给水排水要点:颗粒的沉降速度【全网推荐】

给水排水要点:颗粒的沉降速度【全网推荐】
给水排水要点:颗粒的沉降速度【全网推荐】

给水排水要点:颗粒的沉降速度[工程类精品文档]

本文内容极具参考价值,如若有用,请打赏支持,谢谢!

大于大于大于

颗粒的沉降速度:依据斯托克斯公式得出。沉淀池的表面负荷:q/a:单位时间内通过沉淀池单位表面积的流量,一般称之为表面负荷,以q表示。(数值上与颗粒沉速)曝气沉砂池:是一长形渠道,沿渠壁一侧的整个长度方向,距池底20-

80cm处安设曝气装置,在其下部设集砂斗,池底有i=0.1-0.2的坡度,以保证砂粒滑入。由于曝气作用,废水中有机颗粒经常处于悬浮状态,砂粒互相摩擦并承受曝气的剪切力,砂粒上附着的有机污染物能够去除,有利于取得较为纯净的砂粒。自由沉降总去除率试验的方法及总去除率的确定:将已测定过悬浮物含量的废水搅拌均匀后,同时注入数个沉淀管中,经t1时间后,从第一个沉淀管高h处取出一定数量的废水,同样,经过t2、t3、t4t5时间后,相应地从第2、3、4n个沉淀管中同一高度处取出同样数量的水样,测定其中悬浮物含量分别为c1\c2\c3cn.沉淀率为e=c0-ct/c0,悬浮物经t时间的沉速为u0=h/t.以沉速为横坐标,以沉淀率为纵坐标,能够绘出沉速-沉淀率关系曲线。理想沉淀池的工作过程分析:假定条件为:①池内废水按水平方向流动,从入口到出口,颗粒水平分布均匀,每个颗粒都按水平流速v流动;②悬浮颗粒在整个水深均匀分布,其水平分速等于废水的水平流速v,每个颗粒的沉速固定不变;③颗粒一经沉淀就不再上浮。沉淀池内分流入

颗粒自由沉降实验

实验项目名称: 颗粒自由沉淀实验 (所属课程: 水污染控制工程 ) 院 系: 专业班级: 姓 名: 学 号: 实验日期: 实验地点: 合作者: 指导教师: 本实验项目成绩: 教师签字: 日期: 一、实验目的 (1) 加深对自由沉淀特点、基本概念及沉淀规律的理解。 (2) 掌握颗粒自由沉淀实验的方法,并能对实验数据进行分析、整理、计算和绘制颗粒自由沉淀曲线。 二、实验原理 浓度较稀的、粒状颗粒的沉淀属于自由沉淀,其特点是静沉过程中颗粒互不 干扰、等速下沉,其沉速在层流区符合 Stokes 公式。但是由于水中颗粒的复杂性,颗粒粒径、颗粒比重很难或无法准确地测定,因而沉淀效果、特性无法通过公式求得,而是要通过静沉实验确定。 由于自由沉淀时颗粒是等速下沉,下沉速度与沉淀高度无关,因而自由沉淀 可在一般沉淀柱内进行,但其直径应足够大,一般应使 D ≥100mm 以免颗粒沉淀受柱壁干扰。 具有大小不同颗粒的悬浮物静沉总去除率E 与截留速度u0、颗粒质量分数的关系如下 此种计算方法也称为悬浮物去除率的累积曲线计算法。 设在一水深为H 的沉淀柱内进行自由沉淀实验,实验开始时,沉淀时间为0,此时沉淀柱内悬浮物分布是均匀的,即每个断面上颗粒的数量与粒径的组成相同,悬浮物浓度为C0(mg/L ),此时去除率E=0。 实验开始后,悬浮物在筒内的分布变得不均匀。不同沉淀时间ti ,颗粒下沉到池底的最小沉淀速度u i 相应为u i =H/t i 。此时为t i 时间内沉到池底(此处为取样点)的最小颗粒d i 所具有的沉速。此时取样点处水样水样悬浮物浓度为Ci ,则颗粒总去除率: 00011C C C C C P E i i i -=-= -=。

(完整版)化工原理-第五章-颗粒的沉降和流态化

化工原理-第五章-颗粒的沉降和流态化 一、选择题 1、 一密度为7800 kg/m 3 的小钢球在相对密度为1.2的某液体中的自由沉降速度为在20℃水中沉降速度的1/4000,则此溶液的粘度为 D (设沉降区为层流)。 ?A 4000 mPa·s ; ?B 40 mPa·s ; ?C 33.82 Pa·s ; ?D 3382 mPa·s 2、含尘气体在降尘室内按斯托克斯定律进行沉降。理论上能完全除去30μm 的粒子,现气体处理量增大1倍,则该降尘室理论上能完全除去的最小粒径为 D 。 A .m μ302?; B 。m μ32/1?; C 。m μ30; D 。m μ302? 3、降尘室的生产能力取决于 B 。 A .沉降面积和降尘室高度; B .沉降面积和能100%除去的最小颗粒的沉降速度; C .降尘室长度和能100%除去的最小颗粒的沉降速度; D .降尘室的宽度和高度。 4、降尘室的特点是 。D A . 结构简单,流体阻力小,分离效率高,但体积庞大; B . 结构简单,分离效率高,但流体阻力大,体积庞大; C . 结构简单,分离效率高,体积小,但流体阻力大; D . 结构简单,流体阻力小,但体积庞大,分离效率低 5、在降尘室中,尘粒的沉降速度与下列因素 C 无关。 A .颗粒的几何尺寸 B .颗粒与流体的密度 C .流体的水平流速; D .颗粒的形状 6、在讨论旋风分离器分离性能时,临界粒径这一术语是指 C 。 A. 旋风分离器效率最高时的旋风分离器的直径; B. 旋风分离器允许的最小直径; C. 旋风分离器能够全部分离出来的最小颗粒的直径; D. 能保持滞流流型时的最大颗粒直径

颗粒自由沉降

自由沉淀实验实验指导书 城乡建设学院市政与环境工程系 2013.10

自由沉淀实验 一、实验目的 水中悬浮颗粒依靠重力作用,从水中分离出来的过程称为沉淀。沉淀可分为四种基本类型,即自由沉淀、絮凝沉淀、成层沉淀和压缩沉淀。自由沉淀用以去除低浓度的离散性颗粒如沙砾、铁屑等。这些杂质颗粒的沉淀性能一般都要通过实验测定。 本实验采用测定沉淀柱底部不同历时累计沉淀泥量方法,找出去除率与沉速的关系。希望达到以下目的: 1、了解和掌握自由沉淀的规律,根据实验结果绘制时间-沉淀率(t-E ),沉速-沉淀率(u-E ) 和 u c c o t 的关系曲线 2、 通过实验,掌握颗粒自由沉淀的实验方法; 3、比较累计沉淀泥量法与累计曲线法的共同点; 4、加深理解沉淀的基本概念和杂质的沉降规律。 二、实验装置及材料 沉淀柱尺寸:φ150 mm ×2000 mm 数量4根 最大进水速度:3000L/H 配套实验装置有: 1、PVC 配水箱1个 2、不锈钢潜水泵1台 3、搅拌混合器1套 4、配水管阀门1套 5、水泵循环阀门套 6、各沉淀柱进水阀门1套 7、各沉淀柱放空阀门1套 8、排水管1套 9、取样口 10、沉淀柱4根 11、溢流管 12、固定支架1个 13、连接的管道、阀门、开关等若干。 整体外形尺寸:1200mm ×800mm ×2300mm 测定悬浮物的设备(用户自备) 分析天平,具塞称量瓶、烘箱、滤纸、漏斗、量筒、烧杯等 水样(用户自备) 实际工业废水或粗硅藻土等配制水样 三、实验步骤 1、打开沉淀管的阀门将污水注入沉淀管,然后打开进气阀门,曝气搅拌均匀。 2、关闭进气阀,此时取水样100mL (测得悬浮物浓度Co ),同时记下取样口高度,开启秒 表,记录沉淀时间。 3、当时间为1min 、3 min 、5 min 、10 min 、15 min 、20 min 、40 min 、60 min 时,分别取样 100mL ,测其悬浮位浓度(Ct )。记录沉淀柱内液面高度。 4、测定每一沉淀时间的水样悬浮物固体量。悬浮性固体的测定方法如下:首先调烘箱支 (105±1)℃,叠好滤纸放入称量瓶中,打开盖子,将称量瓶放入105℃的烘箱烘至恒

固体颗粒的群体沉降速度分析

固体颗粒的群体沉降速度分析 郑邦民1,夏军强2 (1.武汉大学河流系,湖北武汉430072; 2.清华大学水利系,北京100084) 摘要:从流体力学原理出发,数值模拟非均匀沙随机分布对流场的影响,推导出固体颗粒群体沉速的理论解。该公式不仅量纲和谐,浓度变化不超过极限浓度值,能反映含沙量与非均匀沙级配变化对群体沉速的影响,而且可避免其它公式量纲不和谐,计算中出现负值或降得过快的缺点。采用黄河实测资料对该公式进行了验证,计算结果与实测资料基本符合。 关键词:固体颗粒; 群体沉速; 干扰流核;极限浓度 1 引言 泥沙在静止的清水中等速下沉时的速度,称为泥沙的沉降速度。在多沙河流的浑水中,泥沙颗粒的沉降特性比清水中与低含沙水流中复杂。此时泥沙颗粒下沉相互干扰,部分颗粒或全部颗粒成群下沉,其下沉速度称为群体沉速[1,2]。群体颗粒沉降特性的研究具有十分重要的意义,它在多沙河流的河床演变分析和泥沙数学模型计算中广泛应用。单个颗粒的沉速与群体沉降可以相差10倍,故50年前有人说泥沙运动严格地讲只有一个半理论。为此应进一步分析颗粒群体沉降规律,使其在实际应用中不致有太大的误差。 本文在研究流体力学粘性流中圆球绕流规律的基础上,得出固体颗粒群体沉速的理论解,它可反映泥沙浓度与组成对群体沉速的影响。然后将该公式与现有的群体沉速公式进行比较,并用黄河实测资料进行验证。 2 理论前提 Navier_Stokes方程是流体力学的基本控制方程,它是求解流体力学诸多问题中普遍应用的方程。对不可压缩粘性流体,在有势外力作用下,可得Helmholtz 涡量方程

(1) 上式中为流速矢量:Δ为哈密顿算子(Hamilton Operator);ν为流体的运动粘滞系数;t为时间。一般情况下,三维流函数为向量,它与流速 有如下关系 。而流速与涡量,亦呈旋度关系, 即。为了便于数值计算,它可写作一般曲线坐标系的张 量形式: 。其中 。式中ui为逆变分量,Δj 为协变导数,为协变基向量, 它不一定是正交基,也不一定为单位基。对正交曲线坐 标,则有 其中u k为单位正交(局部)基上的物理分量;H k为Lami系数或标量因子,它反映微元弧长dd i与坐标微元dξi之间的比,即ds i=H(i)dξi。 根据上述关系,我们可以将涡量方程写作一般曲线坐标形式或正交曲线坐标形式,以便于数值计算。它可以用来计算形体绕流等外部流动。对于二维流或在柱坐标、球坐标下的球对称,轴对称流动,式(2)可以简化。例如,在球坐标下有H1=1、H2=R、H3=Rsinθ,可得ds1=dR、ds2=dθ、 ds3=Rsinθdλ。上式中R、θ、λ为球坐标系下的三个坐标线。因轴对称时,且物理量只在R、θ方向上有变化,故有ψ3=ψ。同时可得R、θ坐标线上的速度分量 (3) 这对小雷诺数下的圆球绕流,上述沉降分析是合适的。恒定流情况有 惯性项均可忽略。对于外部绕流,流函数是无源场,则有

重力沉降速度的基本方程式

重力沉降速度的基本方程式 若球形颗粒的直径为d(m),密度为, 在密度为 的气体中沉降时,其在沉降 (铅直)方向下受到: 重力 浮力 阻力 由于重力沉降速度为颗粒作等速运动时相对应的速度,t u u =因此上述三力在铅直方向上的合力为零,故 0=--d b g F F F 代入并化简得: 上式即为重力沉降速度的基本方程式。 说明: 1.式中ξ称为阻力系数。它可表示为颗粒与流体相对运动时的雷诺数Ret 的函数,即)(R e t f =ξ,其中 2.对于球形颗粒(球形度0.1=s φ), 可由下列公式计算: 滞流区 1R 10 e 4 <<-t

过渡区 3 e 10R 1<

='(a) V s= F bHu u 将式(a)改写为 (b) m3 式中,Vs——含尘气体处理量,/s m F——沉降室的水平截面积,又称沉降面积(F=bl), 2 m F’——沉降室的横截面积,F’=bH, 2 说明: 1.Vs一定时,根据待处理固体颗粒的最小直径求出ut,然后利用式(a)或式(b)可确定出沉降室的最小长度l(H一定时)或最小宽度b(l 一定时); 2.降尘室的处理能力(Vs)仅与沉降面积有关,而与降尘室高度H无关。为提高降尘室的降尘室的捕集效率,可从降低气流速度u,降低降尘室的高度H及增大降尘室长度l或(或宽度b)方面入手。 3.为了防止粉尘的二次飞扬,保证颗粒在滞流状态下自然沉降,气流通过降尘室的实际速度应在0.2~0.8m/s范围内选取。 若设法使得气流带着颗粒作旋转运动,由于颗粒的密度大于流体的密度,惯性离心力便会将颗粒沿切线方向甩出,使颗粒在径向与流体了生相对运动而飞离中心。另一方面,颗粒周围的流体对颗粒有一个指向中心的作用力,此作用力恰好等于同体积流体维持圆周运动所需的向心力,若与重力声的情况相比,此作用力与颗粒在重力场中所受到的流体的浮力是相当的。此外,由于颗粒在半径方向上与流体有相对运动,也就会受到阻力作

烟气中颗粒沉降计算公式

重力沉降公式 一、颗粒运动状态 μρu d p p = Re (1-1) 式中:p Re -----雷诺数 p d -----颗粒直径 m ρ--------空气密度 3/m kg u--------颗粒运动速度 m/s μ-------空气粘度 P a ·s 在293K 和101325 P a 下,干空气粘度1.81×10-5 P a ·s 干空气密度1.2053/m kg 1、层流区:p Re ≤1。 2、滑动区:p Re ≤1,颗粒尺寸很小,与气体分子平均自由程差不多。 3、过渡区:1<p Re <500。 4、湍流区:500<p Re <2×105。 二、颗粒沉降速度 1、层流区 g d u p p s μρ182= (1-2) 式中:s u -----颗粒重力沉降末端速度 m/s p d -----颗粒直径 m p ρ--------颗粒密度 3/m kg g--------重力加速度 m/s 2

μ-------空气粘度 P a ·s 公式(1-2)对粒径为 1.5~75m μ的单位密度(p ρ=10003/m kg )的颗粒,计算精度在±10%以内。 2、滑动区 gC d u p p s μρ182= (1-3) ?? ? ??????? ??-++=n n K K C 10.1exp 400.0257.11 (1-4) p n d K λ 2 = (1-5) v ρμ λ499.0= (1-6) M RT v π8= (1-7) 式中:s u -----颗粒重力沉降末端速度 m/s p d -----颗粒直径 m p ρ--------颗粒密度 3/m kg g--------重力加速度 m/s 2 μ-------空气粘度 P a ·s C-----坎宁汉修正系数 Kn -----努深数 λ--------气体分子平均自由程 m ρ--------空气密度 3/m kg v -------气体分子的算术平均速度 m/s R-----通用气体常数,8.31411--??K mol J

颗粒沉降实验

实验一颗粒自由沉淀实验 一、实验目的 1.加深对自由沉淀特点、基本概念及沉淀规律的理解。 2.掌握颗粒自由沉淀实验的方法,并能对实验数据进行分析、整理、计算和绘制颗粒自由沉淀曲线。 二、实验原理 颗粒的自由沉淀是指在沉淀的过程中,颗粒之间不互相干扰、碰撞、呈单颗粒状态,各自独立完成的沉淀过程。自由沉淀有两个含义: (1)颗粒沉淀过程中不受器壁干扰影响; (2)颗粒沉降时,不受其它颗粒的影响。 当颗粒与器壁的距离大于50d(d为颗粒的直径)时就不受器壁的干扰。当污泥浓度小于5000mg/l时就可假设颗粒之间不会产生干扰。 颗粒在沉砂池中的沉淀以及低浓度污水在初沉池中的沉降过程均是自由沉淀,自由沉淀过程可以由Stokes公式进行描述。 但是由于水中颗粒的复杂性,颗粒粒径、颗粒比重很难或无法准确地测定,因而沉淀效果、特性无法通过公式求得而是通过静沉实验确定。 取一定直径、一定高度的沉淀柱,在沉淀柱中下部设有取样口,如图1所示.将已知悬浮物浓度为C0的水样注入沉淀柱,取样口上水深为H,在搅拌均匀后开始沉淀实验,并开始计时,经沉淀时间t1,t2,…ti从取样口取一定体积水样,分别记下取样口高度,分析各水样的悬浮物浓度C1、C2…Ci,从而通过公式(《水控(下)》P36,公式10-15) η=C0-Ci/C0×100% 式中:η—颗粒被去掉百分率; C0—原水悬浮物的浓度(mg/l) Ci—ti时刻悬浮物质量浓度(mg/l) 同时计算: Pi=Ci/C0×100% 式中:p—悬浮颗粒剩余百分率; C0—原水悬浮物的浓度(mg/l)

Ci—ti时刻悬浮物质量浓度(mg/l) 图1 自由沉淀示意图 通过下式计算沉淀速率 u=H×10/ti×60 式中:u—沉淀速率(mm/s); H—取样口高度(cm) ti—沉淀时间(min) 通过以上方法进行实验要注意以下几点: (1)每从管中取一次水样,管中水面就要下降一定高度,所以,在求沉淀速度时要按实际的取样口上水深来计算,为了尽量减小由此产生的误差,使数据可靠应尽量选用较大断面面积的沉淀柱。 (2)实际上,在经过时间ti后,取样口上h高水深内颗粒沉到取样口下,应由两个部分组成,即:u≥u0=h/ti的这部分颗粒,经时间ti后将全部被去除。除此之外,u<u0=h/ti的这一部分颗粒也会有一部分颗粒经时间ti后沉淀到取样口以下,这是因为,沉速u s<u0的这部分颗粒并不都在水面,而是均匀地分布在整个沉淀柱的高度内,因此,只要在水面下,它们下沉至池底所用的时间能少于或等于具有沉速u0的颗粒由水面降至池底所用的时间t i,那么这部分颗粒也能从水中被除去,。但是以上实验方法并未包括这一部分,所以存在一定的误差。 (3)从取样口取出水样测得的悬浮固体浓度C1、C2…Ci等,只表示取样口断面处原水经沉淀时间t1,t2,…ti后的悬浮固体浓度,而不代表整个h水深中经相应沉淀时间后的悬浮固体浓度。 三、实验设备及仪器 1.沉淀装置(沉淀柱、贮水箱、水泵空压机)

中药醇沉工艺颗粒沉降过程的初步研究

中药醇沉工艺颗粒沉降过程的初步研究 (作者:__________ 单位: ___________邮编:____________ ) 作者:李页瑞,刘雪松,王龙虎,金胤池,陈勇 【摘要】目的对中药醇沉工艺中颗粒沉降过程及其特点进行研究, 初步了解不同种类中药醇沉过程中沉降颗粒的基本特点及其关键工艺参数,掌握沉降过程的规律,为醇沉工艺设计及工业化应用提供指导。方法以丹参、苦参和枳壳3种药材为研究对象,采用紫外分光光度法分别测定3种药材提取液醇沉过程中有效成分的保留量,同时测定了沉降颗粒含量、颗粒粒度和沉降速度等参数。结果不同药材有效成分保留量在醇沉过程中都有不同程度的下降;沉降颗粒含量随着静置时间的延长而增加;丹参、苦参和枳壳沉降颗粒的平均粒径分别为 36.272,131.820 和0.684 卩m 最小粒径分别为2.000, 6.325 和 0.142 a m 平均沉降速率分别为5.04 X 10-4,1.95 X 10-4和1.63 x 10-7 m- s-1。结论中药醇沉时,形成的杂质颗粒有两种沉降方式:一种是自由沉降,另一种是絮凝沉降。应根据不同种类中药醇沉颗粒的沉降过程及其特点进行工艺设计。 【关键词】中药;醇沉工艺;颗粒沉降过程;沉降方式;紫外分光 光度法

Abstract : ObjectiveTo study the process of particle sedimentation of alcohol precipitation process of traditional Chinese medicine and its characteristics, and to preliminarily un dersta nd the basic characteristics and key tech no logical parameters of the settli ng particle in the alcohol precipitati on process of differe nt kinds of traditi onal Chin ese medic in es, and hold the regulatio n of sedime ntatio n and provid ing guida nee for tech no logy desig n and in dustrial applicati on. MethodsSalvia Miltiorrhiza, Radix Sophorae Flavescentis and Fructus Aurantii were used as the experimental materials and UV spectrophotometry was used to determ ine the effective components of the solution in the process of alcohol precipitati on, parameters like the content of settli ng particulate, the particle size and the sedimentation velocity were also determ in ed. Results The content of the effective comp onents was lower tha n the origi nal in differe nt levels during the precipitation process. The content of the sedime ntati on particle in creased with the exte nsion of the settling time. The average diameters of particles in each material solution were 36.272 卩m, 131.820 卩m and 0.684 卩m and the minimum diameters were 2.000 卩m, 6.325 卩m and 0.142 a mrespectively, the average sedimentation velocity were 5.04

沉降速度

泥沙沉降速度的分析 姓名:李翔 学号:2009301580073 摘要:在总结回顾国内外泥沙沉降速度测量方法的基础上,重点介绍两种方法,既Dietrich EW(1982)、张瑞谨所研究出来的关于泥沙沉降速度的公式。 关键词:泥沙;沉降速度;计算公式 泥沙在静止的清水中等速下沉时的速度,称为泥沙的沉降速度,简称沉速。由于粒径越粗,沉降速度越大,因此有些文献上又称为水力粗度。它是泥沙的重要的水力特性之一,在研究泥沙运动的问题时,常常要用到。 因为泥沙的重度大于水的重度,在水中的泥沙颗粒将受到重力作用下沉。在开始自然下沉的一瞬间,初始速度为零,抗拒下沉的阻力也为零,这时只有有效重力起作用,泥沙颗粒的下沉会具有加速度,随着下沉速度的增大,抗拒下沉的阻力也会增大,终于是下沉速度达到某一极限值。此时,泥沙所受的有效重力和阻力恰恰相等,泥沙将以等速继续下沉。 实践证明,泥沙颗粒在静水中的下沉时的运动状态与沙粒雷诺数Re d=ν ωd 有关。式中d、w分别为泥沙的粒径及沉速,v 为水的运动粘性滞性系数。

1、Dietrich EW方法 泥沙颗粒在下沉时受到的阻力为: 泥沙颗粒的重力为: 当泥沙颗粒在水中达到一定沉降速度时,重力与阻力相等,泥沙颗粒做匀速运动 令 , b1=2.891394,b2=0.95296,b3=0.056835, b4=0.002892,b5=0.000245

2、张瑞谨关于泥沙的静水沉降问题的研究 泥沙颗粒的重力: 在静水中所受到的阻力为: 令 运用两种方法算不同粒径泥沙颗粒的沉降速度;其中 g=9.81msˉ2,R=1.65, v=0.000001m2sˉ1,ρ=1000kgmˉ3

沉降过程与操作

学习情境4沉降过程与操作 学习要求 知识目标: 1. 了解重力沉降及离心沉降基本知识。 2. 掌握旋风分离器、油水分离设备工作原理。 能力目标: 1. 能使旋风分离器平稳运行。 2. 能使油水分离设备平稳运行。 学习情境4.1常压塔顶回流罐的油水分离 【教学内容】 化工生产中需要将混合物加以分离的情况横多,大致说来,混合物可分为两大类,即均相混合物和非均相混合物,详细内容下表。 均相:内部各处均匀不存在相界面的物系称为均相物系。如溶液、混合气体及少量混合液体。 非均相:由具有不同物理性质(如密度和粒径)的分散物质和连续介质所组成的物系称非均相物系。 均相物系的分离属于传质内容,均相物系中的“固一固”物系不在讨论之列;非均相 物系可以借助沉降、过滤、筛分等手段,利用物系中两相间的物性(如p或d)差,实现 两相间的相对运动达到分离的目的。这些属于机械分离,操作遵循流体力学的基本规律。 在非均相物系中,处于分散状态的物质称“分散相”;包围它的物质称“连续相” (即分散介质)。

沉降是将混合物置于力场中,在力场作用下,使分散相与连续相发生相对运动,密度大的物质定向地移向收集面,实现分离。 力场沉降类型物系 重力场重力沉降 自由沉降 气一固、液一固气一液、液一液 干扰沉降 离心力场离心沉降同上 电场电沉降 电除尘器 颗粒极微者 电捕焦油器 固一固物系往往要借助流体,使固固两相间的运动产生速度差。在这里我们重点学习重力沉降,其沉降方向垂直向下。 沉降速度 ㈠球形颗粒的自由沉降 自由沉降一一颗粒沉降中不受外界的任何影响。 将一粒表面光滑的刚性球形颗粒置于静止的流体中,颗粒p S>液体的p ,于是颗粒受到的力分别为:重力Fg、浮力Fb、阻力Fd,其作用方向如图示。 当颗粒和流体的种类确定后,仅于p s、d和p有关的重力及浮力便为常量;阻力则 随着颗粒运动的速度的变化而变化。 直径为d的颗粒,所受三力表示为(向下为正):j 三力之和,使颗粒产生加速度: a =du/d 0 图4-1受力分析

沉降法粒度检验基本知识Stokes定律

沉降法粒度测试原理——Stokes 定律 沉降法是通过测量颗粒在液体中的沉降速度来反映粉体粒度分布的一种方法。我们知道,在液体中大颗粒沉降速度快,小颗粒沉降速度慢。沉降速度与粒径的数量关系, 我们可以从下面的Stokes 定律的数学表达式得到: 从上式可以看到,颗粒的沉降速度与粒径的平方成正比,可见在重力沉降中颗粒越大沉降速度越快。比如在相同条件下,两个粒径比为10:1,那么这两个颗粒的沉降速度之比为100:1。这样通过测量颗粒的沉降速度就可以得到它的粒径了。 为了加快细颗粒的沉降速度,缩短测试时间,提高测试精度,许多沉降仪引入了离 心沉降手段来加快细颗粒的沉降速度。离心状态下,粒径与沉降速度的关系如下: 这就是离心状态下的Stokes 定律。其中ω为离心机角速度,r 为颗粒到轴心的距离。由于离心机转速较高,ω2r 远远大于重力加速度g ,因此同一个颗粒在离心状态下的沉降速度V c 将远远大于重力状态下的沉降速度V ,这就是离心沉降可以缩短测试时间的原因。 从Stokes 定律可以看出,只要测出颗粒的沉降速度,就可以得到该颗粒的粒径。但在实际粒度测量过程中,液体中的颗粒数量很多,大小不同,因此直接测量每一个颗粒 沉降速度是很困难的,因此用透过悬浮液的光强隨时间的变化率来间接地反映颗粒的沉降速度。光强与粒径之间的数量关系可以用比尔定律来描述: 2 18)(D g V f s ηρρ-=2 218)(D r V f s c ηωρρ-=dD D D n k I I i ?∞ -=020)()lg()lg(

通过比尔定律,我们通过测量不同时刻的光强得到光强的变化率,可以求得粒度分布。

土壤污染物沉降速率计算公式及2个沉降速率经验参数

土壤污染物沉降速率计算公式及2个沉降速率经验参数 本文章主要提供两个沉降速率的经验值,一个沉降速率V的计算公式,还有几个关于土壤中重金属的小知识。 土壤中重金属的来源主要是大气沉降。有研究表明在旱地,大气沉降、施肥均会带来一定量的重金属输入,水稻田的重金属来源是大气干湿沉降、施肥和灌溉。 颗粒物的沉降分为干沉降和湿沉降。一般来说,大气中颗粒物沉降量中湿沉降占80-90%,干沉降仅占10-20%。 颗粒物的沉降具体到计算中常涉及到沉降速率。沉降速率V是一个难以测定的值,沉降速率V与许多变化的因素有关,如颗粒物粒径大小、气象状态、大气稳定度、相对湿度、风速、沉降面特征等,其中颗粒物粒径大小起着至关重要的贡献。 沉降速率的计算公式: 颗粒物沉降速度可应用斯托克斯定律求出: 式中V:表示沉降速度cm/s; g:重力加速度,cm/s2; 1 / 4

d:粒子直径(直径取0.1μm),cm; ρ1、ρ2:颗粒密度和空气密度,g/cm2(20℃空气密度为 1.2g/cm2); η:空气的粘度,Pa·S(20℃空气粘度为1.81×10-4Pa·S) 该公式来自《生活垃圾焚烧发电厂烟尘中重金属沉降对土壤环境影响评价方法探讨》(【环保科技】2013年第2期作者:徐玮、李燕、李敏),该论文列出的公式参考文献是:《环境化学》(王晓蓉,南京大学出版社,1993)。 备注:斯托克斯定律:斯托克斯定律(Stokes Law,1845)是由英国科学家乔治·斯托克斯(1819.08.13—1903.02.01)推导出,具体定律是指半径为r的小球在黏度为η的流体中以速度v运行时,小球受到的粘滞阻力为f=6πηrv,即在与粘滞力相比,惯性力可以忽略的情况下斯托克斯导出的阻力表达式。 斯托克斯定律的应用:沉降分离和离心分离 2 / 4

沉降例题

一、选择选题(单选) 1.在滞流区颗粒的沉降速度正比于()。D (A)(ρs-ρ)的1/2次方(B)μ的零次方 (C)粒子直径的0.5次方(D)粒子直径的平方 2.自由沉降的意思是()。 D (A)颗粒在沉降过程中受到的流体阻力可忽略不计 (B)颗粒开始的降落速度为零,没有附加一个初始速度 (C)颗粒在降落的方向上只受重力作用,没有离心力等的作用 (D)颗粒间不发生碰撞或接触的情况下的沉降过程 3.颗粒的沉降速度不是指()。 B (A)等速运动段的颗粒降落的速度 (B)加速运动段任一时刻颗粒的降落速度 (C)加速运动段结束时颗粒的降落速度 (D)净重力(重力减去浮力)与流体阻力平衡时颗粒的降落速度 4.回转真空过滤机洗涤速率与最终过滤速率之比为()。A (A) l (B)1/2 (C) 1/4 (D)1/3 5.以下说法是正确的()。 A (A)过滤速率与A(过滤面积)成正比 (B)过滤速率与A2成正比 (C)过滤速率与滤液体积成正比 (D)过滤速率与滤布阻力成反比 6.叶滤机洗涤速率与最终过滤速率的比值为()。D (A) 1/2 (B)1/4 (C) 1/3 (D) l 7.过滤介质阻力忽略不计,滤饼不可压缩进行恒速过滤,如滤液量增大一倍,则( C )。 (A)操作压差增大至原来的倍(B)操作压差增大至原来的4倍 (C)操作压差增大至原来的2倍(D)操作压差保持不变 8.恒压过滤,如介质阻力不计,过滤压差增大一倍时,同一过滤时刻所得滤液量(C )。 (A)增大至原来的2倍(B)增大至原来的4倍 (C)增大至原来的2倍(D)增大至原来的1.5倍 9.以下过滤机是连续式过滤机()。 C (A)箱式叶滤机(B)真空叶滤机 (C)回转真空过滤机(D)板框压滤机 10.过滤推动力一般是指()。 B (A)过滤介质两边的压差(B)过滤介质与滤饼构成的过滤层两边的压差 (C)滤饼两面的压差(D)液体进出过滤机的压差 11.板框压滤机中,最终的过滤速率是洗涤速率的()。C (A)一倍(B)一半(C)四倍(D)四分之一 12.助滤剂应具有以下性质()。B (A)颗粒均匀、柔软、可压缩(B)颗粒均匀、坚硬、不可压缩 (C)粒度分布广、坚硬、不可压缩(D)颗粒均匀、可压缩、易变形 13.旋风分离器的总的分离效率是指()。D (A)颗粒群中具有平均直径的粒子的分离效率 (B)颗粒群中最小粒子的分离效率 (C)不同粒级(直径范围)粒子分离效率之和 (D)全部颗粒中被分离下来的部分所占的质量分率 14.降尘室的生产能力()。A (A)只与沉降面积A和颗粒沉降速度ut有关(B)与A、ut及降尘室高度H有关 (C)只与沉降面积A有关(D)只与ut和H有关

5 颗粒的沉降(3版)

5 颗粒的沉降 Settling of Particles

5.1 概述 5.1.1 均相物系和非均相混合物系 (1)均相物系(homogeneous system) : ?物系内部各处物料性质均匀,不存在相界面的混合物系。(2)非均相物系(non-homogeneous system): ?物系内部有明显的相界面存在,界面两侧物料的性质不同 的混合物系。 ?非均相物系组成: 连续相:流体(气体或液体) 分散相:固体颗粒

5.1.2 沉降分离 由于密度差异,在外力作用下,使两相发生相对运动,从而达到分离的目的 重力沉降(gravity settling) 离心沉降(centrifuge settling) 5.1.3 应用 (1)回收分散物质 (2)净制分散介质 (3)环保

5.2 重力沉降(gravity settling) 5.2.1 球形颗粒的自由沉降(free settling) ?自由沉降:单个颗粒或发生在稀疏颗粒流体中的沉降 ?干扰沉降(hindered settling):颗粒沉降会受到其他颗粒的 影响

5.2.2 自由沉降速度 (1)受力分析 ?光滑球形颗粒: 质量m ,截面积A p ,直径d p 、密度ρp ?静止流体:粘度μ,密度ρ ?重力场中:u ——颗粒相对于流体的运动速度,m/s ζ——曳力系数(drag coefficient),无量纲 3g 6p p F mg d g πρ==:重力3 6b p F d g π ρ=:浮力22 2 242D p p u u F A d ρπ ρζζ==曳力:浮力F b 曳力F D 重力F g

常用沉降计算方法

1、弹性理论计算式 将地基视为半无限各向同性弹性体,根据弹性理论可得到沉降计算公式。 在集中力P作用下,半无限弹性体中点A(x,y,z)处的竖向应变z ε表达式为 )]([ 1y xzzEσσμσε+?= 上式中点A处的附加应力xσ、yσ和zσ可采用布辛涅斯克解,地面上某点( x,y,0)处的沉 降可通过积分得到,∫+ ? ==2 2 2) 1( yxE P dzszπ μ ε 在半无限弹性体上作用有均布柔性圆形荷载,荷载密度为p,荷载作用区半径为b,直径为 B=2b。类似前面分析,可以通过积分得到地基中土体竖向位移表达式为 ] )1([ )1(1 2II b z E pb sμ μ? + + = 2、分层总和法 分层总和法是一类沉降计算方法的总称,在这些方法中,将压缩层范围内的地基土层分成若干层,分层计算土体竖向压缩量,然后求和得到总竖向压缩量,即总沉降量。在分层计算土体压缩量时,多数采用一维压缩模式。竖向应力采用弹性理论解。压缩模量采用压缩试验测定,如采用e-p’曲线,或e-logp’曲线。 (1) 普通分层总和法 将压缩层范围内土层分成n层,应用弹性理论计算在荷载作用下各土层中的附加应力。采用压缩试验所得的土体压缩性指标,分层计算各土层的压缩量,然后求和得到沉降量。沉降计算公式如下:∑∑=== ?=n i

i iiiH ss11ε 根据应用的土体压缩性指标,可改写下述几种形式。直接采用压缩试验e-p’曲线,考虑01 e e + ?? = ε,可改写为下述形式,∑=+ ? =n i i i iiH e ee s1 1 211 采用压缩系数表示,可改写为下述形式,∑∑==+ ? = + ? =n i n i i i ii i i iiiH e pa H e ppa s11

1在滞流区颗粒的沉降速度正比于(

一、单选题 1.在滞流区颗粒的沉降速度正比于()。D (A)(ρs-ρ)的1/2次方(B)μ的零次方 (C)粒子直径的0.5次方(D)粒子直径的平方 2.自由沉降的意思是()。D (A)颗粒在沉降过程中受到的流体阻力可忽略不计 (B)颗粒开始的降落速度为零,没有附加一个初始速度 (C)颗粒在降落的方向上只受重力作用,没有离心力等的作用 (D)颗粒间不发生碰撞或接触的情况下的沉降过程 3.颗粒的沉降速度不是指()。B (A)等速运动段的颗粒降落的速度 (B)加速运动段任一时刻颗粒的降落速度 (C)加速运动段结束时颗粒的降落速度 (D)净重力(重力减去浮力)与流体阻力平衡时颗粒的降落速度 4.对于恒压过滤()。D (A)滤液体积增大一倍则过滤时间增大为原来的2倍 (B)滤液体积增大一倍则过滤时间增大至原来的2倍 (C)滤液体积增大一倍则过滤时间增大至原来的4倍 (D)当介质阻力不计时,滤液体积增大一倍,则过滤时间增大至原来的2倍 5.回转真空过滤机洗涤速率与最终过滤速率之比为()。A (A) l (B)1/2 (C) 1/4 (D)1/3 6.以下说法是正确的()。B (A)过滤速率与S(过滤面积)成正比 (B)过滤速率与S2成正比 (C)过滤速率与滤液体积成正比 (D)过滤速率与滤布阻力成反比 7.叶滤机洗涤速率与最终过滤速率的比值为()。D (A) 1/2 (B)1/4 (C) 1/3 (D) l 8.过滤介质阻力忽略不计,滤饼不可压缩进行恒速过滤,如滤液量增大一倍,则()。 C (A)操作压差增大至原来的2倍(B)操作压差增大至原来的4倍 (C)操作压差增大至原来的2倍(D)操作压差保持不变 9.恒压过滤,如介质阻力不计,过滤压差增大一倍时,同一过滤时刻所得滤液量()。 C (A)增大至原来的2倍(B)增大至原来的4倍 (C)增大至原来的2倍(D)增大至原来的1.5倍 10.以下过滤机是连续式过滤机()。C 1

中药醇沉工艺颗粒沉降过程的初步研究

中药醇沉工艺颗粒沉降过程的初步研究(作者:___________单位: ___________邮编: ___________) 作者:李页瑞,刘雪松,王龙虎,金胤池,陈勇 【摘要】目的对中药醇沉工艺中颗粒沉降过程及其特点进行研究,初步了解不同种类中药醇沉过程中沉降颗粒的基本特点及其关键工艺参数,掌握沉降过程的规律,为醇沉工艺设计及工业化应用提供指导。方法以丹参、苦参和枳壳3种药材为研究对象,采用紫外分光光度法分别测定3种药材提取液醇沉过程中有效成分的保留量,同时测定了沉降颗粒含量、颗粒粒度和沉降速度等参数。结果不同药材有效成分保留量在醇沉过程中都有不同程度的下降;沉降颗粒含量随着静置时间的延长而增加;丹参、苦参和枳壳沉降颗粒的平均粒径分别为36.272,131.820 和0.684 μm,最小粒径分别为2.000,6.325和0.142 μm,平均沉降速率分别为5.04×10-4,1.95×10-4和1.63×10-7 m·s-1。结论中药醇沉时,形成的杂质颗粒有两种沉降方式:一种是自由沉降,另一种是絮凝沉降。应根据不同种类中药醇沉颗粒的沉降过程及其特点进行工艺设计。 【关键词】中药; 醇沉工艺; 颗粒沉降过程; 沉降方式; 紫外分光光度法

Abstract:ObjectiveTo study the process of particle sedimentation of alcohol precipitation process of traditional Chinese medicine and its characteristics, and to preliminarily understand the basic characteristics and key technological parameters of the settling particle in the alcohol precipitation process of different kinds of traditional Chinese medicines, and hold the regulation of sedimentation and providing guidance for technology design and industrial application.MethodsSalvia Miltiorrhiza, Radix Sophorae Flavescentis and Fructus Aurantii were used as the experimental materials and UV spectrophotometry was used to determine the effective components of the solution in the process of alcohol precipitation, parameters like the content of settling particulate, the particle size and the sedimentation velocity were also determined. Results The content of the effective components was lower than the original in different levels during the precipitation process. The content of the sedimentation particle increased with the extension of the settling time. The average diameters of particles in each material solution were 36.272 μm, 131.820 μm and 0.684 μm and the minimum diameters were 2.000 μm, 6.325 μm and 0.142 μm respectively, the average sedimentation velocity were 5.04

颗粒自由沉降实验

颗粒自由沉淀实验 一、实验目的 1、过实验学习掌握颗粒自由沉淀的试验方法。 2、进一步了解和掌握自由沉淀的规律,根据实验结果绘制时间-沉淀率(t-E)、沉速-沉淀率(u-E)和C t/ C o~u的关系曲线。 二、实验原理 沉淀是指从液体中借重力作用去除固体颗粒的一种过程。根据液体中固体物质的浓度和性质,可将沉淀过程分为自由沉淀、沉淀絮凝、成层沉淀和压缩沉淀等4类。本实验是研究探讨污水中非絮凝性固体颗粒自由沉淀的规律。实验用沉淀管进行。设水深为h,在t时间内能沉到深度h颗粒的沉淀速度vh/t。根据给定的时间t o计算出颗粒的沉速u o。凡是沉淀速度等于或大于u0的颗粒在t0时就可以全部去除。设原水中悬浮物浓度为C o则 沉淀率=(C o-C t)/C0×100% 在时间t时能沉到深度h颗粒的沉淀速度u: u=(h×10)/(t×60) (mm/s) 式中:C0——原水中所含悬浮物浓度,mg/l C1————经t时间后,污水中残存的悬浮物浓度,mg/l; h ——取样口高度cm; t ——取样时间,min。 三、实验步骤 1、做好悬浮固体测定的准备工作。将中速定量滤纸选好,放入托盘,调烘箱至 105±1℃,将托盘放入105℃的烘箱烘45min, 取出后放入干燥器冷却 30min,在1/10000天平上称重,以备过滤时用。 2、开沉淀管的阀门将软化淤泥和水注入沉淀管中曝气搅拌均匀。 3、时用100ml容量瓶取水样100ml (测得悬浮物浓度为C0)记下取样口高度,开 动秒表。开始记录沉淀时间。 4、时间为 5、10、15、20、30、40、60 min时,在同一取样口分别取100 ml水 样,测其悬浮物浓度为(C t)。 5、一次取样应先排出取样口中的积水,减少误差,在取样前和取样后必须测量 沉淀管中液面至取样口的高度,计算时采用二者的平均值。 6、已称好的滤纸取出放在玻璃漏斗中,过滤水样,并用蒸馏水冲净,使滤纸上 得到全部悬浮性固体,最后将带有滤渣的滤纸移入烘箱,重复实验步骤(1)的工作。 7、浮物固体浓度计算 悬浮性固体浓度C mg/l={(W1-W2)×1000×1000}/v 式中:W1——滤纸重; W2——滤纸+悬浮性固体的重量; V ——水样体积,100 ml。

相关文档
最新文档