预应力大变形模态分析到 PSTRES 和 SSTIF 的辨异

预应力大变形模态分析到 PSTRES 和 SSTIF 的辨异
预应力大变形模态分析到 PSTRES 和 SSTIF 的辨异

一,前言:

在ANSYS中有两个命令可以将预应力效应激活并考虑在求解方程计算中,但是他们是有区别,最近在论坛上出现很多的帖子讨论预应力大变形模态分析,但是好象大家对以上两个命令出现一定程度的混淆,本文结合例子对以上两个命令及相关问题做以阐释。不妥之处,欢迎高手批评指正

二,例子简单介绍:

借用网友的例子进行说明,下面简单介绍以下我们分析的问题。

实际的问题是两根拉索,通过圆钢管联系在一起成以下平面形状,拉索中通过施加应变yingbian=3.51e-3考虑索中的预应力。本文将对以下结构进行静力求解和模态求解。

三,静力求解结果分析:

本文采用以下四种不同的求解方式进行求解,并对结果进行分析:

SOLUTION 1 小变形求解,不激活以上两个命令,使用以下命令流:

Nlgeom,off

Sstif,off

Pstres,off

Solv

SOLUTION 2-1 小变形求解,激活Pstres命令,使用以下命令流:

Nlgeom,off

Pstres,on

solv

SOLUTION 2-2 大变形求解,激活Pstres命令,使用以下命令流:

Nlgeom,on

Pstres,on

solv

SOLUTION 2-2 大变形求解,激活SSTIF,on命令,使用以下命令流:

Nlgeom,on

Sstif,on

solv

经过求解分别得到以下计算结果:以UX变形为例

结论:通过以上结果可见,PSTRES,ON 是不适合用于大变形分析,因为该命令不会激活△U的附加刚度矩阵。

四,命令辨析:

为从根本上阐明以上问题,我们先从两个命令的说明上进行对比,区分其中的不同之处。4-1PSTRES 命令

PSTRES, Key

Specifies whether *1pstress effects are calculated or included.

注1,Pstres主要为激活预应力效应,注意和SSTIF使用目的的区别

Notes

Specifies whether or not prestress effects are to be calculated or included. Prestress effects are calculated in a static or transient analysis for inclusion in a buckling, modal, harmonic (Method = FULL or REDUC), transient (Method = REDUC), or substructure generation analysis. If used in SOLUTION, this command is valid only*2within the first load step.

注2,Pstres只在第一个荷载步中有效,注意命令的生存时间

If the prestress effects are to be calculated in a nonlinear static or transient analysis (for a prestressed modal analysis of a large-deflection solution), you can issue a SSTIF,ON command (*3rather than a PSTRES,ON command) in the static analysis.

注3:如果在静力分析和瞬态分析(用于预应力大变形模态分析)中计算预应力效应,则应该指定ssitf命令而不是pstres命令

4-2 SSTIF 命令

SSTIF, Key

Activates*1 stress stiffness effects in a nonlinear analysis.

注1,Ssfif主要为非线性分析中激活应力刚度效应,注意和SSTIF使用目的的区别

Notes

Activates stress stiffness effects in a nonlinear analysis (ANTYPE,STATIC or

TRANS). (*2The PSTRES command also controls the generation of the stress stiffness matrix and therefore should not be used in conjunction with SSTIF.)

注2,Pstres命令同样控制应力刚度矩阵,因此不能和sstif连用。

If used in SOLUTION, *3this command is valid only within the first load step.

注3,该命令同样仅在第一荷载步内有效。

When SOLCONTROL and NLGEOM are ON, SSTIF defaults to ON. *4 This normally forms all of the consistent tangent matrix. However, for some special nonlinear cases, this can lead to divergence caused by some elements which do not provide a complete consistent tangent (notably, elements outside the 18x family). In such a case, ANSYS recommends issuing an SSTIF,OFF command to achieve convergence. For the 18x family of elements, setting SSTIF,OFF when NLGEOM is ON has no effect (because stress stiffness effects are always included).

注4,当激活SOLCONTROL或NLGEOM,ON时,sstif默认被激活,一般来讲会形成一致切线刚度矩阵,然而对于一些特殊的非线性情况,会因为一些单元(特别是18X系列以外的单元)不能提供一致切线刚度矩阵而导致不收敛。此时ANSYS要求SSTIF,off以获得收敛

*5The default values given for this command assume SOLCONTROL,ON (the default). See the description of SOLCONTROL for a complete listing of the defaults set by SOLCONTROL,ON and SOLCONTROL,OFF.

注5,该命令默认激活SOLCONTROL,ON,命令

附注:SOLCONTROL,为是否选择默认的非线性求解设定值和内部的增强收敛的解法SOLCONTROL, Key1, Key2, Key3, Vtol

Key1à为是否激活一系列默认的非线性求解的命令

SSTIF Key ON for geometrically nonlinear analysis (NLGEOM, ON). OFF

其关于SSTIF的默认是在执行大变形非线性分析的时候起用sstif,on

4-3 简单对比

从4-1~2可见:

1 SSTIF,on在大变形非线性分析中同样具备激活预应力效应的功能,

2 PSTRES,不能应用于大变形非线性分析(仅仅是开关功能的不同)

3如果先后激活以上两个命令,结果是后一个命令直接取代前一个命令

五,大变形模态分析:

对于大变形模态分析推荐使用以下标准命令流进行求解,本命令流较其他命令流对于大变形模态分析具有广泛的适用性。

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!大变形非线性求解

finish

/solu

antype,static

nlgeom,on !打开大变形求解器

sstif,on !激活应力刚度效应

time,1

kbc,0

nsubst,1,1,1

ematwrite,yes

solve

!!!!!!!!!!!! Modal Solution

finish

/solu

antype,modal

upcoord,1,on !对变形后的结构重新计算

pstres,on !激活预应力对模态求解的效应,模态求解为线性求解

modopt,lanb,50,0,0, !采用LANB求50个特征值,有四种方法可以选用

mxpand,50,,,yes, !扩展50个模态

psolve,triang !切线刚度求解

psolve,eiglanb !注意方法和的modopt,lanb,对应性

finish

/solu

expass,on !!扩展模态求解答

psolve,eigexp

finish

模态试验及分析的基本步骤

模态试验及分析的基本步骤 1.动态数据的采集及响应函数分析 首先应选取适当的激励方式。激励方式可以是正弦、随机或瞬态中的任何一种。激励方式不同,相应的模态参数识别方法也不同。目前主要有单输入单输出、单输入多输出和多输入多输出三种方法。然后进行数据采集。对于单输入单输出方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振型数据;单输入多输出及多输入多输出的方法要求大量通道数据的高速采集,因此要求大量的振动测量传感器或激振器,试验成本极高。在采集信号数据以后,还要在时域或频域对信号进行处理,例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。 2.建立结构数学模型 根据己知条件,建立一种描述结构状态及特性的模型,作为计算及参数识别的依据,目前一般假定系统为线性的。由于采用的识别方法不同,数学建模可分为频域建模和时域建模。根据阻尼特性及频率藕合程度又可分为实模态和复模态等。 3.参数识别 按识别域的不同可分为频域法、时域法和混合域法。激励方式不同,相应的识别参数方法也不尽相同。并非越复杂的方法识别的结果越可靠。对于目前能够进行的大多数不是十分复杂的结构,只要取得了可靠的频响数据,用简单的识别方法也可能获得良好的模态参数;反之,即使用最复杂的数学模型、最高级的拟合方法,如果频响测量数据不可靠,识别的结果也不会理想。 4.振型动画 参数识别的结果得到了结构的模态参数模型,即一组固有频率、模态阻尼以及相应各阶模态的振型。但是由于结构复杂,由许多自由度组成的振型的数组难以引起对振动直观的想象,所以必须采用振型动画的办法,将放大的振型叠加到原始的几何形状上。

模态分析与振动测试技术

模态分析与振动测试技术 固体力学 S0902015 李鹏飞

模态分析与振动测试技术 模态分析的理论基础是在机械阻抗与导纳的概念上发展起来的。近二十多年来,模态分析理论吸取了振动理论、信号分析、数据处理数理统计以及自动控制理论中的有关“营养”,结合自身内容的发展,形成了一套独特的理论,为模态分析及参数识别技术的发展奠定了理论基础。 一、单自由度模态分析 单自由度系统是最基本的振动系统。虽然实际结构均为多自由度系统,但单自由度系统的分析能揭示振动系统很多基本的特性。由于他简单,因此常常作为振动分析的基础。从单自由度系统的分析出发分析系统的频响函数,将使我们便于分析和深刻理解他的基本特性。对于线性的多自由度系统常常可以看成为许多单自由度系统特性的线性叠加。 二、多自由度系统模态分析 对于多自由度系统频响函数数学表达式有很多种,一般可以根据一个实际系统来讨论,给出一种形式;也可根据问题的要求来讨论,给出其他不同的形式。为了课程的紧凑,直接联系本课程的模态分析问题,我们就直接讨论多自由度系统通过频响函数表达形式的模态参数和模态分析。即多自由度系统模态参数与模态分析。 多自由度系统模态分析将主要用矩阵分析方法来进行。 我们以N个自由度的比例阻尼系统作为讨论的对象。然后将所分析的结果推广到其他阻尼形式的系统。 设所研究的系统为N个自由度的定常系统。其运动微分方程为: (2—1) ++= M X CX KX F ?)阶式中M,C,K分别为系统的质量、阻尼及刚度矩阵。均为(N N 矩阵。并且M及K矩阵为实系数对称矩阵,而其中质量矩阵M是正定矩阵,刚度矩阵K对于无刚体运动的约束系统是正定的;对于有刚体运动的自由系统则是半正定的。当阻尼为比例阻尼时,阻尼矩阵C为对称矩阵(上述是解耦条件)。 N?阶矩阵。即 X及F分别为系统的位移响应向量及激励力向量,均为1

最新模态试验及分析的基本步骤

模态试验及分析的基本步骤 1 1.动态数据的采集及响应函数分析 2 首先应选取适当的激励方式。激励方式可以是正弦、随机或瞬态中的任何一种。激3 励方式不同,相应的模态参数识别方法也不同。目前主要有单输入单输出、单输入多4 输出和多输入多输出三种方法。然后进行数据采集。对于单输入单输出方法要求同时5 高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得6 振型数据;单输入多输出及多输入多输出的方法要求大量通道数据的高速采集,因此要7 求大量的振动测量传感器或激振器,试验成本极高。在采集信号数据以后,还要在时8 域或频域对信号进行处理,例如谱分析、传递函数估计、脉冲响应测量以及滤波、相9 关分析等。 10 2.建立结构数学模型 11 根据己知条件,建立一种描述结构状态及特性的模型,作为计算及参数识别的依 12 据,目前一般假定系统为线性的。由于采用的识别方法不同,数学建模可分为频域建13 模和时域建模。根据阻尼特性及频率藕合程度又可分为实模态和复模态等。 14 3.参数识别 15 按识别域的不同可分为频域法、时域法和混合域法。激励方式不同,相应的识别参16 数方法也不尽相同。并非越复杂的方法识别的结果越可靠。对于目前能够进行的大多17 数不是十分复杂的结构,只要取得了可靠的频响数据,用简单的识别方法也可能获得18 良好的模态参数;反之,即使用最复杂的数学模型、最高级的拟合方法,如果频响测量19 数据不可靠,识别的结果也不会理想。 20 4.振型动画 21 参数识别的结果得到了结构的模态参数模型,即一组固有频率、模态阻尼以及相应22 各阶模态的振型。但是由于结构复杂,由许多自由度组成的振型的数组难以引起对振23

ansys模态分析步骤

模态分析步骤 第1步:载入模型 Plot>Volumes 第2步:指定分析标题并设置分析范畴 1 设置标题等Utility Menu>File>Change Title Utility Menu>File> Change Jobname Utility Menu>File>Change Directory 2 选取菜单途径 Main Menu>Preference ,单击 Structure,单击OK 第3步:定义单元类型 Main Menu>Preprocessor>Element Type>Add/Edit/Delete,出现Element Types对话框,单击Add出现Library of Element Types 对话框,选择Structural Solid,再右滚动栏选择Brick 20node 95,然后单击OK,单击Element Types对话框中的Close按钮就完成这项设置了。 第4步:指定材料性能 选取菜单途径Main Menu>Preprocessor>Material Props>Material Models。出现Define Material Model Behavior对话框,在右侧Structural>Linear>Elastic>Isotropic,指定材料的弹性模量和泊松系数,Structural>Density指定材料的密度,完成后退出即可。 第5步:划分网格 选取菜单途径Main Menu>Preprocessor>Meshing>MeshTool,出

现MeshTool对话框,一般采用只能划分网格,点击SmartSize,下面可选择网格的相对大小(太小的计算比较复杂,不一定能产生好的效果,一般做两三组进行比较),保留其他选项,单击Mesh出现Mesh Volumes对话框,其他保持不变单击Pick All,完成网格划分。 第6步:进入求解器并指定分析类型和选项 选取菜单途径Main Menu>Solution>Analysis Type>New Analysis,将出现New Analysis对话框,选择Modal单击 OK。 选取Main Menu>Solution> Analysis Type>Analysis Options,将出现Modal Analysis 对话框,选中Subspace模态提取法,在 Number of modes to extract处输入相应的值(一般为5或10,如果想要看更多的可以选择相应的数字),单击OK,出现Subspace Model Analysis对话框,选择频率的起始值,其他保持不变,单击OK。 第7步:施加边界条件. 选取Main Menu>Solution>Define loads>Apply>Structural>Displacement,出现ApplyU,ROT on KPS对话框,选择在点、线或面上施加位移约束,单击OK会打开约束种类对话框,选择(All DOF,UX,UY,UZ)相应的约束,单击apply或OK即可。第8步:指定要扩展的模态数。选取菜单途径Main Menu>Solution>Load Step Opts>ExpansionPass>Expand Modes,出现Expand Modes对话框,在number of modes to expand 处输入第6步相应的数字,单击 OK即可。(当选取Main Menu>Solution> Analysis Type>Analysis Options,将出现Modal Analysis 对话框,选中Subspace模态提取法,在 Number of modes to extract处输入相应

预应力大变形模态分析到 PSTRES 和 SSTIF 的辨异

一,前言: 在ANSYS中有两个命令可以将预应力效应激活并考虑在求解方程计算中,但是他们是有区别,最近在论坛上出现很多的帖子讨论预应力大变形模态分析,但是好象大家对以上两个命令出现一定程度的混淆,本文结合例子对以上两个命令及相关问题做以阐释。不妥之处,欢迎高手批评指正 二,例子简单介绍: 借用网友的例子进行说明,下面简单介绍以下我们分析的问题。 实际的问题是两根拉索,通过圆钢管联系在一起成以下平面形状,拉索中通过施加应变yingbian=3.51e-3考虑索中的预应力。本文将对以下结构进行静力求解和模态求解。 三,静力求解结果分析: 本文采用以下四种不同的求解方式进行求解,并对结果进行分析: SOLUTION 1 小变形求解,不激活以上两个命令,使用以下命令流: Nlgeom,off Sstif,off Pstres,off Solv SOLUTION 2-1 小变形求解,激活Pstres命令,使用以下命令流: Nlgeom,off Pstres,on solv SOLUTION 2-2 大变形求解,激活Pstres命令,使用以下命令流: Nlgeom,on Pstres,on solv SOLUTION 2-2 大变形求解,激活SSTIF,on命令,使用以下命令流: Nlgeom,on Sstif,on solv 经过求解分别得到以下计算结果:以UX变形为例 结论:通过以上结果可见,PSTRES,ON 是不适合用于大变形分析,因为该命令不会激活△U的附加刚度矩阵。 四,命令辨析: 为从根本上阐明以上问题,我们先从两个命令的说明上进行对比,区分其中的不同之处。4-1PSTRES 命令 PSTRES, Key Specifies whether *1pstress effects are calculated or included. 注1,Pstres主要为激活预应力效应,注意和SSTIF使用目的的区别 Notes Specifies whether or not prestress effects are to be calculated or included. Prestress effects are calculated in a static or transient analysis for inclusion in a buckling, modal, harmonic (Method = FULL or REDUC), transient (Method = REDUC), or substructure generation analysis. If used in SOLUTION, this command is valid only*2within the first load step.

各种模态分析方法总结与比较

各种模态分析方法总结与比较 一、模态分析 模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。 模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率围各阶主要模态的特性,就可能预言结构在此频段在外部或部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 二、各模态分析方法的总结

(一)单自由度法 一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。但是如果假定在给定的频带只有一个模态是重要的,那么该模态的参数可以单独确定。以这个假定为根据的模态参数识别方法叫做单自由度(SDOF)法n1。在给定的频带围,结构的动态特性的时域表达表示近似为: ()[]}{}{T R R t r Q e t h r ψψλ= 2-1 而频域表示则近似为: ()[]}}{ {()[]2ωλωψψωLR UR j Q j h r t r r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机存。 这种单自由度的假定只有当系统的各阶模态能够很好解耦时才是正确的。然而实际情况通常并不是这样的,所以就需要用包含若干模态的模型对测得的数据进行近似,同时识别这些参数的模态,就是所谓的多自由度(MDOF)法。 单自由度算法运算速度很快,几乎不需要什么计算和计算机存,因此在当前小型二通道或四通道傅立叶分析仪中,都把这种方法做成置选项。然而随着计算机的发展,存不断扩大,计算速度越来越快,在大多数实际应用中,单自由度方法已经让位给更加复杂的多自由度方法。 1、峰值检测 峰值检测是一种单自由度方法,它是频域中的模态模型为根据对系统极点进行局部估计(固有频率和阻尼)。峰值检测方法基于这样的事实:在固有频率附近,频响函数通过自己的极值,此时其实部为零(同相部分最

模态测试与分析报告基本概念

模态测试与分析基本概念 1.模态假设:线性假设、时不变假设、互易性假设、可观测性假设 线性假设:结构的动态特性是线性的,就是说任何输入组合引起的输出等于各自输出的组合,其动力学特性可以用一组线性二阶微分方程来描述。 时不变性假设:结构的动态特性不随时间变化,因而微分方程的系数是与时间无关的常数。 可观测性假设:这意味着用以确定我们所关心的系统动态特性所需要的全部数据都是可以测量的。 互易性假设:结构应该遵从Maxwell互易性原理,即在q点输入所引起的p点响应,等于在p点的相同输入所引起的q点响应。 2.EMA、OMA、ODS 试验模态分析(Experimental Modal Analysis, EMA) 力锤激励EMA技术 激振器激励EMA技术 工作模态分析(Operational Modal Analysis, OMA) 工作变形模态(Operational Deflection Shape, ODS) 3.SISO、SIMO、MIMO SISO:设置1个响应测点,力锤激励遍历所有测点,也称为SRIT SIMO:设置若干响应测点,力锤激励遍历所有测点,也称为MRIT;用一个激振器固定在某测点处激励结构,测量所有测量自由度的响应,经FFT快速测量计算FRF MIMO:用多个激振器激励结构,测量所有测量自由度的响应,经FFT快速测量计算MIMO-FRFs,输入能量均匀,数据一致性好,能分离密集和重根模态,在大型复杂或轴对称结构模态试验尤为重要 4.模态分析基本步骤 建立模型:确定测量自由度、生成几何、确定各类参数:BW,参考点、触发等 测量:FRF,(时域数据可选) 参数估计:曲线拟合、参数提取 验证:MAC、MOV、MP等

模态试验分析方法简介

模态试验分析方法简介 1 试验模态分析的基本步骤 试验模态分析一般分为如下的四个步骤: 第一步:建立测试系统 所谓建立测试系统就是确定实验对象,选择激振方式,选择力传感器和响应传感器,并对整个测试系统进行校准。 第二步:测量被测系统的响应数据 这是试验模态的关键一步,所测量得到的数据的准确性和可靠性直接影响到模态试验的结果。在某一激振力的作用下被测系统一旦被激振起来,就可以通过测试仪器测量得到激振力或响应的时域信号,通过输血手段将其转化为频域信号,就可以得到系统频响函数的平均估计,在某些情况下不要求计算频响函数,只需要时间历程就可以了。 第三步:进行模态参数估计 即利用测量得到的频响函数或时间历程来估计模态参数,包括:固有频率,模态振型,模态阻尼,模态刚度和模态质量等。 第四步:模态模型验证 它是对第三步模态参数估计所得结果的正确性进行检验,它是对模态试验成果评定以及进一步对被测系统进行动力学分析的必要过程。 以上的每个步骤都是试验模态中必不可少的组成部分,其具体的介绍如下: 2、建立测试系统 建立测试系统是模态试验的前期准备过程,它主要包括:被测对象的理论分析和计算,测试方案的确定(包括激振方式的确定,传感器的选择,数据采集分析仪器的选择等),按照方案要求安装和调试,测试系统的校准等工作。 接下来对激振方式,传感器的选择和数据采集仪器的选择的具体介绍如下: 2.1激振方式的确定: 激振方式有很多种,主要分为天然振源激振和人工振源激振。天然振源包括地震,地脉动,风振,海浪等;其中地脉动常被使用于大型结构的激励,其特点是频带很宽,包含了各种频率的成分,但是随机性很大,采样时间要求较长,人工振源包括起振机,激振器,地震模拟台,车辆振动,爆破,张拉释放,机

模态分析的知道回答

定性地说,就是因为力的步调与振动步调相同,物体向右力向右,物体向左力向左,力始终做正功,所以振动能量不断增加。 其实不是说一般取前5阶。根据不同的对象和边界条件,取得阶数都不同。对于没有约束的对象,前6阶为刚体移动模态,频率为0;而对于有约束的对象,则没有刚体模态。各阶振型的话就是各阶的振动形态,有横向振动,扭转振动,拉伸振动,这些需要你观察振型来判断。你想理解模态必须去看一些振动学的书籍。简单的讲物体的实际振动是各阶模态的叠加效果。物体理论上有无穷阶模态,振动是这无穷阶模态的叠加。但是实际上各阶模态对系统振动的贡献度不同,一般前几阶比较大,越往后越小,所以一般截取前面的模态。 如果说前5阶自振频率如果任何一阶数值处于外界激励的频率范 围之内,就表明此物体在当前约束条件和激励下会发生共振吗然 后那一阶的振型就表示当时的振动形态还是什么为什么个别振型 弯扭组合都有而且形态这么夸张呢谢谢! 回答 按照你说的的确有可能发生共振。我说了实际振动是各阶模态叠 加的效果,每一阶模态只是把原本耦合的各阶模态解耦出来呈现。 而不是你说的当时的振动形态。所以你所看到的很夸张的形态也 印证了我的话,因为那并不是实际振动情况。请你结合我前一段 回答体会。 按照我的理解,每个物体都有自己的共振频率,而且还有不止一个共振频率。可能十几Hz 的时候会发生共振,几百Hz的时候又会发生共振。如果进行模态分析,就是说把这个物体的共振频率都找出来。如果把这些共振频率都按照频率值从小到大排,就是“阶”。比如说最小的共振频率就是一阶。 模态分析是指采用振型分解法计算结构的各阶振型,包括各阶模态的频率、振型等。 指的是振型分解法中的一阶、二阶振型。 机械振动是由多个振动源叠加后的共同作用效果。比如一个弹性体,在一定的约束下,会以某(些)个方式振动。譬如一个弹簧,可能伸缩振动,也可能弯曲振动。每一个振动方式,都有一个对应的振动频率,即固有频率。模态分析,就是用有限元的方法,在某个范围内(譬如3000Hz以下),找出这些振动方式及其对应的频率。把这些振动方式按其频率的大小排排队,最小的那个,就叫1阶,第二小的那个,就叫2阶,以此类推。当外界激励会激起弹性体的某个振动方式,而这个外界激励的频率又恰好等于那个振动方式所对应的固有频率时,就会发生共振。

模态分析软件EDM Modal 的实验模态分析方案

EDM-Modal 模态分析软件一个完整的包括模态测试和模态分析的实验模态分析(Experimental Modal Analysis (EMA))流程,它的结构清晰,界面友好,功能丰富,操作简单方便。基于当代流行的模态分析理论和技术开发,操作流程直观且简单,它是实现模态分析实验得力的工具。支持用户实现数百个测量点和多个激励点的高度复杂的模态分析,无论模态测试是多么复杂,EDM Modal 模态测试系统都提供准确的工具来实现您的目标。 EDM-Modal 完美兼容晶钻所有采集仪器,如Spider-80X 。为操作员做模态实验测试提供必要的引导。操作界面具有直观的逐步过程,引导用户轻松完成设置,然后进行测试,更多时间花在分析上。并提供模态教学数据、模态操作视频等学习资源,让您轻松做实验。 为了成功获得测试数据,实验之前需要在测试模型上规划出所有测点的自由度(DOFs)。几何编辑器提供多种坐标系统,使用组件功能,可以简单地把各个子组件合并对一个几何模型。 在输入通道设置界面,设置所有通道对应的测点和它们的坐标方向。测试开

始后,所有的测试测点都会被测量,并以包含激励和响应自由度的信号名称保存。模态参数识别是模态分析的核心,EDM Modal模态分析为其提供了多种拟合方法。最小二乘复指数法(The Least-Squares Complex Exponential (LSCE))用于获取单参考点频响函数(FRF)的极点(包括频率和阻尼)。而多参考点(多输入/多输出或者MIMO)测试,则使用相应的多参考时域分析法(Poly-Reference Time Domain,PTD)。 动画模块是为了动态展示模态振型的模块,允许用户通过3D动画显示模态振型到几何模型。通过不同颜色标识动画的振动幅度。自由变形(FFT)提供增强模式的动画,比点动画更平滑更逼真。使用同一个几何模型,工作变形分析(ODS)可动画显示所选择的时域和频域响应数据到几何模态。 ★EDM Modal模态支持的功能如下: ①几何模型的创建/编辑/导入/导出/动画。 ②工作变形分析(ODS) ③锤击法模态实验 ④SIMO与MIMO FRF模态测试 ⑤SIMO正弦扫频模态测试 ⑥SIMO与MIMO步进正弦模态测试

模态分析试验报告-

《建筑结构的模态分析试验》 实验报告 专业土木工程 班级 学号 姓名 教师 建工实验中心 2010年3月 振动测试与模态分析实验报告 一、实验人员 3组:

二、试验目的 1.培养学生采用实验与理论相结合的方法来处理工程中的振动问题。 2.通过实验使学生掌握振动测试系统的基本组成、了解振动测试的常用测量方法以及模态分析技术。模态分析技术已发展成为解决工程振动问题的重要手段。 3.了解模态分析软件的使用方法。 三、试验内容 1、学习模态分析原理; 2、学习模态测试及分析方法。 通过对框架模型的模态试验分析,测定出基础模型的模态参数:固有频率、阻尼比、振型图,并通过实验观察了解框架结构的动力参数,从而掌握模态分析的基本原理及分析方法。 四、试验的基本要求 (1)掌握振动测试系统的构成及操作。 (2)了解振动测试的常用测量方法。激振、锤击 (3)了解数据采集系统的操作步骤。 (4)了解对已采集到的数据进行模态分析的方法与步骤。 五、试验仪器(表1) 单轴加速度传感器、力锤、动态信号分析仪LMS和计算机等力锤用于激励实验对象。 力传感器用于拾取激励信号并转换成为电荷信号。 加速度计用于拾取响应信号并转换成为电荷信号。 AZ804-A四通道电荷电压放大信号调理仪,用于将电荷信号放大

成为适合测量的电压信号。 AZ208数据采集箱信号采集分析系统包括抗混滤波器、A/D变换器、结构动态分析软件、计算机、打印机。 用安装有力传感器的力锤敲击实验对象上的若干个点。力传感器拾取激励力的信号,安装在实验对象的某测点上的加速度计拾取响应信号.经电荷放大器放大后输入信号采集系统。实验仪器框图如图1所示。 力信号接入信号采集器的第1通道,响应信号依次接入信号采集器的其他通道。 表1 试验仪器的硬件及软件

ANSYS WORKBENCH 11.0模态分析

ANSYS WORKBENCH 11.0培训教程(DS)

第五章模态分析

概述 ?在本章节主要介绍如何在Design Simulation中进行模态分析. 在Design Simulation中, 进行一个模态分析类似于一个线性分析. –假定用户已经对第四章的线性静态结构分析有了一定的学习了解. ?本节内容如下: –模态分析流程 –预应力模态分析流程 ?本节所介绍的这些性能通常能适用于ANSYS DesignSpace Entra licenses及更高的lisenses. –在本节讨论的一些选项可能需要更多的高级lisenses, 需要时会相应的标示出来. –谐响应和非线性静态结构分析在本节将不进行讨论.

模态分析基础 ?对于一个模态分析, 固有圆周频率ωi 和振型φi 都能从矩阵方程式里得到: 在某些假设条件下的结果与分析相关: –[K] 和[M] 是常量: ? 假设为线弹性材料特性 ?使用小挠度理论, 不包含非线性特性?[C] 不存在, 因此不包含阻尼 ?{F} 不存在, 因此假设结构没有激励 ? 根据物理方程, 结构可能不受约束(rigid-body modes present) ,或者部分/完全的被约束住 ?记住这些在Design Simulation 中进行模态分析的假设是非常重要的. [][](){}0 2=?i i M K φω

A. 模态分析过程 ?模态分析过程和一个线性静态结构分析过程非常相似, 因此这里不再详细的介绍每一操作步骤. 下面这些步骤里面,黄色斜体字体部分是模态分析所特有的. –建模 –设定材料属性 –定义接触对(假如存在) –划分网格(可选择) –施加载荷(假如存在的话) –需要使用Frequency Finder 结果 –设置Frequency Finder 选项 –求解 –查看结果

LMS模态试验与分析

LMS Modal Analysis Techniques LMS 模态分析: 完整解决方案

内容提要 2 模态试验分析工具 1模态试验目的3 模态仿真分析工具 2.1分析手段 2.2试验手段2.3 数采前端3.1结构修改及预测 3.2相关性分析3.3 预试验4 综述

X = Source Receiver ?Engine ?Rotor ?Road ?Gearbox & transmission ?Turbo machinery ?Wheel & tire ?Accessories ?Environmental sources ?... Transfer through the structure ?Noise at driver’s & Passenger ears ?Steering wheel shake ? Rear view mirror vibration ? Cabin comfort ?Structural integrity ?Seat vibration ?Cockpit NVH ? ... System Transfer System Transfer M o d a l A n a l y s i s

模态分析 9结构固有属性分析 9表现为 9共振频率 9阻尼比 9振型 目的: 9验证产品振动与噪声问题 9提高产品耐久性 9提高数字模型准确性

内容提要 2 模态试验分析工具 1模态试验目的3 模态仿真分析工具 2.1分析手段 2.2试验手段2.3 数采前端3.1结构修改及预测 3.2相关性分析3.3 预试验4 综述

Ansys Workbench自由模态及预应力模态计算

Ansys Workbench 自由模态及预应力模态计算 模态计算是研究结构振动特性必不可少的,即分析结构的固有频率和振型,同时也是进行其他动力学分析的,如瞬态动力学分析、谐响应分析和谱分析必不可少的。 结构固有频率只取决于系统本身的刚度和质量的比值,简单的单自由度弹簧质量系统的固有频率可表示为: m 2 1 2 K == π πωi i f ---i ω为系统圆周频率 ---K 为系统刚度 ---M 为系统质量 所以一般模态计算只需计算无阻尼固有频率即可,当需要谐响应分析联合计算考虑振动值时,需考虑阻尼的影响,下面利用Ansys Workbench 有限元计算软件求解结构自由模态和有预应力模态。 一、结构自由模态计算 1、打开软件,进入Ansys Workbench 操作平台,下图示, 选中左侧Modal 模块,双击或者鼠标左键按住拖动至右侧空白处 2、双击Engineering Date,编辑材料,如下图所示 点击左上角Engineering Date Sources

出现材料库文件夹,选择其中一种(此处选择General Materials),下面出现该材料库中包含材料名称,点击后面按钮,此时材料即可使用(此处选择Aluminum Alloy) 再次点击Engineering Date Sources即可退回下图,点左上角Engineering Date关闭按钮

3、CAD导入或者直接建立模型,此处直接导入solidworks建立好的模型 右键Geometry---Browse 弹出选择对话框,选择你所需的模型 (若Ansys worbench软件没有与CAD软件关联,可先将模型转化成中间格式) 4、双击Geometry,进入界面选中Import1,右键生成模型,或者直接按F5生成

ansys workbench模态分析

Workbench -Mechanical Introduction 第五章 模态分析

简介 Training Manual ?在这一章中,将介绍模态分析。进行模态分析类似线性静力分析。 –假设用户已学习了第4章线性静力结构分析部分。 ?本章内容: –模态分析步骤 –有预应力的模态分析步骤 ?本节所述的功能,一般适用于ANSYS DesignSpace Entra及以上版本的许可。

Training Manual 模态系统分析基础 ?对于模态分析,振动频率ωi 和模态φi 是根据下面的方程计算的出的: 2?假设: [][](){}0 =?i i M K φω–[K] 和[M] 不变: ?假设材料特性为线弹性的 ?利用小位移理论,并且不包括非线性的?不存在[C] ,因此无阻尼?无{F} , 因此无激振力 ? 结构可以强迫振动也可以不强迫振动 –模态{φ} 是相对值,不是绝对值

A.模态系统分析步骤 Training Manual ?模态分析与线性静态分析的过程非常相似,因此不对所有的步骤做详细介绍。用蓝色斜体字的步骤是针对模态分析的。 –附加几何模型 –设置材料属性 –定义接触区域(如果有的话) –定义网格控制(可选择) –定义分析类型 –加支撑(如果有的话) –求解频率测试结果 –设置频率测试选项 –求解 –查看结果

…几何体和质点 Training Manual ?模态分析支持各种几何体: 实体, 表面体和线体 –, ?可以使用质量点: ?质点在模态分析中只有质量(无硬度)。 质点在模态分析中只有质量(无硬度) ?质量点的存在会降低结构自由振动的频率。 ?材料属性: 杨氏模量,泊松比, 和密度是必需的。 密度是必需的

ABAQUS 预应力模态分析需要注意的地方

提问: 在第一个线性分析步施加载荷,第二个分析步提取频率!如果在第一个分析步中没有打开Nlgeom,则结果和没有施加预载荷的频率是一样的,说明预载荷并没有起作用。如果打开,则频率有所减小! 回答: 因为几何非线性打开时,属于非线性算法,刚度矩阵是变化的,所以对后来提取的模态有影响。 几何非线性关闭时,加载是线性算法,刚度矩阵不更新,所以加载和不加载时刚度矩阵都一样,对后来的模态提取没有影响。 模态分析(线性摄动分析)在动力学方程中,其载荷列阵和阻尼矩阵为零,那么决定特征值的因素就只有刚度矩阵和质量矩阵了,刚度矩阵的组建和一般的静力学分析是类似的,边界条件的施加改变了自由状态时的刚度矩阵,我们知道在静力学分析中如果没有足够的边界条件就无法得出线性方程组的唯一解,但是在模态分析中不需要求解方程,只提取特征值,约束不足的情况下会得出零特征值,即是零模态或刚体模态。这样我们就明白了约束条件的施加是改变了频率的。 现在我们就讨论预载荷对频率的影响,如果在频率提取分析步是第一个分析步,那么刚度矩阵就基于初始条件下的,如果不是第一个分析步,前面有静力学分析,那么就基于前面分析结束时的刚度矩阵。而前面一个分析步可以是线性的或非线性的,如果前面一个分析步是线性的,那么它的刚度矩阵和初始时并没有发生变化,这也是我所问过的问题,为什么预载荷对频率没有产生影响。如果前面一个分析步是非线性的,那么频率提取使用的是上一个分析步结束时的刚度矩阵,预载荷就产生了影响。当打开了大变形开关,前一个分析步就视为非线性分析了,分析过程中其刚度矩阵随着迭代会发生变化,这样预载荷就对频率产生了影响。有人可能会担心打开大变形对静力学分析步产生偏差,不会的,任何静力学分析从严格意义上来讲都不是线性的,通常的线性静力学分析只是一种简化。所以这是可行的方法,当然如果前面的分析步包含有材料非线性或边界非线性,它们也会改变刚度矩阵,就没有必要再打开几何非线性了! 由此我们就可以看出模态分析即固有频率的提取的本质和内涵了,它描述的是结构在一定的状态下的震动情况,与外载荷无关,而外载荷是改变其状态的因素,当状态改变了,固有频率也随之改变了!

汽车整车及零部件试验模态分析测试技术_张立军

汽车整车及零部件试验模态分析测试技术同济大学汽车工程系 张立军 余卓平 靳晓雄 周 宏 [摘要]试验模态分析技术是获取结构动态特性的最重要手段之一。本文首先介绍了模态试验分析动态测试技术的基本内容,然后依次详细阐述了汽车白车身、充气轮胎以及后桥模态分析试验的动态测试的试验方案和具体方法,并提供了部分模态试验分析的实测模态参数。 叙词: 模态分析 汽车结构 试验 1 引言 随着生活水平的不断提高,人们对汽车综合性能的要求也日益提高。其中,减轻振动强度,降低噪声水平,提高乘车舒适性是最重要的内容之一,而且正受到越来越多的重视。这就使优化汽车系统的动态特性,控制振动和噪声成为非常突出的问题。曾有汽车生产企业基于原车型进行修改得到变型车时,忽视了结构修改对汽车系统动态特性的改变,导致车内噪声恶化,造成了不应有的损失。目前,对结构动态特性的预测、测试和修改已经不是一件十分困难的事。其中,模态分析技术成为最重要的技术之一。模态分析技术主要是指试验模态分析技术。所谓试验模态分析技术是通过振动模态试验获得表征结构动态特性的模态参数的一种动态分析方法。通过对结构的模态试验获得模态参数,可以为结构设计部门设计和改型提供结构动态基本参数,进行结构系统的振动特性分析,结构动力特性优化设计和修改等。正是由于试验模态分析技术巨大的工程实用价值,使其成为利用振动理论解决工程问题的最重要、应用最广泛的技术手段。 对于包含数以千计零件、结构极其复杂、运行工况恶劣多变的汽车,必须重视结构系统的动态特性的设计优化,因此必须研究模态分析技术在汽车中的应用问题,尤其是试验模态分析技术的应用。模态分析的关键是获得精度高,可信度高的频率响应函数(或脉冲响应函数),而这又取决于动态测试环节。因此,本文将着重探讨汽车整车及零部件的试验模态分析技术中的动态测试技术,而且偏重于具体的实施问题。首先介绍试验模态分析动态测试技术的基本内容,然后依次详细阐述汽车白车身、充气轮胎以及后桥模态分析试验的动态测试的试验方案和具体方法,最后提供部分实际模态分析得到的模态参数结果。 2 试验模态分析动态测试基本技术[1] 为了更好地了解和理解模态试验的动态测试,下面对与试验关系最密切的部分作简要介绍。 2.1 测试系统的组成 汽车模态测试中主要应用单点激振分析。单点激振模态振动测试系统主要由以下部分组成:(1)激振部分,主要包括信号发生器、功率放大器和激振器等;(2)信号测量和数据采集记录部分,一般包括加速度传感器、阻抗头、电荷放大器和A/D数据转换和记录装置等;(3)信号分析和频响函数估计部分,通常由模态分析软件和计算机硬件组成。 2.2 被测试结构的支承 被试结构在实际的工作环境中总是处于一定的约束状态,因此试验时首选模拟真实约束状态的支承方式。如果难以实现,则要考虑替代支承方式。模拟结构真实的约束状态,能够给出结构实际约束状态下的振动模型。但必须注意要使铰支等地面支承的基础刚度足够大,一般要求振动响应只包含数万赫兹以上的频率成分。替代支承方式常常是模拟自由状态的软悬挂支承方法。软悬挂可以通过弹性绳吊挂或利用弹性基础来实现。但要保证刚体模态的最低阶频率低于结构自身第一阶弹性模态频率的10%~20%,而且,使可能参与振动的质量尽可能小。 2.3 关于结构激振 对于机械导纳的测量,必须采用可以测量的动态力来对结构进行激振。 2.3.1 激振方法 多点激振虽然有助于提高测试结果的精度,但通常

模态分析与参数识别

模态分析方法在发动机曲轴上的应用研究 xx (xx大学 xxxxxxxx学院 , 山西太原 030051) 摘要:综述模态分析在研究结构动力特性中的应用,介绍模态分析的两大方法:数值模态分析与试验模态分析。并着重介绍目前的研究热点一一工作模态分析。通过发动机曲轴的模态分析这一具体的实例,综述了运行模态分析国内外研究现状,指出了其关键技术、存在问题以及研究发展方向。 关键词:模态分析数值模态试验模态工作模态 Abstract :Sums up methods of model analysis applied on the research of configuration dynamic;al characteristio. It introduces two methods of model analysis: numerical value model analysis and experimentation model analysis. Then it stresses the hotspot-working model analysis.Some key techniques, unsolved problems and research directions of OMA were also discussed. Key words:Model analysis Numerical value model analysis Experimentation model analysis Working model analysis 1、引言 1.1模态分析的基本概念 物体按照某一阶固有频率振动时,物体上各个点偏离平衡位置的位移是满足一定的比例关系的,可以用一个向量表示,这个就称之为模态。模态这个概念一般是在振动领域所用,你可以初步的理解为振动状态,我们都知道每个物体都具有自己的固有频率,在外力的激励作用下,物体会表现出不同的振动特性。 一阶模态是外力的激励频率与物体固有频率相等的时候出现的,此时物体的振动形态叫做一阶振型或主振型;二阶模态是外力的激励频率是物体固有频率的两倍时候出现,此时的振动外形叫做二阶振型,以依次类推。

模态分析

风刀的模态分析 摘要:https://www.360docs.net/doc/277465856.html,/a/jixiegongcheng4603.html 在机械行业中,对于大量的旋转结构都会时常接触到,这些结构在整个机械行业中占住重要的地位,然而,对于这些结构的损坏,也是由于在旋转的过程中产生了共振,从而引起很大的振动应力,导致了结构件的损坏。因此,在实际工程的设计中,如何做好动力学设计和分析是一项举足轻重的工作。对于像这样的旋转结构件,如何避免产生共振,是动力学设计和分析中一项重要的环节。为此,利用当前先进的计算机技术来对产品进行模态分析,可以指导实际工作中如何去避免共振。 模态分析是用来确定结构振动特性的一种技术,通过它可以确定自然频率、振型和振型参与系数.模态分析可以使结构设计避免共振或以特定频率进行振动,明确结构对于不同类型的动力载荷是如何响应的,有助于在其他动力学分析中估算求解控制参数。所以接下来对本文的研究对象即对风刀吹风管进行改进前后做一个模态的对比分析。 1 风刀吹风管的振动分析 风刀吹风管在工作的过程中,由于受到气流连续不断的冲击作用,所产生的高频振动量就是风刀吹风管的固有频率,风刀吹风管的固有振动频率一般是指风刀吹风管系统风刀振动的固有频率,风刀吹风管系统的风刀振动主要是由高压高速的气流所引起的.影响风刀振动的固有频率的因素很多,如气流压缩强度、流速大小、单位面积流通量以及各种阻尼等等,近似可由公式π2//0m k f =进行计算,其中m 和k 分别为气流的等效质量.为了避免气流流过吹风管发生共振现象,必须精确地测出吹风管的固有振动频率,同时也为风刀吹风管系统的故障诊断提供了一个重要参数. 2 风刀吹风管的模态分析 2.1 模态分析简介 模态分析可以分为理论模态分析和试验模态分析,以及二者相结合的理论—试验模态分析这三种研究手段和方法。理论模态分析是基于线性振动理论、有限元理论的,它通过计算机及工程分析软件,首先建立研究对象的几何或数学模型,分析其物理参数,从研究激励、振动系统特性、响应三个方面来求解研究对象的动态特性。实验模态显然是依赖于实验仪器的,主要基于线性振动理论,或者可以间接的从声音振动频率上可以测得。总之,模态分析就是分析引起最低振动频率的大小,因此,模态分析也可以称为振动模态分析,而振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的

预应力是否会对结构的固有频率产生影响

SimWe仿真论坛---(邀请注册)'s Archiver SimWe仿真论坛---(邀请注册)?I02:数学与力学科学?预应力是否会对结构的固有频率产生影响? 学界雏鹰发表于2009-7-3 17:30 预应力是否会对结构的固有频率产生影响? [i=s] 本帖最后由zsq-w 于2009-8-17 12:13 编辑[/i] [size=5] [font=宋体][size=5] 请问各位各位大师:预应力是否会对结构的固有频率产生影响?即结构在有预应力和无预应力的情况下,固有频率是否一样:funk: ?[/size][/font][/size] zsq-w发表于2009-7-4 09:53 显然不一样。 你可以想象一个受预拉力的简支梁,其刚度增大,所以固有频率增大。 sp60发表于2009-7-4 23:07 我做过实验 显然不一样~ lugy234发表于2009-7-30 18:15 想一下,一个弹簧被压缩一定距离后的固有频率会变吗? yzx088发表于2009-8-14 15:52 肯定不一样 iambadman发表于2009-8-15 00:52 我觉得不会。 因为如果系统没产生大的几个变形,刚度矩阵是不变的。 固有频率和力加载没关系,只和约束有关。 个人观点。 iambadman发表于2009-8-15 00:59

另外看到一个论文~~~~ 进行了5根预应力梁的动力试验,结果表明:预应力梁的固有频率随预应力的增加而增加,这与经典的轴力作用下各向同性材料梁的理论分析结果完全相反.为此,将预应力梁视为各向同性材料梁,采用IstOpt软件对试验数据进行拟合,得到梁频率计算时的刚度修正公式,并将频率计算结果与试验结果及相关文献上的三个修正公式的计算结果进行了对比分析,结果表明:提出的计算公式用于梁的一阶频率计算时,计算值与实测值误差较小,而且能较好地反映频率随预应力的变化趋势,比已有的修正公式更适用;计算梁的二阶频率时误差稍大,也具有一定的适用性;进行梁的三阶及以上频率的计算时存在较大误差,有待进一步的研究. iambadman发表于2009-8-15 01:07 我个人是觉得上面的论文是有问题的甚至是错误的。如果足够小的扰动,如果是线性系统,固有频率是不受影响的 jiguixiu发表于2009-8-15 14:00 预应力应该有的,因为单元的刚度是矩阵包括几何刚度矩阵和初应力矩阵的,初应力对结构的频率肯定是有影响的,你想想一个橡皮筋,拉紧和放松,频率能相同吗? 有些软件可能没有考虑初应力矩阵对结构刚度的影响,或者有些是需要单独设定的是否考虑初应力对刚度的影响。 iambadman发表于2009-8-16 11:06 晕,我贴的一个论文被评分了,不是像样的论文啊,我只是贴一下,如果有误导,不是我本意啊,而且我也不认可这个论文的观点,只是表达这个可能大家看法不同,或者容易有不同(错误)意见。 我的观点是如果是线性范围内(弹性范围内),预应力部影响固有频率。 zsq-w发表于2009-8-16 14:10 [b] [url=https://www.360docs.net/doc/277465856.html,/redirect.php?goto=findpost&pid=1745646&ptid=887380]10 #[/url] [i]iambadman[/i] [/b] 评分仅针对你贴的资料了。 我以前在一本振动力学教材(现在记不清是谁编写的)上,明确说明了:预应力对结构的频率是有影响的。在一次《固体力学》的课堂上,我的一位老师也说过预应力对频率是有影响的。 如果手头有书的话,ls兄弟可查看下有没有说明。 iambadman发表于2009-8-16 18:36 谢谢楼上,我晚上去找找看。 phd9992000发表于2009-8-17 15:07

相关文档
最新文档