液态金属结晶的基本原理

液态金属结晶的基本原理
液态金属结晶的基本原理

第六章 液态金属结晶的基本原理

1、怎么从相变理论理解液态金属结晶过程中的生核、成长机理? 答:相变理论:相变时必须具备热力学和动力学条件。 金属结晶属一种相变过程:

热力学条件即过冷度T ?——驱动力V G ?

动力学条件:克服能障 热力学能障——界面自由能——形核 动力学能障——激活自由能A G ?——长大

若在体系内大范围进行,则需极大能量,所以靠起伏,先生核——主要克服热力学能障,然后出现最小限度的过渡区“界面”,此界面逐渐向液相内推移——长大(主要克服动力学能障)。

2、试述均质生核与非均质生核之间的区别与联系,并分别从临界晶核曲率半径、 生核功两个方面阐述外来衬底的湿润能力对临界生核过冷度的影响。要满足纯金属非均质生核的热力学要求,液态金属必须具备哪两个基本条件?

答:(1)T

L T G r r LC V LC ?=?==0

*

*22σσ非均

相等 但334r V π=均 ()θπf r V 3

34=非 ()4c o s c o s 323θθθ+-=f

∴ 非均质生核所需体积小,即相起伏时的原子数少。

(2)2203

*316T

L T G LC ??=?πσ均

()θf G G *

*均非

?=? 两种均需能量起伏克服生核功,但非均质生核能需较小。

(3)右图看出 ↑?↑→*

T θ ()↓?↓→↓→T V f 非θ

即:对*r :θ与*

非T ?的影响.

(4)生核功:

()θπσf T

L T G LC

2203

*316??=?非

()↓?↓→↓→?↓→T *

能量起伏非

G f θ (5)纯金属非均质生核的热力学条件:

V LC G r ?=σ2*

()θπσf T

L T G LC 2203

*

316??=?非

液态金属需具备条件(1)液态金属需过冷 (2)衬底存在。

3、物质的熔点就是固、液两相平衡存在的温度、试从这个观点出发阐述式(4—3) 中*r 与T ?之间关系的物理意义。

答:式4—3 T

L T G r LC V LC ?=?=0

*

22σσ均

当 0T T =时, 两相平衡;

当0T T <时,趋于固相:即固相教液相稳定;

式中看出 ↓↑→?*

r T 。 ↑?T 即↓T ,此时固相更稳定,更易于发生相变,就以较小的*

均r 即可稳定

存在。

4、液态金属生核率曲线特点是什么?在实际的非均质生核过程中这个特点又有何变化?

答:实际非均质生核率受衬底面积大小的影响,当衬底面积全部充满后,生核率

曲线中断,即不再有非均质生核。 相变、生核、成长中的热力学及动力学: (1)相变:

热力学条件:T ? ,可以提供相变驱动力V G ?。 动力学条件:克服热力学能障和动力学能障。 (2)生核:

克服能障:热力学(界面自由能)、动力学A G ?(作用小,对生核率影响小) (3)生长:

热力学能障:()KTi A G F V ln ->?——取决于F A (处于过冷状态,且相变

驱动力克服此能障)

动力学能障:A G ?

5、从原子尺度看,决定固—液面微观结构的条件是什么?各种界面结构与其生长机理和生长速度之间有何联系?它们的生长表面和生长防线各有什么特点? 答:(1) 热力学因素:??

?

?????

???≈??? ??=

v R S v n kT L a m η00 2a 平整界面

动力学因素:大:连续生长——粗糙界面结构 ——非平衡时 k T ? 小:平整界面的生长——平整界面结构

(2) 粗糙界面:连续生长 k T u R ??=1 完整平整界面:二维生核k

T e

u R ?-

2 连续生长↑↑→?k T

非平整界面:螺旋生长,2

3k T u R ?= 。 旋转单晶, 反射单晶。

(3) 生长方向: 粗糙界面:各向同性的非晶体单晶等,生长方向与热流

方向相平行,

平整界面:密排线相交后的棱角方向 生长表面: 粗糙界面:因是各向同性,光滑的生长表面。 平整界面:棱角分明的密排小晶面,

6、我们从什么尺度着眼讨论单晶合金的结晶过程的?它与结晶的原子过程以及最后的晶粒组织之间存在什么联系? 答:

(1)从宏观尺度着眼讨论单相合金的结晶过程,主要是与“原子尺度”相区别

的。

(2)与结晶的原子过程之间的关系:

不同的结晶方式:平面生长→胞状生长→ 枝晶生长。 原子过程: 小面生长和非小面生长 。

任何一种生长方式都可以是小面生长或非小面生长 (3)与最后的晶粒组织之间的联系。

平面生长:单晶或无分支的柱状晶组织。

胞状生长:胞状晶——一簇为一些平行排列的亚结构。 柱状枝晶生长:柱状枝晶。

等轴枝晶生长(内生长):等轴枝晶。

7、某二元合金相图如图所示。合金液 成分为%40=B w ,置于长瓷舟中并从左端开始凝固。温度梯度达到足以使固—液界面保持平面生长。假设固相无扩散,液相均匀混合。试求:(1)a 相与液相之间的平衡分配系数0k ;(2)凝固后共晶体的数量占试棒长度的百分之几?

(3)画出凝固后的试棒中溶质B 的浓度沿试棒长度的分布曲线,并注明各特征成分及其位置。

解:(1)5.060

30

**

0===L S C C k

(2)根据公式

10*-=o k L L f C C %60*=L C

%4.449

4

49234.06.01215

.0==?=?=?=∴---L L L L

f f f f

∴共晶体占试棒长度的44.4%

(3) 0=S f %20%405.000*

=?==C k C S

T=500℃ %30*

=S

C

8、假设上题合金成分为%10=B w 。

(1)证明已凝固部分(S f )的平均成分S C _

为()[]

0110_

k

S S

S f f C C --=

(2)当试棒凝固时,液体成分增高,而这又会降低液相线温度。证明液相线温

度L T 与S f 之间关系为1000)1(--+=k S L f mC T T 式中0T 为A 的熔点,m 为液相线倾率。

(3)在相图上标出L T 分别为750℃、700℃、600℃与500℃下的固相平均成分。

问试棒中将有百分之几按共晶凝固?

答:(1)0_

_

C f C f C L L S S =?+? %10=B w 1.00=C

()()()[]

()

[]00

00

11111)1(10

0_

10_1

0*_

k s

S

S

k S S S k S S s k S L L f f C f f C C C f f C f C f C C C --?=

--=

=--+?∴-==--

(2)()1

00*

0_

001--+=+=+=k S L

L L f mC T mC T C m T T (3)

℃750=L T

()25.215.0=--S f

8.0=S f

%9.6_

=S C

700 3 0.89 7.5 600 4.5 0.95 8.1 500

6

0.97

8.6

℃500=T , %303.097.01==-=L f , 3%按共晶结晶。

1

0*

_

0-==k L L L f C C C ,*010

L k L C C

f =- ,2

*0???

? ??=L L C C f , 100=C 60=L C 9、固相无扩散,液相均匀混合。假设图PQ 线是'S C (t T 时固相成分)与界面处固相成分'

'S C 的算数平均值。试证: ()00''2k C C S

-=

证明:2

'''0S

S C C C +=

00'C k C S

= 2

''000s C C k C += )2(200000'

'k C C k C C S

-=-= 10、何谓成分过冷判据?成分过冷的大小受哪些应诉的影响?它又是如何影响着

晶体的生长方式和结晶状态的?所有的生长方式都仅仅由成分过冷因素决定吗?

答:(1)成分过冷判据

()0

01k D k mC R G L O L

--

<

即:判据条件成立时,则存在成分过冷;反之,不会出现生分过冷。 (2)成分过冷的大小受以下因素影响 a 、合金本身:0C m 0k L D b 、工艺因素:L G R (3)

无成分过冷 小成分过冷 较宽成分过冷 宽成分过冷 方式 平面生长 胞状生长 枝晶生长 等轴枝晶 状态

单晶、柱状晶

胞晶

柱状枝晶

等轴晶

(4)不是所有的生长方式仅由成分过冷因素决定。

a 、纯金属:无成分过冷。

b 、过冷熔体的内生长,不一定存在成分过冷。

c 、游离晶的形成造成等轴晶生长。

11、已知在铸锭和铸件中s cm R 3105.2-?>,多数金属在液相线温度下

s cm D L 2510-≈;|m |>1。假设l s

ρρ=,试分别求出下表中当%100=C (质量分数,下同)、1%、0.01%以及4.00=k 与0.1时的确保平面生长所必须的l

G 值。考虑到铸锭或铸件中一般情况下cm

G l ℃5~3<,根据计算结果你能得出什么结论?

l G 0C 10%(重量)

1%(重量)

0.01%(重量)

0.4 0.1

答:

()0001k D k mC R G l l --≥,()0

001k D R

k mC G l l --≥ ()()()()()()m m G m m G C m m G m m G C m m G m m G C l l l l l l 25.2105.21

.0104.011001.075.3105.24

.0104.011001.001.01025.2105.21

.0104.0111075.3105.24.0104.011%11025.2105.21

.0101.01101075.3105.24.0104.0110%

1035

23

5

20335

235

0435

3

35

0-=???-??-≥-=???-??-≥=?-=???-?-≥?-=???-?-

≥=÷-=???--≥?-=???--

≥=--------------

结论:

①容易平面生长--↑0k ②容易平面生长--↓0c

越容易平面生长,21↓-?T T

k

一般铸造条件下很少平面生长。

12、共晶结晶中,满足共生生长和离异生长的基本条件是什么?共晶两相的固液

界面结构与其共生区结构特点之间有何关系?它们对共晶合金的结晶方式有何影响?

答:

(1)共生生长的基本条件:

a.共晶两相应有相近的析出能力,原析出相在领先相得表面生核,从而便于

形成具有共生界面的双向核心。

b.界面沿溶质原子的横向扩散能保证共晶两相等速生长,使共生生长得以继续

进行。

(2)离异生长的基本条件

①一相大量析出,而另一相尚未开始结晶时,形成晶相偏析型离异共晶组织。

合金成分偏离共晶点很远,初晶相长的很大,共晶成分的残面液体很少,

另一相得生核困难:偏离共晶成分,初晶相长的较大,另一相不易生核或

②当领先相为另一相的“晕圈”,被封闭时,形成领先相成球状结构的离异共

晶组织.

(3)两相固--液界面结构分为:

非小面—非小面共晶合金:共生区对称;

非小面—小面共晶合金:非对称共生区,偏向非金属高熔点一侧;

(4)非小面--非小面:共面生长:层片状,棒状,碎片状,特殊:离异非小面--小面:可以共生生长,与以上不同:当生长界面在局部是不定的,固液界面参差不齐,领先相的生长形态决定着共生两相的结构形态。

产生封闭“晕圈”时,离异生长方式。

13、小面--非小面共晶生长的最大特点是什么?它与变质处理之间的关系是什

么?

答:最大特点:小面相在共晶生长中的各向异性行为决定了共晶两相组织结构的基本特征。由于平整界面本身存在着各种不同的生长机理,故这类共晶合金比非小面--非小面共晶合金具有更复杂的组织形态变化。即使同一种合金在不同的条件下也能形成变种形态互异、性能悬殊的共生共晶甚至共晶组织。

与变质处理间的关系:

变质处理主要改变领先相(小面相)的界面生长动力学过程,改变其结构,从而改变共晶组织的结构。

14、图为某二元共生共晶体积元的示意图,设体积元是一个变长为1的立方体, 若α相为棒状其体积为2r V r π=,βα、相间面积为r S r π2=,式中r 为棒横截面半径,若α为片状则其体积为,b V b =相间面积为.2=b S 试证明:

()()()b

b S S ,V 3S S ,V 2S S V 1r 1r r 1r b r 1r <<>>==时当时当时,当πππ 请用上述结果说明相间界面能对共生共晶中的棒状--片状组织的转变规律。 解:

()()()???

? ??==+∴=++=<∴=<<=<<=<>∴=>>=>>=>========r r b

r b r r r b

r b r r r b

r r r V V V V V V V V V V V S S S r S r r v v S S S r S r r v v S r S r r v v 1,1,2.22,

,,32.22,

,,22.22,,111121111211

1

121αβααβαβααπππππππππππππππππππππ

电镀的结晶过程

电镀的结晶过程 电镀过程实质上是金属的电结晶过程。大致分为以下几个步骤: 1)水化的金屑离子向阴极扩散和迁移 2)水化膜变形; 3)金属离子从水化膜中分离出来; 4)金属离子被吸附和迁移到阴极上的活性部分; 5)金属离子还原成金属原于,并排列组成一定晶格的金属晶体。 在形成金属晶体的同时进行着结晶核心的生成和成长过程,这两个过程的速度决定了金属结晶的粗细程度。在电镀过程中当晶核的生成速度大于晶核的成长速度时,就能获得结晶细致、排列紧密的镀层。晶核的生成速度大于晶核成长速度的程度越大,镀层结晶越细致、紧密;否则,结晶粗大。 结晶组织较细的镀层,其防护性能和外观质量都较理想,实践证明:提高金属电结晶时的阴极极化作用,可以提高晶核的生成速度,便于获得结晶细致紧密的镀层。但阴极极化作用不是越大越好,当阴极极化作用超过一定范围时,会导致氢气的大量析出,从而使镀层变得多孔、粗糙、疏松、烧焦,甚至呈粉末状,质量反而下降。 影响电镀层结晶粗细的主要因素 1)主盐特性在电镀中把含镀层金属的盐称做主盐,例如硫酸盐镀锌溶液中的硫酸锌即为主盐。 一般来讲,如果主盐是简单的盐,其电镀溶液的阴极极化作用很小,极化数值只有几十毫伏,因此镀层结晶晶粒较粗,例如硫酸盐镀锌、硫酸盐镀铜等由于电镀溶液阴极极化作用很小,故镀层结晶晶粒较粗,其外观质量及防护性能较差。

如果主盐是络盐,由于络离子在溶液中的离解能力较小,络合作用使金属离子在阴极上的还原过程变得困难,从而提高了阴极的极化作用,因此镀层的结晶晶粒较细。例如氨三乙酸—氯化铵型镀锌溶液中使用了络合能力较强的络合剂氨三乙酸,它和锌离子形成的络离于大大提高阴极极化作用,极化数值可达到250mV,因此获得的镀锌层比硫酸盐镀锌获得的镀层较为细致、紧密。 2)主盐浓度 在其它条件(如阴极电流密度和温度等)不变的情况下,随着主盐浓度的增大,阴极极化下降,结晶核心的生成速度变慢,所得镀层的结晶晶粒变粗。稀溶液的阴极极化作用虽比浓溶液大,但其导电性能较差,不能采用大的阴极电流密度,同时阴极电流效率也较低,所以不能利用这个因素来改善镀层结晶的细致程度。 3)附加盐 在电镀溶液中除了含主盐外,往往还要加入某些碱金属或碱土金属的盐类,这种附加盐的主要作用是提高电镀溶液的导电性能,有时还能提高阴极极化作用。例如以硫酸镍为主盐的镀镍溶液中加入硫酸钠和硫酸镁,既可提高导电性能,又能增大阴极极化作用(增大极化数值约100mV左右),使镀镍层的结晶晶粒更为细致、紧密。 4)添加剂 为了改善电镀溶液的性能和镀层质量,往往在电镀溶液中加入少量的某些有机物质的添加剂.例如阿拉伯树胶,糊精、聚乙二醇、硫脲、千千加、丁炔二醇,糖精及动物胶等。添加剂能吸附在阴极表面或与金属离子构成“胶体—金属离子型”络合物,从而大大提高金属离子在阴极还原时的极化作用,使镀层细致、均匀、平整、光亮。例如在铵盐镀锌溶液、柠檬酸盐镀锌溶液、氨三乙酸镀锌溶液中加入1~2g/L聚乙二醇和1~2 g/L.硫脲分别可以增加极化数值为70一100mV,100~200mV和200mV以上,都能使镀层结晶晶粒变细。必须注意有机添加剂是有选择性的,不可乱用,以免造成不良后果。

金属材料的结构与性能

第一章材料的性能 第一节材料的机械性能 一、强度、塑性及其测定 1、强度是指在静载荷作用下,材料抵抗变形和断裂的能力。材料的强度越大,材料所能承受的外力就越大。常见的强度指标有屈服强度和抗拉强度,它们是重要的力学性能指标,是设计,选材和评定材料的重要性能指标之一。 2、塑性是指材料在外力作用下产生塑性变形而不断裂的能力。塑性指标用伸长率δ和断面收缩率ф表示。 二、硬度及其测定 硬度是衡量材料软硬程度的指标。 目前,生产中测量硬度常用的方法是压入法,并根据压入的程度来测定硬度值。此时硬度可定义为材料抵抗表面局部塑性变形的能力。因此硬度是一个综合的物理量,它与强度指标和塑性指标均有一定的关系。硬度试验简单易行,有可直接在零件上试验而不破坏零件。此外,材料的硬度值又与其他的力学性能及工艺能有密切联系。 三、疲劳 机械零件在交变载荷作用下发生的断裂的现象称为疲劳。疲劳强度是指被测材料抵抗交变载荷的能力。 四、冲击韧性及其测定 材料在冲击载荷作用下抵抗破坏的能力被称为冲击韧性。。为评定材料的性能,需在规定条件下进行一次冲击试验。其中应用最普遍的是一次冲击弯曲试验,或称一次摆锤冲击试验。 五、断裂韧性 材料抵抗裂纹失稳扩展断裂的能力称为断裂韧性。它是材料本身的特性。 六、磨损 由于相对摩擦,摩擦表面逐渐有微小颗粒分离出来形成磨屑,使接触表面不断发生尺寸变化与重量损失,称为磨损。引起磨损的原因既有力学作用,也有物理、化学作用,因此磨损使一个复杂的过程。 按磨损的机理和条件的不同,通常将磨损分为粘着磨损、磨料磨损、接触疲劳磨损和腐蚀磨损四大基本类型。

第二节材料的物理化学性能 1、物理性能:材料的物理性能主要是密度、熔点、热膨胀性、导电性和导热性。不同用 途的机械零件对物理性能的要求也各不相同。 2、化学性能:材料的化学性能主要是指它们在室温或高温时抵抗各种介质的化学侵蚀能 力。 第三节材料的工艺性能 一、铸造性能:铸造性能主要是指液态金属的流动性和凝固过程中的收缩和偏析的倾向。 二、可锻性能:可锻性是指材料在受外力锻打变形而不破坏自身完整性的能力。 三、焊接性能:焊接性能是指材料是否适宜通常的焊接方法与工艺的性能。 四、切削加工性能:切削加工性能是指材料是否易于切削。 五、热处理性能:人处理是改变材料性能的主要手段。热处理性能是指材料热处理的难易 程度和产生热处理缺陷的倾向。 第二章材料的结构 第一节材料的结合键 各种工程材料是由不同的元素组成。由于物质是由原子、分子或离子结合而成,其结合键的性质和状态存在的区别。 一:化学键 1:共价键 2:离子键 3:金属键 4:范德。瓦尔键 二:工程材料的键性 化学键:组成物质整体的质点(原子、分子、离子)间的相互作用力,成为化学键。 1:共价键:有些同类原子,例如周期表Ⅳa、Ⅴa、Ⅵa族中大多元素或电负性相差不大的原子相互接近时,原子之间不产生电子的转移,此时借共用电子对所产生的力结合,形成共价键,如金刚石、单质硅、SiC等属于共价键。 2:离子键:大部分盐类、碱类和金属氧化物在固态下是不导电的,熔融时可以导电。这类化合物为离子化合物。当两种电负性相差大的原子(如碱金属元素与卤素元素的原子)相互靠

金属的性能、结构与结晶

第一章 金属的性能 一、填空(将正确答案填在横线上。下同) 1、金属材料的性能一般分为两类。一类是使用性能,它包括—————————、、———— ————和—————————等。另一类是工艺性能,它包括————————、、————————、———— ————和————————等。 2、大小不变或变化很慢的载荷称为———载荷,在短时间内以较高速度作用于零件上的载荷称为—————载荷,大小和方向随时间发生周期变化的载荷称为—————载荷。 3、变形一般分为—————变形和—————变形两种。不能随载荷的去除而消失的变形称为—————变形。 4、强度是指金属材料在————载荷作用下,抵抗———————或—————的能力。 5、强度的常用衡量指标有——————和———————,分别用符号———和———表示。 6、如果零件工作时所受的应力低于材料的———————或——————————,则不会产生过量的塑性变形。 7、有一钢试样其截面积为100mm 2,已知钢试样的 MPa S 314=σ MPa b 530=σ 。拉伸试验时,当受到拉力为—————— 试样出现屈服现象,当受到拉力为—————— 时,试样出现缩颈。 8、断裂前金属材料产生—————— 的能力称为塑性。金属材料的—————— 和——————的数值越大,表示材料的塑性越好。 9、一拉伸试样的原标距长度为50mm,直径为10mm 拉断后试样的标距长度为79mm,缩颈处的最小直径为4.9 mm,此材料的伸长率为—————,断面收缩率为——————。 10.金属材料抵抗————载荷作用而—————————能力。称为冲击韧性。 11.填出下列力学性能指标的符号:屈服点———,抗拉强度————,洛氏硬度C标尺————,伸长率———,断面收缩率————,冲击韧度————,疲劳极限————。 二、判断(正确打√,错误打×。下同) 1、弹性变形能随载荷的去除而消失。( ) 2、所有金属材料在拉伸试验时都会出现显著的屈服现象。( ) 3、材料的屈服点越低,则允许的工作应力越高。( ) 4、洛氏硬度值无单位。( ) 5、做布氏硬度试验时,当试验条件相同时,其压痕直径越小,材料的硬度越低。( ) 6、材料对小能量多次冲击抗力的大小主要取决于材料的强度和塑性。( ) 7、布氏硬度测量法不宜于测量成品及较薄零件。( ) 8、洛氏硬度值是根据压头压入被测定材料的压痕深度得出的。( ) 9、铸铁的铸造性能比钢好,故常用来铸造形状复杂的工件。 三.选择(把正确答案填入括号内。下同)

实验五结晶过程的观察

实验五结晶过程的观察 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

实验五结晶过程的观察 一、实验目的 1.观察透明盐类的结晶过程及其晶体组织特征。为理解、掌握金属的结晶理论建立感性认识。 2.观察具有枝晶组织的金相照片及其有枝晶特征的铸件或铸锭表面,建立金属晶体以树枝状形态成长的直观概念。 二、实验设备及材料 1.带CCD的生物显微镜;2.投影仪;3. 接近饱和的氯化铵或硝酸铅水溶液(由实验室预先配制好);4.干净玻璃片、吸管;5.电炉或电吹风;6.有枝晶组织的金相照片;7.有枝晶的金属铸件实物。 三、实验原理 晶体物质由液态凝固为固态的过程称结晶。结晶过程亦为原子呈规则排列的过程,包括形核和核长大两个基本过程。 由于液态金属的结晶过程难以直接观察,而盐类亦是晶体物质,其溶液的结晶过程和金属很相似,区别仅在于盐类是在室温下依靠溶剂蒸发使溶液过饱和而结晶,金属则主要依靠过冷,故完全可通过观察透明盐类溶液的结晶过程来了解金属的结晶过程。

图5-1 结晶过程三个阶段形成的三个区域 a) 最外层的等轴细晶粒区(100×) b)次层粗大柱状晶区(100×) c)中心杂乱的树枝状晶区(100×) 在玻璃片上滴一滴接近饱和的氯化铵(NH4Cl)或硝酸铅[Pb(NO3)2]水溶液,随着水分蒸发,溶液逐渐变浓而达到饱和,继而开始结晶。我们可观察到其结晶大致可分为三个阶段:第一阶段开始于液滴边缘,因该处最薄,蒸发最快,易于形核,故产生大量晶核而先形成一圈细小的等轴晶(如图5-la 所示),接着形成较粗大的柱状晶(如图5-1b所示)。因液滴的饱和程序是由外向里,故位向利于生长的等轴晶得以继续长大,形成伸向中心的柱状晶。第三阶段是在液滴中心形成杂乱的树枝状晶,且枝晶间有许多空隙(如图5-1c 所示)。这是因液滴已越来越

金属结晶的现象

第四讲金属结晶的现象及条件 第一节金属结晶的现象 一、主要内容: 金属结晶的宏观现象 金属结晶的微观现象 二、要点: 金属结晶的热分析曲线,热分析法,过冷现象,过冷度,结晶潜热,金属结晶的热分析曲线分析,金属结晶的微观过程分析,形核,晶核长大。 三、方法说明: 首先介绍热分析法,说明热分析曲线,介绍金属的热分析曲线的特征,说明过冷现象,过冷度,结晶潜热,金属结晶的微观现象,可举例说明晶核的形成和长大的过程,如窗花,盐,冰,植物等增加学生的感性认识和对形核、长大的理解。 授课内容: 物质从液态冷却转变为固态的过程称为凝固。 凝固后的物质可以是晶体,也可以是非晶体。若凝固后的物质为晶体,则这种凝固称为结晶。 一、金属结晶过程中的宏观现象 热分析法:将纯金属放入坩埚中加热熔化成液态,然后插入热电偶测量温度,让液态金属缓慢而均匀的冷却,用X-Y记录仪将冷却过程中的温度与时间记录下来,获得冷却曲线,这种实验方法叫热分析法。如图 图1 热分析实验装置示意图图2 纯金属的冷却曲线 2、热分析曲线:纯金属的冷却曲线,即温度随时间的变化曲线。 3、过冷现象:金属的实际开始凝固温度Tn总是低于理论凝固温度Tm的现象。 4、过冷度:理论凝固温度与实际开始凝固温度之差,即Δ T=Tm-Tn。 结晶潜热:金属熔化时从固态转变为液态需要吸收热量,而结晶时从液态转化为固态要放出热量,前者叫熔化潜热,后者叫结晶潜热。 二、金属结晶的微观过程 金属的结晶是一个晶核的形成和晶核的长大过程。

第二节金属结晶的热力学条件 第三节金属结晶的结构条件 一、主要内容: 金属结晶的驱动力和热力学条件 结构起伏的概念 二、要点: 热力学第二定律,物质系统,自发过程,熵的概念, 金属结晶过程液固两相自由能之差的推导, 液相、固相自由能随温度变化示意图 晶胚,晶核,近程有序,远程有序,液态金属的结构,液态金属中不同尺寸结构起伏出现的几率,最大结构起伏尺寸与过冷度的关系 三、方法说明: 熵,物质系统,自发过程等概念较抽象,打比方形象的说明有利于学生的理解。 用液态金属的宏观特性解释液态金属的微观结构,解释金属结晶的微观过程,讲清晶胚,晶核等概念及影响因素,说明金属结晶的结构条件 授课内容: 第二节金属结晶的热力学条件 热力学第二定律:在等温等压下,过程自发进行的方向是体系自由能降低的方向。自由能G 用下式表示: G=H-TS, 式中,H是焓;T是绝对温度;S是熵,可推导得 dG= Vdp- SdT。 在等压时,dp=0,故上式简化为: dG=- SdT。 由于熵恒为正值,所以自由能是随温度增高而减小。 图3 自由能随温度变化的示意图

金属的结构与结晶

金属的结构与结晶 一、判断题 1、非晶体具有各向同性的特点。( ) 2、金属结晶时,过冷度越大,结晶后晶粒越粗。( ) 3、一般情况下,金属的晶粒越细,其力学性能越差。( ) 4、多晶体中,各晶粒的位向是完全相同的。( ) 5、单晶体具有各向异性的特点。( ) 6、金属的同素异构转变是在恒温下进行的。( ) 7、组成元素相同而结构不同的各金属晶体,就是同素异构体。( ) 8、同素异构转变也遵循晶核形成与晶核长大的规律。( ) 9、金属的同素异构转变也是一种结晶过程。( ) 10、非晶体具有各异性的特点。( ) 11、晶体的原子是呈有序、有规则排列的物质。( ) 12、非晶体的原子是呈无序、无规则堆积的物质。( ) 13、金属分为黑色金属和有色金属。( ) 14、大多数晶格的晶粒都是固定不变得。( ) 15、金银铜铁锌铝等都属于金属而不是合金。( ) 16、金属材料是金属及其合金的总称。( ) 17、最常用的细化晶粒的方法是变质处理。( ) 18、金是属于面心立方晶格。( ) 19、银是属于面心立方晶格。( ) 20、铜是属于面心立方晶格。( ) 21、单晶体是只有一个晶粒组成的晶体。( ) 22、晶粒间交接的地方称为晶界。( ) 23、晶界越多,金属材料的性能越好。( ) 24、结晶是指金属从高温液体状态冷却凝固为固体状态的过程。( ) 25、纯金属的结晶过程是在恒温下进行的。( ) 26、金属的结晶过程由晶核的产生和长大两个基本过程组成。( ) 27、只有一个晶粒组成的晶体成为单晶体。( ) 28、晶体缺陷有点、线、面缺陷。( ) 29、面缺陷分为晶界和亚晶界两种。( ) 30、纯铁是有许多不规则的晶粒组成。( ) 31、晶体有规则的几何图形。( ) 32、非晶体没有规则的几何图形。( ) 33、铝具有密度小熔点低导电性导热性好的性能特点。( ) 34、面缺陷有晶界和亚晶界两大类。( ) 35、普通金属都是多晶体。( )

第二章 纯金属的结晶

第二章纯金属的结晶 (一) 填空题 1.金属结晶两个密切联系的基本过程是和 2 在金属学中,通常把金属从液态向固态的转变称为,通常把金属从一种结构的固态向另一种结构的固态的转变称为。 3.当对金属液体进行变质处理时,变质剂的作用是 4.铸锭和铸件的区别是。 铸锭是将熔化的金属倒入永久的或可以重复使用的铸模中制造出来的。凝固之后,这些锭(或棒料、板坯或方坯,根据容器而定)被进一步机械加工成多种新的形状。用铸造方法获得的金属物件,即把熔炼好的液态金属,用浇注、压射、吸入或其他方法注入预先准备好的铸型中,冷却后经落砂、清理和后处理,所得到的具有一定形状,尺寸和性能的物件。 5.液态金属结晶时,获得细晶粒组织的主要方法是 6.金属冷却时的结晶过程是一个热过程。 7.液态金属的结构特点为。 8.如果其他条件相同,则金属模浇注的铸件晶粒比砂模浇注的,高温浇注的铸件晶粒比低温浇注的,采用振动浇注的铸件晶粒比不采用振动的,薄铸件的晶粒比厚铸件。 9.过冷度是。一般金属结晶时,过冷度越大,则晶粒越。 (二) 判断题 1 凡是由液态金属冷却结晶的过程都可分为两个阶段。即先形核,形核停止以后,便发生长大,使晶粒充满整个容积。 2.凡是由液体凝固成固体的过程都是结晶过程。 3.近代研究表明:液态金属的结构与固态金属比较接近,而与气态相差较远。( ) 4.金属由液态转变成固态的过程,是由近程有序排列向远程有序排列转变的过程。( ) 5.当纯金属结晶时,形核率随过冷度的增加而不断增加。( ) 6.在结晶过程中,当晶核成长时,晶核的长大速度随过冷度的增大而增大,但当过冷度很大时,晶核的长大速度则很快减小。 7.金属结晶时,冷却速度愈大,则其结晶后的晶粒愈细。 9.在其它条件相同时,金属模浇注的铸件晶粒比砂模浇注的铸件晶粒更细 10.在其它条件相同时,高温浇注的铸件晶粒比低温浇注的铸件晶粒更细。 11.在其它条件相同时,铸成薄件的晶粒比铸成厚件的晶粒更细。 14.在实际生产条件下,金属凝固时的过冷度都很小(<20℃),其主要原因是由于非均匀 形核的结果。( ) 15.过冷是结晶的必要条件,无论过冷度大小,均能保证结晶过程得以进行。( ) (三) 选择题 1 液态金属结晶的基本过程是 A.边形核边长大B.先形核后长大 C.自发形核和非自发形核D.枝晶生长 2.液态金属结晶时,越大,结晶后金属的晶粒越细小。 A.形核率N B.长大率G C.比值N/G D.比值G/N 3.过冷度越大,则 A.N增大、G减少,所以晶粒细小B.N增大、G增大,所以晶粒细小 C N增大、G增大,所以晶粒粗大D.N减少、G减少,所以晶粒细小 4.纯金属结晶时,冷却速度越快,则实际结晶温度将。 A.越高 B 越低C.越接近理论结晶温度D.没有变化 5.若纯金属结晶过程处在液—固两相平衡共存状态下,此时的温度将比理论结晶温度A.更高B.更低C;相等D.高低波动 T0为金属的晶体与液体平衡共存的温度,称为理论结晶温度。显然,在这一温度时,金属的结晶速度与熔化速度相等,所以只有进一步冷却,使金属的实际结晶温度Tn低于,T。时,结晶才能进行。结晶时Tn低于T0的现象称为过冷。纯金属的冷却曲线出现一个水

液态金属结晶的基本原理

第六章 液态金属结晶的基本原理 1、怎么从相变理论理解液态金属结晶过程中的生核、成长机理? 答:相变理论:相变时必须具备热力学和动力学条件。 金属结晶属一种相变过程: 热力学条件即过冷度T ?——驱动力V G ? 动力学条件:克服能障 热力学能障——界面自由能——形核 动力学能障——激活自由能A G ?——长大 若在体系内大范围进行,则需极大能量,所以靠起伏,先生核——主要克服热力学能障,然后出现最小限度的过渡区“界面”,此界面逐渐向液相内推移——长大(主要克服动力学能障)。 2、试述均质生核与非均质生核之间的区别与联系,并分别从临界晶核曲率半径、 生核功两个方面阐述外来衬底的湿润能力对临界生核过冷度的影响。要满足纯金属非均质生核的热力学要求,液态金属必须具备哪两个基本条件? 答:(1)T L T G r r LC V LC ?=?==0 * *22σσ非均 相等 但334r V π=均 ()θπf r V 3 34=非 ()4c o s c o s 323θθθ+-=f ∴ 非均质生核所需体积小,即相起伏时的原子数少。 (2)2203 *316T L T G LC ??=?πσ均 ()θf G G * *均非 ?=? 两种均需能量起伏克服生核功,但非均质生核能需较小。 (3)右图看出 ↑?↑→* 非 T θ ()↓?↓→↓→T V f 非θ 即:对*r :θ与* 非T ?的影响. (4)生核功: ()θπσf T L T G LC 2203 *316??=?非

()↓?↓→↓→?↓→T * 能量起伏非 G f θ (5)纯金属非均质生核的热力学条件: V LC G r ?=σ2* 非 ()θπσf T L T G LC 2203 * 316??=?非 液态金属需具备条件(1)液态金属需过冷 (2)衬底存在。 3、物质的熔点就是固、液两相平衡存在的温度、试从这个观点出发阐述式(4—3) 中*r 与T ?之间关系的物理意义。 答:式4—3 T L T G r LC V LC ?=?=0 * 22σσ均 当 0T T =时, 两相平衡; 当0T T <时,趋于固相:即固相教液相稳定; 式中看出 ↓↑→?* 均 r T 。 ↑?T 即↓T ,此时固相更稳定,更易于发生相变,就以较小的* 均r 即可稳定 存在。 4、液态金属生核率曲线特点是什么?在实际的非均质生核过程中这个特点又有何变化? 答:实际非均质生核率受衬底面积大小的影响,当衬底面积全部充满后,生核率 曲线中断,即不再有非均质生核。 相变、生核、成长中的热力学及动力学: (1)相变: 热力学条件:T ? ,可以提供相变驱动力V G ?。 动力学条件:克服热力学能障和动力学能障。 (2)生核: 克服能障:热力学(界面自由能)、动力学A G ?(作用小,对生核率影响小) (3)生长: 热力学能障:()KTi A G F V ln ->?——取决于F A (处于过冷状态,且相变 驱动力克服此能障)

实验五 结晶过程的观察

实验五结晶过程的观察 一、实验目的 1.观察透明盐类的结晶过程及其晶体组织特征。为理解、掌握金属的结晶理论建立感性认识。 2.观察具有枝晶组织的金相照片及其有枝晶特征的铸件或铸锭表面,建立金属晶体以树枝状形态成长的直观概念。 二、实验设备及材料 1.带CCD的生物显微镜;2.投影仪;3. 接近饱和的氯化铵或硝酸铅水溶液(由实验室预先配制好);4.干净玻璃片、吸管;5.电炉或电吹风;6.有枝晶组织的金相照片;7.有枝晶的金属铸件实物。 三、实验原理 晶体物质由液态凝固为固态的过程称结晶。结晶过程亦为原子呈规则排列的过程,包括形核和核长大两个基本过程。 由于液态金属的结晶过程难以直接观察,而盐类亦是晶体物质,其溶液的结晶过程和金属很相似,区别仅在于盐类是在室温下依靠溶剂蒸发使溶液过饱和而结晶,金属则主要依靠过冷,故完全可通过观察透明盐类溶液的结晶过程来了解金属的结晶过程。

图5-1 结晶过程三个阶段形成的三个区域 a) 最外层的等轴细晶粒区(100×) b)次层粗大柱状晶区(100×) c)中心杂乱的树枝状晶区(100×) 在玻璃片上滴一滴接近饱和的氯化铵(NH4Cl)或硝酸铅[Pb(NO3)2]水溶液,随着水分蒸发,溶液逐渐变浓而达到饱和,继而开始结晶。我们可观察到其结晶大致可分为三个阶段:第一阶段开始于液滴边缘,因该处最薄,蒸发最快,易于形核,故产生大量晶核而先形成一圈细小的等轴晶(如图5-la 所示),接着形成较粗大的柱状晶(如图5-1b所示)。因液滴的饱和程序是由外向里,故位向利于生长的等轴晶得以继续长大,形成伸向中心的柱状晶。第三阶段是在液滴中心形成杂乱的树枝状晶,且枝晶间有许多空隙(如图5-1c 所示)。这是因液滴已越来越薄,蒸发较快,晶核亦易形成,然而由于已无充足的溶液补充,结晶出的晶体填不满枝晶间的空隙,从而能观察到明显的枝晶。 实际金属结晶时,一般均按树枝状方式长大(如图5-2 所示)。但若冷速小,液态金属的补给充分,则显示不出枝晶,故在纯金属铸锭内部是看不到枝晶的,只能看到外形不规则的等轴晶粒。但若冷速大,液态金属势必补缩不足而在枝晶间留下空隙,其宏观组织就可明显地观察到树枝状晶。某些金属如锑铸锭表面,即能清楚地看到枝晶组织,如图5-3 所示。若金属在结晶过程中产生了枝晶偏析,由于枝干和枝间成分不同,其金相试样浸蚀时,浸蚀程度亦不同,枝晶特征即能 显示出来,见图5-4。

盐类结晶实验报告-结晶与晶体生长形态观察

盐类结晶实验报告 一、实验名称: 盐类结晶与晶体生长形态观察 二、实验目的: 1.通过观察盐类的结晶过程,掌握晶体结晶的基本规律及特点。为理解金属的结晶理论建立感性认识。 2.熟悉晶体生长形态及不同结晶条件对晶粒大小的影响。观察具有枝晶组织的金相照片及其有枝晶特征的铸件或铸锭表面,建立金属晶体以树枝状形态成长的直观概念。 3.掌握冷却速度与过冷度的关系。 三、实验原理概述: 金属及其合金的结晶是在液态冷却的过程中进行的,需要有一定的过冷度,才能开始结晶。而金属和合金的成分、液相中的温度梯度和凝固速度是影响成分过冷的主要因素。晶体的生长形态与成分过冷区的大小密切相关,在成分过冷区较窄时形成胞状晶,而成分过冷区较大时,则形成树枝晶。由于液态金属的结晶过程难以直接观察,而盐类亦是晶体物质,其溶液的结晶过程和金属很相似,区别仅在于盐类是在室温下依靠溶剂蒸发使溶液过饱和而结晶,金属则主要依靠过冷,故完全可通过观察透明盐类溶液的结晶过程来了解金属的结晶过程。 在玻璃片上滴一滴接近饱和的热氯化氨(NH4CI)或硝酸铅[Pb(NO3)2]水溶液,随着水分蒸发,温度降低,溶液逐渐变浓而达到饱和,继而开始结晶。我们可观察到其结晶大致可分为三个阶段:第一阶段开始于液滴边缘,因该处最薄,蒸发最快,易于形核,故产生大量晶核而先形成一圈细小的等轴晶(如图1所示),接着形成较粗大的柱状晶(如图2所示)。因液滴的饱和程序是由外向里,故位向利于生长的等轴晶得以继续长大,形成伸向中心的柱状晶。第三阶段是在液滴中心形成杂乱的树枝状晶,且枝晶间有许多空隙(如图3所示)。这是因液滴已越来越薄,蒸发较快,晶核亦易形成,然而由于已无充足的溶液补充,结晶出的晶体填布满枝晶间的空隙,从而能观察到明显的枝晶。 四、材料与设备: 1)配置好的质量分数为25%~30%氯化铵水溶液。 2)玻璃片、量筒、培养皿、玻璃棒、小烧杯、氯化铵、冰块。 3)磁力搅拌器、温度计。 4)生物显微镜。 五、实验步骤: 1.将质量分数为25%~30%氯化铵水溶液,加热到80~90℃,观察在下列条件下的结晶过程及晶体生长形态。 1)将溶液倒入培养皿中空冷结晶。 2)将溶液滴在玻璃片上,在生物显微镜下空冷结晶。 3)将溶液滴入试管中空冷结晶。 4)在培养皿中撒入少许氢化氨粉末并空冷结晶。 5)将培养皿、试管置于冰块上结晶。 2.比较不同条件下对氯化铵水溶液空冷结晶组织的影响: 氯化钠溶液在玻璃皿中空冷时由于玻璃皿边缘与中心的介质不同,造成氯化钠溶液洁净的不均匀,从而造成晶粒的大小不同;另外撒入少量的氯化铵粉末后粉末在促进结晶的同时也成为氯化铵的成长中心,析出的氯化铵依附在撒入的粉末上成长,即撒入的粉末有引导结晶的作用,实际的形态和撒入的量、分布有关。

金属材料基础知识汇总

《金属材料基础知识》 第一部分金属材料及热处理基本知识 一,材料性能:通常所指的金属材料性能包括两个方面: 1,使用性能即为了保证机械零件、设备、结构件等能够正常工作,材料所应具备的性能,主要有力学性能(强度、硬度、刚度、塑性、韧性等),物理性能(密度、熔点、导热性、热膨胀性等)。 使用性能决定了材料的应用范围,使用安全可靠性和寿命。 2,工艺性能即材料被制造成为零件、设备、结构件的过程中适应的各种冷、热加工的性能,如铸造、焊接、热处理、压力加工、切削加工等方面的性能。工艺性能对制造成本、生产效率、产品质量有重要影响。 二,材料力学基本知识 金属材料在加工和使用过程中都要承受不同形式外力的作用,当达到或超过某一限度时,材料就会发生变形以至于断裂。材料在外力作用下所表现的一些性能称为材料的力学性能。 承压类特种设备材料的力学性能指标主要有强度、硬度、塑性、韧性等。这些指标可以通过力学性能试验测定。 1,强度金属的强度是指金属抵抗永久变形和断裂的能力。材料强度指标可以通过拉伸试验测出。抗拉强度σb和屈服强度σs是评价材料强度性能的两个主要指标。一般金属材料构件都是在弹性状态下工作的。是不允许发生塑性变形,所以机械设计中一般采用屈服强度σs作为强度指标,并加安全系数。 2,塑性材料在载荷作用下断裂前发生不可逆永久变形的能力。评

定材料塑性的指标通常用伸长率和断面收缩率。 伸长率δ=[(L1—L0)0]100% L0试件原来的长度L1试件拉断后的长度 断面收缩率φ=[(A1—A0)0]100% A0试件原来的截面积A1试件拉断后颈缩处的截面积 断面收缩率不受试件标距长度的影响,因此能够更可靠的反映材料 的塑性。对必须承受强烈变形的材料,塑性优良的材料冷压成型的性能好。 3,硬度金属的硬度是材料抵抗局部塑性变形或表面损伤的能力。 硬度与强度有一定的关系,一般情况下,硬度较高的材料其强度也较高,所以可以通过测试硬度来估算材料强度。另外,硬度较高的材料耐磨性也较好。 工程中常用的硬度测试方法有以下四种 (1)布氏硬度(2)洛氏硬度(3)维氏硬度 (4)里氏硬度 4,冲击韧性指材料在外加冲击载荷作用下断裂时消耗的能量大小的特性。材料的冲击韧性通常是在摆锤式冲击试验机是测定的,摆锤冲断试样所作的功称为冲击吸收功。以表示,为断口处的截面积,则冲击韧性。在承压类特种设备材料的冲击试验中应用较多。 三金属学与热处理的基本知识 1,金属的晶体结构物质是由原子构成的。根据原子在物质内部的排

实验五 结晶过程的观察

实验五结晶过程得观察 一、实验目得 1.观察透明盐类得结晶过程及其晶体组织特征。为理解、掌握金属得结晶理论建立感性认识。 2.观察具有枝晶组织得金相照片及其有枝晶特征得铸件或铸锭表面,建立金属晶体以树枝状形态成长得直观概念。 二、实验设备及材料 1。带CCD得生物显微镜;2.投影仪;3、接近饱与得氯化铵或硝酸铅水溶液(由实验室预先配制好);4.干净玻璃片、吸管;5。电炉或电吹风;6。有枝晶组织得金相照片;7.有枝晶得金属铸件实物. 三、实验原理 晶体物质由液态凝固为固态得过程称结晶.结晶过程亦为原子呈规则排列得过程,包括形核与核长大两个基本过程。 由于液态金属得结晶过程难以直接观察,而盐类亦就是晶体物质,其溶液得结晶过程与金属很相似,区别仅在于盐类就是在室温下依靠溶剂蒸发使溶液过饱与而结晶,金属则主要依靠过冷,故完全可通过观察透明盐类溶液得结晶过程来了解金属得结晶过程.

图5-1结晶过程三个阶段形成得三个区域 a) 最外层得等轴细晶粒区(100×) b)次层粗大柱状晶区(100×)c)中心杂乱得树枝状晶区(100×) 在玻璃片上滴一滴接近饱与得氯化铵(NH4Cl)或硝酸铅[Pb(NO3)2]水溶液,随着水分蒸发,溶液逐渐变浓而达到饱与,继而开始结晶.我们可观察到其结晶大致可分为三个阶段:第一阶段开始于液滴边缘,因该处最薄,蒸发最快,易于形核,故产生大量晶核而先形成一圈细小得等轴晶(如图5-la所示),接着形成较粗大得柱状晶(如图5—1b所示).因液滴得饱与程序就是由外向里,故位向利于生长得等轴晶得以继续长大,形成伸向中心得柱状晶。第三阶段就是在液滴中心形成杂乱得树枝状晶,且枝晶间有许多空隙(如图5-1c 所示)。这就是因液滴已越来越薄,蒸发较快,晶核亦易形成,然而由于已无充足得溶液补充,结晶出得晶体填不满枝晶间得空隙,从而能观察到明显得枝晶. 实际金属结晶时,一般均按树枝状方式长大(如图5-2 所示)。但若冷速小,液态金属得补给充分,则显示不出枝晶,故在纯金属铸锭内部就是瞧不到枝晶得,只能瞧到外形不规则得等轴晶粒。但若冷速大,液态金属势必补缩不足而在枝晶间留下空隙,其宏观组织就可明显地观察到树枝状晶。某些金属如锑铸锭表面,即能清楚地瞧到枝晶组织,如图5-3 所示。若金属在结晶过程中产生了枝晶偏析,由于枝干与枝间成分不同,其金相试样浸蚀时,浸蚀程度亦不同,枝晶特征即能显示出来,见图5—4。

(完整word版)金属材料结构

§6金属材料结构 金属材料结构包括晶体结构(FCC、BCC、HCP)及其缺陷、相结构(固溶体、中间相)和显微组织结构(共晶组织、共析组织、非金属夹杂物等)。 6.1纯金属材料的结构 常见纯金属的晶体结构有三种:面心立方结构(FCC)、体心立方结构(BCC)和密排六方结构(HCP)。 (1)面心立方结构(FCC): Au、Ag、Al、Cu、Ni、Pb、厂Fe 等20 多种。 图2.32面心立方结构示意图 (2)体心立方结构(BCC): Cr、W、Mo、V、Nb、a—Fe等30 多种 图2.33体心立方结构示意图 (3)密排六方结构(HCP): Mg、Zn、Be、Cd等 图2.34密排六方结构示意图 三种晶体结构的晶胞结构细节见下表。 表2.4金属材料常见三种晶体结构细节

6.2实际金属材料的结构 实际使用的工业金属材料,即使体积很小,其内部的晶格位向也不是完全一致的,而是包含着许许多多的彼此间位向不同的小晶粒,即实际金属材料中包含 有面缺陷,是多晶结构。通常测定的金属性能是各个位向不同的晶粒的平均值,故显示出各向同性。事实上,即使在同一个晶粒内部,晶格位向也不是象理想晶体那样完全一致,而是存在着亚结构。所以,只有在亚结构内部,晶格的位向才是一致的。 另外,实际金属材料中也包含诸如空位、间隙原子、置换原子等面缺陷以及位错等线缺陷。 6.3合金的结构 6.3.1合金及相关概念 纯金属材料的制备困难,价格高,而且性能往往有一定的局限性,实际使用的工业金属材料多为合金。 合金:是由两种或两种以上的金属元素,或者由金属元素和非金属元素组成的具有金属特性的物质; 组元:组成合金的最基本的独立的物质,可以是金属元素、非金属元素或稳定的化合物; 相:成分、结构相同,性能均宜,并有界面与其它部分隔开的独立均匀的组成部分,合金中的基本相有固溶体和中间相两种; 组织:合金结构的微观形貌,可以是单相的,也可以是多相的 632固溶体 合金中的基本相包括固溶体和中间相(intermediate phase也称化合物)两大类。固溶体是以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶质原子)所形成的均匀混合的固态溶体,它保持着溶剂的晶体结构类型。

第二章纯金属结晶作业答案

第二章纯金属结晶作业答 案 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第二章纯金属的结晶 (一) 填空题 1.金属结晶两个密切联系的基本过程是形核和长大。 2 在金属学中,通常把金属从液态向固态的转变称为结晶,通常把金属从一种结构的固态向另一种结构的固态的转变称为相变。 3.当对金属液体进行变质处理时,变质剂的作用是增加非均质形核的形核率 来细化晶粒 4.液态金属结晶时,获得细晶粒组织的主要方法是控制过冷度、加入结构类 型相同的形核剂、振动、搅动 5.金属冷却时的结晶过程是一个放热过程。 6.液态金属的结构特点为长程无序,短程有序。 7.如果其他条件相同,则金属模浇注的铸件晶粒比砂模浇注的细小,高温浇注的铸件晶粒比低温浇注的粗大,采用振动浇注的铸件晶粒比不采用振动的细小,薄铸件的晶粒比厚铸件细小。 8.过冷度是金属相变过程中冷却到相变点以下某个温度后发生转变,即平衡 相变温度与该实际转变温度之差。一般金属结晶时,过冷度越大,则晶粒越细小。 9、固态相变的驱动力是新、旧两相间的自由能差。 10、金属结晶的热力学条件为金属液必须过冷。 11、金属结晶的结构条件为在过冷金属液中具有尺寸较大的相起伏,即晶 坯。 12、铸锭的宏观组织包括外表面细晶区、中间等轴晶区和心部等轴晶区。 (二) 判断题 1 凡是由液态金属冷却结晶的过程都可分为两个阶段。即先形核,形核停止以后,便发生长大,使晶粒充满整个容积。 ( × ) 2.凡是由液体凝固成固体的过程都是结晶过程。 ( × ) 3.近代研究表明:液态金属的结构与固态金属比较接近,而与气态相差较远。( √ ) 4.金属由液态转变成固态的过程,是由近程有序排列向远程有序排列转变的 过程。( √ ) 5.当纯金属结晶时,形核率随过冷度的增加而不断增加。( × ) P41+7 6.在结晶过程中,当晶核成长时,晶核的长大速度随过冷度的增大而增大,但当过冷度很大时,晶核的长大速度则很快减小。 ( √ ) P53 图2-33 7.金属结晶时,冷却速度愈大,则其结晶后的晶粒愈细。( √ ) P53-12 8.所有相变的基本过程都是形核和核长大的过程。( √ ) 9.在其它条件相同时,金属模浇注的铸件晶粒比砂模浇注的铸件晶粒更细(√ ) 10.在其它条件相同时,高温浇注的铸件晶粒比低温浇注的铸件晶粒更细。( × ) 11.在其它条件相同时,铸成薄件的晶粒比铸成厚件的晶粒更细。( √ ) 12. 金属的理论结晶温度总是高于实际结晶温度。 ( √ )

深度解密:液态金属

深度解密:液态金属 液态金属,这个不断从Apple传出绯闻的材料,从iphone4开始,iphone5,iphone6,iwatch,还有未来将要上市的iphone7,每次新品发布前各种各样的爆料和揭秘都有她的身影? 传闻iPhone 7还将加入一种硬度更高的液化金属,这种液态金属材料可以有效减少机身弯曲状况的发生,困扰苹果很久的“弯曲门”事件将不会在iPhone 7上出现。 那今天我们借着这个主题来看看这个屌炸天的‘液态金属’。首先我们调研下,你是否以为液态金属就是有着液体一样形态的金属?(当然如果你是这个行业的大拿可以直接跳过这一段)。

首先我们先说液态金属NOT液态的! 很多东西是不能按照字面意思来理解的,就好像玻璃钢,它既不是玻璃也不是钢,但是人家就是任性的这么取名字了。同理,液态金属并不是成液体状的金属。

Liquidmetal,在常温下是固体的,和金银铜铁之类的普通金属没什么两样。 我们来重新定义一下液态金属(Liquid Metal):Liquidmetal(由液态与金属两字所复合)与 Vitreloy是一系列由加州理工学院研究团队所开发出来的非晶态金属合金的商业名称,目前由该团队所组织的液态金属科技公司(Liquidmetal Technologies Inc.)进行行销,并是公司的产品名称与商标名称。 液态金属科技有限公司总部坐落在美国加州Rancho Santa Margarita, California, along with the Corporate R&D Technology Center. 非晶态金属合金,英文Amorphous Alloy,其中Amorphous是指的非晶态的,Alloy则是指的合金。简单来说就是非晶+合金,这不是废话吗?...因其与常见晶体材料有明显的结构区别而得名。同时,也被称为金属玻璃(Metallic Glass),因其与常见的玻璃有类似

液态金属DOC

液态金属行业研究报告 第一节液态金属材料简述 1.1液态金属的定义 液态金属即非晶材料,是一种长程无序(短程有序)、亚稳态(一定温度晶化)、一定程度上的物理特性各向同性的金属材料,具有固态、金属、玻璃的特性,又称金属玻璃,具有高强度、高硬度、塑性、热传导和耐磨性等。 图1-1 液态金属具有长程无序结构

1.2 液态金属的特点 液态金属兼有玻璃、金属、固体和液体的特性,是一类全新性的 高性能金属材料,具备很多不同于传统玻璃材料的独特的性质。 非晶材料具有高强度、高比强度、高硬度和高弹性形变等优点

Liquidmetal在表面光洁度上远远高于镁、铝、钛、钢等金属。1)是迄今为止最强的金属材料(屈服强度和断裂韧性最高)和最软的(屈服强度最低)金属材料之一; 2) 具有接近陶瓷的硬度,却又能在一定温度下能像橡皮泥一样的柔软,像液体那样流动(超塑性),所以它又是最理想的微、纳米加工材料之一; 3) 液态金属的强度(1900Mpa)是不锈钢或钛的两倍,易塑形堪比塑料,兼具了钢铁和塑料的优势,可以塑性加工。

工艺余成本优势 优势 劣势 加工工艺 1.相对于一般的高强度合金制备,它具有净成形(Net-ShapeCasting )的特点,可以避免繁琐的后期机加工。 复合材料熔点较低,不适合用于高温环境,比如蒸汽 机引擎部件等。 2.目前的制备的液态金属通常很薄,一般的锆-钛非晶合 金只有 2.5cm 厚度,暂时不适用于大型的结构部件 热敏塑性,可以用模具塑型,既简单又经济,而且精度高 非晶合金的复合材料熔点低,避免了高温对复合成分中的金属性质造成损害 无氧环境下成型,具有钝面的表面光洁度 成本 基本上是一次净成型,且表面光洁度高,省却大量的后加工;效率非常高,以宜安 科技自制的压铸设备为例,每台机可以实 现压铸600次/天,相比于CNC 加工数个小 时加工一件的效率相比,成本优势相当显 著,大约能降低一半的成本。 1.3 液态发展历程 第二节 液态金属的制备方法

结晶过程得观察

结晶过程得观察 一、实验目得 1.通过观察透明盐类得结晶过程及其晶体组织特征,为理解、掌握金属得结晶理论建立感性认识。 2.通过观察具有枝晶组织得金相照片及其有枝晶特征得铸件或铸锭表面,建立金属晶体以树枝状形态成长得直观概念。 二、设备仪器 1.生物显微镜; 2.接近饱与得氯化铵或硝酸铅水溶液(由实验室预先配制好); 3.干净玻璃片、吸管; 4.电炉或电吹风; 5.有枝晶组织得金相照片。 6.有枝晶得金属铸件(锭)实物。 三、生物显微镜构造及工作原理 (一)显微镜得基本结构 显微镜就是实验室中最常用得仪器。我们要了解它得基本结构,并学会使用显微镜得方法。 显微镜得中部有一弯曲得柄,称镜臂;基部有一马蹄形部分,就是镜座。自柜中取用时,用右手握紧镜臂,左手托住镜座,保持镜体直立,轻轻放置于桌上,观察各部构造。 镜座上得短柱叫镜柱。镜臂基部有一个方形或圆形得平台,就是载物台(或称镜台)。台得中央有一圆孔,可通过光线。两侧有压片夹,用以固定玻片标本。现代得显微镜具镜台X-Y 驱动器,用以固定与移动玻片标本。在圆孔得下面,有由一片或数片透镜所组成得聚光器,有集射光线于物体得作用。在聚光器下方有反光镜,可将光线反射至聚光器。此镜一面平,一面凹。凹面具有较强得反光性,多用于光线较暗得情况下;光线较强时用平面镜即可。电子显微镜得光源来源于内光源,位于镜座靠后方。镜座右侧臂有调节螺旋,可以前后调节改变光线得强弱。光线较强适于观察色深得物体;光线较弱适于观察透明(或无色)得物体。

在载物台得圆孔上方,有一附于镜柄上端得圆筒称为镜筒,其上下两端附有镜头。现代得显微镜一般有两个镜筒。两镜筒之间得距离,可按观察者双目得得距离调节。 镜筒上端为接目镜(或称目镜),可从镜筒内抽出。接目镜有低倍与高倍之分。 在镜筒下端有可放置得圆盘叫旋转器,下面附有2~4个接物镜(或称物镜)以螺旋旋入旋转器内。接物镜也有低倍与高倍之分。转动旋转器可换用接物镜。 在镜臂上有两组螺旋。大得叫粗调焦器,小得叫细调焦器。现代得显微镜粗、细调焦器常组合在一起,外周粗得螺旋为粗调焦器,小得叫细调焦器。用调焦器调焦点。粗调焦器升降镜筒较快,用于低倍镜调焦;细调焦器升降镜筒较慢,用于高倍镜调焦。 接物镜有低倍与高倍之分。较短得就是低倍,一般放大10倍(10×);较长得就是高倍,一般放大40倍(40×)、油物镜放大100倍(100×)。接目镜也有高低倍之分,较长得就是低倍,一般放大5倍(5×)或6倍(6×),较短得就是高倍,一般放大10倍(10×)、12倍(12×)或15倍(15×)。 显微镜得总放大倍数就是接目镜得放大倍数与接物镜放大倍数得乘积。例如,作用5×接目镜与10×接物镜,则总放大倍数就是50倍。使用10×接目镜与40×接物镜,则总放大倍数就是400倍。 (二)显微镜得使用方法 1.光线得调节:使用显微镜时,应使镜臂向着自己(现代显微镜使镜臂反向对着自己),摆好显微镜,平放在实验台上。转动粗调焦器,把镜筒向上提起。转动旋转器,使低倍接物镜对准载物台得圆孔。二者相距约2cm左右,打开光源按钮,向前向后移动按钮,两眼对着双筒接目镜观察,调节光线得强弱至适宜强度。 2.低倍镜得使用:将需观察得标本装片放在载物台上,使标本正对中央圆孔。用玻片夹固定。俯首侧视接物镜,并顺时针方向旋动粗调焦螺旋,使载物台上升到装片与接物镜约0、5厘米处。危重双眼全睁自目镜观察,并向逆时针方向慢慢地转动粗调焦螺旋,使载物台下降至能见到物像为止。为使见到得物像更清晰,再来回转动细调焦螺旋。 3.高倍镜得使用:需用高倍镜时,一定就是在上述低倍镜下能瞧清物像得前提下进行。首先将要详细瞧得部分移到视野正中央,转动转换器,换高倍物镜。转动细调焦器,上下调节,使物像达到最清晰为止。

相关文档
最新文档