常见定位元件

常见定位元件

支承钉 支承板

定位销

定位套 半圆孔 V 形块 锥心轴 顶尖

常见定位元件

机械加工常用定位元件

机械加工常用定位元件公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

机械加工常用定位元件 机械加工常用定位元件摘要:为了保证同一批工件在夹具中占据一个正确的位置,必须选择合理的定位方法和设计相应的定位装置。上节已介绍了工件定位原理及定位基准选择的原则。在实际应用时,一般不允许将工件的定位基面直接与夹具体接触,而是通过定位元件上的工作表面与工件定位基面的接触来实现. 为了保证同一批工件在夹具中占据一个正确的位置,必须选择合理的定位方法和设计相应 的定位装置。 上节已介绍了工件定位原理及定位基准选择的原则。在实际应用时,一般不允许将工件的 定位基面直接与夹具体接触,而是通过定位元件上的工作表面与工件定位基面的接触来实现定位。 定位基面与定位元件的工作表面合称为定位副。 一、对定位元件的基本要求 1?.足够的精度 由于工件的定位是通过定位副的接触(或配合)实现的。定位元件工作表面的精度直接影 响工件的定位精度,因此定位元件工作表面应有足够的精度,以保证加工精度要求。 2?.足够的强度和刚度 定位元件不仅限制工件的自由度,还有支承工件、承受夹紧力和切削力的作用。因此还应 有足够的强度和刚度,以免使用中变形和损坏。 3?.有较高的耐磨性 工件的装卸会磨损定位元件工件表面,导致定位元件工件表面精度下降,引起定位精度的 下降。当定位精度下降至不能保证加工精度时则应更换定位元件。为延长定位元件更换周期, 提高夹具使用寿命,定位元件工作表面应有较高的耐磨性。 4.?良好的工艺性 定位元件的结构应力求简单、合理、便于加工、装配和更换。 对于工件不同的定位基面的形式,定位元件的结构、形状、尺寸和布置方式也不同。下面 按不同的定位基准分别介绍所用的定位元件的结构形式。 二、工件以平面定位时的定位元件 工件以平面作为定位基准时常用的定位元件 如下述: (一)主要支承 主要支承用来限制工件自由度,起定位作 用。 1 .固定支承 固定支承由支承钉和支承板两种型式,如图 3-41 所示,在使用过程中它们都是固定不动的。

常用机械加工材料金属类

常用机械加工材料(金属类) 1、45号钢 最常用中碳调质钢,号钢的一种,数字“45”代表的是该钢材的平均含碳量为0.45%,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。焊接件注意焊前预热,焊后消除应力退火。 2、Q235A 最常用的碳素结构钢,又称为A3钢。具有高的塑性、韧性和焊接性能、冷冲压性能,以及一定的强度、好的冷弯性能。“Q”是“屈”的拼音首字母,代表屈服极限的意思,“235”代表该钢材的屈服值,在235MPa左右,后面的字母代表质量等级,质量等级共分为A、B、C、D四个等级,Q235A钢的质量等级为A级。 广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构、桥梁等。 3、40Cr 使用最广泛的钢种之一,属合金结构钢。经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊前应预热到100~150℃,一般在调质状态下使用,还可以进行碳氮共渗和高频表面淬火处理。 调质处理后用于制造中速、中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等,调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等,经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等,经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如

第三章 常用的加工方法综述

第三章常用的加工方法综述 一般情况下,车削的切削过程为什么比刨削、铣削等平稳?对加工有何影响? 答:除了车削断续表面之外,一般情况下车削过程是连续进行的,不像铣削和刨削,在一次走刀过程中刀齿有多次切入和切出,产生冲击。并且当车刀几何形状、背吃刀量和进给量一定时,切屑层公称横截面积是不变的。因此,车削是切削力基本上不发生变化,车削过程要比铣削平稳。又由于车削的主运动为工件回转,避免了惯性力和冲击的影响,所以车削允许采用较大的切削用量进行高速切削或强力切削,有利于提高生产率。 何为周铣和端铣?为什么在大批量生产中常采用端铣而不用周铣? 周铣:是用铣刀圆周表面上的切削刃铣削零件,铣刀的回转轴线平行。 端铣:是用铣刀端面上的切削刃铣削零件,铣刀的回转轴线与加工平面垂直。由于端铣的切削过程比周铣平稳,有利于提过加工质量,并且端铣可达到较小的表面粗糙度,端铣还可以采用高速铣削提高生产效率,也提过已加工表面质量。 【※】镗床镗孔与车床镗孔有何不同?各适合于什么场合? 答。镗床镗孔时,镗刀刀杆随主轴一起旋转,完成主运动,进给运动可由工作台带动零件纵向移动,也可由镗刀刀杆轴向移动实现。车床镗孔主运动和进给运动分别是由零件的回转和车刀的移动。回转体零件上的轴心孔多在车床上加工。箱体类零件上的孔或孔系(相互有平行度或垂直度要求的若干个孔)常用镗床加工。 为什么刨削,铣削只能得到中等精度和较大的表面粗糙度Ra值? 刨削:在龙门刨床上用宽刃细刨刀以很低的切削速度,大进给量和小的切削深度,从零件表面上切去一层极薄的金属,因切削力小,切削热少和变形少。铣削:在铣削过程中铣削力是变化的,切削过程不平稳,容易产生振动,这就限制了铣削加工质量和生产率的进一步提高。 用周铣法铣平面,从理论上分析,顺铣比逆铣有哪些优点?实际生产中,目前多采用哪种铣削方式?为什么? 顺铣比逆铣刀具耐度高,零件表面质量好,零件夹持的稳定性高。多采用逆铣,因为逆铣时,水平分力Fct与进给方向相反,铣削过程中工作台丝杆始终压向螺母,导致因为间隙的存在而引起零件窜动。目前,一般铣床尚没有消除工作台丝杆螺母之间间隙的机构,所以,生产中常采用逆铣法。当铣削带黑皮表面铸件或锻件时,若用顺铣法,因铣齿首先接触黑皮将加剧刀齿的磨损。 镗削的加工特点:可保证平面、各孔、槽的垂直度、平行度。可保证同轴孔的同轴度。可在一次装夹下,加工相互垂直、平行的孔合平面。 砂轮的自悦性:促使砂轮表层磨粒自动脱落,里层新磨粒锋利的切削刃则投入切削,砂轮又恢复了原有的切削性能。 【※】端磨平面时砂轮与零件的接触面积大,磨削力大,磨削热多,散热、冷却和排屑条件差,砂轮端面沿径向各点圆周速度不同,砂轮磨损不均匀,所以端磨精度不如周磨,但是端磨磨头悬伸长度较短,又垂直于工作台面,承受的主要是轴向力,刚度好,加之这种磨床功率较大,故可采用较大的磨削用量,生产效率较高,常用于大批量生产中代替铣削和刨削进行粗加工 内圆磨削的精度和生产率为什么低于外圆磨削表面粗糙度Ra值为什么也略大于外圆磨削 Addition 1、车削:【1】特点:特别适合于有色金属零件的精加工,因为有色金属零件材料的硬度较低,塑性较大,若用砂轮磨削,软的磨屑 易堵塞砂轮,难以得到粗糙度低的表面【2】应用:1.可以加工各种回转表面单件小批量:中小型零件,可选用数控机床加工; 大型圆盘类零件多用立式车床加工成批生产,用车床加工 2、钻孔:【1】没有孔,主进给运动都是钻头完成,粗加工【2】特点:1.钻头易引偏2.排屑困难3.切削温度高,刀具磨损快 3、扩孔:【1】已有孔,半精加工【2】特点:1.刚性较好2.导向作用好3.切削条件较好 4、铰孔:【1】以扩孔或半精镗孔为基础,精加工,公差等级IT8~IT6,用铰刀进行加工【2】铰刀工作部分包括切削部分和修光部分, 5、钻、扩、铰概述:麻花钻,扩孔钻和铰刀都是标准刀具,即定尺寸刀具。对于中等尺寸以下较精密的孔,在单位小批量甚至大批量 生产中,钻、扩、铰都是经常采用的典型工艺;钻、扩、铰只能保证孔本身的精度,而不易保证孔与孔之间的尺寸精度及位置精度。为了解决这一问题,可利用夹具进行加工,也可采用镗孔(※)箱体类:(有平行度或垂直度要求)用镗床加工 6、单刃镗刀镗孔:预加工孔如有轴线歪斜或有不大的位置误差,利用单刃镗孔可予以校正,若用扩孔或铰孔是不易达到的 7、多刃镗刀镗孔:与铰孔类似,不能校正原有孔的轴线歪斜或位置误差 8、镗孔:【1】概念:镗刀对已有孔进行扩大加工的方法【2】对于D>80mm的孔、内呈环形或孔内环槽等,镗削唯一适用【3】公差 等级IT8~IT6,表面粗糙度Ra为1.6~0.8μm;精细镗时尺寸公差等级可达IT7~IT5,表面粗糙度Ra为0.8~0.1μm【4】镗孔可以在镗床上或车床上进行。回转体零件上的轴心孔多在车床上加工,主运动和进给运动分别是零件的回转运动和车刀的移动【5】分类:根据结构和用途不同,镗床分为卧式镗床、坐标镗床、立式镗床、精密镗床,应用最广泛的是卧式镗床【6】镗孔时,镗刀刀杆随主轴一起旋转,完成主运动;进给运动可由工作台带着零件纵向移动,也可由镗刀刀杆轴向移动来实现 9、刨削:主运动:道具的往复直线运动,进给运动:工件随工作台的间歇运动 10、拉削:【1】利用多齿拉刀【2】拉削面积较大的平面时,为减少拉削力,可采用渐进式拉刀进行拉削【3】特点:1.生产率高,在

常用的传统机械加工方法(可编辑修改word版)

教案 课题:2.1 零件常用的传统机械加工方法 教学目的: 1.了解常用机械加工法的特点 2.掌握常用机械加工法的运用范围和能达到的精度 3.了解常用机械加工的机床 教学重点:掌握常用机械加工法的运用范围和能达到的精度 教学难点:掌握常用机械加工法的运用范围和能达到的精度 教学方法:讲授 教具:多媒体 课时:2 学时 2.1 零件常用的传统机械加工方法 机械加工方法广泛运用于模具制造。模具的机械加工大致有以下几种情况: (1)用车、铣、刨、钻、磨等通用机床加工模具零件,然后进行必要的钳工 修配,装配成各种模具。 (2)精度要求高的模具零件,只用普通机床加工难以保证高的加工精度,因 而需要采用精密机床进行加工。 (3)为了使模具零件特别是形状复杂的凸模、凹模型孔和型腔的加工更趋自动化,减少钳工修配的工作量,需采用数控机床(如三坐标数控铣床、加工中心、数控磨床等设备)加工模具零件。 2.1.1车削加工 1.车削加工的特点及应用 车削加工是在车床上利用车刀对工件的旋转表面进行切削加工的方法。它主要用来加工各种轴类、套筒类及盘类零件上的旋转表面和螺旋面,其中包括:内外圆柱面、内外圆锥面、内外螺纹、成型回转面、端面、沟槽以及滚花等。此外,还可以钻孔、扩孔、铰孔、攻螺纹等。车削加工精度一般为IT8~IT7,表面粗糙度为Ra6.3~1.6μm;精车时,加工精度可达IT6~IT5,粗糙度可达

Ra0.4~0.1μm。 车削加工的特点是: 加工范围广,适应性强,不但可以加工钢、铸铁及其合金, 还可以加工铜、铝等有色金属和某些非金属材料,不但可以加工单一轴线的零件,也可以加工曲轴、偏心轮或盘形凸轮等多轴线的零件;生产率高;刀具简单, 其制造、刃磨和安装都比较方便。 由于上述特点,车削加工无论在单件、小批,还是大批大量生产以及在机械 的维护修理方面,都占有重要的地位。 2.车床 车床(Lathe)的种类很多,按结构和用途可分为卧式车床、立式车床、仿形及多刀车床、自动和半自动车床、仪表车床和数控车床等。其中卧式车床应用最广,是其 他各类车床的基础。常用的卧式车床有C6132A,C6136,C6140 等几种。 2.1.2铣削加工 1.铣削加工的范围及其特点 1)铣削加工的范围 铣削主要用来对各种平面、各类沟槽等进行粗加工和半精加工,用成型铣 刀也可以加工出固定的曲面。其加工精度一般可达IT9~IT7,表面粗糙度为 Ra6.3~1.6μm。 概括而言,可以铣削平面、台阶面、成型曲面、螺旋面、键槽、T 形槽、燕 尾槽、螺纹、齿形等。 2)铣削加工的特点 铣削加工的特点具体如下: (1)生产率较高 (2)铣削过程不平稳 (3)刀齿散热较好 因此,铣削时,若采用切削液对刀具进行冷却,则必须连续浇注,以免产生较 大的热应力。 2.铣床 1)卧式铣床 卧式铣床的主轴是水平的, 2)立式铣床 立式铣床的主轴与工作台台面垂直。 2.1.3刨削加工 1.刨削加工的范围及其特点 刨削是使用刨刀在刨床上进行切削加工的方法,主要用来加工各种平面、沟 槽和齿条、直齿轮、花键等母线是直线的成型面。刨削比铣削平稳,但加工精

机械加工常用定位元件

机械加工常用定位元件 机械加工常用定位元件摘要:为了保证同一批工件在夹具中占据一个正确的位置,必须选择合理的定位方法和设计相应的定位装置。上节已介绍了工件定位原理及定位基准选择的原则。在实际应用时,一般不允许将工件的定位基面直接与夹具体接触,而是通过定位元件上的工作表面与工件定位基面的接触来实现. 为了保证同一批工件在夹具中占据一个正确的位置,必须选择合理的定位方法和设计相应的定位装置。 上节已介绍了工件定位原理及定位基准选择的原则。在实际应用时,一般不允许将工件的定位基面直接与夹具体接触,而是通过定位元件上的工作表面与工件定位基面的接触来实现定位。 定位基面与定位元件的工作表面合称为定位副。 一、对定位元件的基本要求 1 .足够的精度 由于工件的定位是通过定位副的接触(或配合)实现的。定位元件工作表面的精度直接影响工件的定位精度,因此定位元件工作表面应有足够的精度,以保证加工精度要求。 2 .足够的强度和刚度 定位元件不仅限制工件的自由度,还有支承工件、承受夹紧力和切削力的作用。因此还应有足够的强度和刚度,以免使用中变形和损坏。 3 .有较高的耐磨性 工件的装卸会磨损定位元件工件表面,导致定位元件工件表面精度下降,引起定位精度的下降。当定位精度下降至不能保证加工精度时则应更换定位元件。为延长定位元件更换周期,提高夹具使用寿命,定位元件工作表面应有较高的耐磨性。 4. 良好的工艺性 定位元件的结构应力求简单、合理、便于加工、装配和更换。 对于工件不同的定位基面的形式,定位元件的结构、形状、尺寸和布置方式也不同。下面按不同的定位基准分别介绍所用的定位元件的结构形式。 二、工件以平面定位时的定位元件 工件以平面作为定位基准时常用的定位元件 如下述: (一)主要支承 主要支承用来限制工件自由度,起定位作用。 1 .固定支承 固定支承由支承钉和支承板两种型式,如图 3-41 所示,在使用过程中它们都是固定不动的。

机械加工方法(各种加工方法)

机械加工方法 一:车削 车削中工件旋转,形成主切削运动。刀具沿平行旋转轴线运动时,就形成内、外园柱面。刀具沿与轴线相交的斜线运动,就形成锥面。仿形车床或数控车床上,可以控制刀具沿着一条曲线进给,则形成一特定的旋转曲面。采用成型车刀,横向进给时,也可加工出旋转曲面来。车削还可以加工螺纹面、端平面及偏心轴等。车削加工精度一般为IT8—IT7,表面粗糙度为6.3—1.6μm。精车时,可达IT6—IT5,粗糙度可达0.4—0.1μm。车削的生产率较高,切削过程比较平稳,刀具较简单。 二:铣削 主切削运动是刀具的旋转。卧铣时,平面的形成是由铣刀的外园面上的刃形成的。立铣时,平面是由铣刀的端面刃形成的。提高铣刀的转速可以获得较高的切削速度,因此生产率较高。但由于铣刀刀齿的切入、切出,形成冲击,切削过程容易产生振动,因而限制了表面质量的提高。这种冲击,也加剧了刀具的磨损和破损,往往导致硬质合金刀片的碎裂。在切离工件的一般时间内,可以得到一定冷却,因此散热条件较好。按照铣削时主运动速度方向与工件进给方向的相同或相反,又分为顺铣和逆铣。 顺铣 铣削力的水平分力与工件的进给方向相同,工件台进给丝杠与固定螺母之间一般有间隙存在,因此切削力容易引起工件和工作台一起向前窜动,使进给量突然增大,引起打刀。在铣削铸件或锻件等表面有硬度的工件时,顺铣刀齿首先接触工件硬皮,加剧了铣刀的磨损。 逆铣 可以避免顺铣时发生的窜动现象。逆铣时,切削厚度从零开始逐渐增大,因而刀刃开始经历了一段在切削硬化的已加工表面上挤压滑行的阶段,加速了刀具的磨损。同时,逆铣时,铣削力将工件上抬,易引起振动,这是逆铣的不利之处。 铣削的加工精度一般可达IT8—IT7,表面粗糙度为6.3—1.6μm。 普通铣削一般只能加工平面,用成形铣刀也可以加工出固定的曲面。数控铣床可以用软件通过数控系统控制几个轴按一定关系联动,铣出复杂曲面来,这时一般采用球头铣刀。数控铣床对加工叶轮机械的叶片、模具的模芯和型腔等形状复杂的工件,具有特别重要的意义。 三:刨削 刨削时,刀具的往复直线运动为切削主运动。因此,刨削速度不可能太高,生产率较低。刨削比铣削平稳,其加工精度一般可达IT8—IT7,表面粗糙度为Ra6.3—1.6μm,精刨平面度可达 0.02/1000,表面粗糙度为0.8—0.4μm。 四:磨削 磨削以砂轮或其它磨具对工件进行加工,其主运动是砂轮的旋转。砂轮的磨削过程实际上是磨粒

常用机械加工英语

第1章切削加工基础知识 1.1切削加工概述 切削cutting; 加工 machining; 金属切削 metal cutting (metal removal); 金属切削工艺 metal-removal process; 金属工艺学 technology of metals; 机器制造machine-building; 机械加工 machining; 冷加工 cold machining; 热加工 hot working; 工件 workpiece; 切屑chip; 常见的加工方法universal machining method; 钻削drilling; 镗削 boring; 车削 turning; 磨削 grinding; 铣削 milling; 刨削 planning; 插削slotting ; 锉filing ; 划线lineation; 錾切carving; 锯sawing; 刮削facing; 钻孔boring; 攻丝 tap; 1.2零件表面构成及成形方法 变形力 deforming force; 变形 deformation; 几何形状 geometrical; 尺寸dimension ; 精度 precision; 表面光洁度surface finish; 共轭曲线 conjugate curve; 范成法 generation method; 轴 shaft; 1.3机床的切削运动及切削要素 主运动 main movement; 主运动方向direction of main movement; 进给方向 direction of feed; 进给运动feed movement; 合成进给运动resultant movement of feed; 合成切削运动resultant movement of cutting; 合成切削运动方向direction of resultant movement of cutting ; 切削速度 cutting speed; 传动drive/transmission; 切削用量 cutting parameters; 切削速度 cutting speed; 切削深度 depth of cut; 进给速度 feed force; 切削功率 cutting power; 1.4金属切削刀具 合金工具钢alloy tool steel; 高速钢 high-speed steel; 硬质合金 hard alloy; 易加工 ease of manufacturing ; 切削刀具 cutting tool;

零件机械加工方法综述

一、名词解释 1.车削加工 是在车床上主要对回转面进行加工的方法。 2.刨削加工 是以单刃刀具相对于工件做直线往复运动,工件作间隙性移动进给的切削加工方法。 3.无心内圆磨削(p6) 是在无心内圆磨床上进行的内圆磨削。 4.行星式内圆磨削(p7) 工件不动,砂轮除高速旋转外,砂轮轴还围绕着固定中心作旋转运动以实现圆周进给。 5.仿形加工(p8) 是以预先制成的靠模为依据,加工时在一定压力作用下,触头与靠模工作表面紧密接触,并沿其表面移动,通过仿形机构,使刀具作同步仿形动作,从而在零件毛坯上加工出与靠模相同型面的零件。 6.电液式仿形 是以电传感器来传递仿形信号,利用液压力作为动力进行仿形加工的。 7.雕刻加工(p15) 是对零件、模具型腔表面或型面上的图案花纹、文字和数字进行加工。属于机械仿形加工。通过缩放尺进行仿形的。一般用单刃刻刀。 8.坐标镗床加工(p17) 是在坐标镗床上,利用精密坐标测量装置,对零件的孔及孔系进行高精度切削加工。 9.坐标磨床加工(p21) 利用准确的坐标定位完成孔的精密加工。主要有三个运动,砂轮的自转,主轴的公转以及主轴的上下往复运动。 10.成形磨削(p23) 成形表面精加工的一种方法,在磨削中常见的成形表面多为直母线成形表面,如样板、凸模、凹模拼块。就是把复杂的成形表面分解成若干个平面、圆柱面等简单形状,然后分段磨削,并使其连接光滑,圆整,达到图样要求。 11.成形砂轮磨削法(p24) 利用砂轮修整工具将砂轮修整成与工件型面完全吻合的相反型面,然后用此砂轮磨削工件,获得所需要的形状。 12.夹具磨削法(p24) 将工件按一定的条件装夹在专用的夹具上,在加工过程中通过调整夹具的位置,改变工件的加工位置,从而获得所需的形状。 13.万能夹具(p30) 是成形磨床的主要部件,也是平面磨床使用的成形磨削夹具。主要由工件装夹部分、回转部分、十字滑块和分度部分组成。 14.仿形刨削(p14) 在仿形刨床上进行,又称刨模机,冲头刨床,用于加工由直线和圆弧组成的各种形状复杂的零件或凸模。 二、简答题 1.简述复杂型腔的铣削加工方法。(P5)

机械制造技术基础复习题答案

机械制造技术基础复习题 一、填空题 1.机械制造中的三种成形方法为( ),受迫成形,堆积成形。 2.零件表面发生线的4种形成方法是:轨迹法、成形法、()、范成法。 3.在车床上钻孔时,工件的旋转是主运动,钻头的直线移动是()。 4.在钻床上钻孔时,( )是主运动,钻头的直线移动是进给运动。 5.常见的切屑种类有( )、节状切屑和崩碎切屑。 6.切削热传出的四条途径是:切屑、工件、刀具和()。 7.切削热的三个主要来源是:第一变形区的切屑变形,( ),工件与后刀面的摩擦。 8.Z3040中,“Z”的含义是钻床,“40”的含义是()。 9.在机床型号CM6132中,字母C表示车床,主参数32的含义是()。 10.一般大平面限制了工件的3个自由度,窄平面限制了工件的()个自由度。 11.机床夹具的定位误差主要由定位基准和工序基准()和基准位移误差引起。 12.根据六点定位原理分析工件的定位方式分为()、部分定位、过定位和欠定位。 13.生产类型可分为单件生产、成批生产和()。 14.把工艺过程划分为不同层次的单元,他们分别是工序、安装、()、工作行程。 15.加工表面层的物理、力学性能的变化主要表现为:表面层的( )、金相组织的变化、表面层的残余应力。15影响切削加工表面粗糙度的因素主要有:几何因素、物理因素及()等。 16.机械加工中获得零件尺寸精度的方法有:()、定尺寸刀具法、调整法、自动控制法。 17.机械装配的基本作业包括清洗、()、平衡、校正及调整、验收试验等。 18.零件结构()就是指零件在满足使用要求的前提下,制造和维修的可行性和经济性。 19.大批量生产中需要解决的主要问题是提高()和降低成本。 20.工件以内孔定位常用的定位元件有( )和定位心轴两种。 21.生产中对于不同的生产类型常采用不同的工艺文件,大批大量生产和重要零件的成批生产时采用机械加工( )卡片。 【单件小批量采用工艺过程综合卡;】 【成批生产或重要零件的小批生产用机械加工工艺卡】 22.主轴的回转误差可分解为()、纯轴向窜动和纯角度摆动三种基本形式。 23.从几何因素分析减小加工表面粗糙度常用的措施有减小主偏角、减小副偏角和减小()。 24.安排装配顺序的一般原则是()、先内后外、先难后易、先精密后一般、先重大后轻小。 25.装配工艺性和零件机械加工工艺性一样,也是()机械产品设计好坏的标志之一。 26.柔性制造系统主要由()、物料系统以及计算机控制系统组成。 27.工艺基准可分为下列几类:定位基准、()、装配基准、工序基准。 28.机器的装配精度一般包括零部件间的()、配合精度、运动精度。 29.()、集成制造、智能制造是制造技术发展的三个阶段。 二、名词解释

常用机械加工英语

. .第1章切削加工基础知识 1.1切削加工概述 切削cutting; 加工machining; 金属切削metal cutting (metal removal);金属切削工艺metal-removal process; 金属工艺学technology of metals; 机器制造machine-building; 机械加工machining; 冷加工cold machining; 热加工hot working; 工件workpiece; 切屑chip; 常见的加工方法universal machining method; 钻削drilling; 镗削boring; 车削turning; 磨削grinding; 铣削milling; 刨削planning; 插削slotting; 锉filing ; 划线lineation; 錾切carving; 锯sawing; 刮削facing; 钻孔boring; 攻丝tap; 1.2零件表面构成及成形方法 变形力deforming force; 变形deformation;几何形状geometrical; 尺寸dimension; 精度precision; 表面光洁度surface finish; 共轭曲线conjugate curve; 范成法generation method; 轴shaft; 1.3机床的切削运动及切削要素 主运动main movement; 主运动方向direction of main movement; 进给方向direction of feed; 进给运动feed movement; 合成进给运动resultant movement of feed; 合成切削运动resultant movement of cutting; 合成切削运动方向direction of resultant movement of cutting ; 切削速度cutting speed; 传动drive/transmission; 切削用量cutting parameters; 切削速度cutting speed; 切削深度depth of cut; 进给速度feed force; 切削功率cutting power; 1.4金属切削刀具 合金工具钢alloy tool steel; 高速钢high-speed steel; 硬质合金hard alloy; 易加工ease of manufacturing ; 切削刀具cutting tool;

机械加工工艺基础知识点知识讲解

机械加工工艺基础知识点 0总体要求 掌握常用量具的正确使用、维护及保养,了解机械零件几何精度的国家标准,理解极限与配合、形状和位置公差的含义及标注方法;金属切削和刀具的一般知识、常用夹具知识;能正确选用常用金属材料,了解一般机械加工的工艺路线与热处理工序。 一、机械零件的精度 1.了解极限与配合的术语、定义和相关标准。理解配合制、公差等级及配合种类。掌握极限尺寸、偏差、公差的简单计算和配合性质的判断。 1.1基本术语:尺寸、基本尺寸、实际尺寸、极限尺寸、尺寸偏差、上偏差、下偏差、(尺寸)公差、标准公差及等级(20个公差等级,IT01精度最高;IT18最低)、公差带位置(基本偏差,了解孔、轴各28个基本偏差代号)。 1.2配合制: (1)基孔制、基轴制;配合制选用;会区分孔、轴基本偏差代号。 (2)了解配合制的选用方法。 (3)配合类型:间隙、过渡、过盈配合 (4)会根据给定的孔、轴配合制或尺寸公差带,判断配合类型。 1.3公差与配合的标注 (1)零件尺寸标注 (2)配合尺寸标注 2.了解形状、位置公差、表面粗糙度的基本概念。理解形位公差及公差带。 2.1几何公差概念: 1)形状公差:直线度、平面度、圆度、圆柱度、线轮廓度、面轮廓度。 2)位置公差:位置度、同心度、同轴度。作用:控制形状、位置、方向误差。3)方向公差:平行度、垂直度、倾斜度、线轮廓度、面轮廓度。 4)跳动公差:圆跳动、全跳动。

2.2几何公差带: 1)几何公差带 2)几何公差形状 3)识读 3.正确选择和熟练使用常用通用量具(如钢直尺、游标卡尺、千分尺、量缸表、直角尺、刀口尺、万能角尺等)及专用量具(如螺纹规、平面样板等),并能对零件进行准确测量。 3.1常用量具: (1)种类:钢直尺、游标卡尺、千分尺、量缸表、直角尺、刀口尺、万能角尺。(2)识读:刻度,示值大小判断。 (3)调整与使用及注意事项:校对零点,测量力控制。 3.2专用量具: (1)种类:螺纹规、平面角度样板。 (2)调整与使用及注意事项 3.3量具的保养 (1)使用前擦拭干净 (2)精密量具不能量毛坯或运动着的工伯 (3)用力适度,不测高温工件 (4)摆放,不能当工具使用 (5)干量具清理 (6)量具使用后,擦洗干净涂清洁防锈油并放入专用的量具盒内。 二、金属材料及热处理 1.理解强度、塑性、硬度的概念。 2.了解工程用金属材料的分类,能正确识读常用金属材料的牌号。 2.1金属材料分类及牌号的识读: 2.1.1黑色金属: (1)定义:通常把以铁及以铁碳为主的合金(钢铁)称为黑色金属。

机械加工工艺优化综述

国外现状 Cus和Zuperl[1]应用遗传算法和神经网络算法确定最优切削参数,这种优化方法同时考虑了表面粗糙度最小加工成本和最短时间等因素。OKtem[2]、Amiolemhen[3]、Shunmugam[4]建立了以粗糙度和成本为目标函数的优化模型并采用遗传算法进行优化。Guzel[5]等人基于减少雕刻曲面的时间,提出了使用球头铣刀加工雕刻曲面时将加工过程物理仿真与分段进给速度优化的方法。伊朗谢里夫科技大学的M. Sanjari等[6]运用人工神经网络(ANN)和田口方法(Taguchi Method)对径向锻造法进行了优化,并用有限元方法对结果进行验证,得到了一致的结果。日本广岛大学的Ryutaro Hino等[7]将数值优化和有限元模拟相结合,建立了减少锻压工艺步骤的新算法,并得到了最优的工艺路线。 国内现状 苏州大学韦宏[8]用激光投射焊接热塑性塑料取代传统的塑料焊接方法,取得了良好的效果。美国的波音公司联合密歇根大学等若干大学共同研究和开发能够有效抑制薄壁零件有效变形的工艺路线优化理论和有限元模拟软件。哈尔滨工程大学的王乐[9]利用ANSYS软件仿真铣削以及使用POWERMILL模拟铣削,对影响加工表面质量因素分析,应用铣削理论对直接影响加工表面的粗糙度的刀齿分布和每齿进给量进行理论分析,并建立单齿动态铣削力模型、多齿动态铣削力模型、均匀分布多齿动态分析模型,进而分析影响各个分力的因素。使用解析方法优化加工参数,通过确定参量模型建立多目标优化模型,确定优化策略进行参数优化。南京航天航空大学和西北工业大学[10]的研究学者利用控制侧壁加工变形的过切倾斜控制工艺和分层对称铣削工艺来加工薄壁零件。浙江大学黄志刚[11]等人从加工顺序对加工变形的影响进行了研究提出奇偶加工顺序法对框体结构进行加工来减小加工变形。武美萍[12]等人提出变搜索域遗传算法,该算法计算量小、计算速度快,能自适应自动化制造系统对优化切削数据快速响应的要求,并在切削参数优化研究的基础上开发了数控加工切削参数管理和优化系统。华中科技大学林东[13]从动力学的角度出发研究了加工过程中涉及到的机床、刀具、工件等在切削力、位移、加速度等因素之间的相互关系,借助计算机仿真,信号处理、自动控制等技术,对数控加工进行动力学建模、仿真、优化方面的研究,并在此基础上开发了一套优化系统。 大连理工大学宋健[14]应用金属塑性成形仿真软件DEFORM-3D对某型号的汽车发动机缸体的钻削工步进行了仿真实验。通过对钻削载荷公式的推演,建立了钻削载荷和钻削参数的线性模型,简化了函数关系。选择粒子群算法作为优化算法,并在MATLAB中编制出简洁高效的切削参数优化程序,可使钻削工序时间节省44.32%。武凯等[15]人对不同切削参数下铣削力变化规律以及因铣削力引起的加工变形进行了理论分析与试验研究,给出了优化的切削参数。 吴彦骏等[16]对多工位高速锻造工艺进行研究,在提高生产效率的同时,减少了材料的消耗,并延长了模具的寿命。朱春东等[17]利用DEFORM软件,模拟了汽车半轴套管锻造工艺,并根据分流法原理,对带法兰汽车半轴套管近净锻造工艺进行了优化。 国防科技大学冯宗杰[18]针对现有伺服刀架加工复杂活塞频响不足、精度较低的问题,提出了基于迭代学习控制的改进策略并给出了实现流程。通过MATLAB 数值仿真证明了迭代学习算法应用于活塞加工的可行性。利用迭代学习控制对复

常见定位元件

二、常见的定位方式及其定位元件 (一)工件以平面定位 平面定位的主要形式是支承定位,工件的定位基准平面与定位元件表面相接触而实现定位。常见的支承元件有下列几种: 1.固定支承 支承的高矮尺寸是固定的,使用时不能调整高度。 1)支承钉 图5-6所示为用于平面定位的几种常用支承钉,它们利用顶面对工件进行定位。其中图5-6a 为平顶支承钉,常用于精基准面的定位。图5-6b 为圆顶支承钉,多用于粗 基准面的定位。图5-6c 为网纹顶支承钉,常用在要求较大摩擦力的侧面定位。图5-6d 为带衬套支承钉,由于它便于拆卸和更换,一般用于批量大、磨损快、需要经常修理的场合。支承钉限制一个自由度。 2)支承板 支承板有较大的接触面积,工件定位稳固。一般较大的精基准平面定位多用支承板作为定位元件。图5-7是两种常用的支承板,图5-7a 为平板式支承板,结构简单、紧凑,但不易清除落入沉头螺孔中的切屑,一般用于侧面定位。图5-7b 为斜槽式支承板,它在结构上做了改进,即在支承面上开两个斜槽为固定螺钉用,使清屑容易,适用于底面定位。短支承板限制一个自由度,长支承板限制两个自由度。 支承钉、支承板的结构、尺寸均已标准化,设计时可查国家标准手册。 2.可调支承 可调支承的顶端位置可以在一定的范围内调整。图5-8为几种常用的可调支承典型结构,按要求高度调整好调整支承钉1后,用螺母2锁紧。可调支承用于未加工过的平面定位,以调节补偿各批毛坯尺寸误差,一般不是对每个加工 工件进行调整,而是一批工件毛坯调整一次。 3.自位支承 又称浮动支承,在定位过程中,支承本身所处的位置随工件定位基准面的变化而自动调整并与之相适应。图5-9是几种常见的自位支承结构,尽管每一个自位支承与工件间可能是二点或三点接触,但 图5-6 几种常用支承钉 图5-7 两种常用的支承板 图5-8 几种常用的可调支承 1—可调支承螺钉 2—螺母

最基础最实用的机械加工小常识

最基础最实用的机械加工小常识 1:铆工常用的锤有哪几类? 答:有手锤,大锤,型锤。 2:铆工常用的凿子有哪几类? 答:有扁凿和狭凿两大类。 3:什么叫钢? 答:含碳量低于2.11%的铁碳合金叫钢。 4:什么叫高碳钢? 答:含碳量大于0.6%的钢叫高碳钢。 5:钢根据用途可分几类? 答:可分为结构钢,工具钢和特殊用途钢。 6:钢按其端面外形可分几类? 答:可分为板材,管材,型材,线材。 7:钢材变形矫正的基本方法有哪两种? 答:有冷作矫正和加热矫正。

8:什么叫装配夹具? 答:指在装配过程中用来对零件施加外力,使其获得可靠定位的工艺装备。9:冷作矫正的基本方法有几类? 答:有手工矫正和机械矫正。 10:加热矫正分哪几类? 答:分全加热矫正和局部加热矫正。 11:局部加热矫正加热区的外形有几种? 答:有点状,线状,三角形三种。 12:角钢变形有哪几种? 答:有扭曲,弯曲,角变形三种。 13:槽钢的变形有哪几种? 答:有扭曲,弯曲,翼板局部变形。 14:什么叫冷作矫正? 答:再常温下进行的矫正叫冷作矫正。 15:分离包括哪几道工序? 答:包括落料,冲孔,切口三个工序。

16:什么叫冲压? 答:使板料经分离或成形得到制件的过程。 17:冲压有哪些优点? 答:产品质量好,生产率高,节约材料,降低本钱,易实现自动化。18:什么叫弯曲成型? 答:将坯料弯成所需外形的加工方法。 19:铆接的基本形式有那三种? 答:对接,搭接,角接。 20:什么叫铆接? 答:利用铆钉将两个或两个以上构件连接为一个整体。 21:常用的铆钉有几种? 答:有半圆头,沉头,半沉头,平头,平锥头,扁圆,扁平。 22:铆接的种类有哪几种? 答:有强固铆接密固铆接紧密铆接。 23:什么叫装配? 答:将各个零件按照一定技术条件联合成构件的过称。

第一章 机械加工方法习题答案

第一章机械加工方法 117. 零件加工过程一般分为三个阶段。(粗加工、半精加工和精加工) 118. 粗加工的主要目的是什么? 答:切除各加工表面上大部分加工余量,并完成精基准的加工。 119. 精加工的主要目的是什么 答:获得符合精度和表面质量要求的表面。 120. 加工阶段划分的意义是什么?(不少于三条) 答:1. 只有在粗加工后再进行精加工,才能保证质量要求。2.先进行粗加工可以及时发现毛坯的缺陷,避免因对不合格的毛坯继续加工而造成浪费。3.加工分阶段进行,有利于合理利用机床。4. 加工分阶段进行,有利于精密机床保持其精度。 121. 精密加工塑性大的有色金属外圆表面,适宜的加工方法是精细车。(√) 122. 车削的特点是。(C) A 等面积、断续切削 B 变面积、断续切削 C 等面积连续切削 D 变面积断续切削 123. 为了提高车削的生产效率常采用。(AD) A 高速切削 B 连续切削 C 精细车削 D 强力切削 124. 加工细长轴时,为了避免工件变形,常采用90°偏刀。(√) 125. 车削轴类零件常用装夹,用轴两端的作为定位基准,以保证零件的精度。(双顶尖、中心孔、位置) 126. 车削外圆时,若车刀安装过高,则刀具角度的变化是。(BD) A 工作前角变小 B 工作前角变大 C 工作后角变大 D 工作后角变小 127. 精车属于。(B) A 粗加工B半精加工 C 精加工 D 光整加工 128. 车削可以进行有色金属零件的精加工。(√) 129. 磨削适合于各种材料的精加工。(╳) 130. 在外圆磨床上磨外圆时,其进给运动有,。 (工件旋转;工件往复纵向移动) 131. 磨削能够加工硬度高的材料是因为。(AC) A 磨粒硬度高 B 砂轮硬度高C砂轮具有自锐性 D 砂轮组织紧密 132. 磨削加工精度高是因为机床具有,,等特点。 (机床结构刚性好,可微量调节,机床运动平稳) 133. 磨削硬材料要用砂轮。(B) A 硬 B 软 C 软硬均可 134. 简述研磨的特点。(三条以上) 答:研磨速度较低,压力较小,切削力和切削热也小; 可以达到很高的精度和很小的表面粗糙度; 研磨只能去除很小的余量; 能部分纠正形状误差,但不能纠正位置误差, 适用范围广。各种材料、各种批量。 方法简单可靠,对设备要求低。 手工研磨生产效率低,劳动强度大。 135. 紫铜小轴Φ30h7,Ra0.8μm,该外圆的加工方案是: 粗车—半精车---精细车

机械制造技术基础考试复习试题及答案全解范文

一、名词解释 1.六点定位原理:采用六个按一定规则布置的支承点,并保持与工件定位基准面的接触,限制工件的六个自由 度,使工件位置完全确定的方法。 2.过定位:也叫重复定位,指工件的某个自由度同时被一个以上的定位支撑点重复限制。 3.加工精度:零件加工后的实际几何参数和理想几何参数符合程度。加工误差:零件加工后的实际参数和理想几 何参数的偏离程度。 4.原始误差:由机床,刀具,夹具,和工件组成的工艺系统的误差。 5.误差敏感方向:过切削刃上的一点并且垂直于加工表面的方向。 6.主轴回转误差:指主轴瞬间的实际回转轴线相对其平均回转轴线的变动量。 7.表面质量:通过加工方法的控制,使零件获得不受损伤甚至有所增强的表面状态。包括表面的几何形状特征和 表面的物理力学性能状态。 8.生产过程:从原料(或半成品)进厂一直到把成品制造出来的各有关劳动过程的总和统称工厂的生产过程。 9.工艺过程:在生产过程中凡是改变生产对象的形状、尺寸、位置和性质等使其成为成品或半成品的过程。 10.工艺规程:人们把合理工艺过程的有关内容写成工艺文件的形式,用以指导生产这些工艺文件即为工艺规程。 11.工序:一个工序是一个或一组工人在一台机床(或一个工作地),对同一工件(或同时对几个)所连续完成的 工艺过程。 12.工步:在加工表面不变,加工刀具不变,切削用量不变的条件下所连续完成的那部分工序。 13.工位:在工件的一次安装后,工件相对于机床(或刀具)每次占据一个确切位置所完成的那一部分工艺过程。 例如:在一次安装中进行车端面,倒角属于2个工位。 14.走刀:在一个工步中,若金属分几次切削,则切削一次,称一次走刀。例如:粗车外圆分几次走刀。 15.定位:使工件在机床或夹具中占有准确的位置。 16.夹紧:在工件夹紧后用外力将其固定,使其在加工过程中保持定位位置不变的操作。 17.安装:工件一次装夹后所完成的那一部分工艺过程。装夹:就是定位和夹紧过程的总和。2者的区别:安装是 工艺过程的一部分,可由装夹次数衡量。装夹是定位和夹紧的过程。 18.基准:零件上用来确定点线面位置是作为参考的其他点线面。 19.设计基准:在零件图上,确定点线面位置的基准。 20.工艺基准:在加工和装配中使用的基准。包括定位基准、度量基准、装配基准。 二、简答题 1.什么是误差复映,减少复映的措施有哪些? 误差复映:指工件加工后仍然具有类似毛坯误差的现象(形状误差、尺寸误差、位置误差) 措施:多次走刀;提高工艺系统的刚度。 2.什么是磨削烧伤?影响磨削烧伤的因素有哪些? 磨削烧伤:当被磨工件的表面层的温度达到相变温度以上时,表面金属发生金相组织的变化,使表面层金属强度硬度降低,并伴随有残余应力的产生,甚至出现微观裂纹的现象。 影响因素:合理选择磨削用量;工件材料;正确选择砂轮;改善冷却条件。 3.什么是传动链误差?提高传动链传动精度的措施有哪些? 传动链误差:指传动链始末两端传动元件间相对传动的误差。 措施:缩短传动链;降速传动,末节大降速比;提高传动元件的制造精度和装配精度;误差补偿装置。 4.减少工艺系统受热变形的措施? 减少发热和隔热;改善散热条件;均衡温度场;改进机床机构;加快温度场的平衡;控制环境温度。 5.什么是工艺系统的刚度?误差产生的原因?

机械加工常用定位元件

机械加工常用定位元件 Prepared on 24 November 2020

机械加工常用定位元件 机械加工常用定位元件摘要:为了保证同一批工件在夹具中占据一个正确的位置,必须选择合理的定位方法和设计相应的定位装置。上节已介绍了工件定位原理及定位基准选择的原则。在实际应用时,一般不允许将工件的定位基面直接与夹具体接触,而是通过定位元件上的工作表面与工件定位基面的接触来实现. 为了保证同一批工件在夹具中占据一个正确的位置,必须选择合理的定位方法和设计相应 的定位装置。 上节已介绍了工件定位原理及定位基准选择的原则。在实际应用时,一般不允许将工件的 定位基面直接与夹具体接触,而是通过定位元件上的工作表面与工件定位基面的接触来实现定位。 定位基面与定位元件的工作表面合称为定位副。 一、对定位元件的基本要求 1.足够的精度 由于工件的定位是通过定位副的接触(或配合)实现的。定位元件工作表面的精度直接影 响工件的定位精度,因此定位元件工作表面应有足够的精度,以保证加工精度要求。 2.足够的强度和刚度 定位元件不仅限制工件的自由度,还有支承工件、承受夹紧力和切削力的作用。因此还应 有足够的强度和刚度,以免使用中变形和损坏。 3.有较高的耐磨性 工件的装卸会磨损定位元件工件表面,导致定位元件工件表面精度下降,引起定位精度的 下降。当定位精度下降至不能保证加工精度时则应更换定位元件。为延长定位元件更换周期, 提高夹具使用寿命,定位元件工作表面应有较高的耐磨性。 4.良好的工艺性 定位元件的结构应力求简单、合理、便于加工、装配和更换。 对于工件不同的定位基面的形式,定位元件的结构、形状、尺寸和布置方式也不同。下面 按不同的定位基准分别介绍所用的定位元件的结构形式。 二、工件以平面定位时的定位元件 工件以平面作为定位基准时常用的定位元件如 下述: (一)主要支承 主要支承用来限制工件自由度,起定位作用。 1 .固定支承 固定支承由支承钉和支承板两种型式,如图 3- 41 所示,在使用过程中它们都是固定不动的。 当工件以粗糙不平的毛坯面定位时,采用球头支承钉图 3-41b ;齿纹头支承钉,如图 3 - 41c ,用在工件侧面,以增大磨擦系数,防止工件滑动;当工件以加工过的平面定位时,可采用平 头支承钉(如图 3 -41a )或支承板。图 3-41d 所示支承板结构简单,制造方便,但孔边切屑不

相关文档
最新文档