simulink通信系统建模与仿真

simulink通信系统建模与仿真
simulink通信系统建模与仿真

通信系统建模与仿真课程设计

2008 级通信工程专业0813072 班级

题目基于SIMULINK的2ASK频带传输系统的仿真姓名李春艳学号081307211 指导教师胡娟闫利超贾晓兰

2011年6月1日

1 任务书

试建立一个ASK 频带传输模型,产生一段随机的二进制非归零码的基带信号,对其进行ASK 调制后再送入加性高斯白噪声(AWGN )信道传输,在接收端对其进行ASK 解调以恢复原信号,观察还原是否成功,改变AWGN 信道的信噪比,计算传输前后的误码率,绘制信噪比-误码率曲线,并与理论曲线比较进行说明。另外,对发送信号和接收信号的功率谱进行估计。

2 二进制振幅键控(2ASK )的理论分析

2.1 2ASK 调制原理

振幅键控是正弦载波的幅度随数字基带信号而变化的数字调制。当数字基带信号为二进制时,则为二进制振幅键控。 设发送的二进制符号序列由0、1序列组成,发送0符号的概率为P ,发送1符号的概率为1-P ,且相互独立。该二进

wct

nTs t ang wct t s t sASK cos ])([cos )()(∑-==

制符号序列可表示为 其中:

??

?=10an 0是以概率p 出现,而1是以概率1-p 出现。

二进制振幅键控信号时间波型如图1 所示。 由图1 可以看出,2ASK 信号的时间波形e2ASK(t)随二进制基带信号s(t)通断变化,所以又称为通断键控信号(OOK 信号)。 二进制振幅键控信号的产生方法如图2 所示,图(a)是采用模拟相乘的方法实现, 图(b)是采用数字键控的方法实现。

由图1 可以看出,2ASK 信号与模拟调制中的AM 信号类似。所以,对2ASK 信号也能够采用非相干解调(包络检波法)和相干解调(同步检测法),其相应原理方框图如图3 所示。2ASK 信号非相干解调过程的时间波形如图4 所示。

图2-1 二进制振幅键控信号时间波型

2ASK 信号的功率谱密度

由于二进制的随机脉冲序列是一个随机过程,?所以调制后的二进制数字信号也是一个随机过程,因此在频率域中只能用功率谱密度表示。2ASK 信号功率谱密度的特点如下:(1)由连续谱和离散谱两部分构成,连续谱由信号g(t)经线性调制后决定,离散谱由载波分量决定;(2)已调信号波形的带宽是基带脉冲波形带宽的二倍。2ASK 信号功率谱密度推导:

已知t nT t g a t e c S n n ωcos )()(0???

???-=∑t t s c ωc o s )(=,设)(0t e 的功率谱为

)(f P e ,s(t)的功率谱为)(f P s 。

[])()(4

1

)(fc f Ps fc f Ps f P e -++=

2

)()1()(f G P P f f P s s -=2)1(P f s -+

∑m s

mf G )()(s mf f -δ,s

fT j s s s e fT fT T f G πππ-???

? ??=sin )(。 ???

???

?

?--+

++=2

2

)()(sin )()(sin 16)(s c s c s

c s

c s e T f f T f f T f f T f f T f P ππππ[])()(16

1

c c f f f f -+++δδ

图2-2 2ASK信号的功率谱密度示意图

在二进制数字振幅调制中,载波的幅度随着调制信号的变化而变化,实现这种调制的方式有两种:(1)模拟相乘法:通过相乘器直接将载波和数字信号相乘得到输出信号,这种直接利用二进制数字信号的振幅来调制正弦载波的方式称为模拟相乘法,其电路如图2-3所示。在该电路中载波信号和二进制数字信号同时输入到相乘器中完成调制。(2)数字键控法:用开关电路控制输出调制信号,当开关接载波就有信号输出,当开关接地就没信号输出,其电路如图2-4所示。

图2-3模拟相乘法图2-4数字键控法

2.2 2ASK解调原理

2ASK/OOK信号有两种基本的解调方法:非相干解调(包络检波法)和相干解调(同步检测法),相应的接收系统如图2-5、图2-6所示。

图2-5非相干解调方式

图2-6 相干解调方式

抽样判决器的作用是:信号经过抽样判决器,即可确定接收码元是“1”还是“0”。假设抽样判决门限为b ,当信号抽样值大于b 时,判为“1”码;信号抽样值小于b 时,判为“0”码。当本实验为简化设计电路,在调制的输出端没有加带通滤波器,并且假设信道时理想的,所以在解调部分也没有加带通滤波器。

图2-7 2ASK 信号非相干解调过程的时间波形

1

1

1

0101

a

b

c

d

32ASK频带系统设计方案

信源选择伯弄利发生器产生二进制码,经过频率转换器转换成需要频率。

产生信源的模块如上图所示,及产生的二进制码如上图所示。

调制方式选择模拟相乘法进行调制。

解调方式选择相关解调方式包络检波两种解调方式。两种解调方式形成对比,比较那种误码率较低。

信道按要求选择AWGN高斯白噪声信道。

抽样判决器选择选择Relay.

4SIMULINK下2ASK系统的设计

<1> 伯努利二进制发生器模块ernoulli Binary Generator的参数设置为:Probability of a zero 0概率设为0.5,initial seed设为61,Sample time抽样时间为1S,Sample per frame是输入信息码为1。

图3-5 伯努利二进制发生器模块参数设置

<2>调制过程:

调制过程的模块图如下图所示:

调制过程包含信源(波弄利发生器和频率转换器)、载波(信号发生器)乘法器。伯弄利二进制发生器模块的参数设置如下图:零的概率为0.5,采样时间设置为0.1,

,

载波是运用信号发生器来产生的:

波形设置为:sine波形,时间默认,幅值设置为2,频率选择为100HZ,

截图如下:

调制的波形如上图所示:第一栏为为信源,第二栏为调制之后的波形,第三栏为载波波形。

<3> 解调过程;

运用了两种解调方法:相干解调和包络解调。相干解调主要有相乘器,低通滤波器和载波。载波要与调制时的载波频率相同。

包络解调有saturation作为整流器,低通滤波器与相干解调的低通滤波器的设

置相同,

低通滤波器的参数设置如下。

整流器(saturation)的参数设置如下图:上限值设置为1,下限值设置为0

<4> 信道:包含零阶转换器、加性高斯白噪声,带通滤波器

零阶转换器的设置如下图所示:采样时间设置为0.0001

加性高斯白噪声的设置:信噪比设置为20,采样时间设置为0.001

带通滤波器的设置如下图所示:

<5> 抽样判决器:

抽样判决器的参数设置如下图所示:

<6> ASK信号调制与解调整体图形如下图所示:

5仿真结果分析

上图为信号经过频率转换器之后的波形。

下图为信源与载波经过乘法器相乘之后的结果,及调制之后的波形。由上面的理论可得,载波与1相乘有波形,与0相乘为0.

下图为信号波形进过加性高斯白噪声并且经过带通的波形。噪声对信号有影响,使得波形产生毛刺。

上图是经过相干解调和包络解调之后并且与源码元对比的图。第一栏为相干解调波形,第二栏是包络解调波形,第三栏是源码元的波形。

下图分别是发送设备和接受设备的功率谱图,有图可得,在发送和接受端功率谱不变。

理想信噪比-误码率曲线和实际中的信噪比-误码率曲线的对比

clear all;

a=0.01;

SNR_dB=0:0.3:20;

SNR1=[0,1,2,3,4,5,6,7,8,9,10,15,19,25,30];

ask_pe1[0.2889,0.2601,0.2599,0.2593,0.2588,0.2599,0.2578,0.2583,0.258 3,0.2578,0.2583,0.2583,0.2593,0.2583,0.2583];

SNR=10.^(SNR_dB./10);

SNR2=a.^2./(2*SNR);

for i=1:length(SNR_dB)

ask_pe0=0.5*erfc(sqrt(a.^2./(8*SNR2)));

end

semilogy(SNR_dB,ask_pe0,'r');

hold on;

semilogy(SNR_dB,ask_pe1,'b');

hold on;

legend(' àí??2ASK','êμ?ê2ASK');

axis([-6,20,1/1e7,1]);

xlabel('SNR_dB');

ylabel('Pe');

6遇到的问题及解决的方法

1、载波波形为一条直线。

解决办法:是应为系统采样时间太长了,及频率太小了。将采样时间设置为1e-5,输出波形即为正弦波。

2、加入加性高斯白噪声时系统出错。

解决办法:在加性高斯白噪声两边分别加入零阶转换器。使得输入加性高斯白噪声信道的信号为离散的。

3、在解调时没有加噪声出现误码率。

解答办法:出现误码数据时,可以根据示波器的输出波形,合理修改误码器中的receive delay的数据就可以使误码数据为零。

4、示波器中的波形只出现一部分。

解决办法:双击示波器,修改data history中的limit data points to last的数据,

再重新运行Simulink观察示波器即可看到准确图形。

5、解调波形时无失真,但解码后波形严重失真。

解决办法:这是由于信号经过低通滤波器后会产生时延,而本次课程设计中信号是以帧的形式进行传输,因而在解调输出端若直接使用解调信号,将会产生严重失真。因而,要在解调输出端加入延时模块,使其延时的比特数恰好等于一帧所含的比特数。系统的时延可从解调信号的波形图中看出,加入的模块数等于一帧所含的比特数减去系统时延的比特数。

7结束语

本次课程设计,我的任务是用Simulink来实现2ASK调制解调系统。开始我对2ASK和Simulink了解特别少,通过查阅相关资料,我熟悉了2ASK调制解调原理,弄懂了2ASK与Simulink的关系,加深了对通信原理的认识。经过几天忙碌的课程设计我体会到了很多。

因为我们以后会经常用到系统仿真来设计我们所需的通信系统,需要从仿真结果检验出我们所设计的系统是否达到目标,从中及时发现并解决设计问题,不断地改进和优化方案,这样可以提高效率,节约投资,缩短开发设计时间。因此,了解和掌握通信系统仿真对于通信专业学生而言尤其重要。

这次课程设计使得我了解了自己,通过这次的课程设计,我知道我没耐心,在仿真过程中会经常出错,出几次就急了。为了克服这个缺点。我反复的做了几遍这次的设计。为此从未通宵的我,花了整整一个晚上。知道这不是好习惯,但是心里还是小有成就感的。

8指导教师评语

通信系统建模与仿真课程设计

通信系统建模与仿真课程设计2011 级通信工程专业1113071 班级 题目基于SIMULINK的基带传输系统的仿真姓名学号 指导教师胡娟 2014年6月27日

1任务书 试建立一个基带传输模型,采用曼彻斯特码作为基带信号,发送滤波器为平方根升余弦滤波器,滚降系数为0.5,信道为加性高斯信道,接收滤波器与发送滤波器相匹配。发送数据率为1000bps,要求观察接收信号眼图,并设计接收机采样判决部分,对比发送数据与恢复数据波形,并统计误码率。另外,对发送信号和接收信号的功率谱进行估计。假设接收定时恢复是理想的。 2基带系统的理论分析 1.基带系统传输模型和工作原理 数字基带传输系统的基本组成框图如图1 所示,它通常由脉冲形成器、发送滤波器、信道、接收滤波器、抽样判决器与码元再生器组成。系统工作过程及各部分作用如下。 g T(t) n 定时信号 图 1 :数字基带传输系统方框图 发送滤波器进一步将输入的矩形脉冲序列变换成适合信道传输的波形g T(t)。这是因为矩形波含有丰富的高频成分,若直接送入信道传输,容易产生失真。 基带传输系统的信道通常采用电缆、架空明线等。信道既传送信号,同时又因存在噪声n(t)和频率特性不理想而对数字信号造成损害,使得接收端得到的波形g R(t)与发送的波形g T(t)具有较大差异。 接收滤波器是收端为了减小信道特性不理想和噪声对信号传输的影响而设置的。其主要作用是滤除带外噪声并对已接收的波形均衡,以便抽样判决器正确判决。 抽样判决器首先对接收滤波器输出的信号y(t)在规定的时刻(由定时脉冲cp控制)进行抽样,获得抽样信号{r n},然后对抽样值进行判决,以确定各码元是“1”码还是“0”码。 2.基带系统设计中的码间干扰和噪声干扰以及解决方案

开关电源《基于MatlabSimulink的BOOST电路仿真》

基于Matlab/Simulink 的BOOST电路仿真 姓名: 学号: 班级: 时间:2010年12月7日

1引言 BOOST 电路又称为升压型电路, 是一种直流- 直流变换电路, 其电路结构如图1 所示。此电路在开关电源领域内占有非常重要的地位, 长期以来广泛的应用于各种电源设备的设计中。对它工作过程的理解掌握关系到对整个开关电源领域各种电路工作过程的理解, 然而现有的书本上仅仅给出电路在理想情况下稳态工作过程的分析, 而没有提及电路从启动到稳定之间暂态的工作过程, 不利于读者理解电路的整个工作过程和升压原理。采用matlab仿真分析方法, 可直观、详细的描述BOOST 电路由启动到达稳态的工作过程, 并对其中各种现象进行细致深入的分析, 便于我们真正掌握BOO ST 电路的工作特性。 图1BOO ST 电路的结构 2电路的工作状态 BOO ST 电路的工作模式分为电感电流连续工作模式和电感电流断续工作模式。其中电流连续模式的电路工作状态如图2 (a) 和图2 (b) 所示, 电流断续模式的电路工作状态如图2 (a)、(b)、(c) 所示, 两种工作模式的前两个工作状态相同, 电流断续型模式比电流连续型模式多出一个电感电流为零的工作状态。 (a) 开关状态1 (S 闭合) (b) 开关状态2 (S 关断) (c) 开关状态3 (电感电流为零) 图2BOO ST 电路的工作状态

3matlab仿真分析 matlab 是一种功能强大的仿真软件, 它可以进行各种各样的模拟电路和数字电路仿真,并给出波形输出和数据输出, 无论对哪种器件和哪种电路进行仿真, 均可以得到精确的仿真结果。本文应用基于matlab软件对BOO ST 电路仿真, 仿真图如图3 所示,其中IGBT作为开关, 以脉冲发生器脉冲周期T=0.2ms,脉冲宽度为50%的通断来仿真图2 中开关S的通断过程。 图3BOO ST 电路的PSp ice 模型 3.1电路工作原理 在电路中IGBT导通时,电流由E经升压电感L和V形成回路,电感L储能;当IGBT关断时,电感产生的反电动势和直流电源电压方向相同互相叠加,从而在负载侧得到高于电源的电压,二极管的作用是阻断IGBT导通是,电容的放电回路。调节开关器件V的通断周期,可以调整负载侧输出电流和电压的大小。负载侧输出电压的平均值为: (3-1) 式(3-1)中T为开关周期, 为导通时间,为关断时间。

通信系统建模与仿真

《电子信息系统仿真》课程设计 级电子信息工程专业班级 题目FM调制解调系统设计与仿真 姓名学号 指导教师胡娟 二О一年月日

内容摘要 频率调制(FM)通常应用通信系统中。FM广泛应用于高保真音乐广播、电视伴音信号的传输、卫星通信和蜂窝电话系统等。 FM调制解调系统设计是对模拟通信系统主要原理和技术进行研究,理解FM系统调制解调的基本过程和相关知识,利用MATLAB集成环境下的M文件,编写程序来实现FM调制与解调过程,并分别绘制出基带信号,载波信号,已调信号的时域波形;再进一步分别绘制出对已调信号叠加噪声后信号,非相干解调后信号和解调基带信号的时域波形;最后绘出FM基带信号通过上述信道和调制和解调系统后的误码率与信噪比的关系,并通过与理论结果波形对比来分析该仿真调制与解调系统的正确性及噪声对信号解调的影响。在课程设计中,系统开发平台为Windows XP,使用工具软件为 7.0。在该平台运行程序完成了对FM调制和解调以及对叠加噪声后解调结果的观察。通过该课程设计,达到了实现FM信号通过噪声信道,调制和解调系统的仿真目的。了解FM调制解调系统的优点和缺点,对以后实际需要有很好的理论基础。 关键词 FM;解调;调制;M ATL AB仿真;抗噪性

一、M ATLAB软件简介 MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。其特点是: (1) 可扩展性:Matlab最重要的特点是易于扩展,它允许用户自行建立指定功能的M文件。对于一个从事特定领域的工程师来说,不仅可利用Matlab所提供的函数及基本工具箱函数,还可方便地构造出专用的函数。从而大大扩展了其应用范围。当前支持Matlab的商用Toolbox(工具箱)有数百种之多。而由个人开发的Toolbox则不可计数。 (2) 易学易用性:Matlab不需要用户有高深的数学知识和程序设计能力,不需要用户深刻了解算法及编程技巧。 (3) 高效性:Matlab语句功能十分强大,一条语句可完成十分复杂的任务。如fft语句可完成对指定数据的快速傅里叶变换,这相当于上百条C语言语句的功能。它大大加快了工程技术人员从事软件开发的效率。据MathWorks公司声称,Matlab软件中所包含的Matlab 源代码相当于70万行C代码。

模拟通信系统与数字通信系统的设计与仿真分析解析

广西科技大学 课程设计说明书 课题名称:模拟通信系统与数字通信系统的设计与仿真 院(系):计算机科学与通信工程学院 专业:通信工程 班级:121班 学生姓名:王永源 学号: 201200402016 指导教师:陈艳 2015年1月20日

目录 第一章课程设计的任务说明 (1) 1.1课程设计目的 (1) 1.2课程设计要求 (1) 第二章 MATLAB/SIMULINK简介 (3) 第三章设计原理 (5) 3.1通信系统设计一般模型 (5) 3.2模拟通信系统 (5) 3.3数字通信系统 (5) 第四章 DSB的基本原理与实现 (6) 4.1 DSB信号的模型 (6) 4.2 DSB信号调制过程分析 (7) 第五章 PCM的基本原理与实现 (8) 5.1 PCM原理 (8) 5.2 PCM编码介绍 (8) 5.3 PCM编码电路设计 (12) 第六章 2ASK的基本原理及实现 (16) 6.2 ASK调制基本原理 (16) 6.2 2ASK的产生 (16) 6.3 2ASK解调 (17) 6.4 2ASK功率谱及带宽 (18) 第七章 Smulink的模型建立和仿真 (19) 7.1 模拟通信系统仿真图 (19) 7.2 数字通信系统仿真图 (22) 7.3 模拟通信系统仿真效果图 (23) 7.4 数字通信系统仿真效果图 (26) 第八章结束语 (27) 参考文献 (28)

第一章课程设计任务说明 1.1课程设计的目的 (1)通过利用matlab simulink,熟悉matlab simulink仿真工具。 (2)通过课程设计来更好的掌握课本相关知识,熟悉模拟DSB、SSB、VSB和数字2ASK、2FSK、2PSK、2DPSK的调制与解调方法。 (3)通过实验掌握模拟信号转换为数字信号的方法和步骤。 (4)更好的了解通信原理的相关知识,磨练自己分析问题、查阅资料、巩固知识、创新等各方面能力。 1.2 课程设计的要求 1.2.1模拟信号通信系统 (1)输入:输入模拟信号(例如正弦型单音频信号等),给出其时域波形和功率谱密度。 (2)调制:对输入的模拟信号进行DSB、SSB、PM(三选一)调制;给出调制后信号的时域波形和功率谱密度。 (3)信道:假定信道属于加性高斯信道,或自行设计。 (4)解调: DSB、SSB、PM(与所选调制方式相对应)解调,仿真获得该系统的输出波形,并得到该模拟传输系统的性能指标,即该系统的输出信噪比随输入信噪比的变化曲线。 图1-1 模拟信号调制解调模型图 1.2.2数字信号通信系统 (1)输入:首先输入模拟信号,给出此模拟信号的时域波形。 (2)数字化:将模拟信号进行数字化,得到数字信号,可以选择PCM编码。

通信系统建模与仿真课程设计

1 任务书 试建立一个基带传输模型,采用曼彻斯特码作为基带信号, 发送滤波器为平方根升余弦滤波器,滚降系数为0.5,信道为加性高 斯信道,接收滤波器与发送滤波器相匹配。发送数据率为1000bps , 要求观察接收信号眼图,并设计接收机采样判决部分,对比发送数据 与恢复数据波形,并统计误码率。另外,对发送信号和接收信号的功 率谱进行估计。假设接收定时恢复是理想的。 2 基带系统的理论分析 2.1基带系统传输模型及工作原理 基带系统传输模型如图1所示。 发送滤波器 传送信道 接收滤波器 {an} n(t) 图1 基带系统传输模型 1)系统总的传输特性为(w)()()()H GT w C w GR w ,n (t )是信道中 的噪声。 2)基带系统的工作原理:信源是不经过调制解调的数字基带信号, 信源在发送端经过发送滤波器形成适合信道传输的码型,经过含有加

性噪声的有线信道后,在接收端通过接收滤波器的滤波去噪,由抽样 判决器进一步去噪恢复基带信号,从而完成基带信号的传输。 2.2 基带系统设计中的码间干扰及噪声干扰 码间干扰及噪声干扰将造成基带系统传输误码率的提升,影响基 带系统工作性能。 1)码间干扰及解决方案 a ) 码间干扰:由于基带信号受信道传输时延的影响,信号波形 将被延迟从而扩展到下一码元,形成码间干扰,造成系统误码。 b) 解决方案: ① 要求基带系统的传输函数H(ω)满足奈奎斯特第一准则: 2(),||i i H w Ts w Ts Ts ππ+ =≤∑ 不出现码间干扰的条件:当码元间隔T 的数字信号在某一理想低通 信道中传输时,若信号的传输速率位Rb=2fc (fc 为理想低通截止频 率),各码元的间隔T=1/2fc ,则此时在码元响应的最大值处将不 产生码间干扰。传输数字信号所要求的信道带宽应是该信号传输速 率的一半:BW=fc=Rb/2=1/2T ② 基带系统的系统函数H(ω)应具有升余弦滚降特性。 如图2所示:滚降系数:a=[(fc+fa)-fc]/fc

MATLAB Simulink系统建模与仿真 实验报告

MATLAB/Simulink 电力系统建模与仿真 实验报告 姓名:****** 专业:电气工程及其自动化 班级:******************* 学号:*******************

实验一无穷大功率电源供电系统三相短路仿真 1.1 无穷大功率电源供电系统仿真模型构建 运行MATLAB软件,点击Simulink模型构建,根据电路原理图,添加下列模块: (1)无穷大功率电源模块(Three-phase source) (2)三相并联RLC负荷模块(Three-Phase Parallel RLC Load) (3)三相串联RLC支路模块(Three-Phase Series RLC Branch) (4)三相双绕组变压器模块(Three-Phase Transformer (Two Windings)) (5)三相电压电流测量模块(Three-Phase V-I Measurement) (6)三相故障设置模块(Three-Phase Fault) (7)示波器模块(Scope) (8)电力系统图形用户界面(Powergui) 按电路原理图连接线路得到仿真图如下: 1.2 无穷大功率电源供电系统仿真参数设置 1.2.1 电源模块 设置三相电压110kV,相角0°,频率50Hz,接线方式为中性点接地的Y形接法,电源电阻0.00529Ω,电源电感0.000140H,参数设置如下图:

1.2.2 变压器模块 变压器模块参数采用标幺值设置,功率20MVA,频率50Hz,一次测采用Y型连接,一次测电压110kV,二次侧采用Y型连接,二次侧电压11kV,经过标幺值折算后的绕组电阻为0.0033,绕组漏感为0.052,励磁电阻为909.09,励磁电感为106.3,参数设置如下图: 1.2.3 输电线路模块 根据给定参数计算输电线路参数为:电阻8.5Ω,电感0.064L,参数设置如下图: 1.2.4 三相电压电流测量模块 此模块将在变压器低压侧测量得到的电压、电流信号转变成Simulink信号,相当于电压、电流互感器的作用,勾选“使用标签(Use a label)”以便于示波器观察波形,设置电压标签“Vabc”,电流标签“Iabc”,参数设置如下图:

基于MATLAB的通信系统的设计与仿真

基于MATLAB的通信系统的设计与仿真 摘要通信是通过某种媒体进行的信息传递,目的是传输信息,通信系统是用以完成信息传输过程的技术系统的总称,作用是将信息从信源发送到一个或多个目的地。调制与解调在信息的传输过程中占据着重要的地位,是不可或缺的,因此研究系统的调制和解调过程就极为重要。MATLAB是集数值计算、图形绘制、图像处理及系统仿真等强大功能于一体的科学计算语言,它强大的矩阵运算和图形可视化的功能以及丰富的工具箱,为通信系统的调制和解调过程的分析提供了极大的方便。 本论文首先介绍了通信系统的概念,进而引出调制和解调,然后介绍了我们常用的几种调制和解调的方法。由于MATLAB具有的强大功能所以详细介绍了MATLAB通信系统工具箱,并给出了基于MATLAB的通信系统的调制与解调的实现,运用MATLAB仿真软件进行仿真。 关键词通信系统;调制与解调;MA TLAB

Simulation And Design Of Communication Systems Based On MATLAB Abstract Communication is through a media for transportation. Communication system which is used to complete the process of information transmission systems ,in general, is to send the information from the source to one or more destinations. Modulation and demodulation occupied an important position in the transmission of information which is essential, so the research about the modulation and demodulation process in the communication system is extremely important. MATLAB is a numerical computation, graphics rendering, image processing and system simulation and other powerful features in one of the scientific computing language, it is a powerful matrix calculation and graphical visualization features and a rich toolbox provides a great convenience for the communication system of modulation and demodulation process. This paper introduces the concept of the communication system, and then leads to modulation and demodulation, and then introduced several of our commonly used method of modulation and demodulation. As the power of MATLAB so we introduced the communication system toolbox in the MATLAB. We gives several examples about the communication system based on MATLAB modulation and demodulation and use the software of MATLAB to simulate them. Keywords Communication Systems;Modulation and demodulation; MATLAB

通信系统的组成

通信系统的组成 1.2.1 通信系统的一般模型 实现信息传递所需的一切技术设备和传输媒质的总和称为通信系统。以基本的点对点通信为例,通信系统的组成(通常也称为一般模型)如图 1-1 所示。 图 1-1 通信系统的一 般模型 图中,信源(信息 源,也称发终端)的作 用是把待传输的消息转 换成原始电信号,如电 话系统中电话机可看成是信源。信源输出的信号称为基带信号。所谓基带信号是指没有经过调制(进行频谱搬移和变换)的原始电信号,其特点是信号频谱从零频附近开始,具有低通形式,。根据原始电信号的特征,基带信号可分为数字基带信号和模拟基带信号,相应地,信源也分为数字信源和模拟信源。 发送设备的基本功能是将信源和信道匹配起来,即将信源产生的原始电信号(基带信号)变换成适合在信道中传输的信号。变换方式是多种多样的,在需要频谱搬移的场合,调制是最常见的变换方式;对传输数字信号来说,发送设备又常常包含信源编码和信道编码等。 信道是指信号传输的通道,可以是有线的,也可以是无线的,甚至还可以包含某些设备。图中的噪声源,是信道中的所有噪声以及分散在通信系统中其它各处噪声的集合。 在接收端,接收设备的功能与发送设备相反,即进行解调、译码、解码等。它的任务是从带有干扰的接收信号中恢复出相应的原始电信号来。 信宿(也称受信者或收终端)是将复原的原始电信号转换成相应的消息,如电话机将对方传来的电信号还原成了声音。 图 1-1 给出的是通信系统的一般模型,按照信道中所传信号的形式不同,可进一步具体化为模拟通信系统和数字通信系统。 1.2.2 模拟通信系统 我们把信道中传输模拟信号的系统称为模拟通信系统。模拟通信系统的组成可由一般通信系统模型略加改变而成,如图 l-2 所示。这里,一般通信系统模型中的发送设备和接收设备分别为调制器、解调器所代替。 对于模拟通信系统,它主要 包含两种重要变换。一是把连续 消息变换成电信号(发端信息源 完成)和把电信号恢复成最初的 连续消息(收端信宿完成)。由 信源输出的电信号(基带信号) 由于它具有频率较低的频谱分 量,一般不能直接作为传输信号而送到信道中去。因此,模拟通信系统里常有第二种变换,即将基带信号转换成其适合信道传输的信号,这一变换由调制器完成;在收端同样需经相反的变换,它由解调器完成。经过调制后的信号通常称为已调信号。已调信号有三个基本特性:一是携带有消息,二是适合在信道中传输,三是频谱具有带通形式,且中心频率远离零频。因而已调信号又常称为频带信号。 必须指出,从消息的发送到消息的恢复,事实上并非仅有以上两种变换,通常在一个通信系统里可能还有滤波、放大、天线辐射与接收、控制等过程。对信号传输而言,由于上面

通信原理 数字频带通信系统的设计与仿真分析分析

目录 前言 (1) 1 数字频带通信系统原理 (2) 1.1 二进制振幅键控(2ASK) (2) 1.2 二进制频移键控(2FSK) (4) 1.3二进制相移键控(2PSK) (7) 1.4 正交相移键控(QPSK) (8) 2 Matlab/Simulink介绍 (11) 2.1 Matlab简介 (11) 2.2 Simulink简介 (11) 2.1.1 Simulink基本模块库 (11) 2.1.2 Simulink建模仿真的一般过程.................... 错误!未定义书签。 2.3 Simulink在通信仿真中的应用............................... 错误!未定义书签。3利用Simulink进行模型建立和系统仿真 (12) 3.1 2ASK的调制与解调仿真 (12) 3.1.1 建立模型方框图 (12) 3.1.2 参数设置 (12) 3.1.3系统仿真及各点波形图 (13) 3.1.4 误码率分析 (14) 3.2 2FSK的调制与解调仿真 (14) 3.2.1 建立模型方框图 (14) 3.2.2 参数设置 (15) 3.2.3系统仿真及各点波形图 (18) 3.3 2PSK的调制与解调仿真 (20) 3.3.1 建立模型方框图 (20) 3.3.2 参数设置 (20) 3.3.3系统仿真及各点波形图 (23) 3.4 QPSK的调制与解调仿真 (24) 3.4.1 建立模型方框图 (24) 3.4.2 参数设置 (25) 3.4.3系统仿真及各点波形图 (27) 总结 (29) 参考文献 (30)

前言 随着现代通信系统的飞速发展,计算机仿真已经成为分析和设计通信系统的主要工具,在通信系统的研发和教学中具有越来越重要的意义。在当代社会中,信息的交换日益频繁,随着通信技术和计算机技术的发展及它们的密切结合,通信能克服对空间和时间的限制,大量的、远距离的信息传递和存取已成为可能。展望未来,通信技术正在向数字化、智能化、综合化、宽带化、个人化方向迅速发展,各种新的电信业务也应运而生,正沿着信息服务多种领域广泛延伸。 Simulink是The MathWorks公司开发的用于动态系统和嵌入式系统的多领域仿真和基于模型的设计工具,常集成于MathWorks公司的另一产品MATLAB中与之配合使用。 Simulink提供了一个交互式的图形化环境及可定制模块库(Library),可对各种时变系统,例如通讯、控制、信号处理、视频处理和图像处理系统等进行设计、仿真、执行和测试。 本次课设在深刻理解通信系统理论的基础上,利用MATLAB提供的Simulink 建模和仿真原理,做出数字通信系统的基本模型,分别是ASK、FSK、PSK、QPSK,并且用Simulink来实现通信系统中各个部分的仿真,调制部分,解调部分等等,并且整合到一起,设置不同的参数,观察示波器的波形图并记录。通过对仿真结果进行分析,更深入地掌握数字调制系统的相关知识。

基于MATLAB的M文件仿真

M文件: k=1; Int_F=inline('t','t'); for x=[1,3,5] f_x(k)=x^3+x+log(x)*sin(x)+quad8(Int_F,0,x); k=k+1; end f_x >> Calcfx Warning: QUAD8 is obsolete. We use QUADL instead. > In quad8 at 35 In Calcfx at 4 f_x = 2.5000 34.6550 140.9567 M文件: function[mean,stdev]=stat(x) n=length(x); mean=sum(x)/n; stdev=sqrt(sum(x-mean).^2/n); >> x=[1,3,2]; >> [k,l]=stat(x) k = 2 l = 微积分方程组的MA TLAB函数: 文件funcforex123.m function xdot=funcforex123(t,x,flag,r,l,c) xdot=zeros(2,1); xdot(1)=-r/l*x(1)-1/l*x(2)+1/l*f(t); xdot(2)=1/c*x(1); function in=f(t) in=(t>0)*1; 文件Ex123.m l=1; c=0.1; for r=[1.5 3 5]

[t,x]=ode45('funcforex123',[-1,10],[0;0],[],r,l,c); figure(1);plot(t,x(:,1));hold on;xlabel('time sec'); text(0.9,0.17,'\lefttarrow i_L(t)');grid; figure(2);plot(t,x(:,2));hold on;xlabel('time sec'); text(0.5,0.3,'\leftarrow u_C(t)');grid; End >> ex123 Warning: Unable to interpret TeX string "\lefttarrow i_L(t)". > In ex123 at 5 Warning: Unable to interpret TeX string "\lefttarrow i_L(t)". > In ex123 at 7 Warning: Unable to interpret TeX string "\lefttarrow i_L(t)". > In ex123 at 7

2PSK通信系统设计与仿真

目录 1 技术要求 (1) 2 基本原理 (1) 2.1 2PSK调制的基本原理 (1) 2.2 SystemView原理介绍 (2) 2.3 SIMULINK原理简介 (3) 3 建立模型描述 (3) 3.1 方案一 (3) 3.2 方案二 (5) 4 模块功能分析或源程序代码 (6) 4.1 SIMULINK实现2PSK的调制与解调 (6) 4.2 SysteamView实现2PSK的调制与解调 (11) 5 调试过程及结论 (13) 5.1 使用SIMULINK实现的调制解调结果 (13) 5.2 使用SystemView实现的调制解调结果 (17) 5.3 结论 (22) 6 心得体会 (22) 7 参考文献 (23)

2PSK通信系统设计 1 技术要求 设计一个2PSK通信系统,要求: (1)设计出2PSK通信系统的结构; (2)根据通信原理,设计出各个模块的参数(例如码速率,滤波器的截止频率等); (3)用Matlab或SystemView 实现该数字通信系统; (4)观察仿真并进行波形分析; (5)系统的性能评价 2 基本原理 2.1 2PSK调制的基本原理 2PSK,二进制移相键控方式,是键控的载波相位按基带脉冲序列的规律而改变的一种数字调制方式。就是根据数字基带信号的两个电平(或符号)使载波相位在两个不同的数值之间切换的一种相位调制方法。两个载波相位通常相差180度,此时称为反向键控(PSK),也称为绝对相移方式。2PSK信号的解调,不再能采用包络检测的方法,只能进行相干解调。调制框图如图1、图2所示,解调框图如图3所示。 图1 模拟相乘法

Matlab通信系统建模与仿真例题源代码-第三章

% ch3example1A.m clear; f_p=2400; f_s=5000; R_p=3; R_s=25; % 设计要求指标 [n, fn]=buttord(f_p,f_s,R_p,R_s, 's'); % 计算阶数和截止频率 Wn=2*pi*fn; % 转换为角频率 [b,a]=butter(n, Wn, 's'); % 计算H(s) f=0:100:10000; % 计算频率点和频率范围 s=j*2*pi*f; % s=jw=j*2*pi*f H_s=polyval(b,s)./polyval(a,s); % 计算相应频率点处H(s)的值 figure(1); subplot(2,1,1); plot(f, 20*log10(abs(H_s))); % 幅频特性 axis([0 10000 -40 1]); xlabel('频率Hz');ylabel('幅度dB'); subplot(2,1,2); plot(f, angle(H_s)); % 相频特性 xlabel('频率Hz');ylabel('相角rad'); figure(2); freqs(b,a); % 也可用指令freqs直接画出H(s)的频率响应曲线。 % ch3example1B.m clear; f_p=2400; f_s=5000; R_p=3; R_s=25; % 设计要求指标 [n, fn]=ellipord(f_p,f_s,R_p,R_s,'s'); % 计算阶数和截止频率 Wn=2*pi*fn; % 转换为角频率 [b,a]=ellip(n,R_p,R_s,Wn,'s'); % 计算H(s) f=0:100:10000; % 计算频率点和频率范围 s=j*2*pi*f; % s=jw=j*2*pi*f H_s=polyval(b,s)./polyval(a,s); % 计算相应频率点处H(s)的值 figure(1); subplot(2,1,1); plot(f, 20*log10(abs(H_s))); % 幅频特性 axis([0 10000 -40 1]); xlabel('频率Hz');ylabel('幅度dB'); subplot(2,1,2); plot(f, angle(H_s)); % 相频特性 xlabel('频率Hz');ylabel('相角rad'); figure(2); freqs(b,a); % 也可用指令freqs直接画出H(s)的频率响应曲线。 % ch3example2A.m f_N=8000; % 采样率 f_p=2100; f_s=2500; R_p=3; R_s=25; % 设计要求指标 Ws=f_s/(f_N/2); Wp=f_p/(f_N/2); % 计算归一化频率 [n, Wn]=buttord(Wp,Ws,R_p,R_s); % 计算阶数和截止频率 [b,a]=butter(n, Wn); % 计算H(z) figure(1); freqz(b,a, 1000, 8000) % 作出H(z)的幅频相频图, freqz(b,a, 计算点数, 采样率)

基于SIMULINK的通信系统仿真毕业设计

题目基于SIMULINK的通信系统仿真 摘要 在模拟通信系统中,由模拟信源产生的携带信息的消息经过传感器转换成电信号,模拟基带信号在经过调制将低通频谱搬移到载波频率上适应信道,最终解调还原成电信号;在数字传输系统中,数字信号对高频载波进行调制,变为频带信号,通过信道传输,在接收端解调后恢复成数字信号。本文应用了幅度调制以及键控法产生调制与解调信号。 本论文中主要通过对SIMULINK工具箱的学习和使用,利用其丰富的模板以及本科对通信原理知识的掌握,完成了AM、DSB、SSB、2ASK、2FSK、2PSK三种模拟信号和三种数字信号的调制与解调,以及用SIMULINK进行设计和仿真。首先我进行了两种通信系统的建模以及不同信号系统的原理研究,然后将学习总结出的相应理论与SIMULINK中丰富的模块相结合实现仿真系统的建模,并且调整参数直到仿真波形输出,观察效果,最终对设计结论进行总结。 关键词通信系统调制 SIMULINK I

目录 1. 前言 (1) 1.1选题的意义和目的 (1) 1.2通信系统及其仿真技术 (2) 3. 现代通信系统的介绍 (3) 3.1通信系统的一般模型 (3) 3.2模拟通信系统模型和数字通信系统模型 (3) 3.2.1 模拟通信系统模型 (3) 3.2.2 数字通信系统模型 (4) 3.3模拟通信和数字通信的区别和优缺点 (5) 4. 通信系统的仿真原理及框图 (8) 4.1模拟通信系统的仿真原理 (8) 4.1.1 DSB信号的调制解调原理 ...................... 错误!未定义书签。 4.2数字通信系统的仿真原理 (9) 4.2.1 ASK信号的调制解调原理 (9) 5. 通信系统仿真结果及分析 (11) 5.1模拟通信系统结果分析 (11) 5.1.1 DSB模拟通信系统 (11) 5.2仿真结果框图 (11) 5.2.1 DSB模拟系统仿真结果 ........................ 错误!未定义书签。 5.3数字通信系统结果分析 (12) 5.3.1 ASK数字通信系统 (13) 5.4仿真结果框图 (13) 5.4.1 ASK数字系统仿真结果 (13) III

simulink通信系统建模与仿真

通信系统建模与仿真课程设计 2008 级通信工程专业0813072 班级 题目基于SIMULINK的2ASK频带传输系统的仿真姓名李春艳学号081307211 指导教师胡娟闫利超贾晓兰 2011年6月1日

1 任务书 试建立一个ASK 频带传输模型,产生一段随机的二进制非归零码的基带信号,对其进行ASK 调制后再送入加性高斯白噪声(AWGN )信道传输,在接收端对其进行ASK 解调以恢复原信号,观察还原是否成功,改变AWGN 信道的信噪比,计算传输前后的误码率,绘制信噪比-误码率曲线,并与理论曲线比较进行说明。另外,对发送信号和接收信号的功率谱进行估计。 2 二进制振幅键控(2ASK )的理论分析 2.1 2ASK 调制原理 振幅键控是正弦载波的幅度随数字基带信号而变化的数字调制。当数字基带信号为二进制时,则为二进制振幅键控。 设发送的二进制符号序列由0、1序列组成,发送0符号的概率为P ,发送1符号的概率为1-P ,且相互独立。该二进 wct nTs t ang wct t s t sASK cos ])([cos )()(∑-== 制符号序列可表示为 其中: ?? ?=10an 0是以概率p 出现,而1是以概率1-p 出现。 二进制振幅键控信号时间波型如图1 所示。 由图1 可以看出,2ASK 信号的时间波形e2ASK(t)随二进制基带信号s(t)通断变化,所以又称为通断键控信号(OOK 信号)。 二进制振幅键控信号的产生方法如图2 所示,图(a)是采用模拟相乘的方法实现, 图(b)是采用数字键控的方法实现。 由图1 可以看出,2ASK 信号与模拟调制中的AM 信号类似。所以,对2ASK 信号也能够采用非相干解调(包络检波法)和相干解调(同步检测法),其相应原理方框图如图3 所示。2ASK 信号非相干解调过程的时间波形如图4 所示。

基于Simulink的简单电力系统仿真

实验六 基于Simulink 的简单电力系统仿真 实验目的 1) 熟悉Simulink 的工作环境; 2) 掌握Simulink 电力系统工具箱的使用; 3) 掌握在Simulink 的工作环境中建立简单电力系统的仿真模型 实验内容 输电线路电路参数建模时采用电力系统分析中常用的π型等值电路,搭建如图1所示的一个简单交流单相电力系统,在仿真进行中,负载通过断路器切除并再次投入。π型等值电路具体元件参数如下:Ω=2.5R ,H L 138.0=, F C C μ967.021==。 图1 简单电力系统仿真示意图 1) 在Simulink 中建立简单交流单相电力系统模型,并进行仿真,观测负载电流和输电线路末端电压; 2) 结合理论知识分析上述观测信号变化的原因; 3) 比较不同功率因数,如cos φ=1、cos φ=0.8(感性)、cos φ=0.8(容性)负载条件下的仿真结果 实验原理与方法 1、系统的仿真电路图 实验步骤 根据所得建立模型,给定参数,得到仿真结果 cos φ=1 cos φ=0.8(感性) cos φ=0.8(容性)

实验结果与分析 cosφ=1 cosφ=0.8(感性) cosφ=0.8(容性) 仿真结果分析 (1)在纯阻性负载电路中,电压相位与电流相位相同;与感性负载相比,断路器重新闭合后电流没有额外的直流分量。 (2)在感性负载中,电压相位超前电流相位;断路器重新闭合时,交变的电流瞬间增加了一个直流分量,随后逐渐减小。 (3)在容性负载中,电压相位滞后于电流相位;断路器重新闭合时,电流瞬间突变至极大;与感性负载和纯阻性负载相比,断路器断开时的末端电压由于有电容放电作用,电压波形畸变很小。 (4)当断路器断开时,线路断路,电流突变为0,但电压行波仍在进行,因此在末端能够测量到连续的电压波形,但断路器断开对电压波形造成了影响,产生了畸变。这是由于能量是通过电磁场传递的,线路断开时电压继续向前传递。 总括:L和C对输出波形振荡的频率和幅度影响程度不同,当变化相同幅度时,电容对振荡频率和幅度的影响要比电感的大。 感想:Matlab中Simulik通过拖拉建模方式对电路进行仿真,具有快捷、方便、灵活的特点。Simulink的仿真电路简洁、参数调整方便。仿真结果直观。 通过本次实验,我认识到了建模与仿真的一般性方法,收获甚多,也更进一步了解了Matlab,Matlab不仅仅在平时的编程方面功能强大,在仿真方面也熠熠生辉。

matlab通信仿真课程设计

《matlab通信仿真设计》课程设计指导书 2009年11月

课程设计题目1:调幅广播系统的仿真设计 模拟幅度调制是无线电最早期的远距离传输技术。在幅度调制中,以声音信号控制高频率正弦信号的幅度,并将幅度变化的高频率正弦信号放大后通过天线发射出去,成为电磁波辐射。 波动的电信号要能够有效地从天线发送出去,或者有效地从天线将信号接收回来,需要天线的等效长度至少达到波长的1/4。声音转换为电信号后其波长约在15~1500km 之间,实际中不可能制造出这样长度和范围的天线进行有效信号收发。因此需要将声音这样的低频信号从低频率段搬移到较高频率段上去,以便通过较短的天线发射出去。 人耳可闻的声音信号通过话筒转化为波动的电信号,其频率范围为20~20KHz 。大量实验发现,人耳对语音的频率敏感区域约为300~3400Hz ,为了节约频率带宽资源,国际标准中将电话通信的传输频带规定为300~3400Hz 。调幅广播除了传输声音以外,还要播送音乐节目,这就需要更宽的频带。一般而言,调幅广播的传输频率范围约为100~6000Hz 。 任务一:调幅广播系统的仿真。 采用接收滤波器Analog Filter Design 模块,在同一示波器上观察调幅信号在未加入噪声和加入噪声后经过滤波器后的波形。采用另外两个相同的接收滤波器模块,分别对纯信号和纯噪声滤波,利用统计模块计算输出信号功率和噪声功率,继而计算输出信噪比,用Disply 显示结果。 实例1:对中波调幅广播传输系统进行仿真,模型参数指标如下。 1.基带信号:音频,最大幅度为1。基带测试信号频率在100~6000Hz 内可调。 2.载波:给定幅度的正弦波,为简单起见,初相位设为0,频率为550~1605Hz 内可调。 3.接收机选频放大滤波器带宽为12KHz ,中心频率为1000kHz 。 4.在信道中加入噪声。当调制度为时,设计接收机选频滤波器输出信噪比为20dB ,要求计算信道中应该加入噪声的方差,并能够测量接收机选频滤波器实际输出信噪比。 仿真参数设计: 系统工作最高频率为调幅载波频率1605KHz ,设计仿真采样率为最高工作频率的10倍,因此取仿真步长为 8max 1 6.2310(1-1)10step t s f -==? 相应的仿真带宽为仿真采样率的一半,即 18025.7(1-2)2step W KHz t == 设基带测试正弦信号为m(t)=Acos2πFt ,载波为c(t)=cos2πf c t ,则调制度为m a 的调制输出 信号s(t)为 ()(1cos 2)cos 2(1-3)a c s t m Ft f t ππ=+ 容易求出,s(t)的平均功率为 21(1-4)24a m P =+

通信系统设计仿真软件

Agilent ADS通信系统设计仿真软件

安捷伦科技有限公司 目录 插图列表 (3) 1ADS 对于通信系统设计仿真的意义 (4) 2ADS 设计仿真软件的优点 (4) 2.1 集成的自顶向下的系统设计 (4) 2.2 灵活的设计环境 (5) 2.3 优化系统架构 (5) 2.4 灵活快速地建立DSP 算法 (6) 2.5 快速准确地建立射频模型 (6) 2.6 通过优化得到最佳的系统性能 (7) 2.7 利用已有的用户自定义模型 (7) 2.8 ADS软件与测量仪表连接加快从设计到现实的转变 (7) 2.8.1 据硬件测试建立仿真模型 (7) 2.8.2 尽早进行验证实验,降低系统集成风险 (7) 2.8.3 创建新的测试能力 (8) 2.8.4 通信信道,干扰测试 (8) 3 ADS 加速B3G/4G通信系统研发 (10) 3.1 ADS具有可以灵活产生各种制式的信号源的能力 (10) 3.2 ADS具有可以仿真MIMO 信道的能力 (10) 3.3 ADS具有仿真空-时(Spacing-time coding)编码性能的能力 (11) 3.4 ADS具有给用户提供Test Bench 的能力 (11) 3.5 与仪器的互联 (11) 4 ADS 在RF系统设计流程中的地位 (12) 4.1 系统级设计与仿真 (12) 4.1.1 分析并设定RF 系统设计指标 (12) 4.1.2 研究并选择恰当的RF拓扑结构 (13) 4.1.3 定义功能模块并进行RF系统性能优化 (13) 4.2 电路级设计与仿真 (14) 4.2.1 研究选择合适的电路拓扑结构 (14) 4.2.2 器件选型与建模 (14) 4.2.3 关键模块设计与电路级仿真 (14) 4.2.4 综合仿真验证RF 系统性能 (14) 4.2.5 各独立模块制作与测试 (14) 4.3 集成测试 (14) 4.3.1 组合各个单独电路模块 (14) 4.3.2 调试 (14) 4.3.3 修改系统指标(如果需要) (15) 4.3.4 重新定义项目目标(如果需要) (15)

相关文档
最新文档