1、连续X射线谱:具有连续波长的X射线,也称多色X射线。

1、连续X射线谱:具有连续波长的X射线,也称多色X射线。
1、连续X射线谱:具有连续波长的X射线,也称多色X射线。

1、连续X射线谱:具有连续波长的X射线,也称多色X射线。

2、标识(特征)X射线谱:在连续谱的基础上叠加若干条具有一定波长的谱线。也称单色X射线。

3、短波限:电子与靶相撞,其能力(EV)全部转变为辐射光子能量,此时光子能量最大,波长最短,因此连续谱有一个下线波长&0,即为短限波

4、同步辐射X射线源:当电子被加速到足够能量时,它便像圆周的切线方向辐射X射线波段范围的电磁波,把这种辐射称为同步辐射X射线源。(特点1)通量大,亮度高;(2)频谱宽,连续可调;(3)光束准直性好;(4)有特定的时间结构;(5)偏振性好,在电子轨道平面上基本是100&的线偏振。

5、X射线强度:垂直X射线传播方向的单位面积上在单位时间内通过的光子数目能量总和,常用单位是

J/cm2.s。

6、激发电压:开始产生标识谱线的临界电压。

7、K系激发:当K层电子被激活时,原子的系统能量便由基态升高到K激发态,把这个过程称K系激发。

8、K系辐射:产生K系激发后,K层的空位被高能级电子填充,这时产生的辐射称为K系辐射。

9、相干散射:物质中电子在X射线电场的作用,产生强迫振动,每个受迫振动电子便成为新电磁波源向空间的各个方向辐射同频率的电磁波,这些新的散射波之间可以发生干涉作用,把这种散射现象称为相干散射。(它不损失X射线的能量,而只是改变了它的传播方向,但对X射线方向来说确是起到了强度衰减的作用。)

10、非相干散射:当X射线光子与束缚力不大的外层电子或自由电子碰撞时,电子获得一部分动能称为反冲电子,光子也离开原来方向,碰撞后的光子能量减少,波长增加,这样的散射现象称为非相干散射。

11、X射线的吸收:物质对X射线的吸收指的是X射线能量在通过物质时转变为其他形式的能量。

12、光电效应:以光子激发原子所发生的激发和辐射过程称为光电效应,被击出的电子称为光电子。辐射出的次级标识X射线称为荧光X射线(或称第二标识X射线)。

13、荧光辐射:光子激发原子所发生的激发和辐射过程中发出荧光X射线,称为荧光辐射。

14、俄歇效应:原子在入射的X射线光子或电子的作用下失掉一个K层电子变成K激发态。若该过程中所释放的能量用来产生二次电离,使另一个核外电子脱离原子变为二次电子的现象。(产生的二次电子的能量具有固定值,这种具有特征的能量电子称为俄歇效应。)

15、穿透系数:X射线通过物体衰减后的强度与入射强度的比值称为穿透系数,既Ih/Ic=e-uH。

16、线衰减系数:单位体积物质对X射线强度的衰减程度,它与物质的密度成正比(u=ump)。

17、质量衰减系数:表示单位重量物质对X射线强度衰减程度。当物质状态发生改变时,它保持不变。(um)

18、吸收限:物质对电磁辐射的吸收随辐射波长的减小而减小,当波长减小至某一限度时质量衰减系数骤增,此时的波长称为吸收限。(吸收限为X射线性状的特殊标识,并与原子的能级的精细结构一一对应。)19、点阵:从晶体结构抽象出来的,描述结构基元空间分布周期性的几何点,总体称为晶体的空间点阵。空间点阵是从晶体结构中抽象出来的几何图形,它反映了晶体结构中最基本的几何特征,不能脱离晶体的结构而单独存在。(空间点阵+结构基元=晶体结构。)

20、阵点:空间点阵中的几何点。21阵胞:在空间点阵中按照一定得方式选取一个平行六面体,作为空间点阵的基本单元称为阵胞,它是空间点阵几何形象的代表。

22简单阵胞:只在顶点上有阵点的阵胞

23点阵参数:用来描述阵胞的形状和大小的,相交于某一个点的三个棱边上的点阵周期a,b,c以及他们之间的夹角αβγ。

形式,它的许多性质与晶体点阵存在倒易关系。

那条直线称为晶带轴,晶带轴的晶向指数即为该近代的指数。

这个关系叫做晶带定律。

面,它们所遵循的条件是Hu+Kv+Lw=N ,称上式为广义晶带定律

强,发生反射,X 射线的这种反射称为选择反射。

32.干涉面:把(hkl )晶面n 级反射成为与(hkl )晶面平行,面间距为HKL d =hkl d n 1的晶面的一级反射。面间距为HKL d 的晶面并不一定是晶体中的原子面,而是为了简化布拉格方程所引入的反射面,这样的反射面称为干涉面。 33.干涉指数:干涉面的面指数称为干涉指数。干涉指数互为质数时,它就代表一组真实的晶面。

34.晶面指数和晶向指数:在晶体学中阵点平面和阵点直线的空间取向分别用晶面指数和晶向指数来表示。

35.布拉格定律:当满足衍射条件时,衍射矢量的方向就是衍射晶面的法线方向,衍射矢量的长度与反射晶面族面间距的倒数成比例而λ相当于比例系数。

36..反射球:在厄瓦尔德图解中,以矢量0s /λ的起端为中心,从1/λ为半径所画的一个球。

37.原子散射因子:f ,表征一个原子散射和一个电子散射之间的对应关系,(即一个原子的相干散射强度为e a I f I 2 ,f 称为原子散射因子)f=e a

A A 射波振幅一个电子散射的相干散射波振幅一个原子散射的相干散

38.原子的反常散射:当入射波长接近某一吸收限,如k 时,原子散射因子f 的值就会出现明显的波动,这种现象称为原子的反常散射。

39.结构因子:用来表征单胞的相干散射与单电子散射之间的对应关系的参量:

e b

A A 射振幅一个电子散射的相干散射的相干散射振幅一个单胞内所有原子散HKL F

它是倒空间的衍射强度分布函数。

40.系统消光:由于结构因子0F HKL 而使衍射线消失的现象成为系统消光(包括点阵消光和结构消光)

结构在b 轴方向有滑移面n 存在,则hol 类衍射中,h+l=奇数的衍射将系统消失,这类消光称为结构消光。

随各晶粒也呈任意分布。故其倒易矢量的方向在倒易空间中也是任意分布的,因其数目为无限,则这些晶面对于的倒易点就均匀地分布在以1/d HKL 为半径的球面上,此球称为倒易球。

45.洛伦茨因子: 在角因子职工由具体的衍射几何引力的一个与角度有关的式子。 46.角因子:洛伦茨因子和偏振因子之积称为角因子。

47温度因子:为了校正原子热振动对衍射强度的影响而在积分强度公式中乘上一个与温度有关的因子e -2m 48吸收因子:为了校正试样吸收对衍射线强度的影响而在积分强度公式中乘上一个因子A ( θ )它表示试样吸收对衍射强度影响的百分数。

消光效应:由于晶面多次反射和入射线与反射线的相干作用对入射线强度的衰减称为消光效应。

50初级消光:x 射线与物质相互作用产生的二次反射波的方向与入射波方向相同,但它们之间存在着半波相

位差,因此,二次反射波消减入射波的振幅,使入射波的强度衰减,这种消光效应称为初级消光,(入射线通过的晶面越多,初级消光越显著,并且初级消光只能在镶嵌块内产生.

51.次级消光;各镶嵌块之间均有很小的取向角差,在这许多镶嵌块中总会有一些取向相同的,单这些同向的镶嵌块处于反射位置时,则入射线强度每通过一个处于反射位置的镶嵌块就会有一部分能量被反射,从而使入射线强度衰减,这种消光效应称为次级消光.

52.理想不完整晶体;既不存在初级消光也不存在次级消光的晶体称为理想不完整晶体.

53.运动学理论;在理想不完整晶体的基础上发展起来的衍射强度理论称为运动学理论.

54.动力学理论;在理想完整晶体的基础上发展起来的衍射强度理论称为动力学理论.

55.劳厄法;用连续x射线投射到不动的单晶体试样上产生衍射的一种试验方法.

56.衍射圆锥;在厄瓦尔德图解中,反射球与倒易球相交,其交线为一系列垂直于x射线的圆.从反射球中心向这些圆周连线组成数个从x射线为公共轴的共顶圆锥.圆锥的母线就是衍射线的方向,锥顶角等于4!!!,这样的圆锥称为衍射圆锥.

57.前反射区;衍射角2 小于90°的衍射范围称为前反射区.

58.背反射区;衍射角2 大于90°的衍射范围称背反射区/

59.指数化;衍射花样的指数化就是确定每个衍射圆环所对应的干涉指数HKL,这是测定晶体结构的重要程序之一.

60.衍射仪的基本组成;x射线发生器,衍射测角仪,辐射探测器,测量电路以及控制操作和运行软件的电子计算系统

61.测角仪平面:X射线管焦点F和接受光阑G位于同一圆周上,把这个圆周测角仪圆,该圆所在的平面称为测角仪平面

62.PDF卡片:以D——I数据组代替衍射花样而制备的衍射数据卡片

63.织构圆锥:如果通过某个与织构成一定角度的(HKL)反射面来描述丝织构时,则该反射面的倒易矢量R与织构轴承固定的取向关系,其夹角为P,由于丝织构具有轴对称特性,因此就形成了以2P为锥定焦,R 为母线和以织构轴为中心轴的对顶织构圆锥。

衍射指数或干涉指数。

从而形成歪晶。但是,无论晶体形态上如何变化,同种晶体间,对应晶面夹角恒等。这就是面角守恒定律。

X射线强度的衰减程度,当物质的状态发生改变时,它保持不变。69X射线标识谱:在连续谱的基础上增加若干条具有一定波长的谱线,也称单色X射线。

70X射线连续谱:具有连续性波长的X射线,也称多色X射线。

71标准投影:在做晶体的极射赤面投影时,我们选择某个对称性明显的低指数晶面,将晶体中各个晶面的极点都投影到所选择的投影面上去。

图像特征提取方法

图像特征提取方法 摘要 特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 至今为止特征没有万能和精确的图像特征定义。特征的精确定义往往由问题或者应用类型决定。特征是一个数字图像中“有趣”的部分,它是许多计算机图像分析算法的起点。因此一个算法是否成功往往由它使用和定义的特征决定。因此特征提取最重要的一个特性是“可重复性”:同一场景的不同图像所提取的特征应该是相同的。 特征提取是图象处理中的一个初级运算,也就是说它是对一个图像进行的第一个运算处理。它检查每个像素来确定该像素是否代表一个特征。假如它是一个更大的算法的一部分,那么这个算法一般只检查图像的特征区域。作为特征提取的一个前提运算,输入图像一般通过高斯模糊核在尺度空间中被平滑。此后通过局部导数运算来计算图像的一个或多个特征。 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。当光差图像时,常 常看到的是连续的纹理与灰度级相似的区域,他们相结合形成物体。但如果物体的尺寸很小 或者对比度不高,通常要采用较高的分辨率观察:如果物体的尺寸很大或对比度很强,只需 要降低分辨率。如果物体尺寸有大有小,或对比有强有弱的情况下同事存在,这时提取图像 的特征对进行图像研究有优势。 常用的特征提取方法有:Fourier变换法、窗口Fourier变换(Gabor)、小波变换法、最 小二乘法、边界方向直方图法、基于Tamura纹理特征的纹理特征提取等。

设计内容 课程设计的内容与要求(包括原始数据、技术参数、条件、设计要求等):一、课程设计的内容 本设计采用边界方向直方图法、基于PCA的图像数据特征提取、基于Tamura纹理特征的纹理特征提取、颜色直方图提取颜色特征等等四种方法设计。 (1)边界方向直方图法 由于单一特征不足以准确地描述图像特征,提出了一种结合颜色特征和边界方向特征的图像检索方法.针对传统颜色直方图中图像对所有像素具有相同重要性的问题进行了改进,提出了像素加权的改进颜色直方图方法;然后采用非分割图像的边界方向直方图方法提取图像的形状特征,该方法相对分割方法具有简单、有效等特点,并对图像的缩放、旋转以及视角具有不变性.为进一步提高图像检索的质量引入相关反馈机制,动态调整两幅图像相似度中颜色特征和方向特征的权值系数,并给出了相应的权值调整算法.实验结果表明,上述方法明显地优于其它方法.小波理论和几个其他课题相关。所有小波变换可以视为时域频域的形式,所以和调和分析相关。所有实际有用的离散小波变换使用包含有限脉冲响应滤波器的滤波器段(filterbank)。构成CWT的小波受海森堡的测不准原理制约,或者说,离散小波基可以在测不准原理的其他形式的上下文中考虑。 通过边缘检测,把图像分为边缘区域和非边缘区域,然后在边缘区域内进行边缘定位.根据局部区域内边缘的直线特性,求得小邻域内直线段的高精度位置;再根据边缘区域内边缘的全局直线特性,用线段的中点来拟合整个直线边缘,得到亚像素精度的图像边缘.在拟合的过程中,根据直线段转角的变化剔除了噪声点,提高了定位精度.并且,根据角度和距离区分出不同直线和它们的交点,给出了图像精确的矢量化结果 图像的边界是指其周围像素灰度有阶跃变化或屋顶变化的那些像素的集合,边界广泛的存在于物体和背 景之间、物体和物体之间,它是图像分割所依赖的重要特征.边界方向直方图具有尺度不变性,能够比较好的 描述图像的大体形状.边界直方图一般是通过边界算子提取边界,得到边界信息后,需要表征这些图像的边 界,对于每一个边界点,根据图像中该点的梯度方向计算出该边界点处法向量的方向角,将空间量化为M级, 计算每个边界点处法向量的方向角落在M级中的频率,这样便得到了边界方向直方图. 图像中像素的梯度向量可以表示为[ ( ,),),( ,),)] ,其中Gx( ,),),G ( ,),)可以用下面的

(完整版)图像特征特点及常用的特征提取与匹配方法

图像特征特点及常用的特征提取与匹配方法 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的特征提取与匹配方法 (1) 颜色直方图 其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间:RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2) 颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡 的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3) 颜色矩

图像特征特点及其常用的特征提取与匹配方法

图像特征特点及其常用的特征提取与匹配方法 [ 2006-9-22 15:53:00 | By: 天若有情 ] 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的特征提取与匹配方法 (1)颜色直方图 其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间:RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2)颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3)颜色矩 这种方法的数学基础在于:图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(m ean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。(4)颜色聚合向量 其核心思想是:将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。 (5)颜色相关图 二纹理特征 (一)特点:纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局

图像特征提取总结

图像常见xx方法简介 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一、颜色特征 (一)特点: 颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。 一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。 由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的xx与匹配方法 (1)颜色直方图 其优点在于: 它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于: 它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间: RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:

直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2)颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡的颜色空间(如HSV空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。 在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3)颜色矩 这种方法的数学基础在于: 图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(mean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。 (4)颜色聚合向量 其核心思想是: 将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。 (5)颜色相关图 二纹理特征 (一)特点: 纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行

时域和频域特征提取Matlab编程实例

第一章绪论 1.1 概述 机械信号是指机械系统在运行过程中各种随时间变化的动态信息,经各种测试仪器拾取并记录和存储下来的数据或图像。机械设备是工业生产的基础,而机械信号处理与分析技术则是工业发展的一个重要基础技术。 随着各行各业的快速发展和各种各样的应用需求,信号分析和处理技术在信号处理速度、分辨能力、功能范围以及特殊处理等方面将会不断进步,新的处理激素将会不断涌现。当前信号处理的发展主要表现在:1.新技术、新方法的出现;2.实时能力的进一步提高;3.高分辨率频谱分析方法的研究三方面。 信号处理的发展与应用是相辅相成的,工业方面应用的需求是信号处理发展的动力,而信号处理的发展反过来又拓展了它的应用领域。机械信号的分析与处理方法从早期模拟系统向着数字化方向发展。在几乎所有的机械工程领域中,它一直是一个重要的研究课题。 机械信号分析与处理技术正在不断发展,它已有可能帮助从事故障诊断和监测的专业技术人员从机器运行记录中提取和归纳机器运行的基本规律,并且充分利用当前的运行状态和对未来条件的了解与研究,综合分析和处理各种干扰因素可能造成的影响,预测机器在未来运行期间的状态和动态特性,为发展预知维修制度、延长大修期及科学地制定设备的更新和维护计划提供依据,从而更为有效地保证机器的稳定可靠运行,提高大型关键设备的利用率和效率。 机械信号处理是通过对测量信号进行某种加工变换,削弱机械信号中的无用的冗余信号,滤除混杂的噪声干扰,或者将信号变成便于识别的形式以便提取它的特征值等。机械信号处理的基本流程图如图1.1所示。 图1.1 机械信号处理的基本流程 本文主要就第三、第四步骤展开讨论。

音乐特征提取

声音媒体是除视觉媒体外最重要的媒体,占有总信息量的20%左右,语音和音乐是最常见的声音媒体。对声音进行数字化处理得到的结果称为音频。声音其实是一种正弦波,故具有振幅、频率、相位等特性。但由于声音是我们所能感觉到的媒体,因此声音具有物理和心理两种属性,并且是相互关联的。物理属性与波形有关,包括声强、频率、声波复合、谐波结构等属性。心理属性则与我们的感觉有关,且因人而异,包括强度、音调、音色、音量、和谐等属性。在音频检索中,需要特征提取、音频分割、音频检索这几个关键技术。 特征提取 人耳听到的音频是连续模拟信号,而计算机只能处理数字化的信息,所以模拟连续音频信号要经过离散化即抽样后才变成计算机处理的采样离散点。在音频处理中,一般假定 音频信号特性在很短时间区间内变化是很缓慢的,所以在这个变化缓慢的时间内所提取的音频特征保持稳定。这样,对音频信号进行处理的一个基本概念就是将离散音频信号分成 一定长度单位进行处理,即将离散音频采样点分成一个个音频帧。这种方法就是音频信号“短时”处理方法,一般一个“短时”音频帧持续时间长度约为几到几十微秒。假设用x =(x(1),?x(n),?,x(K))表示一段连续音频信号流x 采样后的离散音频信号,这意味着从此连续音频信号中得到了K 个采样数据,其中x(n)是时刻n(1SnSk)得到的数据。在“短时”处理时候,假设将这K 个数据分成L组,每一组就是一帧,每一帧包含[K/ L]个采样点。如果从每一帧的[K/ L]个采样点可以提取nfeature 个特征,最后得到L*nfeature 个特征就构成了音频数据x 的特征,这些特征被用来对音频数据流x 进行分割、识别与检索。 频域特征提取 音频频域特征有多种,常用的有线性预测倒谱系数(LinearPredictive Cepstrum Coefficient,LPCC)或Mel频率倒谱系数。通常MFCC参数更符合人耳的听觉特性,在有信道噪声和频谱失真情况下,能产生更高的识别精度嗍。MFCC在语音领域中得到广泛的应用。它是音频数据经z变换和对数处理后得出的结果,一般每段数据取12个系数,可以较好地表现每帧的特征。MFCC将人耳的听觉系统和语音的产生系统相结合,在~定程度上模拟了人耳对声音的处理特点,具有很好的识别效果。其处理过程如图I所示:(1)将每帧音频信号进行傅氏变换得其频谱;(2)用Mel滤波器组在频域进行带通滤波,并对每个频带的能量叠加得到频谱能量算(J});(3)将滤波器组的输出 能量取对数,然后做离散余弦变换,即得到MFCC特征由于MFCC是从每个短时音频帧中提取出来的,它们主要反映的是音频在很短时内的静态特征,音频信号的动态特征可以用这些静念特征的差分来描述,把前后相邻帧的MFCC特征相减,就得到一阶差分MFCC系数。它可以反映这个音频的动态特征。把这些动态特征和静态特征一起组成音频的特征向 量,能够相互弥补,很大程度可以提高改善系统的识别性能。本文采用的就是把12维MFCC 系数及2维一阶差分MFCC系数共同作为音频的频域特征。

相关主题
相关文档
最新文档