杭电化工原理实验指导书

杭电化工原理实验指导书
杭电化工原理实验指导书

第一章实验的基本要求

化工原理实验要求实验人在实验完毕后提交一份合格的实验报告。要求实验报告能够把实验的任务和实验观测的结果用表、图、公式及文字加以描述,将讨论问题简练明确的表达出来,使阅读者能够一目了然。除此以外还必须具备(1)数据是可考的,为此必须认真考虑实验方案,认真细致的并实事求是的正确记录原始数据。实验前做好预习工作,实验时集中精力,认真仔细观察实验现象和记录仪表指示数,边实验边分析实验数据是否合理,以便能够及时排除实验中的干扰因素;(2)实验记录要有校核的可能。因此要清楚说明实验的时间、地点、条件和同时作实验的人员。为了保证作出合格的实验报告,对实验过程中各个步骤、各个问题,提出如下的说明和要求:

1)实验前的预习工作

(1)阅读实验讲义,弄清本实验的目的和要求。

(2)根据本次实验的具体任务,研究实验的理论根据和实验的具体做法,分析哪些参数需要直接测量得到,哪些参数不需要直接测量,而能够间接获得,并且要估计实验数据的变化规律。

(3)到实验室现场了解摸索实验流程,现看主要设备的构造,测量仪表的种类和安装位置,了解它们的测量原理和使用方法,最后全面审查整个实验流程的布置是否合理,审查主要设备的结构和安装是否合适,测量仪表的量程、精度是否合适以及其所装位置是否合理。

(4)根据实验任务和现场勘查,最后规定实验方案,确定实验操作程序。

2)实验小组的分工和合作

化工原理实验一般都是由两人为一小组合作进行的,因此实验开始前必须作好组织工作,做到既分工,又合作;既能保证质量,又能获得全面训练。每个实验小组要有一个组长负责执行实验方案、联络和指挥,与组员讨论实验方案,使得每个组员各明其职(包括操作、读取数据、记录数据及现象观察等),而且要在适当时候轮换工作。

3)实验必须测取的数据

凡是影响实验结果或是数据整理过程中所必须的数据都必须测取。它包括大气条件、设备有关尺寸、物料性质及操作数据等,但并不是所有数据都要直接测取的。凡可以根据某一数据导出或从手册中查出的其他数据,就不必直接测定。例如水的密度、粘度、比热等物理性质,一般只要测出水温后即可查出,因而不必直接测定水的密度、粘度、比热,而只要测定水的温度就可以了。

4)实验数据的读取记录

(1)实验开始前拟好记录表格,在表格中应记下各次物理量的名称、表示符号及单位。每位实验者都应有一专用实验记录本,不应随便拿一张纸或实验讲义空白处来记录,要保证数据完整,条理清楚,避免记录错误。

(2)实验时一定要等现象稳定后才开始读取数据,条件改变,要稍等一会才读取数据,这是因为条件的改变破坏了原来和稳定状态,重新建立稳态需要一定时间(有的实验甚至花很长时间才能达到稳定),而仪表通常又有滞后现象的缘故。

(3)每个数据记录后,应该立即复核,以免发生读错或记错数字等事故。

(4)数据的记录必须反映仪表的精确度。一般要记录到仪表上最小分度以下位数。例如温度计的最小分度为1℃,如果当时的温度读数为20.5℃,则不能记为20℃;又如果刚好是

20℃,那应该记录为20.0℃。

(5)记录数据要以实验当时的实验读数为准。

(6)实验中如果出现不正常情况,以及数据有明显误差时,应在备注栏中加以说明。

5)实验过程的注意点

有的实验者在做实验时,只读取数据,其它一概不管,这是不对的。实验过程中除了读取数据外,还应该做好下列诸事:

(1)操作者必须密切注意仪表指示值的变动,随时调节,务使整个操作过程都在规定条件下进行,尽量减少实验操作条件与规定操作条件之间的差距。操作人员要坚守岗位,不得擅离职守。

(2)读取数据后,应立即和前次数据相比较,也要和其它有关数据相对照,分析相互关系是否合理,数据变化趋势是否合理。如果发现不合理的情况,应该立即共同研究可能存在的原因,以便及时发现问题、解决问题。

(3)实验过程是还应注意观察过程现象,特别是发现某些不正常现象时更应抓住时机,研究产生不正常现象的原因,排除障碍。

6)实验数据的整理

(1)数据整理时应根据有效数字的运算规则,舍弃一些没有意义的数字。一个数字的精确度是由测量仪表本身的精确度所决定的,它绝不因为计算时位数增加面提高。但是任意减少位数也是不许可的,因为这样做就降低了应有的精确度。

(2)数据整理时,如果过程比较复杂,实验数据又多,一般以采用列表整理为宜,同时应将同一项目一次整理。这种整理方法既简洁明了,又节省时间。

(3)计算示例。在2)所列表的下面要给出计算示例,即任取一列数据进行详细的计算,以便检查

7)实验报告的编写

一份优秀的实验报告必须写得简洁明了,数据完整,交待清楚,结论正确,有讨论,有分析,得出的公式或曲线、图形有明确的使用条件。报告的内容一般包括:

(1)报告的题目;

(2)写报告人及同实验小组人员的姓名;

(3)实验的目的;

(4)实验的理论依据;

(5)实验设备说明(应包括流程示意图和主要设备、仪表的类型及规格);

(6)实验数据,应包括与实验结果有关的全部数据,报告中的实验数据不是指原始数据,而是经过加工后用于计算的全部数据,至于原始记录则可作为附录附于报告后面;

(7)数据整理及计算示例,其中引用的数据要说明来源,简化公式要写出导过程,要列出一列数据的计算过程,作为计算示例;

(8)实验结果,根据实验任务,明确提出本次实验的结论,用图示法、经验公式或列表法均可,但都必须注明实验条件;

(9)分析讨论,要对本次实验结果作出评价,分析误差大小及原因,对实验中发现的问题应作讨论,对实验方法、实验设备有何建议也可写入此栏。

第二章 化工原理实验

1.1 流体流动阻力测定实验 1.1.1实验目的

1).掌握流体流经直管和阀门时阻力损失的测定方法,通过实验了解流体流动中能量损失的变化规律。 2).测定直管摩擦系数λ与雷诺准数Re 的关系,将所得的λ~Re 方程与经验公式比较。 3).测定流体流经阀门时的局部阻力系数ξ。 4).学会测压计和转子流量计的使用方法。 5).观察组成管路的各种管件、阀门,并了解其作用。

1.1.2基本原理

流体在管内流动时,由于粘性剪应力和涡流的存在,不可避免地要消耗一定的机械能,这种机械能的消耗包括流体流经直管的沿程阻力和因流体运动方向改变所引起的局部阻力。 1)沿程阻力

流体在水平等径圆管中稳定流动时,阻力损失表现为压力降低。即

ρ

ρ

p

p p h f ?=

-=

2

1 (1—1)

影响阻力损失的因素很多,尤其对湍流流体,目前尚不能完全用理论方法求解,必须通过实验研究其规律。为了减少实验工作量,使实验结果具有普遍意义,必须采用因次分析方法将各变量组合成准数关联式。根据因次分析,影响阻力损失的因素有: (1)流体性质:密度ρ、粘度μ;

(2)管路的几何尺寸:管径d 、管长l 、管壁粗糙度ε; (3)流动条件:流速μ。 可表示为:

),,,,,(ερμu l d f p =? (1—2) 组合成如下的无因次式:

),,(2

d d l du u

p ε

μρρΦ=? (1—3) 2

),(2

u d l d du p

..εμρ?ρ=? 令 ),(d

du ε

μρ?λ= (1—4) 则式(1—1)变为:

2

2

u d l p

h f λ

ρ=?= (1-5)

式中,λ称为摩擦系数。层流 (滞流)时,λ=64/Re ;湍流时λ是雷诺准数Re 和相对粗糙度的函数,须由实验确定。 2)局部阻力

局部阻力通常有两种表示方法,即当量长度法和阻力系数法。 (1)当量长度法

流体流过某管件或阀门时,因局部阻力造成的损失,相当于流体流过与其具有相当管径长度的直管阻力损失,这个直管长度称为当量长度,用符号le 表示。这样,就可以用直管阻力的公式来计算局部阻力损失,而且在管路计算时.可将管路中的直管长度与管件、阀门的当量长度合并在一起计算,如管路中直管长度为l,各种局部阻力的当量长度之和为

∑le ,则流体在管路中流动时的总阻力损失∑f

h

2

2

u d

le l h

f

∑∑+=λ

(1—6)

(2)阻力系数法

流体通过某一管件或阀门时的阻力损失用流体在管路中的动能系数来表示,这种计算局部阻力的方法,称为阻力系数法。 即

2

2u h f

ξ='

(1—7)

式中,ξ——局部阻力系数,无因次;

u ——在小截面管中流体的平均流速,m /s 。

由于管件两侧距测压孔间的直管长度很短.引起的摩擦阻力与局部阻力相比,可以忽略不计。因此h f ’值可应用柏努利方程由压差计读数求取。

1.1.3实验装置与流程

1)实验装置

实验装置如图1—1所示主要由高位槽,不同管径、材质的管子,各种阀门和管件、转子流量计等组成。第一根为不锈钢光滑管,第二根为镀锌铁管,分别用于光滑管和粗糙管湍流流体流动阻力的测定。第三根为不锈钢管,装有待测闸阀,用于局部阻力的测定。

图1—1流体流动阻力测定实验装置图

5

本实验的介质为水,由离心泵供给,经实验装置后的水返回到原水池。水流量采用转子流量计测量,直管段和闸阀的阻力分别用测压计测得。

2)装置结构尺寸

1.1.4实验步骤及注意事项

(1)实验步骤

1)熟悉实验装置系统;

2)将水池注满水(2/3容积);

3)打开泵进水阀,关闭泵出水阀,打开实验用的管路阀门至全开状态;

4)启动离心泵,然后立即打开出水阀;

5)打开传感器测量仪电源,记录零点数值(或校零、校零由指导教师完成);

6)分别关闭光滑、粗糙管路中的各阀门,调节泵出口阀的开度以调节转子流量计的流量示值,测得每个流量(8~9个)下对应的光滑管和粗糙管的阻力(压差mmH2O),分别记下两端的测压计读数。

注意:调节好流量后,须等一段时间,待水流稳定后才能读数;

7)关闭闸阀管路中的各阀门,调节泵出口阀的开度以调节转子流量计的流量示值,测得闸阀全开时的局部阻力;

8)实验结束后依次关闭离心泵、测压电源等,进行系统装置的清理。长期不用时需打开原水箱的排空阀,排尽水,以防锈和冬天防冻。

(2)注意事项

开启、关闭管道上的各阀门时,一定要缓慢开关,切忌用力过猛过大,防止测量仪表因突然受压、减压而受损!

1.1.5实验报告

1) 根据粗糙管实验结果,在双对数坐标纸上标绘出λ~Re曲线,对照化工原理教材上有关公式,即可确定该管的相对粗糙度和绝对粗糙度。

2) 根据光滑管实验结果,在双对数坐标纸上标绘出λ~Re曲线,并对照柏拉修斯方程,计算其误差。

3) 根据局部阻力实验结果,求出闸阀全开时的平均ξ值。

4) 对实验结果进行分析讨论。

1.1.6思考题

1) 以水做介质所测得的λ~Re关系能否适用于其它流体?如何应用?

2) 在不同设备上(包括不同管径),不同水温下测定的λ~Re数据能否关联在同一条曲线上?

3) 如果测压口、孔边缘有毛刺或安装不垂直,对静压的测量有何影响?

1.1.7实验数据记录及数据处理

1.2 离心泵性能特性曲线测定实验

1.2.1 实验目的

1)了解离心泵结构与特性,学会离心泵的操作。

2)测定恒定转速条件下离心泵的有效扬程(H)、轴功率(N)、以及总效率(η)与有效流量(V)之间的曲线关系。

3)测定改变转速条件下离心泵的有效扬程(H)、轴功率(N)、以及总效率(η)与有效流量(V)之间的曲线关系。

1.2.2 基本原理

离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下扬程H、轴功率N及效率η与流量V之间的关系曲线,它是流体在泵内流动规律的外部表现

形式。由于泵内部流动情况复杂,不能用数学方法计算这一特性曲线,只能依靠实验测定。 1 ) 流量V 的测定

采用转子流量计测量流量。 2 ) 扬程H 的测定与计算

在泵进、出口取截面列柏努利方程:

g

u u Z Z g p p H 22122121

2-+

-+-=ρ (1—9) p 1,p 2:分别为泵进、出口的压强 N/m 2 ρ:液体密度 kg/m 3

u 1, u 2:分别为泵进、出口的流量m/s g :重力加速度 m/s 2 当泵进、出口管径一样,且压力表和真空表安装在同一高度,上式简化为:

g

p p H ρ1

2-=

(1—10)

由式(1-10)可知:只要直接读出真空表和压力表上的数值,就可以计算出泵的扬程。 3)效率η的计算

泵的效率η为泵的有效功率Ne 与轴功率N 的比值。有效功率Ne 是流体单位时间内自泵得到的功,轴功率N 是单位时间内泵从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。

泵的有效功率Ne 可用下式计算:

Ne=HV ρg (1—11) 故 η=Ne/N=HV ρg/N (1—12)

1.2.3实验装置流程图

离心泵性能特性曲线测定系统装置与流体阻力实验装置相同。

1.2.4实验步骤及注意事项

1.实验步骤:

1)仪表上电:打开总电源开关,打开仪表电源开关。

2) 当一切准备就绪后,按下离心泵启动按钮,启动离心泵,这时离心泵启动按钮绿灯

亮。启动离心泵后把出水阀开到最大,开始进行离心泵实验。

3) 流量调节:手动调节,通过泵出口闸阀调节流量;在不同的流量下,稳定一段时间

后读取进口真空度和出口压力,读取离心泵功率表的读数。 4) 实验完毕,停止水泵的运转。关闭水泵出口阀。

5) 如果要改变离心泵的转速,测定另一转速下的性能特性曲线,则可以用变频器来调

节离心泵的转速。

6) 依次关闭所有设备电源。

1.2.5 实验报告

1)在同一张坐标纸上描绘一定转速下的H ~V 、N ~V 、η~V 曲线

2)分析实验结果,判断泵较为适宜的工作范围。

1.2.6 思考题

1) 试从所测实验数据分析,离心泵在启动时为什么要关闭出口阀门?

2)启动离心泵之前为什么要引水灌泵?如果灌泵后依然启动不起来,你认为可能的原因是什么?本实验装置为什么不用灌泵?

3) 为什么用泵的出口阀门调节流量?这种方法有什么优缺点?是否还有其他方法调节流量?

4) 泵启动后,出口阀如果打不开,压力表读数是否会逐渐上升?为什么?

5) 正常工作的离心泵,在其进口管路上安装阀门是否合理?为什么?

6) 试分析,用清水泵输送密度为1200kg/m3的盐水(忽略密度的影响),在相同流量下你认为泵的压力是否变化?轴功率是否变化?

1.2.7 实验数据记录及数据处理

原始数据记录(水温:℃)

计算结果

实验曲线:

1.3板式塔气体吸收实验

1.3.1 实验目的

1).了解板式塔吸收装置的基本结构及流程;

2).掌握总体积传质系数的测定方法;

3).测定板式塔的流体力学性能。

1.3.2 基本原理

气体吸收是典型的传质过程之一。由于CO2气体无味、无毒、廉价,所以气体吸收实验常选择CO2作为溶质组分。本实验采用水吸收空气中的CO2组分。一般CO2在水中的溶解度很小,即使预先将一定量的CO2气体通入空气中混合以提高空气中的CO2浓度,水中的CO2含量仍然很低,所以吸收的计算方法可按低浓度来处理,并且此体系CO2气体的解吸过程属于液膜控制。

1.3.3实验装置与流程

1〕装置流程

本实验装置流程:由高位水槽来的水经离心泵加压后送入填料塔塔顶经喷头喷淋在填料顶层。由压缩机送来的空气和由二氧化碳钢瓶来的二氧化碳混合后,一起进入气体中间贮罐,然后再直接进入塔底,与水在塔内进行逆流接触,进行质量和热量的交换,由塔顶出来的尾气经转子流量计后放空,由于本实验为低浓度气体的吸收,所以热量交换可略,整个实验过程看成是等温操作。

图1-14 吸收装置流程图

2〕主要设备

(1)吸收塔:塔径200mm,塔顶有液体初始分布器,塔底部有液封装置,以避免气体

泄漏。

(3)空气压缩机;

(4)二氧化碳钢瓶;

(5)便携式CO2测定仪(美国Tel-7001型0—10000ppm,自带采样泵)。

1.3.4实验步骤与注意事项

1)实验步骤

1.3.5实验报告

1) 将原始数据列表。

2)在双对数坐标纸上绘图表示二氧化碳解吸时体积传质系数、传质单元高度与气体流量的关系。

3)列出实验结果与计算示例。

1.3.6思考题

1).本实验中,为什么塔底要有液封?液封高度如何计算?

2).测定K xa有什么工程意义?

3).为什么二氧化碳解吸过程属于液膜控制?

4).当气体温度和液体温度不同时,应用什么温度计算亨利系数?

化工原理实验

流量计的种类很多,本实验是研究差压式(速度式)流量计的校正,这类差压式流量计是用测定流体的压差来确定流体流量(或流速)常用的有孔板流量计、文丘里流量计和毕托管等。实验装置用孔板流量计如同2。a)所示,是在管道法兰向装有一中心开孔的不诱钢板。 孔板流量计的缺点是阻力损失大,流体流过孔板流量计,由于流体与孔板有摩擦,流道突然收缩和扩大,形成涡流产生阻力,使部分压力损失,因此流体流过流量计后压力不能完全恢复,这种损失称为永久压力损失(局部阻力损失)。流量计的永久压力损失可以用实验方法测出。如下图所示,实验中测定3、4两个截面的压力差,即为永久压力损失。对孔板流量计,测定孔板前为d1的地方和孔板后6d1的地方两个截面压差 工厂生产的流量计大都是按标准规范生产的。出厂时一般都在标准技术状况下(101325Pa,20℃)以水或空气为介质进行标定,给出流量曲线或按规定的流量计算公式给出指定的流量系数,然而在使用时,往往由于所处温度、压强、介质的性质同标定时不同,因此为了测定准确和使用方便,应在现场进行流量计的校正。即使已校正过的流量计,由于在长时间使用中被磨损较大时,也需要再一次校正。 量体法和称重法都是以通过一定时间间隔内排出的流体体积或质量的测量来实现的 《化工原理实验指导》李发永 流量计原理 工厂生产的流量计,大都是按标准规范制造的。流量计出厂前要经过校核,并作出流量曲线,或按规定的流量计算公式给出指定的流量系数,或将流量系数直接刻在显示仪表刻度盘上供用户使用。 如果用户丢失原厂的流量曲线图;或者流量计经长期使用,由于磨损造成较大的计量误差;或者用户自行制造非标准形式的流量计;或者被测量流体与标定的流体成分或状态不同,则必须对流量计进行校核(或称为标定)。也就是用实验的方法测定流量计的指示值与实际流量的关系,作出流量曲线或确定流量的计算公式。因此,流量计的校核在生产、科研中都具有很重要的实际意义。 Φ16×2.5 Ф:是表示外径 DN:公称直径(近似内径) “Φ”标识普通圆钢管的直径,或管材的外径乘以壁厚,如:Φ25×3标识外径25mm,壁厚为3mm的管材; 以孔板流量计为例进行说明,文丘里流量计的原理与此完全一样,只是流量系数不同。

化工原理实验传热实验报告

传热膜系数测定实验(第四组) 一、实验目的 1、了解套管换热器的结构和壁温的测量方法 2、了解影响给热系数的因素和强化传热的途径 3、体会计算机采集与控制软件对提高实验效率的作用 4、学会给热系数的实验测定和数据处理方法 二、实验内容 1、测定空气在圆管内作强制湍流时的给热系数α1 2、测定加入静态混合器后空气的强制湍流给热系数α1’ 3、回归α1和α1’联式4.0Pr Re ??=a A Nu 中的参数A 、a * 4、测定两个条件下铜管内空气的能量损失 二、实验原理 间壁式传热过程是由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热三个传热过程所组成。由于过程复杂,影响因素多,机理不清楚,所以采用量纲分析法来确定给热系数。 1)寻找影响因素 物性:ρ,μ ,λ,c p 设备特征尺寸:l 操作:u ,βg ΔT 则:α=f (ρ,μ,λ,c p ,l ,u ,βg ΔT ) 2)量纲分析 ρ[ML -3],μ[ML -1 T -1],λ[ML T -3 Q -1],c p [L 2 T -2 Q -1],l [L] ,u [LT -1], βg ΔT [L T -2], α[MT -3 Q -1]] 3)选基本变量(独立,含M ,L ,T ,Q-热力学温度) ρ,l ,μ, λ 4)无量纲化非基本变量 α:Nu =αl/λ u: Re =ρlu/μ c p : Pr =c p μ/λ βg ΔT : Gr =βg ΔT l 3ρ2/μ2 5)原函数无量纲化 6)实验 Nu =ARe a Pr b Gr c 强制对流圆管内表面加热:Nu =ARe a Pr 0.4 圆管传热基本方程: 热量衡算方程: 圆管传热牛顿冷却定律: 圆筒壁传导热流量:)]/()ln[)()()/ln(11221122121 2w w w w w w w w t T t T t T t T A A A A Q -----?-?=δλ 空气流量由孔板流量测量:54.02.26P q v ??= [m 3h -1,kPa] 空气的定性温度:t=(t 1+t 2)/2 [℃]

化工原理实验报告

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 ∑+++=+++f h p u gz We p u gz ρ ρ2222121122 式中: 1Z 、2Z ——各截面间距基准面的距离 (m ) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截面 积求得) (m/s) 1P 、2p ——各截面中心点处的静压力(可由U 型压差计的液位 差可知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 2 22121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图

化工原理试验试题集

化工原理实验试题3 1、干燥实验进行到试样重量不再变化时,此时试样中所含的水分是什么水分?实验过程中除去的又是什么水分?二者与哪些因素有关。 答:当干燥实验进行到试样重量不再变化时,此时试样中所含的水分为该干燥条件下的平衡水分,实验过程中除去的是自由水分。二者与干燥介质的温度,湿度及物料的种类有关。 2、在一实际精馏塔内,已知理论板数为5块,F=1kmol/h,xf=0.5,泡点进料,在某一回流比下得到D =0.2kmol/h,xD=0.9,xW=0.4,现下达生产指标,要求在料液不变及xD 不小于0.9的条件下,增加馏出液产量,有人认为,由于本塔的冷凝器和塔釜能力均较富裕,因此,完全可以采取操作措施,提高馏出物的产量,并有可能达到D =0.56kmol/h ,你认为: (1) 此种说法有无根据?可采取的操作措施是什么? (2) 提高馏出液量在实际上受到的限制因素有哪些? 答:在一定的范围内,提高回流比,相当于提高了提馏段蒸汽回流量,可以降低xW ,从而提高了馏出液的产量;由于xD 不变,故进料位置上移,也可提高馏出液的产量,这两种措施均能增加提馏段的分离能力。 D 的极限值由 DxD

化工原理实验指导

化工2004/02 化工原理实验 福州大学化工原理实验室 二〇〇四年二月

前言 实施科教兴国战略和可持续发展战略,迎接知识经济时代的到来,建设面向知识经济时代的国家创新体系,要求造就一支庞大的高素质的创造性人才队伍。因此,作为高级人才的培养基地,高等院校应当把创造力的教育和培养贯穿于各门课程教学及实践性教学环节中。实践性教学环节相对于课堂理论教学环节,更能贯穿对学生创造力的开发,其教学内容、方法、手段如何能适应创造性人才的培养要求尤为重要。传统的大学实验教学,其内容是以验证前人知识为主的验证型实验,其方法是教师手把手地教,这些都不利于培养学生的主动性和创造性。当今,大学实验教学改革中,普遍开设综合型、设计型、研究型实验,是对学生进行创造教育的重要思路和做法。在“211工程”重点建设的大学必须通过的本科教学评优工作指标中就明确要求综合型、设计型、研究型实验应占70%以上。 《化工原理实验》是一门技术基础实验课,在培养化工类及相关专业的高级人才中起举足轻重的作用,被学校确定为我校参加本科教学评优工作重点建设的基础课程之一。福州大学投入247万元用于建设以“三型”实验为主的现代化的具有国内先进水平的化工原理实验室。目前,第一期投入100万元的化工原理实验室建设工作已经完成,第二期投入147万元的建设工作正在进行中。已建成具有国内先进水平的实验装置18套,其中有6套是我校与北京化工大学、天津大学共同联合研制的,有2套是我们自行研制的。这些装置将化工知识与计算机技术紧密地结合起来,同时还融合了化学、电工电子、数学、物理及机械等多学科的知识,具有计算机数据采集、处理和控制等功能,能够针对不同专业的要求开出不同类型的“三型”实验。有了这些高新技术装备的实验装置,我们还必须花大力气进行化工原理实验内容、方法的改革,必须以当代教育思想、教育方法论及教育心理学为指导,研究以学生自主学习为主的启发式、交互式、研讨式、动手式的实验教学方法,从实验方案拟定、实验步骤设计、实验流程装配、实验现象观察、实验数据处理和实验结果讨论等方面有效地培养学生的创造性思维和实践动手能力。《化工原理实验讲义》就是为了适应化工原理实验教学内容、方法、手段的改革要求而编写的。 《化工原理实验讲义》由施小芳高级实验师执笔主编,李微高级实验师、林述英实验师参与编写工作,阮奇教授主审。叶长燊等老师参加了编写讲义的讨论,并提出许多宝贵意见。在此,对本讲义在编写过程中给予热心帮助和支持的老师,表示衷心的感谢。 本讲义在编写过程中,参阅了有关书籍、杂志、兄弟院校的讲义等大量资料,由于篇幅所限,未能一一列举,谨此说明。本讲义难免存在不妥之处,衷心地希望读者给予指教,使本讲义日臻完善。 福州大学化工原理实验室 2004.2.5

化工原理实验数据处理关于

离心泵特性曲线原始数据 序号 水流量Q/m3/h 水温°C 出口压力/m 入口压力 /m 电机功率 /KW 1 0.00 27.70 21.50 0.00 0.49 2 1040.00 27.70 20.40 0.00 0.53 3 2170.00 27.70 19.20 0.00 0.58 4 3110.00 27.60 18.10 -0.30 0.64 5 3890.00 27.60 17.10 -0.40 0.69 6 4960.00 27.50 15.20 -0.70 0.75 7 5670.00 27.50 14.30 -1.00 0.80 8 6620.00 27.30 13.10 -1.20 0.85 9 7380.00 27.40 11.50 -1.50 0.88 10 8120.00 27.00 8.90 -1.70 0.90 11 8950.00 26.60 5.80 -2.10 0.93 已知 ΔZ=0.2m η电=0.9 η转=1.0 此温度下水的密度约为ρ=997.45kg/m3 以第 组数据为例计算 根据扬程Z g p g p H ?+-= ρρ12e 转电电轴ηη??=N N 102Q e e ρ??= H N 轴 N N e =η He= N 轴= e N = η=

离心泵特性曲线 序号 水流量 Q/m3/s He/m N 轴/KW Ne/KW η 1 0.00 21.70 0.44 0.00 0.00 2 0.29 20.60 0.48 0.06 0.12 3 0.60 19.40 0.52 0.11 0.22 4 0.86 18.60 0.58 0.16 0.27 5 1.08 17.70 0.62 0.19 0.30 6 1.38 16.10 0.68 0.22 0.32 7 1.58 15.50 0.72 0.24 0.33 8 1.84 14.50 0.77 0.26 0.34 9 2.05 13.20 0.79 0.26 0.33 10 2.26 10.80 0.81 0.24 0.29 11 2.49 8.10 0.84 0.20 0.24 2 0.00 0.050.100.150.200.250.300.350.400.450.500.550.600.650.700.750.800.85Q (m3/s ) 离心泵 特 性曲线 η N E (K W ) 8 1012141618 2022 He-Q η-Q N 轴-Q He (m )

化工原理期末试题及答案

模拟试题一 1当地大气压为 745mmHg 测得一容器内的绝对压强为 350mmHg 则真空度为395 mmH?测得另一容器内的表压 强为1360 mmHg 则其绝对压强为 2105mmHg _____ 。 2、 流体在管内作湍流流动时,在管壁处速度为 _0 _______,临近管壁处存在层流底层,若 Re 值越大,则该层厚度 越薄 3、 离心泵开始工作之前要先灌满输送液体,目的是为了防止 气缚 现象发生;而且离心泵的安装高度也不能 够太高,目的是避免 汽蚀 现象发生。 4 、离心泵的气蚀余量越小,则其抗气蚀性能 越强 。 5、 在传热实验中用饱和水蒸汽加热空气,总传热系数 K 接近于 空气 侧的对流传热系数,而壁温接近于 饱和水蒸汽 侧流体的温度值。 6、 热传导的基本定律是 傅立叶定律。间壁换热器中总传热系数K 的数值接近于热阻 大 (大、小)一侧的:?值。 间壁换热器管壁温度t w 接近于:.值 大 (大、小)一侧的流体温度。由多层等厚平壁构成的导热壁面中,所用材料的 导热系数愈小,则该壁面的热阻愈 大 (大、小),其两侧的温差愈 大 (大、小)。 7、 Z= (V/K v a. Q ) .(y 1 -丫2 )/ △ Y m 式中:△ Y m 称 气相传质平均推动力 ,单位是kmol 吸 收质/kmol 惰气;(Y i — Y 2) / △ Y m 称 气相总传质单元数。 8、 吸收总推动力用气相浓度差表示时,应等于 气相主体摩尔浓度 和同液相主体浓度相平衡的气相浓度之 差。 9、 按照溶液在加热室中运动的情况,可将蒸发器分为循环型和非循环型两大类。 10、 蒸发过程中引起温度差损失的原因有:溶液蒸汽压下降、加热管内液柱静压强、管路阻力。 11、工业上精馏装置,由精馏^_塔、冷凝器、再沸器等构成。 12、分配系数k A 是指y A /X A ,其值愈大,萃取效果 量传递相结合的过程。 1、气体在直径不变的圆形管道内作等温定态流动,则各截面上的( 6、某一套管换热器,管间用饱和水蒸气加热管内空气(空气在管内作湍流流动) 13、萃取过程是利用溶液中各组分在某种溶剂中 溶解度的差异 而达到混合液中组分分离的操作。 14、在实际的干燥操作中,常用 干湿球温度计来测量空气的湿度。 15、对流干燥操作的必要条件是 湿物料表面的水汽分压大于干燥介质中的水分分压 ;干燥过程是热量传递和质 越好。 A. 速度不等 B.体积流量相等 C. 速度逐渐减小 D.质量流速相等 2、装在某设备进口处的真空表读数为 -50kPa ,出口压力表的读数为 100kPa , 此设备进出口之间的绝对压强差为 A. 50 B . 150 C . 75 D .无法确定 3、离心泵的阀门开大时,则( B )。A ?吸入管路的阻力损失减小 .泵出口的压力减小 C .泵入口处真空度减小 .泵工作点的扬程升高 4、下列(A )不能实现对往复泵流量的调节。 A .调节泵出口阀的开度 ?旁路调节装置 C .改变活塞冲程 ?改变活塞往复频率 5、已知当温度为 T 时,耐火砖的辐射能力大于铝板的辐射能力,则铝的黑度( )耐火砖的黑度。 A.大于 .等于 C .不能确定 D .小于 ,使空气温度由20 C 升至80 C,

最新浙江大学化工原理实验---填料塔吸收实验报告分析解析

实验报告 课程名称:过程工程原理实验(乙) 指导老师: 叶向群 成绩:__________________ 实验名称:吸收实验 实验类型:工程实验 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 填料塔吸收操作及体积吸收系数测定 1 实验目的: 1.1 了解填料吸收塔的构造并熟悉吸收塔的操作; 1.2 观察填料塔的液泛现象,测定泛点空气塔气速; 1.3 测定填料层压降ΔP 与空塔气速u 的关系曲线; 1.4 测定含氨空气—水系统的体积吸收系数K y a 。 2 实验装置: 2.1 本实验的装置流程图如图1: 专业: 姓名: 学号: 日期:2015.12.26 地点:教十2109

2.2物系:水—空气—氨气。惰性气体由漩涡气泵提供,氨气由液氮钢瓶提供,吸收剂水采用自来水,他们的流量分别通过转子流量计。水从塔顶喷淋至调料层与自下而上的含氮空气进行吸收过程,溶液由塔底经过液封管流出塔外,塔底有液相取样口,经吸收后的尾气由塔顶排至室外,自塔顶引出适量尾气,用化学分析法对其进行组成分析。 3 基本原理: 实验中气体流量由转子流量计测量。但由于实验测量条件与转子流量计标定条件不一定相同,故转子流量计的读数值必须进行校正。校正方法如下:

3.2 体积吸收系数的测定 3.2.1相平衡常数m 对相平衡关系遵循亨利定律的物系(一般指低浓度气体),气液平衡关系为: 相平衡常数m与系统总压P和亨利系数E的关系如下: 式中:E—亨利系数,Pa P—系统总压(实验中取塔内平均压力),Pa 亨利系数E与温度T的关系为: lg E= 11.468-1922 / T 式中:T—液相温度(实验中取塔底液相温度),K。 根据实验中所测的塔顶表压及塔顶塔底压差△p,即可求得塔内平均压力P。根据实验中所测的塔底液相温度T,利用式(4)、(5)便可求得相平衡常数m。 3.2.2 体积吸收常数 体积吸收常数是反映填料塔性能的主要参数之一,其值也是设计填料塔的重要依据。本实验属于低浓气体吸收,近似取Y≈y、X≈x。 3.2.3被吸收的氨气量,可由物料衡算 (X1-X2) 式中:V—惰性气体空气的流量,kmol/h;

化工原理实验思考题及答案

化工原理实验思考题及 答案 标准化管理部编码-[99968T-6889628-J68568-1689N]

化工原理实验思考题(填空与简答) 一、填空题: 1.孔板流量计的Re ~C 关系曲线应在 单对数 坐标纸上标绘。 2.孔板流量计的R V S ~关系曲线在双对数坐标上应为 直线 。 3.直管摩擦阻力测定实验是测定 λ 与 Re_的关系,在双对数坐标纸上标绘。 4.单相流动阻力测定实验是测定 直管阻力 和 局部阻力 。 5.启动离心泵时应 关闭出口阀和功率开关 。 6.流量增大时离心泵入口真空度 增大_出口压强将 减小 。 7.在精馏塔实验中,开始升温操作时的第一项工作应该是 开循环冷却水 。 8.在精馏实验中,判断精馏塔的操作是否稳定的方法是 塔顶温度稳定 9.在传热实验中随着空气流量增加其进出口温度差的变化趋势:_进出口温差随空气流量增加而减小 。 10.在传热实验中将热电偶冷端放在冰水中的理由是 减小测量误差 。 11.萃取实验中_水_为连续相, 煤油 为分散相。 12.萃取实验中水的出口浓度的计算公式为 E R R R E V C C V C /)(211-= 。 13.干燥过程可分为 等速干燥 和 降速干燥 。 14.干燥实验的主要目的之一是 掌握干燥曲线和干燥速率曲线的测定方法 。 15.过滤实验采用悬浮液的浓度为 5% , 其过滤介质为 帆布 。 16.过滤实验的主要内容 测定某一压强下的过滤常数 。

17.在双对数坐标系上求取斜率的方法为:需用对数值来求算,或者直接用尺子在坐标纸上量取线段长度求取。 18.在实验结束后,关闭手动电气调节仪表的顺序一般为:先将手动旋钮旋至零位,再关闭电源。 19.实验结束后应清扫现场卫生,合格后方可离开。 20.在做实验报告时,对于实验数据处理有一个特别要求就是: 要有一组数据处理的计算示例。 21.在阻力实验中,两截面上静压强的差采用倒U 形压差计测定。 22.实验数据中各变量的关系可表示为表格,图形和公式. 23.影响流体流动型态的因素有流体的流速、粘度、温度、尺寸、形状等. 24.用饱和水蒸汽加热冷空气的传热实验,试提出三个强化传热的方案(1)增加空气流速(2)在空气一侧加装翅片(3)定期排放不凝气体。 25.在精馏实验数据处理中需要确定进料的热状况参数q 值,实验中需要测定进料量、进料温度、进料浓度等。 26.干燥实验操作过程中要先开鼓风机送风后再开电热器,以防烧坏加热丝。 27.在本实验室中的精馏实验中应密切注意釜压,正常操作维持在,如果达到~,可能出现液泛,应减少加热电流(或停止加热),将进料、回流和产品阀关闭,并作放空处理,重新开始实验。 28.流体在流动时具有三种机械能:即①位能,②动能,③压力能。这三种能量可以互相转换。

化工原理实验指导(1)

实验1 雷诺实验 一、实验目的 1、观察液体在不同流动状态时的流体质点的运动规律。 2、观察液体由层流变紊流及由紊流变层流的过渡过程。 3、测定液体在园管中流动时的上临界雷诺数Rec1和下临界雷诺数Rec2。 二、实验要求 1、实验前认真阅读实验教材,掌握与实验相关的基本理论知识。 2、熟练掌握实验内容、方法和步骤,按规定进行实验操作。 3、仔细观察实验现象,记录实验数据。 4、分析计算实验数据,提交实验报告。 三、实验仪器 1、雷诺实验装置(套), 2、蓝、红墨水各一瓶, 3、秒表、温度计各一只, 4、 卷尺。 四、实验原理 流体在管道中流动,有两种不同的流动状态,其阻力性质也不同。在实验过程中,保持水箱中的水位恒定,即水头H不变。如果管路中出口阀门开启较小,在管路中就有稳定的平均流速u,这时候如果微启带色水阀门,带色水就会和无色水在管路中沿轴线同步向前流动,带色水成一条带色直线,其流动质点没有垂直于主流方向的横向运动,带色水线没有与周围的液体混杂,层次分明的在管道中流动。此时,在速度较小而粘性较大和惯性力较小的情况下运动,为层流运动。如果将出口阀门逐渐开大,管路中的带色直线出现脉动,流体质点还没有出现相互交换的现象,流体的运动成临界状态。如果将出口阀门继续开大,出现流体质点的横向脉动,使色线完全扩散与无色水混合,此时流体的流动状态为紊流运动。

雷诺数:γ d u ?= Re 连续性方程:A ?u=Q u=Q/A 流量Q 用体积法测出,即在时间t 内流入计量水箱中流体的体积ΔV 。 t V Q ?= 4 2 d A ?=π 式中:A-管路的横截面积 u-流速 d-管路直径 γ-水的粘度 五、实验步骤 1、连接水管,将下水箱注满水。 2、连接电源,启动潜水泵向上水箱注水至水位恒定。 3、将蓝墨水注入带色水箱,微启水阀,观察带色水的流动从直线状态至脉动临界状态。 4、通过计量水箱,记录30秒内流体的体积,测试记录水温。 5、调整水阀至带色水直线消失,再微调水阀至带色水直线重新出现,重复步骤4。 6、层流到紊流;紊流到层流各重复实验三次。 六、数据记录与计算 d= mm T (水温)= 0C 七、实验分析与总结(可添加页) 1、描述层流向紊流转化以及紊流向层流转化的实验现象。 2、计算下临界雷诺数以及上临界雷诺数的平均值。

浙江大学化工原理考研大纲

太原科技大学全国硕士研究生招生考试 业务课考试大纲(初试) 科目代码:837 科目名称:化工原理 1.前言 化工原理课程研究生入学考试主要测试考生化工单元操作的掌握情况。测试分两个方面:一是化工单元过程原理,测试考生基本概念,过程计算和熟悉程度;二是综合应用化工单元过程原理能力,从而对考生有较全面的评价。 2.题型说明 化工原理考试采用闭卷考试,试卷由以下三部分构成: (1)基本概念题:由选择题、填空题和解答题构成。 (2)计算题:包括过程计算、公式推导。 (3)实验题:包括实验设计、实验原理和实验现象解释。 3.考试内容 3.1绪论 (1)化学工程及其发展。 (2)化工原理课程的性质、内容和任务。 (3)四个基本关系:物料衡算、热量衡算、平衡关系及速率关系。 3.2流体流动 (1)流体静力学方程及其应用。 (2)流量与流速、定态与非定态流动、连续性方程式、能量衡算式、柏努利方程式的应用。 (3)牛顿粘性定律与流体的粘度、非牛顿型流体的概念、流动类型与雷诺准数、滞流与湍流、边界层的概念。 (4)流体在直管中的流动阻力、摩擦系数、因次分析、管路上的局部阻力、管路系统中的总能量损失。 (5)并联管路与分支管路。 (6)测速管、孔板与文丘里流量计和转子流量计。 3.3流体输送设备 (1)离心泵的工作原理和主要部件、离心泵的基本方程式、离心泵的性能参数与特性曲线、离心泵的性能改变和换算、离心泵的气蚀现象与允许吸上高度、离心泵的工作点与调节、离心泵的联用、离心泵的类型与选用。其它类型泵,如往复泵、旋转泵、漩涡泵的工作原理和适用范围。 (2)离心通风机的结构、性能参数和选择,离心鼓风机和压缩机、旋转鼓风机、真空泵。 3.4非均相物系的分离 (1)沉降速度、降沉室、沉降槽。 (2)过滤操作的基本概念、过滤基本方程式、恒压过滤、恒速过滤与先恒速后恒压过滤、过滤常数的测定、过滤设备、滤饼的洗涤、过滤机的生产能力。

化工原理精馏实验报告

北京化工大学 实验报告 精馏实验 一、摘要 精馏是实现液相混合物液液分离的重要方法,而精馏塔是化工生产中进行分离过程的主要单元,板式精馏塔为其主要形式。本实验用工程模拟的方法模拟精馏塔在全回流的状态下及部分回流状态下的操作情况,从而计算单板效率和总板效率,并分析影响单板效率的主要因素,最终得以提高塔板效率。 关键词:精馏、板式塔、理论板数、总板效率、单板效率 二、实验目的 1、熟悉精馏的工艺流程,掌握精馏实验的操作方法。 2、了解板式塔的结构,观察塔板上气- 液接触状况。 3、测测定全回流时的全塔效率及单板效率。 4、测定部分回流时的全塔效率。 5、测定全塔的浓度或温度分布。 6、测定塔釜再沸器的沸腾给热系数。 三、实验原理 在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔 板上实现多次接触,进行传热和传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量和采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则

需要有无穷多块塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是 一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。但是,由于此时所需理论板数最少,又易于达到稳定,故常在工业装置开停车、排除故障及科学研究时采用。 实际回流比常取用最小回流比的倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。 板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。 (1)总板效率E N e 式中E —总板效率;N—理论板数(不包括塔釜);Ne —实际板数。 2)单板效率E ml E x n 1 x n E ml * x n 1 x n* 式中E ml—以液相浓度表示的单板效率; x n,x n-1—第n 块板的和第(n-1 )块板得液相浓度; x n*—与第n 块板气相浓度相平衡的液相浓度。 总板效率与单板效率的数值通常由实验测定。单板效率是评价塔板性能优劣的重要数据。物系性质、板型及操作负荷是影响单板效率的重要因素。当物系与板型确定后,可通过改变气液负荷达到最高的板效率;对于不同的板型,可以在保持相同的物系及操作条件下,测定其单板效率,已评价其性能的优劣。总板效率反映全塔各塔板的平均分离效果,常用于板式塔设计中。 若改变塔釜再沸器中电加热器的电压,塔板上升蒸汽量将会改变,同时,塔釜再沸器电加热器表面的温度将发生变化,其沸腾给热系数也将发生变化,从而可以得到沸腾给热系数也加热量的关系。由牛顿冷却定律,可知 Q A t m

化工原理实验模拟试题

流体流动阻力实验 一、在本实验中必须保证高位水槽中始终有溢流,其原因是: A、只有这样才能保证有充足的供水量。 B、只有这样才能保证位压头的恒定。 C、只要如此,就可以保证流体流动的连续性。 二、本实验中首先排除管路系统中的空气,是因为: A、空气的存在,使管路中的水成为不连续的水。 B、测压管中存有空气,使空气数据不准确。 C、管路中存有空气,则其中水的流动不在是单相的流动。 三、在不同条件下测定的直管摩擦阻力系数…雷诺数的数据能否关联在同一条曲线上 A、一定能。 B、一定不能。 C、只要温度相同就能。 D、只有管壁的相对粗糙度相等就能。 E、必须温度与管壁的相对粗糙度都相等才能。 四、以水作工作流体所测得的直管阻力系数与雷诺数的关系能否适用于其它流体 A、无论什么流体都能直接应用。 B、除水外什么流体都不能适用。 C、适用于牛顿型流体。 五、当管子放置角度或水流方向改变而流速不变时,其能量的损失是否相同。 A、相同。 B、只有放置角度相同,才相同。 C、放置角度虽然相同,流动方向不同,能量损失也不同。 D、放置角度不同,能量损失就不同。 六、本实验中测直管摩擦阻力系数时,倒U型压差计所测出的是: A、两测压点之间静压头的差。 B、两测压点之间位压头的差。 C、两测压点之间静压头与位压头之和的差。 D、两测压点之间总压头的差。 E、两测压点之间速度头的差。 七、什么是光滑管 A、光滑管是绝对粗糙度为零的管子。 B、光滑管是摩擦阻力系数为零的管子。 C、光滑管是水力学光滑的管子(即如果进一步减小粗糙度,则摩擦阻力不再减小的管 子)。 八、本实验中当水流过测突然扩大管时,其各项能量的变化情况是: A、水流过突然扩大处后静压头增大了。 B、水流过突然扩大处后静压头与位压头的和增大了。 C、水流过突然扩大处后总压头增大了。 D、水流过突然扩大处后速度头增大了。 E、水流过突然扩大处后位压头增大了 BCECAAAA

化工原理实验实验报告

篇一:化工原理实验报告吸收实验 姓名 专业月实验内容吸收实验指导教师 一、实验名称: 吸收实验 二、实验目的: 1.学习填料塔的操作; 2. 测定填料塔体积吸收系数kya. 三、实验原理: 对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。 (一)、空塔气速与填料层压降关系 气体通过填料层压降△p与填料特性及气、液流量大小等有关,常通过实验测定。 若以空塔气速uo[m/s]为横坐标,单位填料层压降?p[mmh20/m]为纵坐标,在z ?p~uo关系z双对数坐标纸上标绘如图2-2-7-1所示。当液体喷淋量l0=0时,可知 为一直线,其斜率约1.0—2,当喷淋量为l1时,?p~uo为一折线,若喷淋量越大,z ?p值较小时为恒持z折线位置越向左移动,图中l2>l1。每条折线分为三个区段, 液区,?p?p?p~uo关系曲线斜率与干塔的相同。值为中间时叫截液区,~uo曲zzz ?p值较大时叫液泛区,z线斜率大于2,持液区与截液区之间的转折点叫截点a。 姓名 专业月实验内容指导教师?p~uo曲线斜率大于10,截液区与液泛区之间的转折点叫泛点b。在液泛区塔已z 无法操作。塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。 图2-2-7-1 填料塔层的?p~uo关系图 z 图2-2-7-2 吸收塔物料衡算 (二)、吸收系数与吸收效率 本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收姓名 专业月实验内容指导教师平均推动力可用对数平均浓度差法进行计算。其吸收速率方程可用下式表示: na?kya???h??ym(1)式中:na——被吸收的氨量[kmolnh3/h];?——塔的截面积[m2] h——填料层高度[m] ?ym——气相对数平均推动力 kya——气相体积吸收系数[kmolnh3/m3·h] 被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2): na?v(y1?y2)?l(x1?x2) (2)式中:v——空气的流量[kmol空气/h] l——吸收剂(水)的流量[kmolh20/h] y1——塔底气相浓度[kmolnh3/kmol空气] y2——塔顶气相浓度[kmolnh3/kmol空气] x1,x2——分别为塔底、塔顶液相浓度[kmolnh3/kmolh20] 由式(1)和式(2)联解得: kya?v(y1?y2)(3) ??h??ym 为求得kya必须先求出y1、y2和?ym之值。 1、y1值的计算:

化工原理实验仿真软件简介

化工原理实验仿真软件简介 在教育领域中,计算机不仅是一门学科,而且正逐渐成为有效的教学媒体和教育管理的有力工具。计算机辅助教学是以计算机为媒介,通过学生——计算机之间的交互活动达到教学目的的一种手段。 1. 化工原理实验模拟的发展 实验模拟(Experiment Imitation)是利用计算机的高级图形功能模拟真实的实验环境,通过计算机与操作者之间的交互活动,达到辅助实验教学的目的。实验模拟既是计算机辅助教学的一个重要组成部分,也可以自成体系,这种现代化的新方法,有助于培养学生分析问题、处理问题、解决问题的能力。 化工原理实验模拟系统为辅助化工原理实验教学而设计的软件包。近年来,国内许多高校在化工原理实验模拟方面做了大量的工作,因为化工原理实验模拟必须依托实际的实验装置,而各高校的化工原理实验装置不尽相同,再加上实验模拟投资小、运行费用低、安全、高效等特点,因而受到了高度的重视。北京化工大学早在1985年就开发了一套多功能的单元操作实验模拟软件系统,该系统具有动态画面、音响效果、启发教学、错误处理、自动评分等功能特点。由于开发时间较早,其最大的缺陷是不能独立于西文DOS系统运行,而需要CCDOS 中文汉字系统支撑。华南理工大学开发的化工原理实验模拟系统则较先进,该系统自带中文字库,可以脱离中文汉字系统运行,并且具有窗口式中文界面提示、画面清晰、动画与声响结合。此外,浙江大学开发的化工原理实验模拟系统软件的特点是以该校的实际装置为依托,图像具有3D立体效果。从以上的开发成果可以看出,化工原理实验模拟软件从最初的非中文界面,发展到依托中文操作系统,再发展到自带中文字库脱离汉字操作系统,最后发展到充分利用多媒体技术和3D图像技术,而且界面日趋友好,功能日渐增多。 2. 化工原理实验模拟的特点 化工原理实验模拟通过计算机模拟真实的实验操作,使学生能快速地掌握如何操作化工单元过程,熟练地测定、整理实验数据,而且可以提高学生对化工原理理论课程的学习兴趣。它具有如下特点: (1) 实验模拟可以模拟传统实验过程,形象生动、简明易懂,既有科学性又富有趣味性,有利于增强教学效果,可在较短的时间内使学生了解化工原理实验单元操作的方法和技巧。 (2) 实验模拟可以快速完成耗费时间很长的实验,并可不断地重复各个实验过程,有利于提高实验教学效果,降低实验运行费用。 (3) 实验模拟可以按实验者的意图任意改变“实验条件”,模拟许多非正常的操作,有利于改善学生在实验装置上操作的安全性。 (4) 实验模拟可以清晰地观察实验的变化规律,使学生获得更多的感性认识,有利于培养学生理论联系实际的能力。 3. 化工原理实验模拟系统的组成 开发化工原理实验模拟系统的目的在于将先进的模拟技术与传统的实验教学相结合,改进实验教学的效果,提高实验教学水平。该模拟系统以基于Windows

化工原理实验思考题及答案汇总

化工原理实验思考题(填空与简答) 一、填空题: 1.孔板流量计的Re ~C 关系曲线应在 单对数 坐标纸上标绘。 2.孔板流量计的R V S ~关系曲线在双对数坐标上应为 直线 。 3.直管摩擦阻力测定实验是测定 λ 与 Re_的关系,在双对数坐标纸上标绘。 4.单相流动阻力测定实验是测定 直管阻力 和 局部阻力 。 5.启动离心泵时应 关闭出口阀和功率开关 。 6.流量增大时离心泵入口真空度 增大_出口压强将 减小 。 7.在精馏塔实验中,开始升温操作时的第一项工作应该是 开循环冷却水 。 8.在精馏实验中,判断精馏塔的操作是否稳定的方法是 塔顶温度稳定 9.在传热实验中随着空气流量增加其进出口温度差的变化趋势:_进出口温差随空气流量增加而减小 。 10.在传热实验中将热电偶冷端放在冰水中的理由是 减小测量误差 。 11.萃取实验中_水_为连续相, 煤油 为分散相。 12.萃取实验中水的出口浓度的计算公式为 E R R R E V C C V C /)(211-= 。 13.干燥过程可分为 等速干燥 和 降速干燥 。 14.干燥实验的主要目的之一是 掌握干燥曲线和干燥速率曲线的测定方法 。 15.过滤实验采用悬浮液的浓度为 5% , 其过滤介质为 帆布 。 16.过滤实验的主要内容 测定某一压强下的过滤常数 。 17.在双对数坐标系上求取斜率的方法为: 需用对数值来求算,或者直接用尺子在坐标纸上量取线段长度求取 。 18.在实验结束后,关闭手动电气调节仪表的顺序一般为: 先将手动旋钮旋

至零位,再关闭电源。 19.实验结束后应清扫现场卫生,合格后方可离开。 20.在做实验报告时,对于实验数据处理有一个特别要求就是: 要有一组数据处理的计算示例。 21.在阻力实验中,两截面上静压强的差采用倒U 形压差计测定。 22.实验数据中各变量的关系可表示为表格,图形和公式. 23.影响流体流动型态的因素有流体的流速、粘度、温度、尺寸、形状等. 24.用饱和水蒸汽加热冷空气的传热实验,试提出三个强化传热的方案(1)增加空气流速(2)在空气一侧加装翅片(3)定期排放不凝气体。 25.在精馏实验数据处理中需要确定进料的热状况参数q 值,实验中需要测定进料量、进料温度、进料浓度等。 26.干燥实验操作过程中要先开鼓风机送风后再开电热器,以防烧坏加热丝。 27.在本实验室中的精馏实验中应密切注意釜压,正常操作维持在0.005mPa,如果达到0.008~0.01mPa,可能出现液泛,应减少加热电流(或停止加热),将进料、回流和产品阀关闭,并作放空处理,重新开始实验。 28.流体在流动时具有三种机械能:即①位能,②动能,③压力能。这三种能量可以互相转换。 29.在柏努利方程实验中,当测压管上的小孔(即测压孔的中心线)与水流方向垂直时,测压管内液柱高度(从测压孔算起)为静压头,它反映测压点处液体的压强大小;当测压孔由上述方位转为正对水流方向时,测压管内液位将因此上升,所增加的液位高度,即为测压孔处液体的动压头,它反映出该点水流动能的大小。

化工原理实验指导书

化工原理实验指导书

目录 实验一流体流动阻力的测定 (1) 实验二离心泵特性曲线的测定 (5) 实验三传热系数测定实验 (7) 实验四筛板式精馏塔的操作及塔板效率测定 (9) 实验五填料塔吸收实验 (12) 演示实验柏努利方程实验 (14)

雷诺实验 (16)

实验一流体流动阻力的测定 、实验目的 1、 了解流体在管道内摩擦阻力的测定方法; 2、 确定摩擦系数入与雷诺数 Re 的关系。 二、基本原理 由于流体具有粘性, 在管内流动时必须克服内摩擦力。 当流体呈湍流流动时, 质点间不 断相互碰撞,弓I 起质点间动量交换,从而产生了湍动阻力,消耗了流体能量。流体的粘性和 流体 的涡流产生了流体流动的阻力。 在被侧直管段的两取压口之间列出柏努力方程式, 可得: △ P f = △ P ’ P f L u 2 h f d 2 L —两侧压点间直管长度(m ) 2d P f d —直管内径(m ) 入一摩擦阻力系数 u —流体流速(m/s ) △ P f —直管阻力引起的压降(N/m 2 ) 厂流体粘度(Pa.s ) p — 流体密度(kg/m 3 ) 本实验在管壁粗糙度、管长、管径、一定的条件下用水做实验,改变水流量,测得一系 列流量下的△ P f 值,将已知尺寸和所测数据代入各式,分别求出入和 Re ,在双对数坐标纸 上绘出入?Re 曲线。 三、实验装置简要说明 水泵将储水糟中的水抽出, 送入实验系统,首先经玻璃转子流量计测量流量, 然后送入 被测直管段测量流体流动的阻力,经回流管流回储水槽,水循环使用。 被测直管段流体流 动阻力△ P 可根据其数值大小分别采用变压器或空气一水倒置 U 型管来测量。 四、实验步骤: 1、 向储水槽内注蒸馏水,直到水满为止。 2、 大流量状态下的压差测量系统 ,应先接电预热10-15分钟,观擦数字仪表的初始值并 记 录后方可启动泵做实验。 3、 检查导压系统内有无气泡存在 .当流量为0时打开B1、B2两阀门,若空气一水倒置 U 型管内两液柱的高度差不为 0,则说明系统内有气泡存在,需要排净气泡方可测取数据。 排气方法:将流量调至较大,排除导压管内的气泡,直至排净为止。 4、 测取数据的顺序可从大流量至小流量,反之也可,一般测 15?20组数,建议当流量 读数 小于300L/h 时,用空气一水倒置 U 型管测压差△ P 。 5、待数据测量完毕,关闭流量调节阀,切断电源。 Re du

相关文档
最新文档