp(-(3*55^(1/2))/128) + 2*exp(-(3*55^(1/2))/256) + 2*exp(-(9*55^(1/2))/256) + 4*exp(-(3*55^(1/2))/512) + 4*exp(-(9*55^(1/2))/512) + 4*exp(-(15*55^(1/2))/512) + 4*exp(-(21*55^(1/2))/512) + 1))/1152 + (63^(1/2)*(exp(-63^(1/2)/64) + 2*exp(-63^(1/2)/128) + 2*exp(-63^(1/2)/256) + 2*exp(-(3*63^(1/2))/256) + 4*exp(-63^(1/2)/512) + 4*exp(-(3*63^(1/2))/512) + 4*exp(-(5*63^(1/2))/512) + 4*exp(-(7*63^(1/2))/512) + 1))/1152 + 1/24

>> double(s)

ans =

0.670113633359095

数值分析第四章数值积分与数值微分习题答案

第四章 数值积分与数值微分 1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: 101210121 12120 (1)()()(0)(); (2)()()(0)(); (3)()[(1)2()3()]/3; (4)()[(0)()]/2[(0)()]; h h h h h f x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-?? ?? 解: 求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。 (1)若101(1) ()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1012h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 221123 h h A h A -=+ 从而解得 011431313A h A h A h -?=?? ? =?? ?=?? 令3 ()f x x =,则 3()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++=

令4()f x x =,则 455 1012()5 2 ()(0)()3 h h h h f x dx x dx h A f h A f A f h h ---== -++=? ? 故此时, 101()()(0)()h h f x dx A f h A f A f h --≠-++? 故 101()()(0)()h h f x dx A f h A f A f h --≈-++? 具有3次代数精度。 (2)若 21012()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1014h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 2211163 h h A h A -=+ 从而解得 1143 8383A h A h A h -?=-?? ? =?? ?=?? 令3 ()f x x =,则 22322()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++=

数值分析习题与答案

第一章绪论 习题一?1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。 解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1.2.4)有 已知x*的相对误差满足,而 ,故 即 2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。 解:直接根据定义和式(1.2.2)(1.2.3)则得?有5位有效数字,其误差限,相对误差限 有2位有效数字, 有5位有效数字, 3.下列公式如何才比较准确? (1)?(2) 解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。

(1)?(2) 4.近似数x*=0.0310,是 3 位有数数字。 5.计算取,利用 :式计算误差最小。 四个选项: 第二、三章插值与函数逼近 习题二、三 1. 给定的数值表 用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newto n插值,并应用误差估计(5.8)。线性插值时,用0.5及0.6两点,用Newton插值??误差限 ,因,

故? 二次插值时,用0.5,0.6,0.7三点,作二次Newton插值 ?误差限,故? 2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h应取多少? 解:用误差估计式(5.8), ?令 因?得 3. 若,求和.

解:由均差与导数关系 ?于是 4. 若互异,求 的值,这里p≤n+1. 解:,由均差对称性 可知当有?而当P=n +1时 ?于是得 5. 求证. 解:解:只要按差分定义直接展开得 ? 6. 已知的函数表

数值分析习题解答4

第四章 数值积分方法与数值微分 (习 题) 1.直接验证梯形公式(1.2)与中矩形公式(1.3)具有1次代数精度,而辛甫生公式(1.4)则具有3次代数精度. 解 梯形公式: ?+-≈ b a b f a f a b dx x f )]()([2 )(. 矩形公式: ?+-≈b a b a f a b dx x f )2 ()()(. 以上两求积公式以 ,1)(=x f x 代入公式两边,结果相等,而以2 )(x x f = 代入公式两边,其结果不相等.故梯形公式的代数精度等于1. Simpson 公式: ? +++-≈ b a b f b a f a f a b dx x f )]()2 (4)([6)(. 容易验证:以2 ,,1)(x x x f =分别代入Simpson 公式两边,结果相等。 以3 )(x x f =代入 左边= )(444 13a b dx x b a -=? 右边=[ ] 32 322322332 3 3 3 36246b ab b a a a b b b a a a b +++-=??? ?????+??? ??++- = ).(4 144 a b - Simpson 公式两边,结果相等。而以4 x 代入Simpson 公式两边,其结果 不相等。故Simpson 求积公式的代数精度为3. □ 3.对于? =h dx x f I 30 )(的数值积分公式? = h h dx x p I 30 )(,其中)(x p 为对)(x f 在 h h x 2,,0=进行插值的2次多项式.证明:)()0(8 354h O f h I I h +'''?=-. 证明: )(x P 为)(x f 于h h x 2,,0=进行插值的二次多项式,则: )()()(x R x P x f += 其中: )2()(! 3) ()(h x h x x f x R --'''=ξ. 求积分公式误差 ? ?-= h h dx x P dx x f f E 3030 )()()( ? --'''=h dx h x h x x f 30 )2()(! 3) (ξ

数值分析参考答案(第四章)

第四章 数值积分与数值微分 1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: 101210121 12120 (1)()()(0)(); (2)()()(0)(); (3)()[(1)2()3()]/3; (4)()[(0)()]/2[(0)()]; h h h h h f x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-?? ?? 解: 求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。 (1)若101(1) ()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1012h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 221123 h h A h A -=+ 从而解得 01 1431313A h A h A h -?=?? ?=?? ?=?? 令3 ()f x x =,则 3()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++= 故 101()()(0)()h h f x dx A f h A f A f h --=-++? 成立。 令4 ()f x x =,则

数值分析习题集及答案

(适合课程《数值方法A 》和《数值方法B 》) 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位 有效数字: ***** 123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: * * * * * * * * 12412324(),(),()/,i x x x ii x x x iii x x ++其中* * * * 1234,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 11783 100 n n Y Y -=- ( n=1,2,…) 计算到100Y .若取783≈27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字(783≈27.982). 8. 当N 充分大时,怎样求 2 11N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设2 12S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加, 而相对误差却减小. 11. 序列{}n y 满足递推关系1101 n n y y -=-(n=1,2,…),若02 1.41y =≈(三位有效数字),计算到10 y 时误差有多大?这个计算过程稳定吗? 12. 计算6 (21)f =-,取 2 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 6 3 11,(322), ,9970 2. (21) (322) --++ 13. 2 ()ln(1)f x x x =- -,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等 价公式 2 2 ln(1)ln(1)x x x x - -=-+ + 计算,求对数时误差有多大? 14. 试用消元法解方程组{ 10 10 12121010; 2. x x x x +=+=假定只用三位数计算,问结果是否可靠? 15. 已知三角形面积 1sin , 2 s ab c = 其中c 为弧度, 02c π << ,且测量a ,b ,c 的误差分别为,,.a b c ???证 明面积的误差s ?满足 . s a b c s a b c ????≤ ++ 第二章 插值法 1. 根据( 2.2)定义的范德蒙行列式,令

数值分析作业答案(第4章) part2

4.6.若用复化梯形公式计算积分1 x I e dx =? , 问区间[0,1]应人多少等分才能使截断误差不超过 51 102 -??若改用复化辛普森公式,要达到同样精度区间[0,1]应分多少等分? 解:采用复化梯形公式时,余项为 2 ()(),(,)12 n b a R f h f a b ηη-''=- ∈ 又 1 x I e dx =? 故 (),(),0, 1.x x f x e f x e a b ''==== 221()()1212 n e R f h f h η''∴= ≤ 若51 ()102 n R f -≤ ?,则 256 10h e -≤? 当对区间[0,1]进行等分时, 1,h n = 故有 212.85n ≥ = 因此,将区间213等分时可以满足误差要求。 采用复化辛普森公式时,余项为 4(4) ()()(),(,)1802 n b a h R f f a b ηη-=- ∈ 又 (),x f x e = (4)4(4)4 (), 1()|()|28802880 x n f x e e R f h f h η∴=∴=-≤ 若51 ()102 n R f -≤ ?,则 451440 10h e -≤ ?

当对区间[0,1]进行等分时 1n h = 故有 1 54 1440(10) 3.71n e ≥?= 因此,将区间8等分时可以满足误差要求。 4.10.试构造高斯型求积公式 )()()(1 11001 x f A x f A dx x f x +≈? 。 解 令公式对32,,,1)(x x x x f =准确成立,得 ??? ?? ? ??? ??=+=+=+=+,72,52, 32,213103012 1020110010A x A x A x A x A x A x A A ) 4()3()2() 1( 由于 1011001100)()(A x x A A x A x A x -++=+, 利用方程(1),方程(2)可化为 3 2 )(21010= -+A x x x (5) 同样,用方程(2)化方程(3),方程(3)化方程(4),分别得 52 )(3211010=-+A x x x x (6) 7 2 )(52121010=-+A x x x x (7) 用方程(5)消去方程(6)中的101)(A x x -,即将101)(A x x -用023 2 x -代替,得 5 2 )32(32100=-+x x x (8) 用方程(6)消去方程(7)中的1101)(A x x x -,即将1101)(A x x x -用03 2 52x -代替,得

数值分析1-4习题及答案

1、 0.1%,要取几位有效数字? ( c ) (a) 2 (b) 3 (c) 4 (d) 5 2、若* 12.30x =是经过四舍五入得到的近似数,则它有几位有效数字? ( c ) (a) 2 (b) 3 (c) 4 (d) 5 3、已知n +1个互异节点(x 0,y 0), (x 1,y 1),…, (x n ,y n )和过这些点的拉格朗日插值基函数l k (x )(k =0,1,2,…,n ),且ω(x )=(x -x 0) (x -x 1)… (x -x n ).则n 阶差商f (x 0,x 1,…, x n )= ( ) (a) ∑=n k k k y x l 0 )( (b) ∑='n k k k k x l y 0)( (c) ∑=n k k k x y 0)(ω (d) ∑='n k k k x y 0)(ω 4、已知由数据(0,0),(0.5,y ),(1,3),(2,2)构造出的三次插值多项式 33()6 P x x y 的 的系数是,则 等于 ( ) (a) -1.5 (b) 1 (c) 5.5 (d) 4.25 5、设(0,1,2,3,4)i x i =为互异结点,()i l x 为拉格朗日插值基函数,则 4 2 () ()i i i x x l x =-∑等于 ( a ) (a) 0 (b) 1 (c) 2 (d) 4 4()[,],()()(),()(),( )(), ' () ' (),22 ()()_________________________f x C a b H x a b a b H a f a H b f b H f H a f a f x H x ∈++====-=设是满足下列插值条件的三次多项式:则插值余项 1、 是以0,1,2为节点的三次样条函数,则b=-2,c=3 2、 已知(1)0,(1)3,(2)4,f f f =-=-=写出()f x 的牛顿插值多项式 2()P x =___2537 623x x +-__,其余项表达式 R(x)=__() (1)(1)(4) [1,4]6 f x x x ξξ'''-+-∈-_______________________ 3、 确定求积公式1 0121 ()(1)(0)'(1)f x dx A f A f A f -≈-++? 中的待定参数,使其代数精度 尽量高,则A 0=_ 29__________, A 1=__169________, A 2=_29 _______,代数精度=__2_________。

数值分析作业思考题汇总

¥ 数值分析思考题1 1、讨论绝对误差(限)、相对误差(限)与有效数字之间的关系。 2、相对误差在什么情况下可以用下式代替 3、查阅何谓问题的“病态性”,并区分与“数值稳定性”的不同点。 4、取 ,计算 ,下列方法中哪种最好为什么(1)(3 3-,(2)(2 7-,(3) ()3 1 3+ ,(4) ()6 1 1 ,(5)99- , 数值实验 数值实验综述:线性代数方程组的解法是一切科学计算的基础与核心问题。求解方法大致可分为直接法和迭代法两大类。直接法——指在没有舍入误差的情况下经过有限次运算可求得方程组的精确解的方法,因此也称为精确法。当系数矩阵是方的、稠密的、无任何特殊结构的中小规模线性方程组时,Gauss消去法是目前最基本和常用的方法。如若系数矩阵具有某种特殊形式,则为了尽可能地减少计算量与存储量,需采用其他专门的方法来求解。 Gauss消去等同于矩阵的三角分解,但它存在潜在的不稳定性,故需要选主元素。对正定对称矩阵,采用平方根方法无需选主元。方程组的性态与方程组的条件数有关,对于病态的方程组必须采用特殊的方法进行求解。 数值计算方法上机题目1 1、实验1. 病态问题 实验目的: 算法有“优”与“劣”之分,问题也有“好”和“坏”之别。所谓坏问题就是问题本身的解对数据变化的比较敏感,反之属于好问题。希望读者通过本实验对此有一个初步的体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 $ r e x x e x x ** * ** - == 141 . ≈)61

数值分析第四版习题及答案

第四版 数值分析习题 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y .(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字. 8. 当N 充分大时,怎样求 2 11N dx x +∞ +? ? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±秒的误差,证明当t 增加时S 的绝对误 差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 ln(ln(x x =- 计算,求对数时误差有多大?

数值分析(第五版)计算实习题第四章作业

第四章: 1、(1):复合梯形 建立m文件: function t=natrapz(fname,a,b,n) h=(b-a)/n; fa=feval(fname,a);fb=feval(fname,b); f=feval(fname,a+h:h:b-h+0.001*h); t=h*(0.5*(fa+fb)+sum(f)); 输入: >> syms x >> f=inline('sqrt(x).*log(x);'); >> natrapz(f,eps,1,10) 输出: ans = -0.417062831779470 输入: >> syms x >> f=inline('sqrt(x).*log(x);'); >> natrapz(f,eps,1,100) 输出: ans = -0.443117908008157 输入: >> syms x >> f=inline('sqrt(x).*log(x);'); >> natrapz(f,eps,1,1000) 输出: ans = -0.444387538997162 复合辛普森 建立m文件: function t=comsimpson(fname,a,b,n)

h=(b-a)/n; fa=feval(fname,a);fb=feval(fname,b); f1=feval(fname,a+h:h:b-h+0.001*h); f2=feval(fname,a+h/2:h:b-h+0.001*h); t=h/6*(fa+fb+2*sum(f1)+4*sum(f2)); 输入: >> syms x >> f=inline('sqrt(x).*log(x);'); >> format long; >>comsimpson(f,eps,1,10) 输出: ans = -0.435297890074689 输入: >>syms x >>f=inline('sqrt(x).*log(x);'); >>comsimpson(f,eps,1,100) 输出: ans = -0.444161178415673 输入: >>syms x >>f=inline('sqrt(x).*log(x);'); >>comsimpson(f,eps,1,1000) 输出: ans = -0.444434117614180 (2)龙贝格 建立m文件: function [RT,R,wugu,h]=Romberg(fun,a,b,wucha,m) %RT是龙贝格积分表 %R是数值积分值 %wugu是误差估计 %h是最小步长 %fun是被积函数 %a b是积分下、上限

郑州大学数值分析重点考察内容及各章习题

《数值分析》 重点考察内容及各章作业答案 学院: 学号: 姓名:

重点考察内容 基本概念(收敛阶,收敛条件,收敛区域等), 简单欧拉法。 第一章基础 掌握:误差的种类,截断误差,舍入误差的来源,有效数字的判断。 了解:误差限,算法及要注意的问题。 第二章插值 掌握:Hermite插值,牛顿插值,差商计算,插值误差估计。 了解:Lagrange插值 第三章数据拟合 掌握:给出几个点求线性拟合曲线。 了解:最小二乘原理 第四章数值积分微分 掌握:梯形公式,Simpson公式,代数精度,Gauss积分,带权Gauss积分公式推导,复化梯形公式推导及算法。 了解:数值微分,积分余项 第五章直接法 掌握:LU分解求线性方程组,运算量 了解:Gauss消去法,LDL,追赶法 第六章迭代法 掌握:Jacobi,Gauss-Seidel迭代格式构造,敛散性分析,向量、矩阵的范数、谱半径 了解:SOR迭代 第七章Nolinear迭代法 掌握:牛顿迭代格式构造,简单迭代法构造、敛散性分析,收敛阶。 了解:二分法,弦截法 第八章ODE解法 掌握:Euler公式构造、收敛阶。 了解:梯形Euler公式、收敛阶,改进Euler公式 题目类型:填空,计算,证明综合题

第一章 误差 1. 科学计算中的误差来源有4个,分别是________,________,________,________。 2. 用Taylor 展开近似计算函数000()()'()()f x f x f x x x ≈+-,这里产生是什么误差? 3. 0.7499作 3 4 的近似值,是______位有效数字,65.380是舍入得到的近似值,有____几位有效数字,相对误差限为_______. 0.0032581是四舍五入得到的近似值,有_______位有效数字. 4. 改变下列表达式,使计算结果比较精确: (1)11,||1121x x x x --++ (2 ||1x (3) 1cos ,0,|| 1.x x x x -≠ (4)sin sin ,αβαβ-≈ 5. 采用下列各式计算61)时,哪个计算效果最好?并说明理由。 (1) (2 )99-3 )6 (3-(4 6. 已知近似数*x 有4位有效数字,求其相对误差限。 上机实验题: 1、利用Taylor 展开公式计算0! k x k x e k ∞ ==∑,编一段小程序,上机用单精度计算x e 的函数 值. 分别取x =1,5,10,20,-1,-5,-10,-15,-20,观察所得结果是否合理,如不合理请分析原因并给出解决方法. 2、已知定积分1 ,0,1,2,,206 n n x I dx n x ==+? ,有如下的递推关系 111 110 0(6)61666 n n n n n x x x x I dx dx I x x n ---+-===++-? ? 可建立两种等价的计算公式 (1) 1016,0.154n n I I I n -= -=取; (2) 12011),0.6n n I nI I n -=-=(取

数值分析习题

习题1 1. 填空题 (1) 为便于算法在计算机上实现,必须将一个数学问题分解为 的 运算; (2) 在数值计算中为避免损失有效数字,尽量避免两个 数作减法运算;为避免 误差的扩大,也尽量避免分母的绝对值 分子的绝对值; (3) 误差有四大来源,数值分析主要处理其中的 和 ; (4) 有效数字越多,相对误差越 ; 2. 用例1.4的算法计算10,迭代3次,计算结果保留4位有效数字. 3. 推导开平方运算的误差限公式,并说明什么情况下结果误差不大于自变量误差. 4. 以下各数都是对准确值进行四舍五入得到的近似数,指出它们的有效数位、误差限和相对误差限. 95123450304051104000003346087510., ., , ., .x x x x x -==?===? 5. 证明1.2.3之定理1.1. 6. 若钢珠的的直径d 的相对误差为1.0%,则它的体积V 的相对误差将为多少。(假定钢珠为标准的球形) 7. 若跑道长的测量有0.1%的误差,对400m 成绩为60s 的运动员的成绩将会带来多大的误差和相对误差. 8. 为使20的近似数相对误差小于0.05%,试问该保留几位有效数字. 9. 一个园柱体的工件,直径d 为10.25±0.25mm,高h 为40.00±1.00mm,则它的体积V 的近似值、误差和相对误差为多少. 10 证明对一元函数运算有 r r xf x f x k x k f x εε'≈= () (())(),() 其中 并求出157f x x x ==()tan ,.时的k 值,从而说明f x x =()tan 在2 x π ≈时是病态问题. 11. 定义多元函数运算 1 1 1,,(),n n i i i i i i S c x c x εε====≤∑∑其中 求出S ε()的表达式,并说明i c 全为正数时,计算是稳定的,i c 有正有负时,误差难以控制. 12. 下列各式应如何改进,使计算更准确:

《数值计算方法》精彩试题集及问题详解1-6 2

《计算方法》期中复习试题 一、填空题: 1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 5、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 6、计算方法主要研究( 截断 )误差和( 舍入 )误差; 7、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为 ( 0.15 ); 11、 两点式高斯型求积公式?1 0d )(x x f ≈(?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精 度为( 5 ); 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式

数值分析第四版习题和答案解析

第四版 数值分析习题 第一章绪论 1.设x>0,x的相对误差为δ,求的误差. 2.设x的相对误差为2%,求的相对误差. 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: 4.利用公式求下列各近似值的误差限: 其中均为第3题所给的数. 5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少 6.设按递推公式 ( n=1,2,…) 计算到.若取≈(五位有效数字),试问计算将有多大误差 7.求方程的两个根,使它至少具有四位有效数字(≈. 8.当N充分大时,怎样求 9.正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝ 10.设假定g是准确的,而对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,而 相对误差却减小. 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大这个计算过程 稳定吗 12.计算,取,利用下列等式计算,哪一个得到的结果最好 13.,求f(30)的值.若开平方用六位函数表,问求对数时误差有多大若改用另一等价公式 计算,求对数时误差有多大 14.试用消元法解方程组假定只用三位数计算,问结果是否可靠 15.已知三角形面积其中c为弧度,,且测量a ,b ,c的误差分别为证明面积的误差满足 第二章插值法 1.根据定义的范德蒙行列式,令 证明是n次多项式,它的根是,且 . 2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的二次插值多项式. 3.

4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数 字,研究用线性插值求cos x 近似值时的总误差界. 5.设,k=0,1,2,3,求. 6.设为互异节点(j=0,1,…,n),求证: i) ii) 7.设且,求证 8.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函 数表的步长应取多少 9.若,求及. 10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数). 11.证明. 12.证明 13.证明 14.若有个不同实根,证明 15.证明阶均差有下列性质: i)若,则; ii)若,则. 16.,求及. 17.证明两点三次埃尔米特插值余项是 并由此求出分段三次埃尔米特插值的误差限. 18.求一个次数不高于4次的多项式,使它满足并由此求出分段三次埃尔米特插值的误差限. 19.试求出一个最高次数不高于4次的函数多项式,以便使它能够满足以下边界条件,,. 20.设,把分为等分,试构造一个台阶形的零次分段插值函数并证明当时,在上一致收敛到. 21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误 差. 22.求在上的分段线性插值函数,并估计误差. 23.求在上的分段埃尔米特插值,并估计误差. i) ii) 25.若,是三次样条函数,证明 i); ii)若,式中为插值节点,且,则. 26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可用式的表达式). 第三章函数逼近与计算 1.(a)利用区间变换推出区间为的伯恩斯坦多项式. (b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误 差做比较. 2.求证: (a)当时,. (b)当时,. 3.在次数不超过6的多项式中,求在的最佳一致逼近多项式.

数值分析习题

第一章 绪论 习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。 1 若误差限为5 105.0-?,那么近似数0.003400有几位有效数字?(有效数字的计算) 2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算) 3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ?有几位有效数字?(有效数字的计算) 4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算) 5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5* =,已知 cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v 2π=的绝对误差限与相对误差 限。(误差限的计算) 6 设x 的相对误差为%a ,求n x y =的相对误差。(函数误差的计算) 7计算球的体积,为了使体积的相对误差限为%1,问度量半径r 时允许的相对误差限为多大?(函数误差的计算) 8 设?-=1 1 dx e x e I x n n ,求证: (1))2,1,0(11 =-=-n nI I n n (2)利用(1)中的公式正向递推计算时误差逐步增大;反向递推计算时误差逐步减小。(计算方法的比较选择)

第二章 插值法 习题主要考察点:拉格朗日插值法的构造,均差的计算,牛顿插值和埃尔米特插值构造,插值余项的计算和应用。 1 已知1)2(,1)1(,2)1(===-f f f ,求)(x f 的拉氏插值多项式。(拉格朗日插值) 2 已知9,4,10=== x x x y ,用线性插值求7的近似值。(拉格朗日线性插值) 3 若),...1,0(n j x j =为互异节点,且有 ) ())(())(()())(())(()(11101110n j j j j j j j n j j j x x x x x x x x x x x x x x x x x x x x x l ----------= +-+- 试证明 ),...1,0()(0 n k x x l x n j k j k j =≡∑=。 (拉格朗日插值基函数的性质) 4 已知352274.036.0sin ,333487.034.0sin ,314567.032.0sin ===,用抛物线插值计算3367.0sin 的值并估计截断误差。(拉格朗日二次插值) 5 用余弦函数x cos 在00=x ,4 1π =x ,2 2π = x 三个节点处的值,写出二次拉格朗日插值 多项式, 并近似计算6 cos π 及其绝对误差与相对误差,且与误差余项估计值比较。(拉格朗 日二次插值) 6 已知函数值212)6(,82)4(,46)3(,10)1(,6)0(=====f f f f f ,求函数的四阶均差 ]6,4,3,1,0[f 和二阶均差]3,1,4[f 。(均差的计算) 7 设)())(()(10n x x x x x x x f ---= 求][1,0p x x x f 之值,其中1+≤n p ,而节点 )1,1,0(+=n i x i 互异。(均差的计算) 8 如下函数值表 建立不超过三次的牛顿插值多项式。(牛顿插值多项式的构造) 9求一个次数小于等于三次多项式)(x p ,满足如下插值条件:2)1(=p ,4)2(=p , 3)2(='p ,12)3(=p 。(插值多项式的构造)

数值计算第四章课后习题答案

()()()()()()()()()收敛较慢 代入上式得:将解: 收敛速度次并分析该迭代公式的迭代的根求方程 取试用迭代公式∴≠<<*'*+++-='∴+*+*=*∴=+?+?? ? ??===++= =∴++= ==-++=++=++014.01022220||10 2202613381013202132020 132010212010220. 2.0 20102110220 4.1222 222212012123021x x x x x x x x x x x x x x x x x x x x x x x x k k k k k k k ?????? )))()()()[]()()[])49998.0cos 215.0cos 2 1,022,00cos 2 102 12,0210,2,0.cos 2 10sin 2 11,cos 2 113cos 2 12; 1.0cos 2 12.4120101==== ==->-=<-=-=>+='-===-+x x x x x x x f f x x x f x x f x x x f x x x x k k 则 取上有一个根在所以上在为单调递增函数故则令解: 位有效数字求出这些根,精确到用迭代公式分析该方程有几个根给定方程ππππ

500 .0105.0102.0||3412≈*?

应用数值分析第四版第一章课后作业答案

第一章 1、 在下列各对数中,x 是精确值 a 的近似值。 3 .14,7/100)4(143 .0,7/1)2(0031 .0,1000/)3(1.3,)1(========x a x a x a x a ππ 试估计x 的绝对误差和相对误差。 解:(1)0132.00416 .01.3≈= ≈-= -=a e e x a e r π (2)0011.00143 .0143.07/1≈= ≈-=-=a e e x a e r (3)0127.000004 .00031.01000/≈= ≈-=-=a e e x a e r π (4)001.00143 .03.147/100≈= ≈-=-=a e e x a e r 2. 已知四个数:x 1=26.3,x 2=0.0250, x 3= 134.25,x 4=0.001。试估计各近似数的有效位数和误差限,并估计运算μ1= x 1 x 2 x 3和μ1= x 3 x 4 /x 1的相对误差限。 解:x 1=26.3 n=3 δx 1=0.05 δr x 1=δx 1/∣x 1∣=0.19011×10-2 x 2=0.0250 n=3 δx 2=0.00005 δr x 2=δx 2/∣x 2∣=0.2×10-2 x 3= 134.25 n=5 δx 3=0.005 δr x 3=δx 3/∣x 3∣=0.372×10 -4 x 4=0.001 n=1 δx 4=0.0005 δr x 4=δx 4/∣x 4∣=0.5 由公式:e r (μ)= e (μ)/∣μ∣≦1/∣μ∣Σn i=1∣?f/?x i ∣δx i e r (μ1)≦1/∣μ1∣[x 2 x 3δx 1+ x 1 x 3δx 2 +x 1 x 2δx 3] =0.34468/88.269275 =0.0039049 e r (μ2)≦1/∣μ2∣[x 3 x 4/ x 21δx 1+ x 4/ x 1δx 3 + x 3 / x 1δx 4] =0.501937 3、设精确数a>0,x 是a的近似值,x 的相对误差限是0.2,求㏑x 的相对误差限。 解:设=()u f x , ()()()()() ()||||||||||()||()|| | |()||()||||r r r x e u df x e x df x e x e u u dx u dx u x df x x df x x e x x dx u dx u δ= ≈==≤ ()||10.2 (())| |()||ln ln ln r r r r df x x x x f x x x dx u x x x x δδδδ==??==

数值分析习题集及答案Word版

数值分析习题集 (适合课程《数值方法A 》和《数值方法B 》) 长沙理工大学 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字27.982). 8. 当N 充分大时,怎样求2 1 1N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对 误差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算6 1)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?

相关文档
最新文档