移相器的设计与测试

混频器的设计与仿真知识讲解

混频器的设计与仿真

目录 前言 0 工程概况 0 正文 (1) 3.1设计的目的及意义 (1) 3.2 目标及总体方案 (1) 3.2.1课程设计的要求 (1) 3.2.2 混频电路的基本组成模型及主要技术特点 (1) 3.2.3 混频电路的组成模型及频谱分析 (1) 3.3工具的选择—Multiusim 10 (3) 3.3.1 Multiusim 10 简介 (3) 3.3.2 Multisim 10的特点 (3) 3.4 混频器 (3) 3.4.1混频器的简介 (3) 3.4.2混频器电路主要技术指标 (4) 3.5 混频器的分类 (4) 3.6详细设计 (5) 3.6.1混频总电路图 (5) 3.6.2 选频、放大电路 (5) 3.6.3 仿真结果 (6) 3.7调试分析 (9) 致谢 (9) 参考文献 (10) 附录元件汇总表 (10)

混频器的设计与仿真 前言 混频器在通信工程和无线电技术中,应用非常广泛,在调制系统中,输入的基带信号都要经过频率的转换变成高频已调信号。在解调过程中,接收的已调高频信号也要经过频率的转换,变成对应的中频信号。特别是在超外差式接收机中,混频器应用较为广泛,如AM 广播接收机将已调幅信号535KHZ-一1605KHZ要变成为465KHZ中频信号,电视接收机将已调48.5M一870M 的图像信号要变成38MHZ的中频图像信号。移动通信中一次中频和二次中频等。在发射机中,为了提高发射频率的稳定度,采用多级式发射机。用一个频率较低石英晶体振荡器作为主振荡器,产生一个频率非常稳定的主振荡信号,然后经过频率的加、减、乘、除运算变换成射频,所以必须使用混频电路,又如电视差转机收发频道的转换,卫星通讯中上行、下行频率的变换等,都必须采用混频器。由此可见,混频电路是应用电子技术和无线电专业必须掌握的关键电路。 工程概况 混频的用途是广泛的,它一般用在接收机的前端。除了在各类超外差接收机中应用外在频率合成器中为了产生各波道的载波振荡,也需要用混频器来进行频率变换及组合在多电路微波通信中,微波中继站的接收机把微波频率变换为中频,在中频上进行放大,取得足够的增益后,在利用混频器把中频变换为微波频率,转发至下一站此外,在测量仪器中如外差频率计,微伏计等也都采用混频器。因此,做有关混频电路的课题设计很能检验对高频电子线路的掌握程度;通过混频器设计,可以巩固已学的高频理论知识。混频器是频谱线性搬移电路,能够将输入的两路信号进行混频。 具体原理框图如图2-1所示。

简单低通滤波器设计及matlab仿真

东北大学 研究生考试试卷 考试科目: 课程编号: 阅卷人: 考试日期: 姓名:xl 学号: 注意事项 1.考前研究生将上述项目填写清楚. 2.字迹要清楚,保持卷面清洁. 3.交卷时请将本试卷和题签一起上交. 4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交研究生院培养办公室, 专业课成绩单与试卷交各学院,各学院把成绩单交研究生院培养办公室. 东北大学研究生院培养办公室

数字滤波器设计 技术指标: 通带最大衰减: =3dB , 通带边界频率: =100Hz 阻带最小衰减: =20dB 阻带边界频率: =200Hz 采样频率:Fs=200Hz 目标: 1、根据性能指标设计一个巴特沃斯低通模拟滤波器。 2、通过双线性变换将该模拟滤波器转变为数字滤波器。 原理: 一、模拟滤波器设计 每一个滤波器的频率范围将直接取决于应用目的,因此必然是千差万别。为了使设计规范化,需要将滤波器的频率参数作归一化处理。设所给的实际频 率为Ω(或f ),归一化后的频率为λ,对低通模拟滤波器令λ=p ΩΩ/,则1 =p λ, p s s ΩΩ=/λ。令归一化复数变量为p ,λj p =,则p p s j j p Ω=ΩΩ==//λ。所以巴 特沃思模拟低通滤波器的设计可按以下三个步骤来进行。 (1)将实际频率Ω规一化 (2)求Ωc 和N 11010/2-=P C α s p s N λααlg 1 10 110lg 10 /10/--= 这样Ωc 和N 可求。 p x fp s x s f

根据滤波器设计要求=3dB ,则C =1,这样巴特沃思滤波器的设计就只剩一个参数N ,这时 N p N j G 222 )/(11 11)(ΩΩ+= += λλ (3)确定)(s G 因为λj p =,根据上面公式有 N N N p j p p G p G 22)1(11 )/(11)()(-+= += - 由 0)1(12=-+N N p 解得 )221 2exp(πN N k j p k -+=,k =1,2, (2) 这样可得 1 )21 2cos(21 ) )((1 )(21+-+-= --= -+πN N k p p p p p p p G k N k k 求得)(p G 后,用p s Ω/代替变量p ,即得实际需要得)(s G 。 二、双线性变换法 双线性变换法是将s 平面压缩变换到某一中介1s 平面的一条横带里,再通过标准变换关系)*1exp(T s z =将此带变换到整个z 平面上去,这样就使s 平面与z 平面之间建立一一对应的单值关系,消除了多值变换性。 为了将s 平面的Ωj 轴压缩到1s 平面的1Ωj 轴上的pi -到pi 一段上,可以通过以下的正切变换来实现: )21 tan(21T T Ω= Ω 这样当1Ω由T pi -经0变化到T pi 时,Ω由∞-经过0变化到∞+,也映射到了整个Ωj 轴。将这个关系延拓到整个s 平面和1s 平面,则可以得到

学士学位论文—-模拟移相电路的设计 通信类(设计)

模拟移相电路的设计 摘要 目前,随着航空、航天技术的发展以及军事上的需要,对相位的测量提出了一些新的要求,如更高的测量精度及更高的分辨能力。测量相位中最重要的部件之一就是移相器。另外,移相器是相控阵雷达中的关键部件,其性能的优劣直接影响相控雷达系统的性能。本次课题源于航空、航天技术的发展以及军事上的需要及地面雷达接收系统的需要,设计了一个模拟移相网络。 本文设计的模拟移相网络的基本要求是:一路输入信号经过模拟移相电路输出两路信号:一路是原信号经过电压跟随器输出的信号,另外一路是经过移相网络输出的信号(要求是在不同频率下输出相位连续可调的信号)。 按任务要求,在输入信号频率为5kHz、50kHz、、100kHz上,设计相移范围从–60度到+60度连续变化,并且输出电压幅度为5V。我们总体讨论了设计方案,使用RC阻容移相网络以及集成运放、电压跟随器等元器件设计模拟移相网络。并且提出了改进移相器性能的措施,对移相器部件进行仿真测试。 关键词:模拟移相器RC阻容移相网络集成运放电压跟随器

目录第一章引言 1.1课题研究背景 1.2模拟移相器的发展状况 1.3本课题的主要内容 第二章移相网络的基本原理 2.1基本移相原理 2.2移相网络的方案选取 2.3移相网络的性能指标 2.4移相网络的参数设计 第三章模拟移相网络的仿真优化 3.1Multisim仿真软件的介绍 3.2在Multisim环境下的仿真结果 第四章结论 第五章附图

第一章引言 1.1课题研究背景 电磁波在传输时,不仅幅度会发生变化,同时相位也要发生变化。衰减和 相移是代表同一复参数的幅度和相角的变化。但是由于历史发展的原因,衰减 测量的重要性较早的被人们认识并解决,所以常把衰减作为一个单项指标和测 量任务来看待。从上个世纪六十年代开始,随着对人造卫星、洲际导弹、航天 飞机等各种飞行器及对其他的目标进行监控的需求日益增强,并且为了在复杂 的环境中提取更多的信息,出现了控阵天线及加速器等较新技术,相移的测量(即相位测量)则迟至了这些新技术出现时才被重视。 移相器一般用于雷达系统、通讯系统、微波仪器和测量系统等方面,其中,最主要的是用于相控阵雷达和智能天线系统中。目前,随着航空、航天技术的 发展以及军事上的需要,对相位的测量提出了一些新要求如更高的测量精度及 更高的分辨能力。本次课题源于航空、航天技术的发展以及军事上的需要及地 面雷达接收系统需要存在相位差的两个同频信号,我们设计了一个移相网络。 一般地说,依据不同的定义方法移相器可分为不同的种类。根据控制方式的不同,移相器可分为模拟式移相器和数字式移相器。数字移相器相移量只能在一定范围内取某些特定值,数字移相器虽然可以用数字控制电路,与外电路的接口比较容易,但是模拟移相器可以实现360度范围内的无极扫描,有更高的移相精度,它多用在系统相位自动调整的场合和移相精度要求特别高的场合。而模拟式移相器是一种电压控制连续线性移相的微波器件移相器,它可以实现相位线性连续的变化。所以我们这里只设计模拟式移相器。它的技术指标主要有:工作频带、相移量、相移精度、插入损耗、插入损耗波动、电压驻波比、功率容量、移相器开关时间等。 当前微波移相器广泛应用,微波电控器件利用参数可电调的材料和器件组成的控制微波信号幅度或相位的器件。可电调的材料和器件主要有半导体二极管(如PIN管﹑变容管和肖特基管等)和铁氧体材料。控制信号幅度的器件有衰减器﹑调幅器﹑开关器和限幅器等﹔控制信号相位的有移相器和调相器等。PIN管具有不同的正反向特性﹐当它被反向偏置时可等效为小电容而近似开路﹐而在正向偏置时则可等效为可变电阻﹐若偏压增大﹐其阻值则减小。PIN管衰减器就是

测试原理及传感器

中文提纲: 与其它类似仪器有什么不同 a. 地球上用不用这样的仪器?有什么区别? b. 与之前的火星车比较 c.功能、原理、性能指标等 (a)地球上基本不用这种探测仪,因为地球表面上已经证实有水,即使是干枯的沙漠地表也存在大量水分子。而DAN主要是探测地表2米以内的土壤和矿物质 是否存在水分子,所以这在地球上是不需要用到这种高科技而又昂贵的探测设 备。 (b)关于火星上水的探测主要有:(1)2005年8月12日,NASA发射的火星侦查轨道器(Mars Reconnaissance Orbiter, MRO);(2)2007年8月4日, 欧空局发射凤凰号火星登陆器(the Phoenix Mars Lander);(3)2012年 8月6日着陆的美国(NASA)的“好奇”号火星车。 (c)原理,功能,性能的比较: 火星侦查轨道器(MRO)探测水存在的原理是:利用装备在其上的高分辨率成像科学设备(HiRISE),背景摄影机(CTX),火星彩色成像机(MARCI) 和浅地层雷达(SHARAD)来探测火星上水资源。MRO的目标包括确定液态 水是否曾经在火星表面长时间存在——其他的任务已经收集到了流淌的液态 水的证据,但是这样的液态水是否存在了足够长时间以令生命有机会得以演化 呢? 凤凰号火星登陆器(the Phoenix Mars Lander)探测原理是:凤凰号用其机械臂铲了一些土送入仪器,在一份样品的最初加热周期中,凤凰号携带的热蒸 发分析仪(TEGA)探测到了水蒸气。当凤凰号探测器的一条支架被摄入影像 时,科学家发现似乎上面有随时间增长的水珠——液态水的水珠!如果凤凰号 发现了液态水,它将推翻长期存在的理论——原有理论认为在火星稀薄的大气 层和极寒的温度下,不会有液态水存在于地表。 好奇号(Curiosity)上装备的动态中子反照率探测器。它安装在“好奇” 号主车身背部附近,用于寻找火星地下的水冰以及晶体结构中含有水分子的矿 物。这台仪器可向火星地表发射中子束,然后记录中子束的散射速度。氢原子 可以延缓中子的速度,如果大量中子速度迟缓,便说明地下可能存在水或者冰。 这一由俄罗斯航天署提供的探测器能够发现火星地表下50厘米以内的氢原子。 NASA的下一个火星任务将会是MAVEN轨道器,计划2013年发射。 MAVEN的全称是The Mars Atmosphere and Volatile EvolutioN,将会是第 一个着力于研究火星高层大气的轨道器。MAVEN将会帮助科学家理解太阳 风与火星大气层的相互作用,以及火星大气的损失是如何随时间影响火星 的气候的。理解火星是如何损失其大气,也将帮助确定该行星是怎样失去水 的——这将成为搜寻其曾存生命迹象的必要线索。

移相电路原理及简单设计综述

移相电路总结(multisim10仿真)2012.7.2 原来是导师分配的一个小任务,由于书中没有现在的电路,故查找各方面资料,发现资料繁多,故自己把认为重要的地方写下来,如有不足之处请多多指正。 1、 移相器:能够对波的相位进行调整的仪器 2、 原理 接于电路中的电容和电感均有移相功能,电容的端电压落后于电流90度,电感的端电压超前于电流90度,这就是电容电感移相的结果; 先说电容移相,电容一通电,电路就给电容充电,一开始瞬间充电的电流为最大值,电压趋于0,随着电容充电量增加,电流渐而变小,电压渐而增加,至电容充电结束时,电容充电电流趋于0,电容端电压为电路的最大值,这样就完成了一个充电周期,如果取电容的端电压作为输出,即可得到一个滞后于电流90度的称移相电压; 电感因为有自感自动势总是阻碍电路中变量变化的特性,移相情形正好与电容相反,一接通电路,一个周期开始时电感端电压最大,电流最小,一个周期结束时,端电压最小,电流量大,得到的是一个电压超前90度的移相效果; 3、 基本原理 (1)、积分电路可用作移相电路 (2)RC 移相电路原理 其中第一个图 此时,R:0→∞ ,则φ: 其中第二个图 此时,R:0→∞ ,则φ: 而为了让输出电压有效值与输入电压有效值相等 C C u i u o R R u i u o φU R U C U I 图1 简单的RC 移相

1 U 2 U + _ R R c d +_a C C 图2 幅值相等 . ..2cb db U U U =- (111) 1 1111R j RC j C U U U j RC R R j C j C ωωωωω-=-=+++ 212 1()2arctan 1() RC U RC RC ωωω+= ∠-+ 其中 2211 2 1()1() RC U U U RC ωω+= =+ 22arctan()RC ?ω=- 4、 改进后的移相电路 一般将RC 与运放联系起来组成有源的移相电路。 u i u o R 1 C R R 2 u i u o R 1 C R R 2 图3 0~90°移相 图4 270°~360°移相

ADS射频电路课程设计——混频器设计与仿真

混频器的设计与仿真 设计题目:混频器的设计与仿真 学生姓名: 学院: 专业: 指导老师: 学号: 日期: 2011年 12 月 20 日

目录 一、射频电路与ADS概述 (3) 1、射频电路概述 (3) 2、ADS概述 (3) 二、混频器的设计 (7) 1.混频器的基本原理 (7) 2、混频器的技术指标 (9) 三、混频器的设计 (9) 1、3 D B定向耦合器的设计 (9) 1.1、建立工程 (9) 1.2、搭建电路原理图 (10) 1.3、设置微带线参数 (11) 1.4、耦合器的S参数仿真 (12) 2、完整混频器电路设计 (17) 3、低通滤波器的设计................................... 2错误!未定义书签。 四、混频器性能仿真 (23) 1、混频器功能仿真 (23) 1.1、仿真原理图的建立 (23) 1.2功能仿真 (25) 2、本振功率的选择 (27) 3、混频器的三阶交调点分析 (28) 3.1、三阶交调点的测量 (28) 3.2、三阶交调点与本振功率的关系 (31) 4、混频器的输入驻波比仿真 (31) 五、设计总结 (33)

一、 射频电路与ADS 概述 1、 射频电路概述 射频是指超高频率的无线电波,对于工作频率较高的电路,人们经常称为“高频电路”或“射频(RF )电路”或“微波电路”等等。 工程上通常是指工作频段的波长在10m ~ 1mm 或频率在30MHz ~ 300GHz 之间的电路。此外,有时还含有亚毫米波( 1mm ~0.1mm 或300GHz ~ 3000GHz )等。 一方面,随着频率升高到射频频段,通常在分析DC 和低频电路时乐于采用的基尔霍夫定律、欧姆定律以及电压电流的分析工具,已不精确或不再适用。分布参数的影响不容忽略。另一方面,纯正采用电磁场理论方法,尽管可以很好的全波分析和计及分布参数等的影响,但很难触及高频放大器、VCO 、混频器等实用内容。所以,射频电路设计与应用已成为信息技术发展的关键技术之一。 2、ADS 概述 ADS 电子设计自动化(EDA 软件全称为 Advanced Design System ,是美国安捷伦(Agilent )公司所生产拥有的电子设计自动化软件;ADS 功能十分强大,包含时域电路仿真 (SPICE-like Simulation)、频域电路仿真 (Harmonic Balance 、Linear Analysis)、三维电磁仿真 (EM Simulation)、通信系统仿真(Communication System Simulation)和数字信号处理仿真设计(DSP );支持射频和系统设计工程师开发所有类型的 RF 设计,从简单到复杂,从离散的射频/微波模块到用于通信和航天/国防的集成MMIC ,是当今国内各大学和研究所使用最多的微波/射频电路和通信系统仿真软件软件。 2.1 ADS 的仿真设计方法 ADS 软件可以提供电路设计者进行模拟、射频与微波等电路和通信系统设计,其提供的仿真分析方法大致可以分为:时域仿真、频域仿真、系统仿真和电磁仿真;ADS 仿真分析方法具体介绍如下: 2.1.1 高频SPICE 分析和卷积分析(Convolution ) 高频SPICE 分析方法提供如SPICE 仿真器般的瞬态分析,可分析线性与非线性电路的瞬态效应。在SPICE 仿真器中,无法直接使用的频域分析模型,如微带线带状线等,可于高频SPICE 仿真器中直接使用,因为在仿真时可于高频SPICE )()/(1038Hz f s m f c ?==λ

传感器测试实验资料报告材料

实验一 直流激励时霍尔传感器位移特性实验 一、 实验目的: 了解霍尔式传感器原理与应用。 二、基本原理: 金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场和电流的方向上将产生电动势,这种物理现象称为霍尔效应。具有这种效应的元件成为霍尔元件,根据霍尔效应,霍尔电势U H =K H IB ,当保持霍尔元件的控制电流恒定,而使霍尔元件在一个均匀梯度的磁场中沿水平方向移动,则输出的霍尔电动势为kx U H ,式中k —位移传感器的灵敏度。这样它就可以用来测量位移。霍尔电动势的极性表示了元件的方向。磁场梯度越大,灵敏度越高;磁场梯度越均匀,输出线性度就越好。 三、需用器件与单元: 霍尔传感器实验模板、霍尔传感器、±15V 直流电源、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器安装在霍尔传感器实验模块上,将传感器引线插头插入实验模板的插座中,实验板的连接线按图9-1进行。1、3为电源±5V , 2、4为输出。 2、开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。 图9-1 直流激励时霍尔传感器位移实验接线图 3、测微头往轴向方向推进,每转动0.2mm 记下一个读数,直到读数近似不变,将读数填入表9-1。 表9-1 X (mm ) V(mv)

作出V-X曲线,计算不同线性围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V,否则将可能烧毁霍尔元件。 六、思考题: 本实验中霍尔元件位移的线性度实际上反映的时什么量的变化? 七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。

移相器设计

移相器的设计 学生姓名: 学生学号: ________ 院(系): ____________ 年级专业: _______________ 指导教师: _____ 二〇一二年十二月 1

目录 移相器的设计 (3) 第1章方案设计与论证 (3) 1.1无源移相器 (3) 1.2方案论证 (4) 第2章理论计算 (4) 2.1原理分析 (4) 2.2电路参数设计 (7) 第3章原理电路设计 (7) 3.1低端电路图设计 (7) 3.2高端电路图设计 (8) 3.3可调电路图设计 (8) 第4章设计仿真 (8) 4.1仿真软件使用 (9) 4.2电路仿真 (9) 4.3数据记录 (14) 第5章结果分析 (14) 5.1结论分析 (14) 5.2设计工作评估 (14) 5.3体会 (14) 2

移相器的设计 第1章方案设计与论证1 常见移相器 1.1 无源移相器 1.1.1 rc 50%50% 改变阻值就可以改变阻抗,阻抗为容性。 1.1.2 rl 50%50% 改变阻值就可以改变阻抗,阻抗为感性。 1.1.3 rlc 50% 50% 改变任意元件都可以改变阻抗,其阻抗角范围 很大,阻抗即可以是感性,也可以是容性。 1.1.4 lc 50%改变任意元件都可以改变阻抗,阻抗角只能是90度的倍数。 1.1.5 桥式RC 50%可以不改变有效值,阻抗角为0~-180,为容性。改变两电容容值即可改变阻抗角。 1.1.6 桥式RL 50%可以不改变有效值,阻抗角为0~180度,为感性。 3

4 1.2 方案论证 1.2.1 比较 1.1.1和1.1.2都可以改变相位差,但同时也改变了有效值。1.1.3跟前2个功能一样,但结构复杂。1.1.4只能改变90度的相位,对于90度以内的,它无能为力,也可以改变有效值。1.1.5和1.1.6都不改变有效值,相位变化范围大。 1.2.2 确定 本实验采用1.1.5方案,因为它的相位变化范围大,且不改变有效值。 第2章 理论计算 2.1 原理分析 线性时不变网络在正弦信号激励下,其响应电压、电流是与激励信号同频率的正弦量,响应与频率的关系,即为频率特性。它可用相量形式的网络函数来表示。在电气工程与电子工程中,往往需要在某确定频率正弦激励信号作用下,获得有一定幅值、输出电压相对于输入电压的相位差在一定范围内连续可调的响应(输出)信号。这可通过调节电路元件参数来实现,通常是采用RC 移相网络来实现的。 图8.1所示所示RC 串联电路,设输入正弦信号,其相量. 0110U U V =∠ ,则输出信号电 压: . . 211arctan 1R U U Rc R j c ωω= = + 其中输出电压有效值U2为: 2U = 输出电压的相位为: 21arctan Rc ?ω=∠ 由上两式可见,当信号源角频率一定时,输出电压的有效值与相位均随电路元件参数的变化而不同。 若电容C 为一定值,则有,如果R 从零至无穷大变化,相位从090到00变化。 1 U 2 U _ 2 U 1 U ? 图8.1 RC 串联电路及其相量图 另一种RC 串联电路如图8.2所示。

FPGA_ASIC-基于FPGA的正交数字混频器的设计与验证

基于FPGA的正交数字混频器的设计与验证 摘 要:本文研究了用DDS加乘法器实现正交数字混频器的设计及其完整的验证方法,用DDS产生的正/余弦正交本振序列与模拟信号通过A/D采样数字化后的数字序列相乘,再通过数字低通滤波实现数字混频。其中DDS采用正弦和余弦波形幅值存储功能依靠片内EAB 实现,省去了片外ROM,符合片上系统(SoC)的思想;用MATLAB软件增强QUARTUS的仿真功能,得到的仿真结果完整而且直观。 关键词:FPGA;NCO;DDS;MATLAB 中图分类号:TN773 Design and Certification of Quadrature NCO Based on FPGA Abstrct: The paper mainly studies the design and certification of quadrature NCO realized by DDS and multiplication based on FPGA, sin and cos sequences are produced by DDS, and the two output sequences then multiplicate with the input digital sequence, after by LPF we can get the results of quadrature NCO. in which, the wave amplitude are stored in memory of on-chip EAB. The emulational function of QUARTUS are enganced by MATLAB, and the result is rounded and intuitionistic. Key Words: FPGA;NCO;DDS;MATLAB 1 概述 数字混频器是数字通讯中调制解调单元必不可少的部分,同时也是各种数字频率合成器和数字信号发生器的核心。随着数字通信技术的发展,对传送数据的精度和速率要求越来越高。如何得到可数字的高精度的高频载波信号是实现高速数字通信系统必须解决的问题,利用FPGA(现场可编程逻辑门阵列)实现数字混频具有设计灵活、精确度高、频率高和稳定性好等优点,可以产生各种调制信号,广泛应用于通信、遥测、电子对抗和仪表工业等领域。 数字混频可采用CORDIC加累加器或DDS加乘法器实现,由于DDS加乘法器实现比较简捷因此得到普遍应用, DDS产生正/余弦正交本振序列与模拟信号通过A/D采样数字化后的数字序列相乘,再通过数字低通滤波实现数字混频。 2 DDS的实现 2.1 DDS的原理与设计 DDS的作用是产生正交的正弦和余弦样本。正(余)弦样本可以用实时计算的方法产生,但这只适用于信号采样频率很低的情况。在软件无线电超高速信号采样频率的情况下,用实时计算的方法实现比较困难。此时,产生正弦波样本的最有效、最简便的方法就是查表法,即事先根据各个正弦波相位计算好相位的正弦值,并按相位角度作为地址存储该相位的正弦值数据,因此,DDS采用图1所示的顶层电路。其基本功能包括:接收频率控制字FSW进行相位累加;以相位累加器的输出为地址,对存有正 (余) 弦幅度值的存储器进行寻址。输出的离散幅度码即为DDS的输出结果,用查表法实现DDS的性能指标取决于查表的深度和宽度,即取决于表示相位数据的位数和表示正弦值数据的位数。 假设存储器有1024个波形数据,系统时钟频率FCLK为1.024MHZ,相位累加器字长N=10:当频率字FSW=1,在系统时钟作用下,相位累加器累加1024个系统时钟后溢出,即经过1024个系统时钟输出波形循环一周,系统输出频率FOUT=FCLK/1024=1KHZ。当频率字FSW=2,相位累加器累加512个系统时钟后溢出,即经过512个系统时钟输出波形循环一周,系统输出频率 FOUT=FCLK/512=2KHZ。可见,输出频率FOUT与系统时钟频率FCLK关系为FOUT=FSW*FCLK/2N,从存储器中读出数据的过程是对存储器所存储波形的再次采样,一个周期查表的点数即为采样点数,根据奈奎斯特定理,每个周期至少采样2点才能重构波形,这样理论上最大输出频率

混频器设计

混频器设计 简介 无线收发机射频前端在本质上主要完成频率变换的功能,接收机射频前端将 接收到的射频信号装换成基带信号,而发射机射频前端将要发射的基带信号转换成射频信号,频率转换功能就是由混频器完成的。 本文设计应用于无线传感器网络(Wireless Sensor Network,简称WSN)的混频器,无线传感器网络是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳的自组织网络系统,其目的是协作的感知、采集和处理网络覆盖区域中感知对象的信息,并发送给观察者。这就要求所设计的混频器具有很低的功耗。同时,混频器是一种非线性电路,是接收机中输入射频信号最强的模块,这就对混频器的线性度提出了严格的要求。而混频过程通常会引入很大的噪声,考虑到LNA 的增益有限,混频器噪声也是要考虑的关键指标。由于所设计的接收机采用的是低中频的结构,中频频率只有2MHz,所以混频器的隔离度也是关键的指标。 结构选择及原理分析 结构选择 本接收机采用的结构为低中频结构,中频频率只有2MHz,LO 信号泄漏到RF 端口可能造成自混频及信号阻塞等问题。LO 信号泄漏到IF 端口,会对中频信号形成阻塞,同时LO 的噪声也将提高整体的噪声系数。而RF 信号馈通到LO端会造成自混频现象。双平衡的吉尔伯特混频器具有很好的隔离度,故本设计采用该结构。 本设计中频频率很低,开关对噪声(包括热噪声和1/ 噪声)是限制混频器噪声性能的主要因素,可以在不影响驱动级偏置电流的情况下减小流过开关对的偏置电流来减小混频器的噪声系数。可以通过在开关对的源极注入一个固定的偏置电流来实现。 线性度是混频器的一个重要指标,通常可以采用在驱动级晶体管的源极串一个无源元件形成串联反馈来提高驱动级的线性度。电阻作源简并元件会引入热噪声,而电阻本身会产生压降。电感和电容作源简并元件不会引入额外的噪声,而且对高频谐波成分和交调成分具有一定的抑制作用。因此通常选择电感作为源简并元件。但是本设计并没有采用结构,考虑到本设计的偏置电流很低,转换增益低,源简并技术将进一步降低转换增益,同时电感占用很大的芯片面积,不利于降低成本,故不可采用。根据Zigbee 协议,WSN 接受信号范围为-85 -20dBm,为了达到系统的线性度的要求,可以在低噪放级采用可调结构,这样使输入混频器的最大信号为-20dBm,降低了对混频器线性度的要求,有助于降低整个系统的功耗,但增加了LNA 的设计难度。 混频器的负载通常有三种形式:电阻作负载、晶体管作负载和LC 并联谐振电路作负载。晶体管作负载会引入非线性,而LC 并联谐振电路作负载虽具有很多的优势,但电感占用的芯片面积很大,不宜采用。电阻作负载不会引入非线性,同时具有很宽的带宽,但电阻上会引入直流压降,为了不使开关对和驱动级中的晶体管离开饱和区,电阻的取值不能太大,考虑到转换增益,电阻的取值将需要特别注意。而且这种负载不具有滤波的特性,因此不能衰减混频过程中产生的毛刺以及LO-IF、RF-IF 馈通成分。所以,本设计采用一个电容与电阻并联组成一个低通滤波网络来滤除高频成分。 综上所述,本设计所采用的结构如图4.1 所示。

微带低通滤波器的设计与仿真

微带低通滤波器的设计与仿真 分类: 电路设计 嘿嘿,学完微波技术与天线,老师要求我们设计一个微带元器件,可以代替实验室里的元器件,小弟不才,只设计了一个低通滤波 器。现把它放到网上,以供大家参考。 带低通滤波器的设计 一、题目 第三题:低通滤波器的设计 f < 800MHz ;通带插入损耗 ;带外 100MHz 损耗 ;特性阻抗 Z0=50 Ohm 。 二、设计过程 1、参数确定:设计一个微带低通滤波器,其技术参数为 f < 800MHz ;通带插入损耗;带外100MHz 损耗;特性阻抗Z0=50 Ohm 。 介质材料:介电常数 £r = 2.65,板厚 1mm 。 2、设计方法:用高、底阻抗线实现滤波器的设计,高阻抗线可以等效为串联电感,低阻抗线可以等效为并联电容,计算各阻抗线的 宽度及长度,确保各段长度均小于 X /8(入为带内波长)。 3、设计过程: (1)确定原型滤波器:选择切比雪夫滤波器, ?s = fs/fc = 1.82 , ?s -1 = 0.82及Lr = 0.2dB , Ls >= 30,查表得N=5,原型滤波器的归 一化元件参数值如下: g1 = g5 = 1 .3394, g2 = g4 = 1.3370,g3 = 2.1660,gL= 1 .0000。 该滤波器的电路图如图 1 所示: O H 技术参数: 仿真软件: HFSS 、 ADS 或 IE3D 介质材料: 介电常数 £ r = 2.65板厚1mm

(2)计算各元件的真实值:终端特性阻抗为Z0=50?,则有 C1 = C5 =g1/(2*pi*f0*Z0) = 1.3394/(2*3.1416*8*10^8*50) = 5.3293pF , C3 = g3/(2*pi*f0*Z0) = 2.1660/(2*3.1416*8*10^8*50)= 8.6182pF , L2 = L4 = Z0*g2/(2* pi*f0) = 50*1.3370/(2*3.1416*8*10^8) = 13.2994nH。 (3)计算微带低通滤波器的实际尺寸: 设低阻抗(电容)为Z0I = 15?。 经过计算可得W/d = 12.3656, £ e = 2.443,贝U 微带宽度W1 = W3 = W5 = W = 1.000*12.3656 = 12.3656mm , 各段长度I1 = I5 = Z0I*V pl *C1 = 15* 3*10A11/sqrt(2.4437)*5.3293*10A-12 =15.3412mm, I3 = Z0I*V pl*C3 = 15* 3*10A11/sqrt(2.4437)*8.6182*10A-12 =24.8088mm, 可知各段均小于入/8符合要求。 设高阻抗(电感)为Z0h = 95? 。 经过计算可得W/d =0.85,£ e = 2.0402则 微带宽度W2 = W4 = W =1.0000*0.85 =0.85mm , 各段长度l2 = l4 = Vph*L2/Z0h = 29.4031mm , 带内波长入=Vpl/f = 3*10^11/(sqrt(2.0402)*8*10^8) = 262.5396mm,入/8 = 32.8175mm 可知各段均小于入/8符合要求。

电路原理移相器实验设计原理

电路原理综合实验报告 移相器的设计与测试 学生姓名:----- 学生学号:----- 院(系):----- 年级专业:------ 指导教师:----- 助理指导教师:------- 摘要 线性时不变网络在正弦信号激励下,其响应电压、电流是与激励信号同频率的 正弦量,响应与频率的关系,即为频率特性。它可用相量形式的网络函数来表示。在电气工程与电子工程中,往往需要在某确定频率正弦激励信号作用下,获得有一定幅值、输出电压相对于输入电压的相位差在一定范围内连续可调的响应(输出) 信号。这可通过调节电路元件参数来实现,通常是采用RC移相网络来实现的。 关键词移相位,设计,测试。 目录 摘要 (13) ABSTRACT ........................................................................................................................................... I I 第1章方案设计与论证 (2) 1.1RC串联电路 (2) 1.2X型RC移相电路 (2) 1.3方案比较 (2) 第2章理论计算 (2) 2.1工作原理 (2) 2.2电路参数设计 (2) 第3章原理电路设计 (2) 3.1低端电路图设计(-45°-90°) (2) 3.2高端电路图设计(-90°-120°) 3.3高端电路图设计(-120°-150°) (2) 3.4高端电路图设计(150°~180°)

3.5整体电路图设计 (2) 第4章设计仿真 (2) 4.1仿真软件使用 (2) 4.2电路仿真 (2) 4.3数据记录 (2) 第5章实物测试 (2) 5.1仪器使用(电路板设计) (2) 5.2电路搭建(电路板制作) (2) 5.3数据记录(电路板安装) (2) 第6章结果分析 (2) 6.1结论分析 (2) 6.2设计工作评估 (2) 6.3体会 (2) 第1章方案设计与论证 1.1RC串联电路 图1.1所示所示RC串联电路,设输入正弦信号,其相量,若电容C 为一定值,则有,如果R从零至无穷大变化,相位从到变化。 图1.1RC串联电路及其相量图 另一种RC串联电路如图1.2所示。 图1.2RC串联电路及其相量图 同样,输出电压的大小及相位,在输入信号角频率一定时,它们随电路参数的不同而改变。若电容C值不变,R从零至无穷大变化,则相位从到变化。 1.2X型RC移相电路 当希望得到输出电压的有效值与输入电压有效值相等,而相对输入电压又有一定相位差的输出电压时,通常是采用图1.3(a)所示X型RC移相电路来实现。为方便 分析,将原电路改画成图1.3(b)所示电路。 (a)X型RC电路(b)改画电路 图1.3X型RC移相电路及其改画电路

混频器仿真实验报告

混频器仿真实验报告 一.实验目的 (1)加深对混频理论方面的理解,提高用程序实现相关信号处理的能力; (2)掌握multisim实现混频器混频的方法和步骤; (3)掌握用muitisim实现混频的设计方法和过程,为以后的设计打下良好的基础。 二.实验原理以及实验电路原理图 (一).晶体管混频器电路仿真 本实验电路为AM调幅收音机的晶体管混频电路,它由晶体管、输入信号源V1、本振信号源V2、输出回路和馈电电路等组成,中频输出465KHz的AM波。 电路特点:(1)输入回路工作在输入信号的载波频率上,而输出回路则工作在中频频率(即LC选频回路的固有谐振频率fi)。(2)输入信号幅度很小,在在输入信号的动态范围内,晶体管近似为线性工作。(3)本振信号与基极偏压Eb共同构成时变工作点。由于晶体管工作在线性时变状态,存在随U L周期变化的时变跨导g m(t)。 工作原理:输入信号与时变跨导的乘积中包含有本振与输入载波的差频项,用带通滤波器取出该项,即获得混频输出。 在混频器中,变频跨导的大小与晶体管的静态工作点、本振信号的幅度有关,通常为了使混频器的变频跨导最大(进而使变频增益最大),总是将晶体管的工作点确定在:U L=50~200mV,I EQ=0.3~1mA,而且,此时对应混频器噪声系数最小。 (二).模拟乘法器混频电路 模拟乘法器能够实现两个信号相乘,在其输出中会出现混频所要求的差频(ωL-ωC),然后利用滤波器取出该频率分量,即完成混频。

与晶体管混频器相比,模拟乘法器混频的优点是:输出电流频谱较纯,可以减少接收系统的干扰;允许动态范围较大的信号输入,有利于减少交调、互调干扰。 三.实验内容及记录 (一).晶体管混频器电路仿真 1、直流工作点分析 使用仿真软件中的“直流工作点分析”,测试放大器的静态直流工作点。 注:“直流工作点分析”仿真时,要将V1去掉,否则得不到正确结果。因为V1与晶体管基极之间无隔直流回路,晶体管的基极工作点受V1影响。若在V1与Q1之间有隔直流电容,则仿真时可不考虑V1的存在。 2、混频器输出信号“傅里叶分析” 选取电路节点8作为输出端,对输出信号进行“傅里叶分析”,参数设置为: 基频5KHz,谐波数为120,采用终止时间为0.001S,线性纵坐标请对测试结果进行分析。在图中指出465KHz中频信号频谱点及其它谐波成分。 注:傅里叶分析参数选取原则:频谱横坐标有效范围=基频×谐波数,所以这里须进行简单估算,确定各参数取值。

六位数字移相器的设计

六位数字移相器的设计 龚敏强 电子科技大学电子信息工程学院,成都(610054) E-mail: gmq0554@https://www.360docs.net/doc/2713488180.html, 摘要:本文介绍了一个用在预设真线性功率放大器中的6位数字移相器的工作原理和设计方法以及测试结果。该数字移相器采用PIN管作为开关元件,移相器的前3位采用高低通滤波器式移相器实现22.5° ,11.25°,5.6°的移相,后3位采用开关线式移相器实现2.8°,1.4°,0.7°的移相 关键词:数字移相器,开关线式移相器,高低通式移相器,PIN二极管 1.引言 移相器的主要功能就是改变传输信号的相位,以满足系统的要求。移相器一般分为模拟移相器和数字移相器两类,模拟移相器对相位联系可调;数字移相器的相移是量化了的,即其相位只能阶跃变化,移相位数越多,对信号相位的控制也越精细。移相器的应用很广泛,比如各种通信系统和雷达系统,微波仪器和测量系统,还有各种工业用途中。在各种的线性功率放大器中,也少不了移相器。 本文中所设计的6位数字移相器是用在一个数字预失真功率放大器的一个部件。预失真技术是在信号放大之前对信号按照一定的规律进行“预先失真”,以便最终输出信号中的失真分量尽可能地小,对功率放大器的线性化起到很好的效果。预失真技术在电路中就表现为增加了一个预失真器。这个预失真器的作用就是产生与原信号相对应的失真信号。因为这种失真是在信号被放大之前,故称之为“预失真信号” 。预失真技术按预失真模块在信号流程中的位置,可以分为(RF)射频预失真、IF(中频)预失真和基带预失真【1】。 本文所涉及的数字预失真功率放大器系统结构如图1所示.在这个系统中输入信号与输出信号经过功率检测后,输入到DSP中,根据信号的功率大小和温度的大小,经过预失真算法计算出所需要的预失真量,然后通过控制数控衰减器和数字移相器对传输信号进行控制以达到系统所需的线性度要求。本文所设计的6位数字移相器的功能就是在控制信号的控制下对信号进行不同大小的相位变化以达到系统所需的相位线性度要求。 图1 数字预失真功率放大器结构图

打印机传感器造成的故障与检测

打印机传感器造成的故障与检测 随着现代办公自动化程度的提高,打印机已经成为一个不可缺少的角色,并且智能化程度也越来越高。其实,之所以能够实现打印智能化,一方面靠的是主控芯片,另一方面分布打印机各个重要部位的传感器也起到至关重要的作用,这些传感器负责向打印机及电脑反馈当前打印机的工作状态及错误信息,从而保证了打印机的正常工作。 传感器作为打印机的一个重要部件,由于它所配合的机构需要频繁地动作,加之打印机工作时产生的振动、不规范的操作、灰尘和打印过程中产生碎屑等的影响,常常会导致打印机内部传感器失效,使之不能正常传感打印机当前的工作状态,造成打印异常。 下面我们就以hp3748打印机为例,来给大家讲解一下打印机内部各种传感器的作用及其常见故障现象。 “工欲善其事,必先利其器”,先准备好工具:一把小内六角扳手,梅花口螺丝刀(图1)。准备好后就可以正式开工了!Let's Go! 图1一、门限传感器 门限传感器(图2)说通俗点就是一个弹簧开关,其作用是检查打印机上盖的开合状态。当打印机上盖关闭时,上盖的重量就会通过一根传动杆迫使传感器开关闭合,打印机进入正常工作状态。上盖打开时,在弹簧弹力作用下,传感器开关断开,同时其状态也被发送给打印机,打印机接收到信息后驱动喷头电机,

使之移动到更换墨盒的位置。因为这个传感器属于机械传感器,自身有一定的寿命,所以频繁地开合上盖,可能会导致传感器出现开路而损坏,从而使喷头始终处于墨盒更换位置,电源灯闪烁,电脑提示打印机上盖未关闭,引发打印机不能正常工作。如果传感器出现短路故障的话,虽然打印机能正常工作,但是我们打开上盖想更换墨盒时,喷头就不会移动,导致无法更换墨盒。

高频课程设计—混频器

《通信电子线路》课程设计说明书 混频器 院、部:电气与信息工程学院 学生姓名:卢卓然 指导教师:张松华职称副教授 专业:电子信息工程 班级:电子1201班 学号: 1230340104 完成时间:2014.12.22 2014年12月

摘要 模拟相乘器的主要技术指标是工作象限、线性度和馈通度。工作象限是指容许输入变量的符号范围。只容许ux和uy均为正值的相乘器称为一象限的,而容许ux和uy都可以取正、负值的则称为四象限的。线性度是指相乘器的输出电压uO与输入电压ux(或uy)成线性的程度。馈通度是指两个输入信号中一个为零时,另一个在输出端输出的大小。 混频是将载波为高频的已调信号,不失真地变换为载波为中间的已调信号。在通信接收机中, 混频电路的作用在于将不同载频的高频已调波信号变换为同一个固定载频(一般称为中频)的高频已调波信号, 而保持其调制规律不变。例如, 在超外差式广播接收机中, 把载频位于535 kHz~1605kHz中波波段各电台的普通调幅信号变换为中频为465kHz的普通调幅信号, 把载频位于88 MHz~10.8MHz的各调频台信号变换为中频为10.7MHz的调频信号, 把载频位于四十几兆赫至近千兆赫频段内各电视台信号变换为中频为38 MHz的视频信号。由于设计和制作增益高, 选择性好, 工作频率较原载频低的固定中频放大器比较容易, 所以采用混频方式可大大提高接收机的性能。此设计就是利用仿真软件,采用模拟相乘器实现混频电路的。 关键词:模拟相乘器;混频电路

ABSTRACT The mixer in communication engineering and radio technology, application is very extensive, in modulation system, the input of baseband signal are throughfrequency conversion into a high frequency modulated signal. In the demodulation process, the received modulated high frequency signal afterfrequency conversion, into intermediate frequency signals corresponding to.Especially in the superheterodyne receiver, mixer is widely used, such as AMradio receiver will be amplitude modulated signal 535KHZ- a 1605KHZ to become 465KHZ IF signal, image signal television receiver will have a 870M48.5M to become 38MHZ of intermediate frequency image signal. In mobile communication, a frequency and the two frequency etc.. In the transmitter, in order to improve the stability of transmitting frequency, uses the multistagetype transmitter. With a low frequency of the quartz crystal oscillator as the main oscillator, generating the main oscillation signal of a frequency is verystable, and then through the frequency plus or minus, multiply, divide intoradio frequency, we must use a mixer circuit, such as converting TV transposer transceiver channel, the uplink, downlink frequency in satellitecommunication transform, must be in the mixer. Thus, mixing circuit is the key module of Applied Electronic Technology and professional radio must master. Key words anlog mixer; mixer circuit

相关文档
最新文档