碳材料介绍

碳材料介绍
碳材料介绍

新型碳材料的发展及简介

摘要:碳是世界上含量十分丰富的一种元素。碳材料在人类发展史上起着主导的作用,其应用最为出众的一次是在第二次工业革命。现代科技的发展使得人类又获得了几种新型的碳材料--碳纳米管、碳纤维、C60、碳素系功能材料等。

关键词:碳材料碳纳米管碳纤维

一、前言

碳是世界上含量及广的一种元素。它具有多样的电子轨道特性(SP、SP2、SP3杂化),再加之SP2的异向性而导致晶体的各向异性和其排列的各向异性,因此以碳元素为唯一构成元素的的碳材料,具有各式各样的性质。在历史的发展中传统的碳材料包括:木炭、竹炭、活性炭、炭黑、焦炭、天然石墨、石墨电极、炭刷、炭棒、铅笔等。而随着社会的发展人们不断地对碳元素的研究又发明了许多新型炭材料:金刚石、碳纤维、石墨层间化合物、柔性石墨、核石墨、储能型碳材料、玻璃碳等。其中新型纳米碳材料有:富勒烯、碳纳米管、纳米金刚石、石墨烯等。

没有任何元素能像碳这样作为单一元素可形成如此多类结构和性质不同的物质,可以说碳材料几乎包括了地球上所有物质所具有的性质,如最硬--最软、绝缘体--半导体--超导体、绝热-良导热、吸光--全透光等。随着时代的变迁和科学的进步,人们不断地发现和利用碳,可以这么说人们对碳元素的开发具有无限的可能性。

自1989年著名的科学杂志《Science》设置每年的“明星分子”以来,碳

”相继于1990年和1991年连续两年获此的两种同素异构体“金刚石”和“C

60

殊荣,1996年诺贝尔化学奖又授予发现C

的三位科学家,这些事充分反映了

60

碳元素科学的飞速发展。但是由于碳元素和碳材料具有形式和性质的多样性,从而决定了碳元素和碳材料人有许多不为人们知晓的未开发部分。

二、国内外新型碳材料的发展趋势

新材料的研究开发包括四方面内容:①新材料的创制;②移植材料的新功能及新性质的发现;③已知材料的改性;④新材料创制和评价技术的开发。近

和几年人们在新材料的创制方面先后划时代地发明了低温气相生长金刚石、C

60

纳米碳管;在材料新发现方面发现了石墨的插层性质,使锂离子充电电池得以实用化和飞速发展;在材料改性方面提高和改进了石墨电极的性能,使之在超高电流下工作,使电炉炼钢技术出现新的突破;在新材料评价技术方面也有许多进展,如超高温超高压技术用于碳素新相的探索等。

日、美等发达国家一直对于碳材料的研究十分重视。由于碳材料突出的特性,美国将碳材料定为战略材料之一,充分利用其巨大的国防费用和航天费用,积极进行研究与开发。日本最近几十年来在国际上率先在低温气相生长金刚石和纳米碳管等方面取得了突破性进展。为了进一步加强这方面的研究与开发,最近几年日本政府先后实施了三个大型研究项目,即“高功能碳素系材料的研究”项目,重点研究金刚石薄膜等作为电子材料和零磨损、无油润滑材料等;“碳材料中功能性微米和纳米空间的创制”项目;“碳合金的创制”研究项目。

我国碳材料研究与生产起步于解放初期。在前苏联的援助下,首先建设了以生产炼钢用石墨电极为主的吉林碳素厂和以生产电工用碳制品为主的哈尔滨电碳厂。六十年来我国碳素工业从无到有,有了长足的发展。我国碳材料的研究水平从整体上来说落后于美国、日本和欧洲等工业国家。在某些重要领域我国紧随美,日等发达国家之后,差距并不明显,如C/C复合材料、活性炭纤维、柔性石墨等。

三、碳材料的介绍与研究

1、碳纤维

碳纤维是一种比铝轻、比钢强、比人发细、含碳量大于90%的纤维状碳材料,其中碳含量高于99%的称为石墨纤维。碳纤维的轴向强度和模量高,密度低、比性能高,无蠕变,非氧化环境下耐超高温,耐疲劳性好,比热及导电性介于非金属和金属之间,热膨胀系数小且具有各向异性,耐腐蚀性好,X射线透过性好。碳纤维不仅具有碳材料的固有本征特性,又兼具纺织纤维的柔软可

加工性,而且其耐蚀性出类拔萃,是新一代增强纤维。碳纤维广泛用于民用、军用、建筑、航天以及超级跑车领域。

按照制造工艺和原料的不同,碳纤维可以分为有机前驱体法和气相生长法碳纤维。有机前驱体法即采用有机纤维为原料,经过一系列前处理后将其碳化,收集得到碳纤维的方法。有机前驱体法制备碳纤维的质量、品种和成本80%取决于纤维前驱体,例如聚丙烯蜡基。气相生长法是碳纤维的另一种制备方法,在低分子气态烃类的高温下与过渡金属如Fe、Co、Ni或合金接触时通过特殊的催化作用可以从气相直接生成碳纤维。该法制备的碳纤维其拉伸强度和拉伸模量比前驱体法制备的碳纤维都要强。

2、碳纳米管

碳纳米管是碳材料家族中一个重要的成员。1991 年,Iijima 首次在高分辨电镜下发现在C60的产物中有纳米级碳管状物的存在,并将其定义为碳纳米管(CNT),随后1993年首次得到了单壁碳纳米管。这成为继C60后碳材料又一重大发现,立即在科学界引起了重大的轰动。

目前已有不同的方法制备碳纳米管。电弧放电法制备碳纳米管是在真空反应腔中充满惰性气体或氢气,采用较粗大的石墨棒为阴极,细石墨棒为阳极,在电弧放电过程中阳极石墨棒不断被消耗,同时在阴极上沉积出含有碳纳米管的产物。此外还有激光蒸发法、化学气相沉积法、热解聚合物、离子辐射、电解、金属材料原位合成池、火焰法等方法制备碳纳米管。

3、富勒烯

富勒烯是完全由碳组成的中空的球形、椭球形、柱形或管状分子的总称。其中C60是最早发现的富勒烯,也是富勒烯类材料中最重要的一种。C60分子是一种由60个碳原子组成的分子,形似足球,又名足球烯。分子轨道计算表明,足球烯具有较大的离域能。C60具有金属光泽,有许多优异性能,如超导、强磁性、耐高压、抗化学腐蚀,在光、电、磁等领域有潜在的应用前景。

C60的首次合成是由美国休斯顿赖斯大学的史沫莱等人和英国的克罗脱于1985年利用烟火法实现的。除了C60这种足球烯外,还有C70等许多类似的足

球烯分子相继被发现。目前已有多种方法可以人工制备C60,较为成熟的制备方法主要有电弧法、热蒸发法、燃烧法和化学气相沉积法等。

4、石墨烯

石墨烯是指单层的石墨片层,在片层方向呈准二维结构,是由一层SP2碳原子组成的具有蜂窝状结构的二维晶体。由于石墨烯具有神奇的二维结构,所以石墨烯在电、光和磁等方面都具有许多奇异的性质,如室温量子霍尔效应、超导性、铁磁性和巨磁阻效应等。石墨具有完美的杂化结构,大的共轭体系使其具有很强的电子传输能力,同时石墨本身就是良好的导热体,可以很好地散发热量,因此用石墨烯制备的电子元器件的运行速度可以得到大幅度的提高。2004年之后,关于石墨烯的报道在Science、Nature上就有400余篇,又一场碳研究的革命正悄然兴起。

目前制备石墨烯的方法众多,大体上可以分为两类:由下而上法和由上而下法。前者的原料是含碳小分子,后者是石墨。其中由下而上法主要包括化学气相沉积法、SiC表面石墨法、碳纳米管解压法和CO还原法。而由上而下法种类较多,主要有为机械剥离法、氧化石墨还原法、液相剥离法、超临界流体法、电化学法、直接超声法等。

四、总结

新型碳材料和碳素系材料的发现及应用,使得它们组成了一个重要而又发展迅速的家族。让世界各国的十分重视,因此发展的十分迅速,各种新型碳材料不断涌现而出。使现在的生活更轻便、快捷、高效、科学。

参考文献

[1] 张以河. 材料制备化学[M].北京:化学工业出版社,2013

[2]高瑞林, 王茂章, 钱树安. 新型碳材料[J]. 新型炭材料, 1998, 1.

[3]肖丽,金为群,张华蓉,膨胀石墨与柔性石墨及其应用[J].中国非金属矿工业导

刊,2005(6):17-25

[4]黄海平, 朱俊杰. 新型碳材料——石墨烯的制备及其在电化学中的应用[J]. 分析化学, 2011, 39(7).

[5]代波, 邵晓萍, 马拥军, 等. 新型碳材料——石墨烯的研究进展[J]. 材料导报, 2010 (3): 17-21.

[6] 宏伟, 纳米研究, 德海, 等. 碳纳米管[M]. 机械工业出版社, 2003.

[7]海军, 根林. 新型碳纳米材料: 碳富勒烯[M]. 国防工业出版社, 2008.

[8] 肖瑜. 中国富勒烯的研究进展[J]. 广西科学, 2003, 10(2): 113-116.

[9] Kr?tschmer W, Lamb L D, Fostiropoulos K, et al. C60: a new form of carbon[J]. Nature, 1990, 347(6291): 354-358.

[10] 石墨烯, 朱宏伟. 石墨烯: 单原子层二维碳晶体——2010 年诺贝尔物理学奖简介[J].

[11] 黄毅, 陈永胜. 石墨烯的功能化及其相关应用[J]. 中国科学化学 (中文版), 2009, 39(9): 887-896.

[12] 王颖慧, 邱汉迅, 王钊, 等. 合成方式对单壁碳纳米管基电极材料结构及电化学性能的影响[J]. 新型碳材料, 2015, 30(3): 214-221.

石油沥青碳材料概述

石油沥青碳材料概述 一、高软化点沥青---高碳材料 按照沥青软化点高低分类,当软化点≤80℃称低软化点沥青,光学各向同性;软化点介于80℃-150℃称中软化点沥青,光学各向同性,又称预中间相沥青;软化点介于150℃-260℃称高软化点沥青,光学各向异性,又称潜中间相沥青;软化点介于260℃-372℃称超软化点沥青,光学各向异性,又称中间相沥青。 二、锂离子电池负极材料 (一)石油沥青基中间相碳微球 1、简介 中间相碳微球即MCMB,用作锂电池负极材料,具有高的质量比容量-300mAh/g,很低的不可逆容量20mAh/g,与低成本石墨相比,显现出较低的容量衰减,对要求长循环和高体积比的动力电池来说更适合。化学稳定性和热稳定性相对较高。日本的新一代电动车电池大多使用MCMB。 2、市场价格 中间相碳微球根据质量和使用需求不同,国产产品市场上从5万-15万元/吨不等,日本JFE(日本钢铁工程控股公司)价格更高。 3、生产企业

目前国内有能力批量稳定生产高质量中间相碳微球的企业并不多,高端的产品主要是国外企业垄断。 国内企业 --天津市贝特瑞新能源材料有限责任公司(原天津铁诚,属中国宝安集团) AGP-3 系列 --杉杉科技公司 CMS系列、MCP系列 国外企业 --JFE、日立化学,三菱化工等日本企业 (二)高端人造石墨 1、简介 高端人造石墨,用作锂电池负极材料,和天然石墨合计市场占有率高达90%,是主要的锂离子电池负极材料。 2、市场价格 高端人造石墨根据终极市场锂电池的应用不同,所需的性能和质量不同,统计价格不包括特殊情况,国产产品市场价格6-16万元/吨不等。 3、生产企业 高端人造石墨,从全球的情况看,前三甲的市场占有率就高达66%,国内主要生产厂商有以下: --中国宝安贝特瑞新能源材料(BTR)公司 --杉杉科技公司 --长沙海容公司

硅胶模具材料概述

硅橡胶 目录 1、硅橡胶发展史 (2) 2、硅橡胶定义 (2) 3、硅橡胶分类………………………………………………………………… 2-3 4、硅橡胶的主要性能 (3) 5、硅橡胶的模具结构 (4) 6、硅橡胶加工流程…………………………………………………………… 4-5 7、硅橡胶的产品尺寸特性 (5) 8、硅橡胶在我司产品中的运用 (6)

一、硅橡胶发展史 硅橡胶最先是由美国以三氯化铁为催化剂合成的。1945年硅橡胶产品问世,中国硅橡胶的工业化研究始于1957年,到2003年底中国硅橡胶生产能力为135千吨,其中高温胶100千吨。 二、硅橡胶定义 硅橡胶是指主链由硅和氧原子交替构成,硅原子上通常连有两个有机基团的橡胶。普通的硅橡胶主要由含甲基和少量乙烯基的硅氧链节组成。 三、硅橡胶分类(这里只体现与我司产品有关联的) 硅橡胶分热硫化型(高温硫化硅胶HTV)、室温硫化型(RTV)。高温硅橡胶主要用于制造各种硅橡胶制品,而室温硅橡胶则主要是作为粘接剂、灌封材料或模具使用。我司使用到的硅胶产品主要是热硫化型,也有用到室温硫化型硅胶做粘结剂。 备注解说: 室温硫化硅橡胶与高温硫化硅橡胶的差别主要在于它是以分子量较小的聚硅氧烷为基础胶,在交联剂和催化剂的作用下与室温或稍许加热即可硫化成弹性体。室温硫化硅橡胶由基础胶、交联剂、催化剂、填料等组成。从包装形式上可分为单组份和双组分两种。室温硫化硅橡胶主要应用在以下行业: 1、建筑行业。用于玻璃和金属幕墙的粘结,屋顶嵌封,门窗密封,各种水池、瓷砖的粘接密封。 2、电子行业。用于电子电气部件的包封和灌注材料,可防潮、抗震和耐冲击、耐温度骤变和化学品的腐蚀。 3、模具。硅橡胶优异的仿真性和良好的脱模性能使其在软模具行业得到广泛应用。

碳纤维技术简介_简版

1炭素纤维技术介绍 1.1炭素纤维生态草处理技术简介 炭素纤维生态草是用于净化受污染水域,修复水环境生态的优良选择,其实现了对环境的零负荷与完全的生物安全。 炭素纤维生态草具有极高的吸附性与生物亲和性,太阳光照射,炭素纤维生态草发出超音波,吸引微生物菌群。这些菌群在其表面形成粘着性活性生物膜。这些微生物以有机污染物为食,通过自身的新陈代谢作用分解水体中的有机污染物。同时很重要的是,以微生物为食的小鱼等其他小生物会聚集在炭素纤维生态草的周围,炭素纤维生态草成为鱼类及其他高级水生动物的优良卵床与养育空间。水体中的生物链,食物链修复回健康状态。水体恢复生命。利用炭素纤维治理水,构建水下森林,给水生生物搭建栖息地,以微生物、小虾小鱼、大鱼为基础的循环生态链逐步建立。 在日本,利用炭纤维技术,成功的修复了受污染的榛名湖,挽救了面临灭绝的当地独有的公鱼以及当地的传统旅游业。在其他240个案例与实验中,炭纤维的这些特性,是都得到证明的。在中国海南三亚市、江苏省苏州市景观河湖水质改善及生态修复项目上得到应用。项目水质指标均达到设计要求,水体生物多样性得到有效改善。 1.2炭素纤维生态草技术特征 a) 高生物附着比表面积 炭素纤维生态草比表面积1000m2/g.利用此特性,其能高效吸收、吸附、截留水中溶解态和悬浮态的污染物,提高水体的透明度,并为各类微生物、藻类和微型动物的生长、繁殖提供良好的着生、附着或穴居条件,最终在炭素纤维上形成薄层的具有很强净化活性功能的“生物膜”。 炭素纤维生态草与其它载体生物附着比表面积的比较

b) 生物膜结构 在炭素纤维表面形成的生物膜一个断面上,由外及里形成了好氧、兼性厌氧和厌氧三种反应区。在好氧区,好氧菌将氨氮转化为硝基氮,并把小分子有机物转化为二氧化炭和水(把可溶的无机磷转化为细胞体内的ATP),在厌氧区,厌氧菌将硝基氮转化为氮气和氧气(把难分解的大分子有机物分解为可降解的小分子有机物)。最终污染基团就被分解转化成逸出水体的N2、CO2和H2O。附着在炭素纤维上的大量微生物群,微生物群难以脱落,其上黏附的污染物难以溶出及扩散,抑制了环境的恶化。在水流的影响下,产生收缩运动,从而促进了污染物质的分解。 c) 专利编织技术,平铺、垂立安装设计 炭纤维人工草场的专利编织组合方式,可以促进海藻及生物类的着床同时形成水体珊瑚礁功能,更有利于孵化、养鱼幼鱼及其他水生动物,躲避大鱼的袭击。平铺形式的西阵带织物状,可以有效的消减底泥污染,抑制底泥内源污染物的释放。悬挂水中放置形式,解决了水体中间层微生物的载体问题。(水表面好氧菌活跃层、底层厌氧菌在底泥内部活跃,水体中间因缺乏微生物载体而微生物活动性不强)。安装设置容易结合景观文化设计,可利用生物浮岛等配合进行景观的绿化与文化内涵的结合。 d) 基于声波效应特性与材料特性基础上的生物亲和性 炭素纤维生态草,经太阳光等射线照射后,发出声波,其波段与微生物感知波段吻合,形成呼应,促使微生物迅速聚集在炭纤维周围。其发出的声波一方面激活微生物,提高微生物膜的活性,提高污染物分解速度;另一方面,通过声波吸引鱼虾贝类,聚集在其周围,形成具有生产者、消费者、分解者的完整生态链。同时炭素纤维柔软且表面形成黏着性的生物膜,是鱼、虾、贝类等水生生物优良的产卵、生息的繁殖场所,经过科学实验观察,其生物卵床功能甚至优于真实水

常用的模具材料的介绍

常用的模具材料的介绍: 铸件类: HT250 灰铁250 适用于模座压料芯等大型结构件本体不能热处理 (我们公司基本不用,因为它比HT300差,在小模具和低产量模具上使用较多) HT300 灰铁300 适用于模座压了芯等大型结构件本体据说火焰淬火能提高硬度到40但具体根据(但通常没人这样用) 我们公司最常用的材料之一 MoCr 钼铬铸铁使用于需要一定硬度的机构件,如拉延模面也可用于薄料翻边镶块经过淬火后硬度能达到HRC55-60,比较耐磨. GGG70 (GGG70L) 进口材料,目前国内可能天津有铸造厂能造了(如有人知道的请指正),与M oCr 类似, 硬度HRC60左右,耐磨性更高, GGG70L类似于GGG70升级版本. CH-1(7CrSiMnMoV) 空(风)冷钢用于薄料(通常是1.2以下,根据客户要求)的修边镶块,翻边整型镶块, 锻造类 T10(T10A) 修边刀块/翻边刀块等需要较高硬度的零件,硬度HRC58-62 ,但由于此种材料的耐磨性能很差,在零件超过3mm时不管是翻边还是修边,基本都不用它而选择Cr12MoV,我们公司基本不用这种材料,与之差不多的还有种叫T8A的材料曾经使用过,主要用于制作冲头的垫板. Cr12MoV 修边刀块/翻边刀块等需要较高硬度的零件,HRC58-62,耐磨,常用材料 SKD11 比Cr12MoV 优秀更耐磨,日标,通用的零件,中山伟福,APAC的模具,一般都有厂家直接指定了使用此种材料,(另在产量非常高的情况下,在其表面做TD处理,一种表面硬化涂层,可在MISUMI标准件书上的技术资料上查阅到相关信息. 锻造空冷钢与铸造空冷钢相比,差不多,但锻造的更好,由于一个是铸造出来,一个是锻造出来,用法是还是有很多不同的. 扎钢类/其他类: 20# 用于导柱导套(由于现在都是买标准件,一般都是铸铁的), 45# 最常用的了 Q235(A3) 用于铸入式起重棒等零件,这个比较重要了,很多人可能不是太了解的,由于起重棒这样的零件需要具有以下属性:不需要太高硬度,但需要一定韧性,因为当模具被吊起来以后,即使起重棒要出问题,宁可让它变弯也不能直接断掉,让人更容易观察到可能出的问题,增加安全性. Cr12MoV T10 等材料也有扎钢,由于扎钢和锻造的加工工艺性决定,扎钢必定不能和锻造钢比...

碳纳米材料简介

碳纳米材料简介

第一章碳纳米材料简介 碳元素 碳在元素周期表中排第六位,是自然界分布非常广泛的元素,也是目前最重要、最使人着迷的元素之一。尽管它在地壳中含量仅为0.027%,但是对一切生物体而言,它是最重要且含量最多的元素,人体中碳元素约占总质量的18%。 碳元素是元素周期表中ⅣA族中最轻的元素。它存在三种同位素:12C、13C、14C。 碳单质有多重同素异形体,他是迄今为止人类发现的唯一一种可以从零围到三维都稳定存在的物质。如零维的富勒烯(fullerenes),一维的碳纳米管(carbon nanotubes),二维的石墨烯(graphene),三维的金刚石(diamond)和石墨(graphite)等。 碳纳米材料 富勒烯 富勒烯是指完全由碳原子组成的具有空心球状或管状结构的分子。1985年, 。这一Kroto,Smalley和Curl在美国莱斯大学发现了第一个富勒烯分子——C 60 发现使得他们赢得了1996年的诺贝尔化学奖。C 由60个原子组成,包含20个 60 六元环和12个五元环。这些环平面堆积在一起的方式和足球的表面结构一样,因此也也被称为足球烯。从那以后,不同分子质量和尺寸的富勒烯纷纷被制备的发现和研究开启了对碳元素和碳纳米材料广泛、深入研究的新时代,出来。C 60 对纳米材料科学和技术的发展起到了极大的推动作用。 由于其独特的结构,富勒烯同时具有芳香化合物和缺电子烯烃的性质,表现出很多优良的物理和化学性质(表1-1) 表1-1 C 的一些基本物理和化学性质 60

碳纳米管 碳纳米管(carbon nanotubes)是由碳原子形成的管状结构分子,包括单壁碳纳米管(single-walled carbon nanotubes,SWNTs)和多壁碳纳米管(multi-walled carbon nanotubes,MWNTs)。其直径从几百皮米到几十纳米,而长径比可以上万。碳纳米管是前最重要的一维纳米材料之一。 虽然对碳纳米管发现的确切时间存在争议,但公认碳纳米管从1991年才引起了科学界的广泛兴趣。1991年日本的Iijima在研究富勒烯的制备过程中由于电弧产物中发现了多壁碳纳米管,并利用透射电镜证实了它的存在。随后在1993年,他又发现了单壁碳纳米管,与此同时,Bethune等也独立观察到了单壁碳纳米管。 单壁碳纳米管可看成是由一层石墨烯沿一定角度卷曲而成的管状结构(图1-1)。根据卷曲角度的不同,可以形成具有不同手性和直径的碳纳米管,因此常用两个整数(n,m)表征单壁碳纳米管的结构。当m=0时,该类单壁碳纳米管被称为锯齿形(zigzag)单壁碳纳米管;当n=m时,该类单壁碳纳米管被称为扶手椅形(armchair)单壁碳纳米管;其他的均被称为手性(chiral)碳纳米管。单壁碳纳米管的直径可以通过两个指数算出来。 图1-1 单壁碳纳米管结构示意图 由于其特殊的结构,碳纳米管具有许多优良的性质。从电学性质来看,碳纳米管可分为金属型(metallic,带隙为零)和半导体型(semiconducting,带隙可达2eV)。单壁碳纳米管的一些重要性质如表1-2。

碳纤维材料的性能

碳纤维材料的性能及应用 摘要:介绍了碳纤维及其增强复合材料,详细介绍了碳纤维复合材料的分类和特性,着重阐述了碳纤维及其复合材料在高新技术领域和能源、体育器材等民用领域的应用,并对未来碳纤维复合材料的发展趋势进行了分析。 关键词:碳纤维性能应用 0引言 碳纤维复合材料具有轻质、高强度、高刚度、优良的减振性、耐疲劳和耐腐蚀等优异性能。以高性能碳纤维复合材料为典型代表的先进复合材料作为结构、功能或结构/功能一体化材料,不仅在国防战略武器建设中具有不可替代性,在绿色能源建设、节约能源技术发展和促进能源多样化过程中也将发挥极其重要的作用。若将先进碳纤维复合材料在国防领域的应用水平和规模视作国家安全的重要保证,则碳纤维复合材料在交通运输、风力发电、石油开采、电力输送等领域的应用将与有效减少温室气体排放、解决全球气候变暖等环境问题密切相关。随着对碳纤维复合材料认识的不断深化,以及制造技术水平的不断提升,碳纤维复合材料在相关领域的应用研究与装备不断取得进展,借鉴国际先进的碳纤维复合材料应用经验,牵引高性能碳纤维及其复合材料的国产化步伐,对于改变经济结构、节能减排具有重要的战略意义。 1碳纤维材料 何为碳纤维材料 碳纤维是一种含碳量在9 2% 以上的新型高性能纤维材料, 具有重量轻、高强度、高模量、耐高温、耐磨、耐腐蚀、抗疲劳、导电、导热和远红外辐射等多种优异性能, 不仅是21 世纪新材料领域的高科技产品, 更是国家重要的战略性基础材料, 政治、经济和军事意义十分重大。碳纤维分为聚丙烯睛基、沥青基和粘胶基3种, 其中90 % 为聚丙烯睛基碳纤维。聚丙烯睛基碳纤维的生产过程主要包括原丝生产和原丝碳化两部分。用碳纤维与树脂、金属、陶瓷、玻璃等基体制成的复合材料, 广泛应用于航空航天领域??体育休闲领域以及汽车制造、

碳纤维增强复合材料概述

碳纤维增强复合材料概述 摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。 关键字:碳纤维,复合材料,应用 Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials. Key words: carbon fiber, composite materials, applications 1.碳纤维增强复合材料介绍 复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。 碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、

碳纤维的发展与现状

人员分工情况 资料收集:蔡煜简江婷婷宋爽韵周晓楠张领中英文摘要:蔡煜张领周晓楠 内容编写:发展部分简江婷婷宋爽韵 现状与差距部分蔡煜张领周晓楠排版校对:简江婷婷宋爽韵 宋爽韵 20110815023 简江婷婷 20110815036 蔡煜 20110815045 周晓楠 20110815047 张领 20110815050

碳纤维的发展与现状 学生:蔡煜简江婷婷宋爽韵周晓楠张领指导老师:秦文峰 摘要:简要介绍了碳纤维的性能、发展历史以及在航空航天领域中的应用,同时分析了国内外碳纤维的发展差距,给出了对我国碳纤维发展的建议。 关键词:碳纤维;碳纤维复合材料;应用领域;发展差距;发展建议 Abstract:The brief introduction of the performance and development history and application in the aviation&aerospace field of carbon fiber ,the analysis of the development gap of carbon fiber between home and abroad ,the advises of carbon fiber’s development to our country are given in this paper. Key words:carbon fiber;carbon fiber composites;application territory; development gap;development advises

碳纤维国内技术和生产现状简介

碳纤维国内技术和生产 现状简介 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

国内碳纤维技术及生产现状 我国从20世纪60年代后期开始研制碳纤维,历经近40年的漫长历程。在此期间,由于国外把碳纤维生产技术列入禁运之列,严格控制封锁,制约了我国碳纤维工业的发展。我国科技工作者发扬自力更生的精神,从无到有,逐步建成了碳纤维的工业雏型。20世纪70年代初突破连续化工艺,1976年在中科院山西煤炭化学研究所建成我国第一条PAN基碳纤维扩大试验生产线,当时生产能力为2t/a。20世纪80年代开展了高强型碳纤维的研究,于1998年建成一条新的中试生产线,规模为40t/a。我国主要研究单位有中科院山西煤化所、上海合纤所、北京化工大学、山东工业大学、东华大学、安徽大学、浙江大学、长春工业大学等。 我国目前使用碳纤维量约占世界用量的1/5。巨大的市场潜力,供不应求的局面,必然促进我国碳纤维工业的发展。但是,要想进入竞争的市场,一是要保证产品的质量,二是要求价位相当。针对我国碳纤维工业的现状,需首先解决高性能PAN原丝的质量,在这基础上才有可能产业化,这是进市场的前提;同时,还需进行预氧化,碳化,石墨化设备及表面处理装置的工程化开发,使其形成规模化生产能力,才能在保证质量的基础上降低成本。目前,内内研究开发以及生产碳纤维的呼声很高,发展趋势令人鼓舞。 但由于对我国碳纤维产业发展的建议目前我国高性能碳纤维无论在质量上还是数量上与国外相比还有一定差距,远远满足不了需求。为此,尽快研究和发展我国自己的高性能碳纤维材料已迫在眉睫。碳纤维是一门多学科交叉、多技术集成的系统工程,质量的提升涉及到方方面面。以下几个方面应优先考虑。 1、提高PAN原丝质量 PAN原丝不仅影响碳纤维的质量,而且影响其产量和生产成本。换言之,只有高质量的原丝才能生产出高性能碳纤维,才能稳定生产,提高产量,降低成本。对于现代碳纤维

碳纤维资料总结

读《碳纤维及石墨纤维》总结 一、碳纤维和石墨纤维的发展概况 1.研究碳纤维的先驱: 1860年,英国人约琴夫?斯旺(J. Swan)用碳丝制作灯泡的灯丝,早于美国人爱迪生(T. A. Edsion)。斯旺未能解决灯泡的真空问题,爱迪生解决的真空问题。斯旺提出利用孔口挤压纤维素成纤维技术,为后来的合成纤维提供启示。 2.聚丙烯腈基碳纤维的发明者: 进藤昭男(日本大阪工业技术试验所)从事碳素的崩散现象和崩散素胶状粒子的研究以及反应堆所用碳材料中微量彭元素的去除。 进一步,他研究了民用腈纶在一些列热处理过程中物性和结构的变化,即开始研制PAN基碳纤维。研究结论是PAN纤维需要经氧化处理才能得到碳纤维,确定了制取PAN基碳纤维的基本工艺流程,即氧化和碳化。但未能制造性能好的碳纤维。 英国人瓦特(W. Watt)在预氧化的过程中施加张力牵引打通了制取高性能碳纤维的流程工艺,从此牵伸贯穿于氧化和碳化的始终,成为制造碳纤维最重要的工艺参数。 目前,牵张力已细化和量化,在不同热处理过程中施加适量的牵张力,以满足结构的转化。3.从东丽公司碳纤维发展历程看原丝的重要性: 日本东丽公司在碳纤维的质量和产量均位于世界之首。公司发展启示:原丝是制取高性能碳纤维的前提。 1962年,公司采用民用腈纶为原丝,但生产不出质量较好的碳纤维。 1967年,研究适合制造碳纤维的共聚原丝,把提高PAN(聚丙烯腈)原丝质量放在第一位。 目前主要经营T300(碳纤维,300为拉伸强度3Gpa),M40(石墨纤维,拉伸模量40Gpa)。 1981年,波音公司提出高强度、大伸长的碳纤维需求,制造大型客机的一次结构材料。 1984年,东丽公司成功研制T800,满足波音公司需求。 1986年,研制T1000;1992年,研制了M70J。 目前,T800H已经是制造大飞机(A380和B787)的主要增强纤维。T1000是碳纤维中拉伸强度最高、断裂伸长最大的碳纤维。M70J的拉伸模量最高达到690Gpa,是目前PAN基石墨纤维中最高的纤维。 碳纤维的单丝截面的SEM图从肾形(1976)变为圆形。圆形(2006)的碳纤维成为碳纤维质量的指标之一。 4.我国PAN基碳纤维的研究: 起始于20世纪60年代中期,中科院山西煤炭化学研究所于1976年建成我国第一条生产线。 整经加捻送丝机(100束)->1#预氧化炉170~220℃和牵伸5%->2#预氧化炉220~240℃和牵伸1%->3#预氧化炉240~270℃和牵伸0%->低碳炉400~700℃->高碳炉1250℃->浸胶槽->红外灯烘干->收丝机(100束)。加工后碳纤维的拉伸强度为2.8Gpa,拉伸模量为250Gpa,断裂伸长率为1.5%。 为了提高碳纤维的拉伸强度,当时采用补强处理。实验表明碳纤维的拉伸强度越低其补强效果越

碳材料介绍

碳材料介绍 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

新型碳材料的发展及简介 摘要:碳是世界上含量十分丰富的一种元素。碳材料在人类发展史上起着主导的作用,其应用最为出众的一次是在第二次工业革命。现代科技的发展使得人类又获得了几种新型的碳材料--碳纳米管、碳纤维、C60、碳素系功能材料等。 关键词:碳材料碳纳米管碳纤维 一、前言 碳是世界上含量及广的一种元素。它具有多样的电子轨道特性(SP、SP2、SP3杂化),再加之SP2的异向性而导致晶体的各向异性和其排列的各向异性,因此以碳元素为唯一构成元素的的碳材料,具有各式各样的性质。在历史的发展中传统的碳材料包括:木炭、竹炭、活性炭、炭黑、焦炭、天然石墨、石墨电极、炭刷、炭棒、铅笔等。而随着社会的发展人们不断地对碳元素的研究又发明了许多新型炭材料:金刚石、碳纤维、石墨层间化合物、柔性石墨、核石墨、储能型碳材料、玻璃碳等。其中新型纳米碳材料有:富勒烯、碳纳米管、纳米金刚石、石墨烯等。 没有任何元素能像碳这样作为单一元素可形成如此多类结构和性质不同的物质,可以说碳材料几乎包括了地球上所有物质所具有的性质,如最硬--最软、绝缘体--半导体--超导体、绝热-良导热、吸光--全透光等。随着时代的变迁和科学的进步,人们不断地发现和利用碳,可以这么说人们对碳元素的开发具有无限的可能性。 自1989年着名的科学杂志《Science》设置每年的“明星分子”以来,碳的两种同素异构体“金刚石”和“C ”相继于1990年和1991年 60 的三位科学家,连续两年获此殊荣,1996年诺贝尔化学奖又授予发现C 60 这些事充分反映了碳元素科学的飞速发展。但是由于碳元素和碳材料具

碳纤维施工工艺介绍

碳纤维加固混凝土结构施工工艺 碳纤维复合材料具有抗拉强度高、密度小、耐腐蚀性和耐久性好等优点,碳纤维片加固补强混凝土结构的应用研究始于 20 世纪 80 年代美国、日本等发达国家,进入 20 世纪 90 年代中后期我国的许多科研机构和企业也相继进行了这方面的试验研究。 目前,在我国的北京、上海、天津、江苏、福建等许多地区的桥梁和工民建工程中得到了广泛的应用。其中有些是由于意外事故而导致结构或构件的承载能力而需补强加 固的;有些是由于混凝土强度或配筋不足而需补强加固的;有些是由于结构或构件达到或接近使用年限而需加固的;还有部分建筑是未进行抗震设防的,满足不了《建筑抗震鉴定标准》 GB50023-95 要求,需进行抗震加固。中国革命历史博物馆(以下简称“革历博”)就是属于后两种情况,进行综合比较后选择了碳纤维粘贴抗震加固的方式。下面结合“革历博”具体工程实例谈一谈碳纤维加固混凝土结构的 施工工艺。 ?碳纤维片加固简介 ( 1 )特点 ①高抗拉强度、高弹性模量。 ②施工方便,无需任何夹具、模板,能适应各种结构外形的补强而不改变构件外形尺寸,可多层粘贴,并能有效地封闭混凝土的裂缝;

③耐腐蚀及耐久性能好。 ④不增加结构自重。 ( 2 )适用范围。适用于各种形式的钢筋混凝土结构或构 件的加固补强。 ( 3 )加固机理。利用专用环氧树脂将抗拉强度极高的碳 纤维片粘贴于混凝土结构表面,并与之形成整体,共同工作。 ?施工工艺 在碳纤维加固施工前,应尽可能地卸去部分荷载,使碳纤维粘贴施工时结构或构件承受的荷载作用减小到最小程度。其加固施 3.1 混凝土基底处理 ( 1 )裂缝处理。宽度小于 0.2mm 的裂缝,用环氧树脂进 行表面涂抹封闭;大于 0.2mm 的裂缝用环氧树脂灌缝。“革 历博”抗震加固的大梁大部分都有宽度不一的裂缝,最大裂 缝达到 1mm 以上,为此我们对所加固的主梁首先进行了压 力灌胶处理。 ( 2 )将混凝土构件表面的残缺、破损部分清除干净,达 到结构密实部位,使其表面平整。

碳纤维制备工艺简介资料

碳纤维制备工艺简介资料. 碳纤维制备工艺简介 碳纤维(Carbon Fibre)是纤维状的碳材料,及其化学组成中碳元素占总质量的90%以上。碳纤维及其复合材料具有高比强度,高比模量,耐高温,耐腐蚀,耐疲劳,抗蠕变,导电,传热,和热膨胀系数小等一系列优异性能,它们既可以作为结构材料承载负荷,又可以作为功能材料发挥作用。因此,碳纤维及其复合材料近年来发展十分迅速。

一、碳纤维生产工艺 可以用来制取碳纤维的原料有许多种,按它的来源主要分为两大类,一类是人造纤维,如粘胶丝,人造棉,木质素纤维等,另一类是合成纤维,它们是从石油等自然资源中提纯出来的原料,再经过处理后纺成丝的,如腈纶纤维,沥青纤维,聚丙烯腈(PAN)纤维等。 经过多年的发展,目前只有粘胶(纤维素)基纤维、沥青纤维和聚丙烯腈(PAN)纤维三种原料制备碳纤维工艺实现了工业化。 1,粘胶(纤维素)基碳纤维 用粘胶基碳纤维增强的耐烧蚀材料,可以制造火箭、导弹和航天飞机的鼻锥及头部的大面积烧蚀屏蔽材料、固体发动机喷管等,是解决宇航和导弹技术的关键材料。粘胶基碳纤维还可做飞机刹车片、汽车刹车片、放射性同位素能源盒,也可增强树脂做耐腐蚀泵体、叶片、管道、容器、催化剂骨架材料、导电线材及面发热体、密封材料以及医用吸附材料等。

虽然它是最早用于制取碳纤维的原丝,但由于粘胶纤维的理论总碳量仅44.5%,实际制造过程热解反应中,往往会因裂解不当,生成左旋葡萄糖等裂解产物而实际碳收率仅为30% 以下。所以粘胶(纤维素)基碳纤维的制备成本比较高,目前其产量已不足世界纤维总量的1%。但它作为航空飞行器中耐烧蚀材料有其独特的优点,由于含碱金属、碱土金属离子少,飞行过程中燃烧时产生的钠光弱,雷达不易发现,所以在军事工业方面还保留少量的生产。 2,沥青基碳纤维 1965年,日本群马大学的大谷杉郎研制成功了沥青基碳纤维。从此,沥青成为生产碳纤维的新原料,是目前碳纤维领域中仅次于PAN基的第二大原料路线。大谷杉郎开始用聚氯乙稀(PVC)在惰性气体保护下加热到400℃,然后将所制PVC 沥青进行熔融纺丝,之后在空气中加热到260℃进行不熔化处理,即预氧化,再经炭化等一系列后处理得到沥青基碳纤维。 目前,熔纺沥青多用煤焦油沥青、石油沥青或合成沥青。1970年,日本吴羽化学工业公司生产的通用级沥青基碳纤维上市,至今该公司仍在规模化生产。1975年,美国联合碳化物公司(Union Carbide Corporation)开始生产高性能中间相沥青基碳纤维“Thornel-P”,年产量237t。我国鞍山东亚精细化工有限公司于20世纪90年代初从美国阿石兰石油公司引进年产200t通用级沥青基碳纤维生产线,1995年已投产,同时还引进了年产45t活性碳纤维的生产装置。 3,聚丙烯腈(PAN)基碳纤维 PAN基碳纤维的炭化收率比粘胶纤维高,可达45%以上,而且因为生产流程,溶剂回收,三废处理等方面都比粘胶纤维简单,成本低,原料来源丰富,加上聚丙烯腈基碳纤维的力学性能,尤其是抗拉强度,抗拉模量等为三种碳纤维之首。所以是目前应用领域最广,产量也最大的一种碳纤维。PAN基碳纤维生产的流程图如图1所示。

碳碳复合材料概述

碳/碳复合材料概述 摘要本文介绍了碳碳复合材料的发展、工艺、特性以及应用。 关键词碳碳复合材料制备工艺性能应用 1前言 C/C复合材料是指以碳纤维或各种碳织物增强,或石墨化的树脂碳以及化学气相沉积(CVD)所形成的复合材料。碳/碳复合材料在高温热处理之后碳元素含量高于99%, 故该材料具有密度低,耐高温, 抗腐蚀, 热冲击性能好, 耐酸、碱、盐,耐摩擦磨损等一系列优异性能。此外, 碳/碳复合材料的室温强度可以保持到2500℃, 对热应力不敏感, 抗烧蚀性能好。故该复合材料具有出色的机械特性, 既可作为结构材料承载重荷, 又可作为功能材料发挥作用, 适于各种高温用途使用[1]。因而它广泛地应用于航天、航空、核能、化工、医用等各个领域。 2碳碳复合材料的发展 碳碳复合材料是高技术新材料,自1958年碳碳复合材料问世以来,经历了四个阶段: 60年代——碳碳工艺基础研究阶段,以化学气相沉积工艺和液相浸渍工艺的出现为代表; 70年代——烧蚀碳碳应用开发阶段,以碳碳飞机刹车片和碳碳导弹端头帽的应用为代表; 80年代——碳碳热结构应用开发阶段,以航天飞机抗氧化碳碳鼻锥帽和机翼前缘的应用为代表; 90年代——碳碳新工艺开发和民用应用阶段,致力于降低成本,在高性能燃气涡轮发动机航天器和高温炉发热体等领域的应用。 由于碳碳具有高比强度、高比刚度、高温下保持高强度,良好的烧蚀性能、摩擦性能和良好抗热震性能以及复合材料的可设计性,得到了越来越广泛的应用。当今,碳碳复合材料在四大类复合材料中就其研究与应用水平来说,仅次于树脂基复合材料,优先于金属基复合材料和陶瓷基复合材料,已走向工程应用阶段。从技术发展看,碳碳复合材料已经从最初阶段的两向碳碳复合材料发展为三向、四向等多维碳碳复合材料;从单纯抗烧蚀碳碳复合材料发展为抗烧蚀—抗侵蚀和抗烧蚀—抗侵蚀—稳定外形碳碳复合材料;从但功能材料发展为多功能材料。目前碳碳复合材料面对的最主要问题是抗氧化问题[2]。 3碳碳复合材料的制备加工工 艺[3] C/ C 复合材料的制备工艺: 碳 纤维的选择→胚体的预制成型→胚体 的致密化处理→碳碳复合材料的高温 热处理(如图[4]) 3.1碳纤维的选择 CF 的选择可以改变碳碳复合材 料的力学和热力学性能。纤维的选择 主要依赖于成本、织物结构、性能及 纤维的工艺稳定性。 常用CF 有三种, 即人造丝CF, 聚丙烯腈( PAN ) CF 和沥青CF。 3.2坯体的预制成型 坯体的成型是指按产品的形状和性能要求先把CF 预先成型为所需结构形状的毛坯, 以便进一步进行C/ C 复合材料的致密化处理工艺。

碳素纤维简介

碳素纤维又称碳纤维(Carbon Fiber,简称CF)。在国际上被誉为“黑色黄金”,它继石器和钢铁等金属后,被国际上称之为“第三代材料”,因为用碳纤维制成的复合材料具有极高的强度,且超轻、耐高温高压。 碳纤维主要是由碳元素组成的一种特种纤维,其含碳量随种类不同而异,一般在90%以上。碳纤维具有一般碳素材料的特性,如耐高温、耐摩擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工成各种织物,沿纤维轴方向表现出很高的强度。碳纤维比重小,因此有很高的比强度。 1880年美国爱迪生首先将竹子纤维碳化丝,作为电灯泡内之发光灯丝,开启了碳纤维(Carbon Fiber,简称CF)之纪元。碳纤维用在结构材料,首先问世者,则以美国Union Carbide公司(U.C.C.)为代表,并于1959年将嫘萦纤维为原料,经过数千百度之高温碳化后,得到弹性率约40GPa,强度约为0.7GPa之碳纤维;尔后,1965年该公司又用相同原料于3000℃高温下延伸,开发出丝状高弹性率石墨化纤维,弹性率约500GPa,强度约为2.8GPa。 另外,于日本大阪工业技术试验所之进藤博士,则以Polyacrylonitrile(简称PAN)聚丙烯腈为原料,经过氧化与数千度之碳化工程后,得到弹性率为160GPa,强度为0.7GPa之碳纤维。1962年日本碳化公司(Nippon Carbon Co.)则用PAN为原料,制得低弹性系数(L.M.)之碳纤维。东丽公司亦以PAN纤维为原料,开发了高强度之CF,弹性率约为230GPa,强度约为2.8GPa,并于1966年起有每月量产1吨之规模;同时亦开发了碳化温度2000℃以上之高弹性率CF,弹性率约400GPa,强度约为2.0GPa。于1965年,群马大学大谷教授,利用加热氯乙烯(Vinyl Chloride)得到之沥青(Pitch),经过熔融纺丝、不融化与碳化工程处理后,得到普通级碳纤维;大谷教授亦可利用木质素(Lignin)为原料制作碳纤维。 碳纤维之需求量虽逐渐扩大,但1991年以后冷战结束后,军事用途之使用量萎缩,复因泡沫经济与景气萧条,供需失去平衡,产业受到冲击。然而,美国波音公司新锐机型B777之生产,加上土木、建筑、汽车与复合材料之扩大应用,碳纤维产业逐渐缓步成长中。 2.碳纤维之种类 经高温处理后,其含碳量超过90%以上之纤维材料,称之为碳纤维。碳纤维之种类分类有许多方法,可依原料、特性、处理温度与形状来分类。若依原料可分为纤维素纤维系之嫘萦(Rayon)系与木质(Lignin)系;聚丙烯腈(Polyacrylonitrile)系;沥青(Pitch)系; 酚树脂系与 气相碳纤系等六种。若依特性则分为普通碳纤维;高强度高模数碳纤维与活性碳纤维等三种。普通碳纤维之强力在120㎏/㎜2以下,杨氏模数(Young掇Modulus)在10000㎏/㎜2以下者称之;高强度高模数者,则强力在150㎏/㎜2以上,模数在17000㎏/㎜2以上时称之。 若依加工处理温度分类时,则可分为耐炎质;碳素质与石墨质等三种。耐炎质碳纤之处理加热温度为200~350℃,可供作电气绝缘体;碳素质碳纤之处理加热温度为500~1500℃,可供电气传导性材料用;石墨质碳纤之处理加热温度在2000℃以上,除耐热性与电气传导性提高外,亦具自我润滑性。 若按碳纤维制品之形状分类时,可分为棉状短纤维;长丝状连续纤维;纤维束(Tow); 织物; 毡毯与 编制长形物等。 3.碳纤维之研制 3.1 嫘萦系碳纤维 嫘萦纤维素纤维加热处理时不会熔融,若在无氧状态下的不活性气体(Inert Gas)中加热处理,则极易取得碳纤维。3.2 聚丙烯腈系碳纤维 聚丙烯腈(PAN)系碳纤维之制造工程大致可分为聚丙烯腈纤维之制备;安定化工程(耐炎化);碳化工程; 表面处理与上浆工程; 石墨化工程等五个程序。 3.3 沥青系碳纤维 原油经900℃以上之高温提炼后的残渣中,约含有95wt%之碳质,若以电解法去除其中之硫酸,再经水洗后可得纯度极佳之沥青(Pitch)。 3.4 气相成长碳纤维

碳纳米材料概述

碳纳米材料概述 名字:唐海学号:1020560120 前言 纳米碳材料是指分散相尺度至少有一维小于100nm的碳材料。分散相既可以由碳原子组成,也可以由异种原子(非碳原子)组成,甚至可以是纳米孔。纳米碳材料主要包括三种类型:碳纳米管,碳纳米纤维,纳米碳球。 近年来,碳纳米技术的研究相当活跃,多种多样的纳米碳结晶、针状、棒状、桶状等层出不穷。2000年德国和美国科学家还制备出由20个碳原子组成的空心笼状分子。根据理论推算,包含20个碳原子仅是由正五边形构成的,C60分子是富勒烯式结构分子中最小的一种,考虑到原于间结合的角度、力度等问题,人们一直认为这类分子很不稳定,难以存在。德、美科学家制出了C60笼状分子为材料学领域解决了一个重要的研究课题。碳纳米材料中纳米碳纤维、纳米碳管等新型碳材料具有许多优异的物理和化学特性,被广泛地应用于诸多领域。 分类 (1)碳纳米管碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,一般可分为单壁碳纳米管、多壁碳纳米管和双壁碳纳米管。 (2)碳纤维分为丙烯腈碳纤维和沥青碳纤维两种。碳纤维质轻于铝而强力高于钢,它的比重是铁的1/4,强力是铁的10倍,除了有高超的强力外,其化学性能非常稳定,耐腐蚀性高,同时耐高温和低温、耐辐射、消臭。碳纤维可以使用在各种不同的领域,由于制造成本高,大量用于航空器材、运动器械、建筑工程的结构材料。美国伊利诺伊大学发明了一种廉价碳纤维,有高强力的韧性,同时有很强劲的吸附能力、能过滤有毒的气体和有害的生物,可用于制造防毒衣、面罩、手套和防护性服装等。 (3)碳球根据尺寸大小将碳球分为:(1)富勒烯族系Cn和洋葱碳(具有封闭的石墨层结构,直径在2—20nm之间),如C60,C70等;(2)未完全石墨化的纳米碳球,直径在50nm 一1μm之间;(3)碳微珠,直径在11μm以上。另外,根据碳球的结构形貌可分为空心碳球、实心硬碳球、多孔碳球、核壳结构碳球和胶状碳球等。 碳纳米材料的性质及相关应用 1.力学 (1)超强纤维碳纳米管具有弹性高、密度低、绝热性好、强度高、隐身性优越、红外吸收性好、疏水性强等优点,它可以与普通纤维混纺来制成防弹保暖隐身的军用装备。 (2)材料增强体用于增强金属、陶瓷和有机材料等。并且结合碳纳米管的导热导电特性,能够制备自愈合材料。

碳纤维材料介绍

碳纤维材料介绍 碳纤维是一种含碳量在95%以上的高强度、高模量纤维的新型纤维材料。由片状石墨微晶等有机纤维沿纤维轴向方向堆砌而成,经碳化及石墨化处理而得到的微晶石墨材料。碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维复合材料抗拉强度一般都在3500Mpa 以上,是钢的7-9倍,抗拉弹性模量为 23000-43000Mpa,也高于钢。 碳纤维复合材料可用作汽车车身、底盘、传动轴、轮毂、板簧、构架和刹车片等制件。目前钢铁材料约占车体重量的3/4,如果汽车的钢材部件全部由碳纤维复合材料置换,车体重量可减轻300kg,燃油效率提高36%,二氧化碳排放量可削减17%。 一、碳纤维的优点 1、比强度高,是最佳的轻质高强车体材料。 2、轴向强度、模量高,无蠕变,制作传动轴。 3、正面碰撞时成无数细小碎片,吸收大量的撞击能(是钢结构4倍)安全性高。 4、兼备纺织纤维的柔软,可加工性强。 5、有机溶剂、酸、碱中不溶不胀,耐蚀性好,寿命长,维修费用低。 6、冷热膨胀系数小,极端气候条件下尺寸稳定性高。

7、活性碳纤维超级电容器可提高能量密度,又可降低成本适用于电动车制动。 8、复合材料容易成型,制得满足空气动力学原理及美观需求的外形曲面。 9、表皮光滑美观,制造车身,可以省去高成本、繁琐的涂装工艺。 10、将不同零件一体成型,便于汽车结构的模块化、整体化制造。 碳纤维在汽车的应用实现了轻量化和刚性需求,达到节能减排、降低油耗的目的,碳纤维材料可以作为未来汽车的主流材料。 二、碳纤维的弊端 1、工艺复杂,主要采用热压罐,真空导入等传统工艺,这种工艺生产效率低、生产周期长、产品造价高,无法满足汽车大批量规模化生产要求。 2、成本相对高昂,碳纤维材料的价格是金属材料的数倍,制约了其在汽车领域的应用与发展。 3、设计人才缺乏,且由于该技术之前较少在国内应用,所以从事过碳纤维量产部件设计的人才非常稀缺。 总之,无论从性能还是环保角度出发,汽车轻量化都已成为一种必然趋势,而采用碳纤维材料是汽车轻量化的必由之路。中国正在大力推进新能源汽车的发展,所以碳纤维材料在新能源汽车领域中的应用前景非常广阔。

常用模具材料介绍

ABS 丙烯腈-丁二烯-苯乙烯共聚物 ==典型应用范围: 汽车(仪表板,工具舱门,车轮盖,反光镜盒等),电冰箱,大强度工具(头发烘干机,搅拌器,食品加工机,割草机等),电话机壳体,打字机键盘,娱乐用车辆如高尔夫球手推车以及喷气式雪撬车等. ==注塑模工艺条件: 干燥处理:ABS材料具有吸湿性,要求在加工之前进行干燥处理。建议干燥条件为80~90℃下最少干燥2小时。材料温度应保证小于0.1%。 熔化温度:210~280℃;建议温度:245℃。 模具温度:25~70℃。(模具温度将影响塑件光洁度,温度较低则导致光洁度较低)。 g u注射压力:500~1000bar。 注射速度:中高速度。 ==化学和物理特性: ABS是由丙烯腈、丁二烯和苯乙烯三种化学单体合成。每种单体都具有不同特性:丙烯腈有高强度、热稳定性及化学稳定性;丁二烯具有坚韧性、抗冲击特性;苯乙烯具有易加工、高光洁度及高强度。从形态上看,ABS是非结晶性材料。三中单体的聚合产生了具有两相的三元共聚物,一个是苯乙烯-丙烯腈的连续相,另一个是聚丁二烯橡胶分散相。ABS的特性主要取决于三种单体的比率以及两相中的分子结构。这就可以在产品设计上具有很大的灵活性,并且由此产生了市场上百种不同品质的ABS材料。这些不同品质的材料提供了不同的特性,例如从中等到高等的抗冲击性,从低到高的光洁度和高温扭曲特性等。ABS材料具有超强的易加工性,外观特性,低蠕变性和优异的尺寸稳定性以及很高的抗冲击强度。 ##################################################### PP 聚丙烯 ==典型应用范围: 汽车工业(主要使用含金属添加剂的PP:挡泥板、通风管、风扇等),器械(洗碗机门衬垫、干燥机通风管、洗衣机框架及机盖、冰箱门衬垫等),日用消费品(草坪和园艺设备如 剪草机和喷水器等)。

相关文档
最新文档