微波仿真论坛_磁谐振和电谐振结构构成的左手材料设计

微波仿真论坛_磁谐振和电谐振结构构成的左手材料设计
微波仿真论坛_磁谐振和电谐振结构构成的左手材料设计

磁谐振和电谐振结构构成的左手材料设计

3

王甲富1)

 屈绍波

1)2)

 徐 

卓2) 张介秋1) 杨一鸣1) 马 华

1)

1)(空军工程大学理学院,西安 710051)

2)(西安交通大学电子陶瓷与器件教育部重点实验室,西安 710049)

(2007年12月7日收到;2008年2月29日收到修改稿)

用磁谐振器和电谐振器组合构成左手材料是设计左手材料的一个重要方法.基于这一设计方法,提出了能够抑制双各向异性的磁谐振器和电谐振器设计原理,即单回路镜像对称设计原理和双(四)回路镜像对称设计原理.根据这两个设计原理,设计了具有双负特性(负介电常数和负磁导率)的新结构,并通过实验仿真验证了结构的双负特性,从而验证了两种设计原理的正确性.所提出的两个设计原理以及新结构对于设计新型左手材料具有重要的实际意义和指导意义.

关键词:左手材料,单回路镜像对称,双回路镜像对称

PACC :4270Y,7430G,7785

3国家自然科学基金(批准号:10474077,50632030)和陕西省基础研究计划(批准号:2005E15)资助的课题.

11引 言

1968年,前苏联科学家Veselag o [1]

对电磁波在

介电常数和磁导率同时为负的媒质中的传播特点作

了理论研究.1999年,英国皇家学院的Pendry 等[2]

提出了具有双负特性的左手材料结构理论,即用金属线来实现负介电常数,用开口谐振环(split ring res onator ,简记为SRR )的磁谐振来实现负磁导率,并

提出了相应的理论.Smith 等[3]

根据Pendry 等提出的理论模型,设计出了SRR 和金属线阵列构成的左手材料结构,并通过棱镜实验验证了这种结构的负折射系数.此后,对左手材料的研究不断深入,Marques 等[4]

深入研究了SRR 的极化率,并提出了可以避免双各向异性(bianis otropy )的宽边耦合开口谐振环.

Sauviac 等[5]

系统地建立了SRR 的理论模型,通过此理论模型具体分析了SRR 的准静态极化率以及谐振极化率,并且提出了决定SRR 谐振频率的电容和

电感的计算公式.张富利等[6]

研究了谐振频率可调的环状SRR 及其效应,通过金属短杆与SRR 之间的附加电容来调节传统磁谐振器的谐振频率.Padilla 等[7]

提出了取代金属线用以实现负介电常数的各种结构,并称这些结构为电谐振器(electric res onators ).

刘亚红等[8]

用H 形结构单元同时实现了负磁导率

和负介电常数,这种结构单元结构简单、制作方便,但是由于采用同一个结构实现负磁导率和负介电常数,因而不易对磁导率和介电常数进行分析和调节.

2007年,Liu 等[9]

提出了通过使电谐振器和磁谐振器(magnetic res onators )的谐振区域重合来实现双负特性的左手材料结构,为设计左手材料提出了一种很好的思路.

虽然各国研究者们对左手材料的研究非常广泛,但是主要集中于磁谐振器的研究上,而关于电谐振器的研究和文献都非常少,没有具体的设计理论.基于用电谐振器和磁谐振器构成左手材料的设计思想,本文提出了磁谐振器和电谐振器的设计原理,设计了新结构,并通过实验仿真验证了所设计的左手材料结构的双负特性.

2.磁谐振器和电谐振器的设计原理

2111磁谐振器的单回路镜像对称设计原理

用磁谐振器实现负磁导率的原理如下:由于磁谐振器既具有电容性部分又具有电感性部分,当电磁波入射到磁谐振器上时,由电磁感应定律可知,入射电磁波的磁场会在其上产生感应电流,形成RLC 谐振回路.当磁谐振器发生谐振时,谐振负区域的等

第57卷第8期2008年8月100023290Π2008Π57(08)Π5015205

物 理 学 报

ACT A PHY SIC A SI NIC A

V ol.57,N o.8,August ,2008

ν2008Chin.Phys.S oc.

效磁导率为负.为克服磁谐振器结构的双各向异性,即抑制其电响应,磁谐振器的等效电路必须为镜像对称的单回路,所以我们称磁谐振器的设计原理为单回路镜像对称设计原理

.

图1 磁谐振器结构及其等效电路 (a )磁谐振器结构,

(b )等效电路

在设计磁谐振器结构时,应该注意其等效电路的单回路镜像对称性.图1为根据单回路镜像对称设计原理设计的一种磁谐振结构及其等效电路.此结构由厚度t =015mm 、边长a =6mm 的正方形基

板(相对介电常数εr =2165)以及刻蚀在基板上宽度

w =014mm 、厚度可忽略不计的铜线构成,如图1(a )

所示.铜线间的间距d =012mm ,开口宽度c =012mm ,正方形铜环的边长b =411mm ,环内外的铜线

长度l =212mm.图1(b )为此结构的等效电路,图中C 0为铜环与环外(或环内)铜线之间的电容,C s 为正方形铜环上开口的电容.由图1(b )可知,结构的等效电路在x 方向和y 方向都具有镜像对称性,所以此结构不具有双各向异性.

2121电谐振器的双(四)

回路镜像对称设计原理

图2 电谐振器结构及其等效电路 (a )电谐振器结构,

(b )等效电路

用电谐振器实现负介电常数的原理如下:当电磁波入射到电谐振器上时,在入射电磁波的电场作用下,电谐振器上会产生电流.由于电谐振器既具有电容性部分又具有电感性部分,电谐振器的等效电路为一个RLC 谐振回路.当电谐振器发生谐振时,谐振负区域的等效介电常数为负.为克服电谐振器结构的双各向异性,即抑制其磁响应,电谐振器的等效电路必须等效为镜像对称的双回路或四回路,因此我们称电谐振器的设计原理为双(四)回路镜像对称设计原理.由于双回路是镜像对称的,入射电磁波的磁场在电谐振器等效电路的两个回路产生的电流方向相反,电谐振器结构的总磁通量为零,由此抑制了结构的磁响应,整个结构在入射电磁场的作用下只有电响应.

在设计电谐振器结构时,应注意设计结构等效电路的双回路镜像对称性.图2为根据双回路镜像对称设计原理设计的一种电谐振结构及其等效电路.此结构由厚度t =015mm 、边长a =6mm 的正方

6105物 理 学 报57卷

形基板(相对介电常数εr =2165)以及刻蚀在基板上的宽度w =014mm 、厚度可忽略不计的铜线构成,如图2(a )所示.铜线间的间距d =012mm ,开口宽度c =014mm ,“工”字形结构的铜线长b =3mm.图2(b )为此结构的等效电路,图中C 1为“工”字形结构的铜线与“C ”字形结构的铜线之间的电容.由图2(b )可知,此结构的等效电路在x 方向和y 方向都具有镜像对称性,所以此结构不具有双各向异性.

3.左手材料结构的设计及实验仿真

将磁谐振结构和电谐振结构组合,通过调节它

们的谐振频率,使它们的谐振频率区域全部或部分重合,就可以得到由磁谐振结构和电谐振结构构成的左手材料结构

.

图3 电谐振结构阵列及其透射频谱 (a )电谐振结构阵列,

(b )透射频谱

图3为图2中的电谐振结构所组成的阵列及其透射频谱.图3(a )中,每排结构之间的距离为6mm.电磁波垂直于谐振器平面入射,其电场和磁场方向如图3(a )所示.图3(b )为此电谐振结构阵列的透射频谱的实验仿真结果.由图3(b )可知,电谐振结构阵列在817—917GH z 之间出现负谐振.在此频率范围内,整个结构的等效介电常数为负值,而其等效磁

导率为正值,电磁波基本被反射,所以电磁波的透射率很小(-50—-40dB ).

图4为图1所示的磁谐振结构所组成的阵列及其透射频谱.图4(a )中,每排结构之间的距离为6mm.图4(b )为此磁谐振结构阵列的透射频谱的实验仿真结果.由图4(b )可知,此电谐振结构阵列在818—1013GH z 之间出现负谐振.在此频率范围内,

整个结构的等效磁导率为负值,而其等效介电常数为正值,电磁波的能量基本被反射,所以透射率很小(-65—-55dB )

.

图4 磁谐振结构及其透射频谱 (a )磁谐振结构,(b )透射频谱

图5为图3(a )和图4(a )的两种结构组合所构成的左手材料结构及其透射频谱.如图5(b )所示,在电谐振结构阵列和磁谐振结构阵列谐振频率区域的重合部分出现了一个通带(912—914GH z ).通带的带宽大约为012GH z ,通带内电磁波的透射率为-10—-7dB.由于电谐振结构和磁谐振结构的谐

振频率区域重合,整个结构的等效磁导率和等效介

电常数都为负值,具有了双负特性,从而电磁波能够透过结构,且透射率较大.上述仿真结果很好地验证了这种左手材料结构的双负特性,并且说明了所设计的电谐振结构、磁谐振结构以及由它们构成的左手材料结构的正确性.

7

1058期王甲富等:磁谐振和电谐振结构构成的左手材料设计

图5 电谐振结构与磁谐振结构组成的左手材料结构及其透射频谱 (a)电谐振结构与磁谐振结构组成的左手材料结构,(b)透射频谱4.结 论

磁谐振器和电谐振器组合可以构成左手材料.

在设计磁谐振器时,为消除双各向异性,磁谐振器结

构的等效电路等效为镜像对称的单回路,即遵循单

回路镜像对称设计原理.在设计电谐振器时,电谐振

器结构的等效电路为镜像对称的双(四)回路,即遵

循双(四)回路镜像对称设计原理.通过实验仿真,验

证了根据两个设计原理所设计的左手材料结构的双

负特性,同时也验证了这两个设计原理的正确性.本

文所提出的两个设计原理以及左手材料结构对于设

计新型左手材料结构具有重要的指导意义.

[1]Veselag o V https://www.360docs.net/doc/2718134252.html,p.10509

[2]Pendry J B,H olden A J,R obbins D J,S tewart W J1999IEEE

Trans.Microwave Theory Techn.472075

[3]Smith D R,Padilla W J,Vier D C,Nemat2Nasser S C,Schultz S

2000Phys.Rev.Lett.844184

[4]M arques R,M edina F,Rafii2E l2Edrissi R2002Phys.Rev.B65

144440

[5]Sauviac B,S im ovski C R,T retyakov S A2004Electromagnetics24

317

[6]Zhang F L,Zhao X P2007Acta Phys.Sin.564662(in Chinese)

[张富利、赵晓鹏2007物理学报564662]

[7]Padilla W J,Aross on M T,H ighstrete C,M ark L,T aylor A J,

Averitt R D2007Phys.Rev.B75041102

[8]Liu Y H,Luo C R,Zhao X P2007Acta Phys.Sin.565883(in

Chinese)[刘亚红、罗春荣、赵晓鹏2007物理学报565883]

[9]Liu R P,Degiron A,M ock J J,Smith D R2007Appl.Phys.Lett.

90263504

8105物 理 学 报57卷

The de sign of left 2handed metamaterials compo sed of

magnetic re sonators and electric re sonators 3

W ang Jia 2Fu 1)

 Qu Shao 2Bo 1

)2)

 Xu Zhuo 2) Zhang Jie 2Qiu 1) Y ang Y i 2Y ing 1) M a Hua 1

)

1)(College o f Science ,Air Force Engineering Univer sity ,Xi ′an 710051,China )

2)(K ey Laboratory o f Electronic Ceramics and Devices o f Ministry o f Education ,Xi ′an Jiaotong Univer sity ,Xi ′an 710049,China )

(Received 7December 2007;revised manuscript received 29February 2008)

Abstract

In designing left 2handed metamaterials com posed of magnetic resonators and electric resonators ,tw o design principles ,that is ,the single 2loop m irror 2symmetry design principle and double 2loop (quadruple 2loop )m irror 2symmetry design principle ,were respectively proposed for the design of magnetic resonators and electric resonators.Based on the tw o principles ,new structures with simultaneously negative permeability and perm ittivity were designed.By means of simulation experiments ,the double 2negative property of the proposed structure as well as the tw o design principles was verified.The tw o design principles and structures proposed in this paper are of great practical values in designing new types of left 2handed metamaterials.K eyw ords :left 2handed metamaterials ,single 2loop m irror 2symmetry ,double 2loop m irror 2symmetry PACC :4270Y,7430G,7785

3Project supported by the National Natural Science F oundation of China (G rant N os.10474077,50632030)and the Program for Basic Research of Shaanxi

Province ,China (G rant N o.2005E15).

9

1058期王甲富等:磁谐振和电谐振结构构成的左手材料设计

微波技术与天线实验10利用HFSS仿真对称振子阵列天线

一实验目的 1 学会使用Ansoft软件hfss工具包分析阵列天线的基本步骤。 2 计算四元阵的方向图,并观察馈电电压相位改变时方向图的变化。 图0 对称振子四元阵 二实验原理及步骤 1、建立天线模型 按照教材P199图5.2-17给出的四元阵的示意图,计算出天线各单元的尺寸和坐标位置,建立模型进行仿真(如图0)。 工作频率为3GHz,波长lbd=100mm。四分之一波长振子单臂长度l0=lbd/4=25mm, 阵列单元间距d=lbd/250mm,各振子臂为以z轴各为轴的圆柱体,模型如表1。其中r0=1mm,l0= 25mm,d=50mm。 表1 振子模型

各振子的激励加在矩形平面上(平行于yz面),模型如表2。 表2 激励源模型 Airbox为立方体,顶点坐标为(-lbd/4-r0, -lbd/4-r0, -lbd/4- l0-0.5mm),尺寸为xsize=2*(lbd/4+r0), ysize=2*lbd/4+4*r0+3*d,zsize=2*(lbd/4+l0+0.5mm)。其中lbd=100 mm,材料为vaccum,边界条件为radiation。 2、设置频率3GHz,运行计算。 3、设置立体角度 在Project Manager窗口中,选择dipole>HFSSDesign1>Radiation,点击鼠标右键,选择Inser Farm Field Setup>Infinite Sphere,出现远场辐射球设置界面“Far Field Radiation Sphere”,设置如图1,点击确定。

图1 远场辐射球设置界面 4、仿真结果 (1)等幅同相激励 选择project manger窗口中的Field Overlays,点击鼠标右键Edit Source,按照图2所示设置各端口的激励源,等幅同相激励。

微波仿真论坛_贴片天线研究

贴片天线研究 第一部分天线的基本知识 (2) 第二部分贴片天线设计 (11) 第三部分贴片天线的应用 (24) 第四部分贴片天线的性能 以及SAR的分布 (31) 附录 (38) 小组成员:李黎轩冷继男 钟颐华刘同 2004年1月2日

第一部分 天线的基本知识 总括 天线是我们在设计射频系统时所需考虑得最后一部分内容。然而可不能小视天线的重要作用,轻敌将导致设计前功尽弃。天线作为无线传输的一部分,它的作用概括起来说是传送与接受电磁场能量。在第一部分中,我们将介绍天线的最基本知识,以指导接下来贴片天线的设计。 定义 天线是一个具备传输与发送电磁能量的导电元件。天线能够将电磁能量转化为电磁场传播出去,同时又能够通过将空间中的电磁场转化为电磁能量来接收电磁波。如何在同一天线上实现电磁能量的接收(receive )与传播(transmit)是天线的一个重要属性 . 天线的主要特征参数有: 天线的中心频率(center frequency )、带宽(bandwidth)、天线的极化(polarization)、天线增益gain 、辐射模型(radiation pattern)、阻抗(impedance)。 传输线的特征参数 λ Lambda Wavelength (单位:米) 在自由空间中传播的电磁场,速度为光速。即8 3.0010/c m s =?. VSWR Voltage Standing Wave Ratio ,电压驻波系数 dB Decibel 分贝的引入为在使用中表示方便 dBm dBm 表示功率,相对于1 mw 为基准定义 dBi 天线增益,以等方向天线为参考

结构设计大赛之桥梁模型设计

结构设计大赛之桥梁模型设计 戴洁 (广东交通职业技术学院,广东广州510650) 摘要:文中从结构设计大赛的模型要求及比赛加载方式分析入手,提出桥梁模型的设计方案构思,选择结 构方案.并进一步对模型进行了强度、刚度和稳定性受力分析。试验证明本次设计制作的桥梁模型非常坚固, 承受极限荷载接近于封顶值50 kg。 1桥梁模型设计 1.1模型要求及加载方式分析 结构设计大赛拟设计桥梁结构模型。桥梁结构模型设计尺寸要求为:桥面总长l 000 mln;桥面高不低于120 toni:桥面总宽160~180rnITl;桥面净空高度不小于200 toni:最大跨径不小于400 mm。尺寸要求体现了桥梁设计的桥下净空和桥面净空等功能要求。比赛加载方式为动静载结合方式,初赛要求徒手将一辆l5 kg的小车从桥头拉至最大跨的跨中位置.并在该位置停留不少于5 S 然后拉到桥部。模型不至于失效方可进入决赛。决赛采用跨中集中力加载方式,初始荷载为20 ,荷载增加梯度为5 k 次,封项荷载为50 。每次加载后停留5 S。模型不失效即加载成功。模型不失效的标准:模型强度足够、不失去整体承载力:模型跨中挠度不超过l5 mm。小小桥模型须承受l5~50 kg的重量,由此带来的跨中弯矩较大,承载亦不易。但更难控制的还是弯曲变形,挠度不超出15 mln即要求模型具有足够的抗弯刚度。 1.2材料分析 参赛的结构模型要求采用组委会统一提供的绘图纸、棉线和乳胶。主体材料为绘图纸.辅助材料为棉线和乳胶。单张的绘图纸只能承受少量拉力,不能作为受弯、受压构件,即使多张绘图纸叠放具有抗弯强度.也不能提供足够的抗弯刚度。要使纸构件提供足够的强度和刚度.一种方法将纸卷成圆柱形.作成圆形梁和圆形柱:另一种方法将纸张切片叠成一定厚度并粘在一起.作成一定高度的薄梁.可以用作桥面的抗弯构件。但从整体结构上必须布置成纵、横梁网格系。棉线抗拉能力强,不能受压.只能用来做受拉构件,吊(拉)桥面或捆绑节点,增强节点强度。白乳胶主要起粘结作用。 1.3结构选型与方案构思 鉴于比赛的加载重量大。且挠度变形量控制严格,桥型结构不能采用单一的梁桥、拱桥、悬索桥,而必须采用组合体系桥梁。为使桥面平整,便于行车,主体结构采用梁式桥型。为了增强模型的整体抗弯强度和抗弯刚度.布置斜拉杆(索)或垂直吊杆(索)。用卷成圆柱形的纸杆作为刚性斜拉杆或吊杆.节点用棉线捆绑牢固,做成类似斜拉桥的板拉桥刚性拉杆。桥面下可用拱形结构支撑桥面.也可以采用桥墩加斜撑辅助支撑桥面。拱形结构受力合理.但制作困难。下部结构主要采用实心的圆柱形纸杆作桥墩.由于直径有限(直径大时耗材多),难以保证桥墩的稳定性,而空心纸卷制作起来有困难.也不能提供足够的抗压强度,所以桥墩结构上必须加强各杆件的横向联系.以增强桥梁的整体稳定性。主孔纵向设计为梁式桥结合“A” 型塔斜拉桥。主梁5片,横梁10根,等间距地布置主梁、横梁,形成网格式梁式结构。“A” 型塔斜拉结构设计为双塔,两侧各一个.中间设一撑杆加强两边“A”型塔的横

教学设计基本结构

教学设计基本结构内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

教学方案设计基本结构 1、教材分析与学情分析Teaching Analysis ; 教材分析考试时可以减写,学情分析即对学生情况的分析,相对来说可以多写,熟练的情况下可以不写,考试的时候最好还是写,教材分析几十个字,学情分析100字以内。 2、教学目标Teaching Aims; 教学目标是主线,必不可缺,分为三个维度,即知识与技能(knowledge and Ability),过程与方法(process and method),情感、态度与价值观 (emotion、attitude and value)。 教学目标要具体化、可操作化,根据课标要求、学生的实际确定目标。考试常用格式:使学生记住……事实,理解……概念,形成……技能,经历……的过程,掌握……的方法、应用……定律分析……的问题,坚定……的信念,养成……的习惯,激发……的热情。错误的格式:教给学生……,教学目标是对学生的要求,而不是对教师的,考试时一定要注意。 3、教学重点、难点Teaching Emphasis and Teaching difficult points; 教学重难点也是必不可缺的,依据课标要求、教材内容、学生已有知识来确定。考试时,教学重点、教学难点最好分开写。 4、教学方法Teaching Methods; 一般情况下要写,常用的教学方法有讲授法、谈话法、讨论法、读书指导法、练习法、实习法、实验法、演示法、参观法………… 5、课时安排; 课时:一般考1课时的教学设计,可以忽略不计。课前准备可写可不写。

螺旋天线的仿真设计微波课设

理工大学现代科技学院 课程设计任务书

指导教师签名:日期:

专业班级 学号 成绩 一、设计题目 螺旋天线的仿真设计 二、设计目的 (1)熟悉Ansoft HFSS 软件的使用。 (2)学会螺旋天线的仿真设计方法。 (3)完成螺旋天线的仿真设计,并查看S 参数以及场分布。 三、实验原理 螺旋天线(helical antenna )是一种具有螺旋形状的天线。它由导电性能良好的金属螺旋线 组成,通常用同轴线馈电,同轴线的心线和螺旋线的一端相连接,同轴线的外导体则和接地 的金属网(或板)相连接,该版即为接地板。螺旋天线的辐射方向与螺旋线圆周长有关。当 螺旋线的圆周长比一个波长小很多时,辐射最强的方向垂直于螺旋轴;当螺旋线圆周长为一 个波长的数量级时,最强辐射出现在螺旋旋轴方向上。 四、设计要求 设计一个右手圆极化螺旋天线,要求工作频率为4G ,分析其远区场辐射特性以及S 曲线。 本设计参数为:螺旋天线的中心频率 f=4GHz , λ=75mm ; … … …… …… ………………… …装 …… …… …… …… … …… …… …… 订… …… ……………………………… …线 …… …… …… …… … ………………

螺旋导体的半径 d=0.15λ=11.25mm ; 螺旋线导线的半径 a=0.5mm ; 螺距 s=0.25λ=18,75mm ; 圈数 N=3; 轴向长度 l=Ns ; 五、设计仿真步骤 在HFSS 建立的模型中,关键是画出螺旋线模型。画螺旋线,现说明螺旋线模型的创建。 1、建立新的工程 运行HFSS ,点击菜单栏中的Project>Insert Hfss Dessign ,建立一个新的工程。 2、设置求解类型 (1)在菜单栏中点击HFSS>Solution Type 。 (2)在弹出的Solution Type 窗口中 (a )选择Driven Modal 。 (b )点击OK 按钮。 3、设置模型单位 将创建模型中的单位设置为毫米。 (1)在菜单栏中点击3D Modeler>Units 。 (2)设置模型单位: (a )在设置单位窗口中选择:mm 。 (b )点击OK 按钮。 4、设置模型的默认材料 在工具栏中设置模型的下拉菜单中点击Select ,在设置材料窗口中选择copper (铜)材料, 点击OK 按钮(确定)确认。 5、创建螺旋天线模型 (1)创建螺旋线Helix 。 在菜单中点击Draw>Circle,输入圆的中心坐标。X:11.25 Y:0 Z:0 ,按回车键结束。输入圆的 半径dX:0.5 dY:0 dZ:0 按回车键结束输入。在特性(Porperties )窗口中将Axis 改为Y 。点击确认。在历史操作树中选中该circle 。在菜单键点击Draw>Helix ,在右下角的输入栏中 … … …… …… …… ……………装……………………………………订……………… …… …… …… …… …线 … …… …… …… …… ……… …… …… …

hfss中文教程 390-413 微波端口

rf 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 ---- 专业微波工程师社区: https://www.360docs.net/doc/2718134252.html, HFSS FULL BOOK v10中文翻译版568页(原801页) (分节 水印 免费 发布版) 微波仿真论坛 --组织翻译 有史以来最全最强的 HFSS 中文教程 感谢所有参与翻译,校对,整理的会员 版权申明: 此翻译稿版权为微波仿真论坛(https://www.360docs.net/doc/2718134252.html,)所有. 分节版可以转载. 严禁转载568页完整版. 推荐: EDA问题集合(收藏版) 之HFSS问题收藏集合 https://www.360docs.net/doc/2718134252.html,/hfss.html Q: 分节版内容有删减吗? A:没有,只是把完整版分开按章节发布,免费下载.带水印但不影响基本阅读. Q: 完整版有什么优势? A:完整版会不断更新,修正,并加上心得注解.无水印.阅读更方便. Q: 本书结构? A: 前200页为使用介绍.接下来为实例(天线,器件,EMC,SI等).最后100页为基础综述 Q: 完整版在哪里下载? A: 微波仿真论坛( https://www.360docs.net/doc/2718134252.html,/read.php?tid=5454 ) Q: 有纸质版吗? A:有.与完整版一样,喜欢纸质版的请联系站长邮寄rfeda@https://www.360docs.net/doc/2718134252.html, 无特别需求请用电子版 Q: 还有其它翻译吗?A:有专门协助团队之翻译小组.除HFSS外,还组织了ADS,FEKO的翻译.还有正在筹划中的任务! Q: 翻译工程量有多大?A:论坛40位热心会员,120天初译,60天校对.30天整理成稿.感谢他们的付出! Q: https://www.360docs.net/doc/2718134252.html,只讨论仿真吗? A:以仿真为主.微波综合社区. 论坛正在高速发展.涉及面会越来越广! 现涉及 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值|高校|求职|招聘 Q: https://www.360docs.net/doc/2718134252.html,特色? A: 以技术交流为主,注重贴子质量,严禁灌水; 资料注重原创; 各个版块有专门协助团队快速解决会员问题; https://www.360docs.net/doc/2718134252.html, --- 等待你的加入 RF https://www.360docs.net/doc/2718134252.html, rf---射频(Radio Frequency)

结构设计大赛之桥梁模型设计

结构设计大赛之桥梁模型设计戴洁 (广东交通职业技术学院,广东广州510650) 摘要:文中从结构设计大赛的模型要求及比赛加载方式分析入手,提出桥梁模型的设计方案构思,选择结 构方案.并进一步对模型进行了强度、刚度和稳定性受力分析。试验证明本次设计制作的桥梁模型非常坚固, 承受极限荷载接近于封顶值50 kg。 1桥梁模型设计 1.1模型要求及加载方式分析 结构设计大赛拟设计桥梁结构模型。桥梁结构模型设计尺寸要求为:桥面总长l 000 mln;桥面高不低于120 toni:桥面总宽160~180rnITl;桥面净空高度不小于200 toni:最大跨径不小于400 mm。尺寸要求体现了桥梁设计的桥下净空和桥面净空等功能要求。比赛加载方式为动静载结合方式,初赛要求徒手将一辆l5 kg的小车从桥头拉至最大跨的跨中位置.并在该位置停留不少于5 S 然后拉到桥部。模型不至于失效方可进入决赛。决赛采用跨中集中力加载方式,初始荷载为20 ,荷载增加梯度为5 k 次,封项荷载为50 。每次加载后停留5 S。模型不失效即加载成功。模型不失效的标准:模型强度足够、不失去整体承载力:模型跨中挠度不超过l5 mm。小小桥模型须承受l5~50 kg的重量,由此带来的跨中弯矩较大,承载亦不易。但更

难控制的还是弯曲变形,挠度不超出15 mln即要求模型具有足够的抗弯刚度。 1.2材料分析 参赛的结构模型要求采用组委会统一提供的绘图纸、棉线和乳胶。主体材料为绘图纸.辅助材料为棉线和乳胶。单张的绘图纸只能承受少量拉力,不能作为受弯、受压构件,即使多张绘图纸叠放具有抗弯强度.也不能提供足够的抗弯刚度。要使纸构件提供足够的强度和刚度.一种方法将纸卷成圆柱形.作成圆形梁和圆形柱:另一种方法将纸张切片叠成一定厚度并粘在一起.作成一定高度的薄梁.可以用作桥面的抗弯构件。但从整体结构上必须布置成纵、横梁网格系。棉线抗拉能力强,不能受压.只能用来做受拉构件,吊(拉)桥面或捆绑节点,增强节点强度。白乳胶主要起粘结作用。 1.3结构选型与方案构思 鉴于比赛的加载重量大。且挠度变形量控制严格,桥型结构不能采用单一的梁桥、拱桥、悬索桥,而必须采用组合体系桥梁。为使桥面平整,便于行车,主体结构采用梁式桥型。为了增强模型的整体抗弯强度和抗弯刚度.布置斜拉杆(索)或垂直吊杆(索)。用卷成圆柱形的纸杆作为刚性斜拉杆或吊杆.节点用棉线捆绑牢固,做成类似斜拉桥的板拉桥刚性拉杆。桥面下可用拱形结构支撑桥面.也可以采用桥墩加斜撑辅助支撑桥面。拱形结构受力合理.但制作困难。下部结构主要采用实心的圆柱形纸杆作桥墩.由于直径有限(直径大时耗材多),难以保证桥墩的稳定性,而空心纸卷制作起来有困难.也不能提供足够的抗压强度,所以桥墩结构上必须加强各杆件的横向联系.以增强桥梁的整体稳定性。主孔纵向设计为梁式桥结合“A” 型塔斜拉桥。主

微波仿真论坛_电磁场的远场和近场划分

电磁辐射的测量基础知识 电磁辐射的测量方法通常与测量点位和辐射源的距离有关,即,所进行的测量是远场测量还是近场测量。由于远场和近场的情况下,电磁场的性质有所不同,因此,要对远场和近场测量有明确的了解。 1、电磁场的远场和近场划分 电磁辐射源产生的交变电磁场可分为性质不同的两个部分,其中一部分电磁场能量在辐射源周围空间及辐射源之间周期性地来回流动,不向外发射,称为感应场;另一部分电磁场能量脱离辐射体,以电磁波的形式向外发射,称为辐射场。 一般情况下,电磁辐射场根据感应场和辐射场的不同而区分为远区场(辐射场)和近区场(感应场)。由于远场和近场的划分相对复杂,要具体根据不同的工作环境和测量目的进行划分,一般而言,以场源为中心,在三个波长范围内的区域,通常称为近区场,也可称为感应场;在以场源为中心,半径为三个波长之外的空间范围称为远区场,也可称为辐射场。近区场通常具有如下特点: 近区场内,电场强度与磁场强度的大小没有确定的比例关系。即:E=377H。一般情况下,对于电压高电流小的场源(如发射天线、馈线等),电场要比磁场强得多,对于电压低电流大的场源(如某些感应加热设备的模具),磁场要比电场大得多。 近区场的电磁场强度比远区场大得多。从这个角度上说,电磁防护的重点应该在近区场。 近区场的电磁场强度随距离的变化比较快,在此空间内的不均匀度较大。 远区场的主要特点如下: 在远区场中,所有的电磁能量基本上均以电磁波形式辐射传播,这种场辐射强度的衰减要比感应场慢得多。 在远区场,电场强度与磁场强度有如下关系:在国际单位制中,E=377H,电场与磁场的运行方向互相垂直,并都垂直于电磁波的传播方向。 远区场为弱场,其电磁场强度均较小 近区场与远区场划分的意义: 通常,对于一个固定的可以产生一定强度的电磁辐射源来说,近区场辐射的电磁场强度较大,所以,应该格外注意对电磁辐射近区场的防护。对电磁辐射近区场的防护,首先是对作业人员及处在近区场环境内的人员的防护,其次是对位于近区场内的各种电子、电气设备的防护。而对于远区场,由于电磁场强较小,通常对人的危害较小。 对我们最经常接触的从短波段30MHz到微波段的3000MHz的频段范围,其波长范围从10米到1米。 2、远区场的测量 在远区场(辐射场区),可引入功率密度矢量(波印廷矢量),电场矢量、磁场矢量、波印廷矢量三者方向互相垂直,波印廷矢量的方向为电磁波传播方向。 在数值上,E=377H,S=EH=E2/377。其中电场强度E的单位是(V/m),磁场强度H的单位是(A/m),功率密度的单位是(W/m2),全部是国际单位制(SI)。 由公式可看出,在远场区,电场与磁场不是独立的,可以只测电场强度,磁场强度及功率密度中的一个项目,其他两个项目均可由此换算出来。 一般情况,关于远场和近场的测量问题可以简化为: 国标规定,当电磁辐射体的工作频率低于300MHz时,应对工作场所的电场强度和磁场强度分别测量。当电磁辐射体的工作频率大于300MHz时,可以只测电场强度。 300MHz频率相应的波长为1米,λ/6为16cm,16cm之外辐射场占优势。如按3λ的划分界限,距辐射源3米之外可认为是远场区。 一般电磁环境是指在较大范围内由各种电磁辐射源,通过各种传播途径造成的电磁辐射背景值,因而属于远区场,辐射的频谱非常宽,电磁场强度均较小。 1GHz以下远区辐射场的测量,可用远区场强仪,也可用干扰场强仪。

钢桁架桥的结构设计与分析

钢桁架桥的结构设计与分析 1、概述 钢桁架桥以其跨越能力强、施工速度快、承载能力强、耐久性好普遍应用于铁路桥梁。长期以来,由于钢材价格高,材料养护费用高,钢桁架桥梁在公路领域应用较少。近年来,随着我国炼钢水平的提高,国产的钢材品质已经完全能满足结构安全的需要,同时随着钢结构防腐技术的提高,钢结构桥梁越来越多的在公路工程领域得到应用。 相比较我国当前100m左右中等跨径常用的桥型如连续梁、系杆拱、矮塔斜拉桥等结构,钢桁架桥梁虽然建筑成本高,但刨去成本控制的因素,钢桁架桥具有以下的几点优越性:1.建筑高度低,由于钢桁架结构主桁主要由拉杆和压杆构成,对杆件界面的抗弯刚度要求不大,因此钢桁架的建筑高度由横梁控制,在桥梁宽度不是非常大时可极大的降低桥梁建筑高度,尤其适用于对桥梁建筑高度有严格限制的桥梁;2.施工周期短,速度快。钢桁架施工可在工厂制作杆件,运到现场拼装成桥,可采用顶推和支架拼装等方法,这使它在很多工期较紧的工程(如重要道路的桥梁改建)和跨越重要道路的跨线桥上成为桥型首选之一;3.随着钢结构防腐技

术的提高,钢桁架桥的耐久性大为提高,同时钢材作为延性材料,结构安全性较混凝土桥梁高。正因为钢桁架桥梁的这几方面的优点,桁架桥梁成为特定条件下的经济而合理的桥型选择。 2、结构设计 公路桥位于江苏省境内,正交跨越京杭大运河,河口宽95m,通航净空要求90x7m,桥梁主跨采用97m,由于桥梁中心至桥头平交处距离仅140余米,若采用其他结构纵坡将达到5%以上,经综合考虑,主桥采用97m下承式钢桁架结构。 2.1主桁 主桁采用带竖杆的华伦式三角形腹杆体系,节间长度5.35m,主桁高度8m,高跨比为1/12.04。两片主桁中心距为8.6m,宽跨比为1/11.2,桥面宽度为8m。

微波技术与天线实验3利用HFSS仿真分析波导膜片

HFSS仿真分析波导膜片 1.实验原理 矩形波导的结构(如图1),尺寸a×b, a>b,在矩形波导传播的电磁波可分为TE模和TM模。 图1 矩形波导 1)TE模,0 = z E。 cos cos z z mn m x n y H H e a b γ ππ - = 2 cos sin x mn c z n m x n y E H b a b j k eγ πππ ωμ- = 2 sin cos z y mn c j m m x n y E H e k a a b γ ωμπππ - =- 2 sin cos z x mn c m m x n y H H e k a a b γ λπππ - = 2 cos sin z y mn c n m x n y H H e k b a b γ λπππ - = 其中, c k22 m n a b ππ ???? ? ? ???? +mn H是与激励源有关的待定常数。 2)TM模

Z H =0,由Z E 的边界条件同样可得无穷多个TM 模。注意:对于mn TM 和mn TE 模,m, n 不能同时为零,否则全部的场分量为零。 mn TM 和mn TE 模具有相同的截止波数计算公式,即 c k (mn TM )=c k (mn TE ) 所以,它们的截止波长c λ和截止频率c f 的计算公式也是一样的,即 c λ(mn TM )=c λ(mn TE )=222 ??? ??+??? ??b n a m c f (mn TM )=c f (mn TE ) 对于给定的工作频率或波长,只有满足传播条件(f >c f 或λ

射频 微波工程师经典参考书[精华]

射频微波工程师经典参考书[精华] 射频微波工程师经典参考书 1.《射频电路设计--理论与应用》『美』 Reinhold Ludwig 著电子工业出版社 个人书评:射频经典著作,建议做RF的人手一本,里面内容比较全面,这本书要反复的看,每读一次都会更深一层理解. 随便提一下,关于看射频书籍看不懂的地方怎么办,我提议先看枝干或结论有个大概印象,实在弄不明白就跳过(当然可问身边同事同学或GOOGLE一下),跳过不是不管它了,而是尽量先看完自己能看懂的,看第二遍的时候再重点抓第一次没有看懂的地方,人的思维是不断升华的,知识的也是一个系统体系,有关联的,当你把每一块砖弄明白了,就自然而然推测出金字塔塔顶是怎么架设出来的。 2. 《射频通信电路设计》『中』刘长军著科学技术出版社 个人书评:有拼凑之嫌(大量引用书1和《微波晶体管放大电路分析与设计》内容),但还是有可取之处,加上作者的理解,比看外文书(或者翻译本)看起来要通俗易懂,毕竟是中国人口韵。值得一看,书上有很多归纳性的经验. 3(《高频电路设计与制作》『日』市川欲一著科学技术出版社 个人书评:本人说实话比较喜欢日本人写书的风格和语言,及其通俗,配上图示,极其深奥的理论看起来明明朗朗,比那些从头到尾只会搬抄公式的某些教授强们多了,本书作者的实践之作,里面都是一些作者的设计作品和设计方法,推荐一看. 4. 《LC滤波器设计与制作》『日』森荣二著科学技术出版社 个人书评:语言及其通俗易懂,完全没有深奥的理论在里面,入门者

看看不错,但是设计方法感觉有点落后,完全手工计算.也感觉内容的太细致,此书一般. 5. 《振荡电路设计与应用》『日』稻叶宝著科学技术出版社 个人书评:这边书还不错,除了学到振荡电路设计,还学到了很多模拟电路的基础应用,唯一缺点书中的内容涉及频率的都不够高(k级,几M,几十,几百M的振荡器),做有源电路的可以看一下,整体感觉还行. 6. 《锁相环电路设计与应用》『日』远坂俊昭著科学技术出版社 个人书评:对PLL原理总是搞不太明白的同学可以参考此书,图形图片很多,让人很直观明白,比起其他PLL书只会千篇一律写公式强千倍。好书,值得收藏~ 7. 《信号完整性分析》『美』 Eric Bogatin 著电子工业出版社 个人书评:前几章用物理的方法看电子,感觉不好理解,写的感觉很拗口,翻译好像也有些不到位,但后面几章写的确实好,尤其是关于传输线的,对你理解信号的传输的实际过程,能建立一个很好的模型,推荐大家看一下,此书还是不错的.(看多了RF的,换换胃口) 8. 《高速数字设计》『美』 Howard Johnson著电子工业出版社 个人书评:刚刚卓越买回来,还没有动“她”呢,随便翻了下目录,做高速电路和PCB Layout的工程师一看要看下,这本书也是经典书喔~ 9.《蓝牙技术原理开发与应用》『中』钱志鸿著北京航空航天大 学出版社 个人书评:当时自己做蓝牙产品买的书,前2年仅有的几本,上面讲了一下蓝牙的基本理论(恰当的说翻译了蓝牙标准),软件,程序的东西占大部分内容. 10.《EMC电磁兼容设计与测试案例分析》『中』郑军奇著电子工业出版社 个人书评:实战性和很强的一本书,本人做产品经常要送去信息产业部电子研究5所做EMC测试,认证.产品认证是产品成功的临门一脚,把这脚球踢好,老板

各种桥型结构类型桥梁对比

桥式方案比选 在方案比较中主要有以下三项任务:一是拟定桥梁图式,二是编制方案,三是技术经济比较和最优方案的选定。编制设计方案,通常是从桥梁分孔和拟定桥粱图式开始。对一般跨度的桥梁,依据以往的设计经验,主跨与边跨的比值有一个范围,再由此选定可能实现的桥型图式,鼓励新式桥式的大胆采用。一般选几个(通常2~4个)构思好、各具优点、但一时还难以断定孰优孰差的图式,作为进一步详细研究而进行比较的方案。对每一图式可在跨度、高度、矢度等方面大致按比例画在同样大小的桥址断面图上。编制方案中,主要指标包括:主要材料(普通 钢筋、预应力钢筋、砼)用量、劳动力数量、全桥总造价(分上、下部结构列出)、工期、养护费用、运营条件、有无困难工程、特种机具。其目的在于为每个桥式提供全面的技术经济指标,以便相互比较,科学的从中选定最佳方案。在编制方案中要拟定结构主要尺寸,并计算主要工程量。有了工程量,采取相应的材料和劳动力定额以扩大单价,就可以确定全桥造价。并且在每个方案中绘制出河床断面及地质分层的立面图和横断面图。设计方案的评价和比较要全面考 虑上述各项指标,综合分析每一方案的有缺点,最后选定一个最佳的推荐方案。按桥梁的设计原则、造价低、材料省、劳动力少和桥型美观的应是优秀方案。但当技术因素或是使用性质候特殊要求时就另当别论,注重考虑设计的侧重点。技术高,造价必然会高,个个因素是相互制约的。所以在比较时必须从任务书提出的要求以及地形资料和施工条件,找出所面临的问题的关键所在,分清主次。在方案比较中,除了绘制方案比较图外,还应编写方案比较说明书。其中应阐明编制方案的主要原则,拟定方案的理由,方案比较的综合评述,对于推荐方案的详细说明等。有关拟定结构主要尺寸所作的各种计算资料,以及为估算三材指标和造价等所依据的文件名称,均以附件的形式载入。 在对本桥的设计中,选定三种桥式名分别是: 预应力混凝土连续梁桥 双肢薄壁刚构桥 斜拉桥 2.2各种设计桥式特点

微波技术与天线实验报告-利用HFSS仿真分析波导膜片2

HFSS 仿真分析波导膜片 1. 实验原理 矩形波导的结构(如图1),尺寸a×b, a>b ,在矩形波导内传播的电磁波可分为TE 模和TM 模。 图1 矩形波导 1) TE 模,0=z E 。 cos cos z z mn m x n y H H e a b γππ-= 2 cos sin x mn c z n m x n y E H b a b j k e γπππωμ-= 2 sin cos z y mn c j m m x n y E H e k a a b γωμπππ-=- 2sin cos z x mn c m m x n y H H e k a a b γλπ ππ-= 2cos sin z y mn c n m x n y H H e k b a b γλπ ππ-= 其中,c k 2 2 m n a b ππ???? ? ????? +mn H 是与激励源有关的待定常数。 2) TM 模

Z H =0,由Z E 的边界条件同样可得无穷多个TM 模。注意:对于mn TM 和mn TE 模,m, n 不能同时为零,否则全部的场分量为零。 mn TM 和mn TE 模具有相同的截止波数计算公式,即 c k (mn TM )=c k (mn TE ) 所以,它们的截止波长c λ和截止频率c f 的计算公式也是一样的,即 c λ(mn TM )=c λ(mn TE )= 2 2 2?? ? ??+??? ??b n a m c f (mn TM )=c f (mn TE ) 对于给定的工作频率或波长,只有满足传播条件(f >c f 或λ

微波仿真论坛附录COMSOLMultiphysics的MATLAB矢量计算基础18页

附录 COMSOL Multiphysics 的MATLAB 矢量计算基础 W. B. J. ZIMMERMAN 1,J. M. REES 2 1 Department of Chemical and Process Engineering, University of Sheffield, Newcastle Street, Sheffield S1 3JD United Kingdom 2 Department of Applied Mathematics, University of Sheffield, Hicks Building, Sheffield 矢量计算支撑了偏微分方程和它们的数值近似求解。为了很好的使用有限元方法,建模人员应该掌握矢量计算基础知识。本科毕业的工程师可能学过矢量计算的数学课程,但是由于没有碰到过矢量计算的实际应用,这时在工程建模中使用矢量计算就受到限制。本附录介绍了所有COMSOL MULTIPHYSICS WITH MATLAB 中用到的矢量计算基础知识。所以也可以将该附录当作是COMSOL MULTIPHYSICS WITH MATLAB 多变量微分计算的入门读本。当我们写该附录时曾经争论过是否将这部分内容直接加入到第一章(数值分析基础)中,因为导数的数值近似是偏微分方程求解的基础,而偏微分方程是COMSOL MULTIPHYSICS 的基本运算单元。确实,在学习波谱法求解偏微分方程时,基本理论就是“导数理论”——如何使用波变换方法来近似导数。所以通过对比发现,有限元方法的基础就是数值微分。所以争论就不存在了,第一章主要是关于COMSOL MULTIPHYSICS 直接计算的基本问题的。但是不管多有用,近似导数仍然只是建模的一个中间步骤,不是目标本身。 我们这里只考虑用于矢量计算的MATLAB 基础,本附录的重点在于特征值分析和逻辑表达式。这些在整本书中都有体现。应当注意到我们这里介绍的每个功能都可以在COMSOL Script 中实现。本书中唯一不能在COMSOL Script 中实现的Matlab 命令就是fminsearch 。 1.矢量回顾 1.1 矢量表达 FEMLAB 可以处理标量、矢量和矩阵数据,这里简单介绍一下矢量的表达(作为MATLAB 矩阵数据类型的一个特例)。标量可以作为一个单独的数,但是矢量是具有大小和方向的。在如图1所示的右手坐标系系统中,向量a 用以下形式表达: 123123(,,) a a a a a a =++=a i j k a (1) 这里i ,j 和k 是坐标方向的单位矢量,1a ,2a ,3a 是向量a 在各轴方向上的分量。它们是a 对各单位矢量i ,j 和k 的投影。对于坐标系中的P 点(x ,y ,z ),矢量P 对于初始坐标系统O 的位置为: (,,) x y z x y z =++=r i j k (2) MATLAB 用分量的形式描述列矢量或行矢量: >> a = [1; 2; 3]; % column vector

桥梁毕业设计结构设计

1结构设计 1.1方案比选 1.1.1设计标准和规范 设计标准 1、线路等级:公路一级 2、设计车速:60km/h 3、桥面设计宽度:双向四车道,两侧各设2.0m人行道,2m(人行道)+7m(车行道)+2m(分隔带)+7m(车行道)+2m(人行道)=20m。 4、桥面坡度:桥面横向坡度1.5%,桥面纵坡0.7%。 5、设计荷载:公路I级;人群荷载:3.0KN/m2。 6、地震基本烈度:7度,设计基本地震加速值为0.10g。 设计规范 1、公路钢筋混凝土与预应力混凝土桥涵设计规范 JTG D62-2004 2、公路桥涵设计通用规范 JTG D60-2004 1.1.2方案比选概述 赫章大桥处于云贵高原乌蒙山脉北段。地势北高南低,属构造侵 蚀剥蚀型河谷地貌。大桥跨越赫章后河。桥区植被不发育,主要为荒地。桥区附近海拔1490m--1810m,相对最大高差320m。现对桥梁的形式进行方案比选,比选原则如下: (1)安全与舒适性 整个桥跨结构及各部分构件,在制造、运输、安装和使用过程中应具有足够 的强度、刚度、稳定性和耐久性,以满足桥梁安全性的要求。现代桥梁设计越来 越强调舒适度,要控制桥梁的竖向与横向振幅,避免车辆在桥上振动与冲击,以 满足桥梁舒适性的要求。 (2)适用性 桥上应保证车辆和人群的安全畅通,并应满足将来交通量增长的需要。桥下 应满足泄洪等要求。建成的桥梁应保证使用年限,并便于检查和维修。 (3)经济性 设计的经济性应占较重要的位置。经济性除建桥费用,还应考虑未来综合发 展及养护和维修等费用。 (4)美观 一座桥梁,应与周围的景致相协调。有合理的结构布局和优美的轮廓是美观 的主要因素,不应把美观片面地理解为豪华装饰。在安全、适应和经济前提下, 尽可能使桥梁具有美观性。 根据该桥的桥位地质、实际地形和水文资料,综合各备选方案上部结构形式

课堂教学结构设计

课堂教学结构设计 万家小学徐红丹学生语文素质的提高固然离不开平时勤奋不断的学习积累,但最有效渠道仍须着眼于课堂教学。语文教师根据教学大纲的要求和学生的学习心理对教材内容的筛选加工转化和创造只是为语文教学提供了前提条件,奠定了物质基础。要把死准备转化为活需要,把教师储备转化为学生具备,教给学生独立掌握知识的本领,根本出路是在授—受、传—接方式上下一番苦工夫,即优化教学形式设计。以往人们仅仅把课堂看作知识传递的一种形式,却忽视了教师的策略和真挚情感在其中的作用,致使教学缺乏有效性。好比建大楼,有了土地、材料、工人,还要有图纸协调诸因素。 教育理论与实践都表明,在其他条件相同的情况下,一堂课效果的优劣,直接受课堂学生心理气氛的影响。激趣诱因就是在讲授具体教学内容之前,从学生的兴趣和可接受性出发,从教材实际出发,用极短的时间创造性地设置一种最良好的平等、轻松、和谐、热烈的施教气氛和环境,最大限度地引起学生求知欲望和进一步学习的内动力,顺利完成课堂教学任务。这是一个老师根据学生心理愿望营造的课堂动机激发和积极心向培养的“铺路搭桥”过程。激主动学习之趣,诱自觉探究之因,去除单调枯燥、沉默压抑、死气沉沉、漫不经心的局面。情绪轻松、气氛和谐、思维敏捷是开发智能的最佳期,也是积极参与潜能开发的有效手段和基本保证。这一环节要新颖别致有情趣,可借助贴近生活实际的悬念巧设、感情渲染、新旧衔接、相机诱导、故事过渡、模仿体验等相关观念的组合,造成心理上的渴求,把学生的好奇心转化为求知欲,激情满怀地展开形象思维和逻辑思维。这一阶段的目的是缩小教师与学生之间的空间、情感上的距离,产生教学活动的认同感,以便下一阶段教学工作顺利开展。但要注意,无论采取什么形式激趣诱因,都不可游离教学目标和教学内容,同时要浅易明晰。 设计中要增强教与学的“交互性”,好比打乒乓球,有来有往,寻深入浅出之点,剖共同认知之理。具体方式有:1、师生换位思考,有意识地消解对内容理解接受的悬殊,消解交流障碍。2、要敢舍弃重难点,因为学生并非一无所知。3、运用移觉手段,化难为易。将不直观的费解文字转化为可感的形象。4、选准切入点,精心设疑,引发争议。教师“引而不发、导而弗牵、强而弗抑、开而弗达”

微波技术与天线实验3利用HFSS仿真分析矩形波导

微波技术与天线实验3利用HFSS仿真分析矩形波导

微波技术与天线实验报 告 实验名称:实验3:利用HFSS仿真分析矩形波导 学生班级: 学生姓名: 学生学号:

实验日期:2011年月日

2sin cos z y mn c j m m x n y E H e k a a b γωμπππ-=- 2sin cos z x mn c m m x n y H H e k a a b γλπππ-= 2cos sin z y mn c n m x n y H H e k b a b γλπ ππ-= 其中,c k 22m n a b ππ???? ? ????? +mn H 是与激励源有关的待定常数。 1) TM 模 Z H =0,由Z E 的边界条件同样可得无穷多个TM 模。注意:对于mn TM 和 mn TE 模,m, n 不能同时为零,否则全部的场分量为零。 mn TM 和mn TE 模具有相同的截止波数计算公式,即 c k (mn TM )=c k (mn TE )22 m n a b ππ???? ? ?????+所以,它们的截止波长c λ和截止频率c f 的计算公式也是一样的,即 c λ(mn TM )=c λ(mn TE )=222 ?? ? ??+??? ??b n a m c f (mn TM )=c f (mn TE )2με22 m n a b ???? ? ?????+ 对于给定的工作频率或波长,只有满足传播条件(f >c f 或λ

微波与天线总结

对称阵子天线: 构成:有两根粗线和长度都相同的导线构成,中间为俩个馈电端 原理: 若电线上的电流分布已知,则由电基本阵子的辐射场沿整个导线的积分,便得到对称振子的辐射场。实际上,西振子天线可看成是开路传输线逐渐张开而成,而其电流分布与无耗开路传输线的完全一致,即按正弦驻波分布。 用途:对称振子分为半波对称振子和全波对称振子,半波对称振子广泛的应用于短波和超短波波段,它既可以作为独立天线使用,也可以作为天线阵的阵元,在微波波段还可以作为抛物面天线的馈源。 特点: 方向性比基本振子的方向性稍强一些,平均特性阻抗Z越低R和X随频率的变化越缓慢,其频率特性越好。所以,欲展开对称振子的工作频带,常利用加粗振子直径的方法。当h=λ/4n时,其输入阻抗是一个不大的纯电阻具有很好的频率特性,也有利于同馈线匹配,而在并联谐振点附近是一个高阻抗且输入阻抗随频率变化剧烈,特性阻抗不好。 阵列天线: 构成:将若干辐射单元按某种方式排列所构成的系统。构成天线阵地辐射单元,成为天线原或阵元 原理:天线的辐射场是各天线元所产生的矢量叠加,只要各天线元上的电流,振幅和相位分布满足适当的关系,就可以得到所需要的辐射特性 特点:天线阵的主瓣宽度和旁瓣电平是即相互依赖又相互对立的一对矛盾,天线阵方向图的主瓣宽度小,则旁瓣电平就高,反之,主瓣宽度大则旁瓣电平就低。均匀直线阵的主瓣很窄,但旁瓣数目多,电平高,二项式直线振的主瓣很宽旁瓣就消失了,旁瓣分散了天线的辐射能量,增加量接受的信噪比,但旁瓣又起到了压缩主瓣宽度的作用。 直立阵子天线: 构成:垂直于地面或导电平面架设的天线称为直立阵子天性 原理:单级天线可等效为一对对称振子,对称阵子可等效为一二元阵,但此时等效只是在地面或导体的上半空间成立。理想导电平面上的单级天线的辐射场可直接应用到自由空间对称振子的公式进行计算。 用途:广泛应用于长,中,短波及超短波段。 特点: 当h《λ时辐射电阻很低。单级天线效率也很低改善方法是提高辐射电阻降低损耗电阻。 水平振子天线: 构成: 水平振子天线又称双级天线,阵子的两臂由单根或多股铜线构成,为了避免在拉线上产生较大感应电流,拉线的长度应较小,臂和支架采用高频绝缘子隔开,天线与周围物体要保持适当距离,馈线采用600Ω的平行双导线。 原理:与直立天线的情况类似,无限大导电地面的影响可用水平阵子天线的镜像来代替,架设在理想导电地面上的水平振子天线的辐射场可以用该天线及其镜像所构成的二元阵来分析,但应注意该二元阵的天线元是同幅反相的。 用途:经常用于短波通信电视或其他无线电系统。 特点:架设和馈电方便,地面电导率的变化对水平振子天线的影响较直立天线小,工业干扰大多是垂直极化波,因此,用水平振子天线可以减少干扰对接收的影响。 引向天线: 构成:又称为八木天线,它由一个有源振子及若干个无源振子组成,在无源振子中较长的一个为反射器,其余为引向器 用途:广泛用于米波,分米波的通信、雷达、电视及其它天线电流 原理:引向天线实际上也是一个天线阵,与前述天线相比不同的是它是对其中一个振子馈电,

相关文档
最新文档