燃气-蒸汽联合循环电厂(余热锅炉)

燃气-蒸汽联合循环电厂(余热锅炉)
燃气-蒸汽联合循环电厂(余热锅炉)

联合循环燃气轮机发电厂简介

联合循环燃气轮机发电厂简介 联合循环发电:燃气轮机及发电机与余热锅炉、蒸汽轮机共同组成的 循环系统,它将燃气轮机排出的功后高温乏烟气通过余热锅炉回收转换为蒸汽,再将蒸汽注入蒸汽轮机发电。形式有燃气轮机、蒸汽轮机同轴推动一台发电机的单轴联合循环,也有燃气轮机、蒸汽轮机各自推动各自发电机的多轴联合循环。胜利油田埕岛电厂采用的是美国GE公司的MS9001E然气轮机,其热效率为33.79%,余热锅炉为杭州锅炉厂的立式强制循环余热锅炉。1.燃气轮机 1.1 简介燃气轮机是一种以空气及燃气为工质的旋转式热力发动机,它的结构与飞机喷气式发动机一致,也类似蒸汽轮机。主要结构有三部分: 1 、燃气轮机(透平或动力涡轮); 2、压气机(空气压缩机); 3、燃烧室。其工作原理为:叶轮式压缩机从外部吸收空气,压缩后送入燃烧室,同时燃料(气体或液体燃料)也喷入燃烧室与高温压缩空气混合,在定压下 进行燃烧。生成的高温高压烟气进入燃气轮机膨胀作工,推动动力叶片高速 旋转,乏气排入大气中或再加利用。 燃气轮机具有效率高、功率大、体积小、投资省、运行成本低和寿命 周期较长等优点。主要用于发电、交通和工业动力。燃气轮机分为轻型燃气轮机和重型燃气轮机,轻型燃气轮机为航空发动机的转型,其优势在于装机快、体积小、启动快、简单循环效率高,主要用于电力调峰、船舶动力。重型燃 气轮机为工业型燃机,其优势为运行可靠、排烟温度高、联合循环组合效率高,主要用于联合循环发电、热电联产。埕岛电厂采用的 MS9001E燃气轮发电机组是50Hz, 3000转 /分,直接传动的发电机。该型燃气轮发电机组最早 于 1987年投入商 业运行,基本负荷燃用天然气时的功率为123.4MW热效率为 33.79%,排气温度539C,排气量1476X103公斤/小时,压比为12.3,燃气初

燃气-蒸汽联合循环余热锅炉吹管方法及标准比较分析

燃气-蒸汽联合循环余热锅炉吹管方法及标准比较分析 发表时间:2019-06-04T11:17:14.777Z 来源:《电力设备》2019年第2期作者:郭勇何宽[导读] 摘要:介绍了单元制和母管制联合循环机组吹管概况,对国内外余热锅炉冲管的方式、流程、参数及标准要求进行说明.分析了冲管过程中燃机负荷及锅炉关参数的控制,总结说明余热锅炉吹管的方法及标准,提出了联合循环机组三压及两压余热锅炉吹管中采取的一些技术措施及要求,以此为国内外不同项目中同类型机组的调试和运行提供参考。 (中国能源建设集团西北电力试验研究院有限公司陕西省西安市 710000) 摘要:介绍了单元制和母管制联合循环机组吹管概况,对国内外余热锅炉冲管的方式、流程、参数及标准要求进行说明.分析了冲管过程中燃机负荷及锅炉关参数的控制,总结说明余热锅炉吹管的方法及标准,提出了联合循环机组三压及两压余热锅炉吹管中采取的一些技术措施及要求,以此为国内外不同项目中同类型机组的调试和运行提供参考。关键词:燃气-蒸汽联合循环机组;余热锅炉;蒸汽吹洗; 0引言 随着电力市场的发展及环境要求的提高,越来越多的清洁能源被应用到电力市场发展当中,尤其对于城市环境的要求,采用天然气燃烧技术供暖已经逐渐开始取代传统燃煤供热电厂,燃气联合循环机组将被更多的投入到城市供暖工程当中,另外国外尤其中东地区由于资源丰富,随着经济的发展,越来越多的燃气联合循环机组投入建设,余热锅炉是燃气联合循环机组的重要部分,而锅炉吹管作为机组调试期间的重要试运项目,对后期机组的稳定运行有着重要的意义。目前我国《2013火力发电建设工程机组蒸汽吹管导则》中对余热锅炉吹管方式进行了简单描述,并未具体进行说明,本文中重点对约旦萨玛瑞四期燃气联合循环机组余热锅炉吹管进行说明,并总结国内吹管经验,对燃气联合循环机组余热锅炉吹管方式,流程,注意事项及不同标准要求进行详细说明,为国内外不同项目中同类型机组的调试和运行提供参考依据。 1.设备概况 约旦萨玛瑞四期联合循环项目为 70MW 燃气机组联合循环部分扩建项目,机组采用一拖一形式,现有单循环部分为 Alstom GT13 型号燃机;联合循环扩建部分余热锅炉、汽轮机、空冷岛及部分 BOP 系统。余热锅炉为1台Nooter/Eriksen 三压再热、无补燃、整体式除氧器、卧式、自然循环余热锅炉。在燃机燃气模式下锅炉最大负荷相关参数如下:高压蒸汽参数:压力11.62MPa,温度509.3℃,流量43.9kg/s;中压蒸汽参数:压力3.11MPa,温度323.4℃,流量12.42kg/s;再热蒸汽参数:压力2.96MPa,温度509℃,流量52.566kg/s;低压蒸汽参数:压力0.45MPa,温度266.4℃,流量10.52kg/s; 2.吹管标准 《2013火力发电建设工程机组蒸汽吹管导则》中要求,过热器再热器的吹系数应大于1.0;过热器出口和再热器出口应分别装设靶板;靶板宽度应为靶板安装处管道内径的8%且不小于25mm,厚度不小于5mm,长度纵贯管道内径,靶板表面粗超度应达到Ra100;选用铝制材质靶板,应连续两次更换靶板检查,无0.8mm以上的瘢痕,且0.2mm~0.8mm范围的瘢痕不多于8点,采用钢、铜或其它材质的靶板,验收标准应参照制造厂的要求执行。德国《VGB-S-513e》标准要求,余热锅炉吹管需采用稳压的连续吹洗,打靶时必须有效打靶10~20min,靶板验收要求打靶时靶板处蒸汽流速达到200m/s,吹管系数大于1.2,靶板一般选用碳钢板(St 37),要求室温下硬度应为140~140HB之间,靶板宽度为40mm,长度为0.85倍的管道内径,厚度为6mm,每40×40mm的区域内,无大于1mm以上的瘢痕,大于0.5mm的少于4个,大于0.2mm的少于10个,若选用其它材质作靶板时,其硬度按照VGB标准的相关要求执行。 3.吹管方法 国家能源局发布的2013版《火力发电建设工程机组蒸汽吹管导则》中,锅炉蒸汽吹管按照能量形式分为降压吹管和稳压吹管,按照系统吹洗步序可分为一段吹管和两段吹管,其中一段吹管将过热器、主蒸汽管道和再热器冷段管道、再热器、再热器热段管道串联吹扫,一步完成吹扫方式;两段吹管指先吹扫过热器及主蒸汽管道,再将过热器、主蒸汽管道与再热器冷段管道、再热器、再热蒸汽管道串联,分两步完成的蒸汽吹扫方式。目前国内锅炉吹管一般都采用一段吹管方式;直流锅炉宜采用稳压吹管,稳压吹管时应采用一段吹管方式;采用一段吹管时应在再热器前加装集粒器,而采用两段吹管时,应在主蒸汽系统吹扫靶板检验合格后,方可进行第二阶段再热蒸汽系统吹扫。 VGB中锅炉吹洗按照吹洗介质可分为两种方法,分为压缩空气可蒸汽进行吹洗,对于没有补燃的余热锅炉吹管,应该采用连续吹洗的方式,将启动和停止次数减少到最小,对于有补燃的余热锅炉,尽量减少燃机的启动和停止次数;连续吹洗的时间主要取决于除盐水的储存和供应流量,连续吹洗时的最小蒸汽流量应当至少满足吹洗系数的要求,VGB中要求吹管系数1.2

配联合循环的余热锅炉性能特点

补充 2004年5月4日,摘自焦树建《燃气-蒸汽联合循环》 1.余热锅炉设计时节点温差和接近点温差的选择 节点温差的选择关系到余热功率的效率和投资费用,要加以权衡。 减小节点温差,锅炉效率提高,可以更多的回收热量。但是,投资费用增加,并且锅炉换热面积的增加还会使燃气轮机排气阻力增加,减少燃气轮机的功率,这就会导致联合循环效率有下降的趋势。因此,必须从整个联合循环的效率和经济性两方面加以全面考虑。 当进入余热锅炉的燃气温度随燃气轮机负荷的减少而降低时,接近点温差将随之减少。如果在设计时接近点温差取得过小或未加考虑,则在部分负荷工况下,省煤器内就会发生部分水的汽化,这将导致省煤器管壁过热和故障。另外,接近点温差的选择也关系到省煤器和蒸发器换热面积的设计。这样,必然存在合理的选择接近点温差的问题。 图12.4和12.5给出了当接近点温差选定后,随着节点温差的变化,余热锅炉相对总换热面积、相对排气温度、相对蒸汽产量、相对总投资和相对单位热回收费用的变化规律。这些相对值都是以节点温差选为10℃时的数值作为比较标准。 图12.6给出了余热锅炉的相对总换热面积随接近点温差的变化关系。 图12.7给出了“单压的汽水发生系统”的余热锅炉的当量热效率与节点温差以及相对总换热面积之间的变化关系。 图12.4 的关系 图12.5 相对总投资费用和相对单位 热回收费用随节点温差的变化关系 不言而喻,倘若有意识地增大余热锅炉内燃气侧的流动速度,必然可以因换热效应的强化而使总换热面积有所减小,但是,这个措施却会导致燃气侧流阻损失的增大。图12.8中给出了相对燃气流阻与相对总换热面积之间的变化关系。 通过对上述图12.4至图12.8的分析,我们可以得到以下一些有益的结论: (1)由图12.4可知:当节点温差减小时,余热锅炉的排气温度会下降,燃气的放热量将加大,蒸汽产量会增加,而总的换热面积要增大。计算表明:传热系数基本上是不变的, 但省煤器与蒸发器的对数平均温差将大幅度地减小,致使余热锅炉的总换热面积会增大。余() x s g t f G T A ?=,,5

燃气蒸汽联合循环

燃气--蒸汽联合循环技术的发展与评价 我国火电机组主要为燃煤发电机组,存在污染严重,供电煤耗高的问题,不能满足新世纪电力工业发展需要,必须依靠科技进步,促进我国资源环境相互协调可持续发展。采用高参数大容量机组,超临界压力机组是火电机组发展的主要方向外,发展清洁燃煤技术,煤气化联合循环和整体气化燃料电池等以燃气输机为技术基础的发电技术,亦是提高我国火电热效率的突破口方向。为此,今后发展燃气——蒸汽循环发电将具有战略意义燃气—蒸汽轮机联合循环热电冷联供系统是一项先进的供能技术。利用燃气燃烧产生的高温烟气在燃气轮机中做功,将一部分热能转变为高品位的电能,再利用燃气轮机排烟中的余热在废热锅炉内产生蒸汽来带动蒸汽轮机进一步发出部分电能,同时供热和制冷。从而实现了能源的高效梯级利用,同时也降低了燃气供热的成本,是城市中,特别是大气污染严重的大城市中值得大力发展的系统。 一.联合循环发电状况和需求。 从20世纪80年代以来,随着燃气轮机及其联合循环总能系统新概念的确立,材料科学、制造技术的进步,特别是能源结构的变化及环境保护的要求更加严格,燃气轮机及其联合循环机组在世界电力系统中的地位发生了显著化,不仅可以用作紧急备用电源和尖峰负荷,还被用来带基本负荷和中间负荷。21世纪以来世界燃气轮机进入了一个新的发展时期,我国燃气轮机引进、开发和应用又进入了一个新的发展阶段。燃气轮机技术进步主要表现在单机容量增大,热效率提高与污染物排放量降低。目前全世界每年新增的装机容量中,有l/3以上系采用燃气—蒸汽联合循环机组,而美国则接近l/2,日本则占火电的43%。据不完全统计,全世界现有燃油和燃天然气的燃气—蒸汽联合循环发电机组的总容量己超过400 GW。当前燃气轮机单机功率已经超过300MW,简单循环热效率超过39%;联合循环功率已经超过780 MW,联合循环热效率超过58. 5%,干式低NOx 燃烧技术已使燃用天然气和蒸馏油时的NOx排放量分别低于25mg/kg和42mg/kg,提高了燃气轮机在能源与电力中的地位与作用。从目前世界火力发电技术水平来看,提高火电厂效率和减少污染物的排放的方法,除带脱硫、除尘装置的超超临界发电技术(USC)、循环流化床(CFB)和增压流化床联合循环(PFBC)等外,燃天然气、燃油及整体煤气化等燃气-蒸汽联合循环是一个重要措施。据有关调研预测,未来10年我国对燃气轮机总需求量达34 000 MW左右。中国已开始利用西气东输,东海、南海油气,进口LNG(液化天然气)和开发煤气化等清洁能源。一批300 MW级燃气—蒸汽联合循环电厂已经建成或即将建成投产。可以说,随着国产化率的提高,造价的减低,燃用天然气和煤气等大型燃气—蒸汽联合循环发电机组,必将成为中国电力工业一个重要组成部分。 二.燃气-蒸汽联合循环原理 (一)联合循环的基本方案 1.余热锅炉型联合循环 将燃气轮机的排气通至余热锅炉中,加热锅炉中的水产生蒸汽驱动汽轮机作功。 2.排气补燃型联合循环 排气补燃型联合循环包括在余热锅炉前增加烟道补燃器以及在锅炉中加入燃料燃烧这两种方案。

燃气蒸汽联合循环余热锅炉使用说明

燃气、蒸汽联合循环 余热锅炉 使用说明 南京南锅动力设备有限公司

目录 前言 (2) 1锅炉设备安装总论 (3) 2安装程序 (3) 3模块钢架和平台扶梯等钢构件的安装 (4) 4锅筒和管道的安装 (5) 5水压试验 (7) 6热工仪表及附属设备的安装 (8) 7保温 (9) 8烘炉 (9) 9煮炉和蒸汽试验 (10)

前言 锅炉是把热能传递给水,使水变成一定参数下的高品位能量的水或蒸汽的一种动力设备。它是由锅和炉以及附属设备组成,其结构庞大,笨重和复杂,锅炉又是承受高温的受压容器,所以锅炉的安装和使用都有一定的技术要求和规定,以保证锅炉的长期安全稳妥运行。安装和使用上的不当,都会降低效率,影响性能,甚至造成严重后果。 本手册是为燃机余热锅炉及其辅助设备的一个安装操作指导。它不包含设备中的所有可能变化和使用中出现的特殊问题。建议所有的工作人员都能认真阅读本手册,以便能及时掌握信息,熟练操作锅炉及其辅助设备。 本手册不能代替经验和判断能力。对于锅炉的操作须严格按照国家法规。辅助设备及控制若不是由本公司提供的,则产生的责任由使用方承担。 使用单位应根据本手册及有关规程和技术文件,在锅炉安装和使用时制定现场操作规程并严格执行。 本手册详细说明了安装和使用上的技术要求和操作规定,供用户参考。 1.本手册如与国家颁布的有关规程相抵触,或低于有关规程的要求时,以国家规程为准。 2.对未定购辅机及部件的安装和使用由用户自行处理(可参阅本说明)。 3.工业锅炉产品执行标准: ●《热水锅炉安全技术监察规程》或《蒸汽锅炉安全技术监察规程》 ●JB/T10094《工业锅炉通用技术条件》 ●GB50273《工业锅炉安装工程施工及验收规范》 ●GB1576《工业锅炉水质标准》 4.发电锅炉产品执行标准: ●《蒸汽锅炉安全技术监察规程》 ●JB/T6696《电站锅炉技术条件》 ●DL/T5047《电力建设施工及验收规范[锅炉机组篇]》 ●GB12145《火力发电机组及蒸汽动力设备水汽质量标准》 5.本手册如有更改恕不另行通知。

燃气蒸汽联合循环的技术探讨

燃气蒸汽联合循环的技术探讨 发表时间:2018-04-17T10:55:05.313Z 来源:《电力设备》2017年第33期作者:周磊 [导读] 摘要:随着我国经济的快速发展,在煤炭、石油等一系列不可再生资源被深度利用之后,能源危机将会逐步加人影响,节能与绿色已经成为当前的发展主题,也是各行各业的发展新理念新要求。 (大唐苏州热电有限责任公司江苏苏州 215214) 摘要:随着我国经济的快速发展,在煤炭、石油等一系列不可再生资源被深度利用之后,能源危机将会逐步加人影响,节能与绿色已经成为当前的发展主题,也是各行各业的发展新理念新要求。在这种新形势下,燃气一蒸汽联合循环发电技术得到一定程度的重视,因此,需要不断促进燃气一蒸汽联合循环技术的深度发展,才能发挥这种联合循环发电模式的良好经济效益。本文,首先对燃气一蒸汽联合循环及其发展现状进行了简要概述,并详细探讨了燃气蒸汽联合循环的技术,旨在实现将放散的煤气全部回收进行发电,解决当前的能源浪费和环境污染问题。 关键词:燃气蒸汽联合循环;技术探讨 随着我国经济的快速发展,不断提高发电效率和降低各种污染物的排放是以煤炭为燃料的发电技术面临的极其紧迫的课题。在当代社会中,能源、环境危机的不断加剧,促使清洁能源发电技术快速发展起来,而燃气一蒸汽联合循环发电系统作为清洁能源发电技术的一种,也得到了快速的发展。 1 燃气一蒸汽联合循环简介 所谓的燃气一蒸汽联合循环,其实质就是将燃气轮机和蒸汽轮机通过合理方式有效地组合成为一个整体,共同在发电生产环节中发挥作用。通过将两者进行组合,可以实现取长补短的目的,通过两者的有点强化发电生产的效率和质量,提升企业的经济效益,降低对各类资源的消耗,实现绿色环保的发展目标。想要对燃气一蒸汽联合循环进行深入分析,可以从以下几个方面进行: 一是发电效率。发电效率和经济效益是直接挂钩的,经济效益又存在多方而的影响因素,比如发电成本、发电速率等。通过燃气一蒸汽联合循环,可以有效提升发电的效率,提高各类资源的使用率,增人发电速率,进而实现企业经济效益的提升。从技术角度看,燃气一蒸汽联合循环的实测发电效率能够超过50%,比单纯的燃气发电或是蒸汽发电都高。二是在投资上,燃气一蒸汽联合循环的建设时间段,相关投入较少,回报周期短。三是在管理上,可以实现自动化和智能化的全而管理,通过先进的控制系统可以有效降低各类事故的发生。最后在运行上,燃气一蒸汽联合循环的相应速度快,降耗能力强,具有很好的环境效益和社会效益。 2 燃气一蒸汽联合循环发电系统的现状分析 2.1研究天然气发电技术的工作 对于燃气-蒸汽联合循环发电系统方面而言,我国仍与国际方面存在很多差距,原因如下:山于我国研究在燃气-蒸汽联合循环发电系统的时间较晚,然而近年来我国在很多方面取得了一定的进步,例如优化设计、系统能耗分析、设备研发等。在当代社会中,我国燃气-蒸汽联合循环发电系统不断发展,我国对燃气-蒸汽联合循环发电系统的研究现状主要体现在以下方面:世界天然气消费量在不断增长,对于当代世界能源消费结构而言,天然气消费量属于三大主力之一。在当代社会中,国际能源界的很多学者认为,世界天然气产量、消费量会不断增长,几年后将超越石油、煤,因此天然气属于当代世界的重要能源。在国际社会中,应用最为广泛的发电技术主要有热电联产发电。 2.2优化设计循环系统 对于联合循环的设计而言,燃气轮机的效率不是越高越好。技术人员在选择燃气轮机的过程中,应尽量选择设计良好的燃气轮机。对于不补燃的联合循环而言,由于蒸汽循环的参数会受到排气温度的限制,蒸汽循环的效率与燃气循环具有密切的联系。对于燃气轮机的效率而言,在提高的状态下,蒸汽循环效率具有很多优势,该方式属于积极影响的联合循环系统。在联合循环过程中,最合理的联合循环效率并不意味着选择燃气轮机的效率最大值,当燃气初温确定后,值得技术人员注意的是,山于燃气轮机的效率虽然高,余热锅炉的循环效率、蒸汽参数处于低状态。同时,低压比的燃气轮机排气温度高,正气循环通过采用再热技术并且发挥其优势,能获取较佳的蒸汽部分效率。 对于联合循环而言,将燃气轮机排出的“废气”直接引入余热锅炉,随后加热水会产生出高温高压的蒸汽,最终推动汽轮机做功。因此,汽轮机的朗肯循环与 燃气轮机的布雷顿循环通过结合,能有效形成能源梯级的利用总能系统,实现较高的热效率,该方式属于联合循环,大多数联合循环系统应用于发电行业。优化设计过程中,技术人员在实际系统分析的基础上,需要加强理论的分析工作。对于理论分析而言,技术人员通过重视燃气-蒸汽联合循环的理论环节,在设计出一系列燃气-蒸汽联合循环发电系统的基础上,不断优化方案,并且依据热力系统实际情况,建立好模块化动态系统,同时技术人员通过改变燃气轮机负载工况,保障热力数据的稳定性,技术人员通过全面分析影响系统运行的效率,能够得出相应的数据信息。 2.3设备研发 对于大容量高效率的燃气轮机而言,其设计工作非常重要。在国际环境中,设计大型燃气轮机的企业包括MITSUBISH、GE、ALSTHOM、SIEMENS等。大型燃气轮机具有以下特点:环效率高,同时具有灵活方便的优势,因此,技术人员需要充分发挥其单机容量大的特点。但值得注意的是,由于大型发电燃气轮机通过进口进入,浪费了工厂的资源,因此技术人员需要不断改进该环节。 3 燃气蒸汽联合循环的技术探讨 3.1技术原理 由于燃气轮机循环吸热平均温度高,纯蒸汽动力循环放热平均温度低,把这两种循环联合起来组成燃气-蒸汽联合循环显然可以提高循环热效率。燃气-蒸汽联合循环发电机组(CCPP)技术就是充分利用钢铁联合企业高炉等副产煤气,最大可能地提高能源利用效率,发挥燃气-蒸汽联合循环优势的先进技术。根据各种煤气平衡富余情况,济钢按照高炉煤气和焦炉煤气以4:1的比例进行混合为低热值煤气作为燃机的燃料,一是提高高炉煤气的热值,二是全部回收低热值的高炉煤气。 3.2工艺流程 副产煤气从钢铁能源管网送来后经除尘器净化、混合,再经加压后与空气过滤器净化及加压后的空气混合进人燃气轮机燃烧室内混合

生活垃圾焚烧锅炉 、燃气-蒸汽联合循环电站余热锅炉

附录A 生活垃圾焚烧锅炉 A.1一般规定 A.1.1本附录适用于机械炉排焚烧电站锅炉的施工。 A.1.2本附录中未涉及热解焚烧和旋转窑焚烧设备,施工参照厂家、设计技术文件或接近的验收标准。 A.1.3本附录中编制了生活垃圾焚烧电站锅炉安装中特有的施工内容,其他部分的施工应按本部分相关章节执行。 A.2生活垃圾焚烧锅炉 A.2.1链条炉排安装应符合下列要求: 1 链条炉排安装前的检查允许偏差应符合表A.2.1-1的规定(图A.2.1-1和图A.2.1-2)。 表A.2.1-1链条炉排安装前的检查允许偏差(mm) 检验项目允许偏差 L≤5m ±2 型钢构件的长度 L>5m ±4 直线度 1/1000,全长≤5 型钢构件 旁弯度 挠度 各链轮与轴线中点间的距离a、N±2 横梁式 2 同一轴上的任意两链轮,其 齿尖前后错位鳞片式 4 图A.2.1-1 链轮与轴线中间点间的距离 1—链轮;2—轴线中心点;3—主动轴

图A.2.1-2 链轮的齿尖错位 2 链条炉排安装允许偏差应符合表A.2.1-2的规定。 表A.2.1-2 链条炉排安装允许偏差(mm ) 检 验 项 目 允 许 偏 差 炉排中心位置 2 左右支架墙板对应点高度差 ±5 墙板的垂直度,全高 3 跨距≤5m +3 0 墙板间的距离 跨距>5m +5 0 ≤5m 4 墙板间对角线的长度之差 >5m 8 墙板框的纵向位置 5 墙板顶面的纵向水平度 长度的1/1000,且不大于5 两墙板的顶面应在同一平面上,其相对高度差 5 前轴、后轴的水平度 长度的1/1000,且不大于5 各道轨应在同一平面上,其平面度 5 相邻两道轨间的距离 ±2 相邻 2 任意 两导轨间上表面相对高度差 3 鳞片式炉排 相邻导轨间距 ±2 链带式炉排支架上摩擦板工作面应在同一平面上,其平面度 3 前、后、中间梁之间高度 ≤2 横梁式炉排 上下导轨中心线位置 ≤1 注:墙板的检测点宜选在靠近前后轴或其他易测部位的相应墙板顶部,打冲眼测量。 3 对鳞片或横梁式链条炉排在拉紧状态下测量,各链条的相对长度差不得大于8mm 。 4 炉排片组装不可过紧或过松,装好后应用手扳动,转动宜灵活。 5 边部炉条与墙板之间,应有膨胀间隙。 A.2.2往复炉排安装允许偏差应符合表A.2.2的规定。 表A.2.2 往复炉排安装允许偏差(mm ) 项 目 允 许 偏 差 两侧板的相对标高 3

燃气轮机余热锅炉技术

燃气轮机余热锅炉技术 燃气轮机余热锅炉技术 燃气一蒸汽联合循环发电是当今世界上发展极为迅速的一种高效、低污染发电技术,它己成为发达国家新建热力发电厂的首选系统。 经过近三十年的研究和不断改进,联合循环发电不仅在效率上超过蒸汽发电效率(后者 <=42%),而且在众多方面均体现出明显的优势。它己成为全世界公认的具有发电效率高,调峰能力强,单位功率投资少,建设周期短。占地面积小,污染程度低的新一代发电设备。 1.1原理及应用 燃气一蒸汽联合循环发电系统是由燃气轮机发电系统和锅炉蒸汽轮机发电系统所组成。众所周知,锅炉一蒸汽轮机发电是利用高中压过热蒸汽(通常参数为3.82~16.7MPa, 450~550℃)在汽轮机中作功转换成机械能,完成朗肯循环过程;燃气轮机发电系统是燃气在燃气涡轮机中经绝热膨胀作功的过程,这种热力循环又称布雷顿循环,它是由压气机将空气加压进入燃烧室,燃料燃烧后燃气在透平中膨胀作功,燃机将高温高压燃气的能量(通常参数约0.5~1Mpa 1000~1300℃)转换成机械能。在烟气温度降至500℃左右时排放,人们充分利用这两种热力循环的特点,把它们结合在一起,组成“联合循环”,使其具有较高的吸热平均温度和较低的放热平均温度,为提高电站热效率开辟了一条新途径,这是人类发电事业上继发明蒸汽轮机发电后技术上的又一突破。 目前燃气轮机发电在世界上已广为应用,其发电容量占世界总发电容量的11%。近些年来,世界上发达国家常规联合循环发电得到快速发展;每年新增的联合循环机组总装机容量约占火电总新增容量的的40%~50%。据报道,1981~1990年,世界各燃机制造公司共售出1661台燃机,总容量为54900MW,其中用于联合循环的占37.9%,1992年,这个比例上升为44.7%。美国在1992~1996年中,新增火力发电厂总装机容量的38.5%是采用燃机联合循环的。当今世界上单台燃机最大功率己达250MM,联合循环总功率达350MW。能生产300MW等级联合循环厂家有GE、SIEMENS、ABB和ALSTOM等著名公司,联合循环电站效率高达58%以上。现在燃气轮机正向着大功率、高燃烧温度发展。联合循环采用三压再热循环机组,具有更高的机组效率和可*性。燃气一蒸汽联合循环已经成为世界上火电建设的重要组成部分。 我国早在六十年代就己开始关注这项技术的发展,由于工业技术、经济能力及能源政策等诸多因素的影响,这种高难度的大型设备在我国一直停留在研究状态。近些年来,特别是改革开放以来,随着国民经济的发展和电力供应的需要。燃气轮机发电机组在我国己开始

联合循环燃气轮机发电厂简介(最新版)

联合循环燃气轮机发电厂简介 (最新版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0727

联合循环燃气轮机发电厂简介(最新版) 联合循环发电:燃气轮机及发电机与余热锅炉、蒸汽轮机共同组成的循环系统,它将燃气轮机排出的功后高温乏烟气通过余热锅炉回收转换为蒸汽,再将蒸汽注入蒸汽轮机发电。形式有燃气轮机、蒸汽轮机同轴推动一台发电机的单轴联合循环,也有燃气轮机、蒸汽轮机各自推动各自发电机的多轴联合循环。胜利油田埕岛电厂采用的是美国GE公司的MS9001E燃气轮机,其热效率为33.79%,余热锅炉为杭州锅炉厂的立式强制循环余热锅炉。 1.燃气轮机 1.1简介 燃气轮机是一种以空气及燃气为工质的旋转式热力发动机,它的结构与飞机喷气式发动机一致,也类似蒸汽轮机。主要结构有三

部分:1、燃气轮机(透平或动力涡轮);2、压气机(空气压缩机); 3、燃烧室。其工作原理为:叶轮式压缩机从外部吸收空气,压缩后送入燃烧室,同时燃料(气体或液体燃料)也喷入燃烧室与高温压缩空气混合,在定压下进行燃烧。生成的高温高压烟气进入燃气轮机膨胀作工,推动动力叶片高速旋转,乏气排入大气中或再加利用。 燃气轮机具有效率高、功率大、体积小、投资省、运行成本低和寿命周期较长等优点。主要用于发电、交通和工业动力。燃气轮机分为轻型燃气轮机和重型燃气轮机,轻型燃气轮机为航空发动机的转型,其优势在于装机快、体积小、启动快、简单循环效率高,主要用于电力调峰、船舶动力。重型燃气轮机为工业型燃机,其优势为运行可靠、排烟温度高、联合循环组合效率高,主要用于联合循环发电、热电联产。 埕岛电厂采用的MS9001E燃气轮发电机组是50Hz,3000转/分,直接传动的发电机。该型燃气轮发电机组最早于1987年投入商业运行,基本负荷燃用天然气时的功率为123.4MW,热效率为33.79%,排气温度539℃,排气量1476×103公斤/小时,压比为12.3,燃气

燃气-蒸汽联合循环发电

燃气-蒸汽联合循环机组概况 1.燃气轮机工作原理 燃气轮机的工作过程是,压气机连续地从大气中吸入空气并将其压缩;压缩后的空气进入燃烧室,与喷入的燃料混合后燃烧,成为高温燃气,随即进入燃机透平中膨胀做功,推动透平叶轮带着燃机发电机做功发电。燃气轮机静止起动时,需要将发电机转换为电动机用带动燃机旋转,待加速到一定转速后,启动装置脱扣,就可以以发电机形式来做功发电。燃气初温和压气机的压缩比,是影响燃气轮机效率的两个主要因素。提高燃气初温,并相应提高压缩比,可使燃气轮机效率显著提高。工业和船用燃气轮机的燃气透平初温最高达1200℃左右,航空燃气轮机的超过1350℃。目前美国通用电气最先进的9H型燃气轮机压缩比23.2,燃气透平初温1430℃。

2.燃气-蒸汽联合循环发电 燃气-蒸汽联合循环发电机组就是将燃气轮机的排气引入余热锅炉,产生的高温、高压蒸汽驱动汽轮机,带动汽轮发电机发电。其常见形式有燃气轮机、蒸汽轮机同轴推动一台发电机的单轴联合循环,也有燃气轮机、蒸汽轮机各分别与发电机组合的多轴联合循环。 目前,联合循环的热效率接近60%,“二拖一”的机组配置方式,提高了机组供热能力,整套机组的热效率比常规“一拖一”配置机组热效率高出0.6%,在冬季供暖期热效率高达79%。

燃气-蒸汽联合循环机组主要用于发电和热电联产,其具有以下独特的优点: ①发电效率高:由于燃气轮机利用了布朗和朗肯二个循环,原理和结构先进,热耗小,因此联合循环发电效率较高。 ②环境保护好:燃煤电厂锅炉排放灰尘很多,二氧化硫多,氮氧化物为200PPM。燃机电厂余热锅炉排放无灰尘,二氧化硫极少,氮氧化物为(10~25)PPM。 ③运行方式灵活:燃机电厂其调峰特性好,启停速度快,不仅能作为基本负荷运行,还可以作为调峰电厂运行。 ④消耗水量少:燃气一蒸汽联合循环电厂的蒸汽轮机仅占总容量的1/3,所以用水量一般为燃煤火电的1/3,由于凝汽负压部分的发电量在全系统中十分有限,国际上已广泛采用空气冷却方式,用水量近乎为零。 ⑤占地面积少:由于没有了煤和灰的堆放,又可使用空冷系统,电厂占地大大节

燃机余热锅炉基本原理

1 燃机余热锅炉基本原理介绍 燃机余热锅炉,英文简写为HRSG (Heat Recovery Steam Generator ),是燃气-蒸汽联合循环的重要组成部分。其主要工作原理是通过布置大量的换热管(通常采用螺旋鳍片管)来吸收燃机排气的余热,产生蒸汽供汽机发电或作为供热及其它工艺用汽。 燃机余热锅炉发展至今,形成了各种结构形式和布置方法,简单介绍如下。 燃机余热锅炉按照其循环方式主要分为两种形式:即受热面水平布置的强制循环余热锅炉和受热面垂直布置的自然循环余热锅炉,两者的主要区别是强制循环锅炉需配置循环泵依靠循环泵的压头实现蒸发器内的水循环,而自然循环则主要靠下降管和受热的蒸发管束中工质的密度差来实现循环。强制循环就国外而言主要在欧洲使用较多,国内主要用于燃机燃用重油等含灰较多燃料、受热面需吹灰和清洗的情况,如我厂提供深圳南山电厂、月亮湾等电厂的9E 级燃机余热锅炉及浙江金华、广州明珠等6B 级燃机余热锅炉。自然循环就国外而言主要用于美国,国内主要用于燃机燃用天然气、轻油等清洁燃料的燃机余热锅炉,如我厂提供的深圳金岗、天津滨海等的6B ,江苏无锡、海南南山的FT-8及海南洋浦V94.2燃机余热锅炉。 强制循环和自然循环余热锅炉的结构形式见附图1和附图2 。 附图1强制循环余热锅炉

2 附图2自然循环余热锅炉 燃机余热锅炉按照是否补燃分为补燃型余热锅炉和非补燃型余热锅炉,除非是用于热电联产或其它特殊工艺要求,一般应选用非补燃型余热锅炉,因为补燃会降低余热锅炉的效率。 一般补燃采用烟道式燃烧器,布置在进口烟道中,仅利用燃机排气中的氧气而不掺入补燃空气,补燃后烟气温度控制在750℃以下。 烟道式补燃燃烧器的布置位置见附图3,其结构见附图4 。

燃气蒸汽联合循环简介

燃气—蒸汽联合循环在世界范围内,使用化学燃料通过热力动力机械发电的火力发电量仍然占据最高的比例。从节约资源和保护环境等各方面来说,作为一种重要的发电装置,火力发电机组首先要求有高的热效率。在大型热力发电设备中,目前技术水平比较成熟的,能够经济地大规模应用的只有燃气轮机和蒸汽轮机。但是它们的热效率都不高,一般都在38—42%左右,即使最先进的燃气轮机热效率也只能达到42—44%,最先进的超临界参数蒸汽轮机热效率也只能达到43—45%。对这两种热力机械所使用的热力循环进行分析。燃气轮机燃气初温很高,目前的技术水平一般能达到1350—1430℃,因此燃气轮机中的热力循环平均吸热温度高,但是它的排气温度也就是循环低温也高,一般要达到450—630℃,所以燃气轮机热力循环的卡诺效率不高。蒸汽轮机虽然循环低温较低,也就是蒸汽的冷凝温度可以降低到30—33℃,但是由于受到材料上的限制,它的蒸汽初温不高,在目前的技术水平下一般难以达到600℃,即使采用再热之后,平均吸热温度也不会太高,所以蒸汽轮机热力循环的卡诺效率也不高。进一步分析可以发现,蒸汽轮机蒸汽初温一般在535—565℃以下,所以实际上只要有570—610℃的热源就可以让蒸汽轮机工作,而燃气轮机的排气温度就很高,在排气中蕴含着大量的热能,能够给蒸汽轮机提供所需要的热能。因此如果使用燃气轮机排气作为蒸汽轮机的热源,蒸汽轮机就可以不额外消耗燃料了。也就是说,蒸汽轮机可以回收燃气轮机的排气热量,额外发出一些有用功,这样就相当于增加了燃气轮机的热效率。如前所述,目前先进的燃气轮机和蒸汽轮机的热效率基本相当,都在38—42%左右,

那么,此时这个相当于增加了燃气轮机热效率的系统,热效率必然比单纯的燃气轮机和蒸汽轮机都高。实际上,如果把上述由燃气轮机和蒸汽轮机组成的系统看成一个整体,那么在它的热力循环中,循环高温就是燃气轮机的循环高温,而循环低温则是蒸汽轮机的冷凝温度。显而易见,这个系统热力循环的卡诺效率远远高于燃气轮机或蒸汽轮机热力循环的卡诺效率。由燃气轮机和蒸汽轮机组成的发电系统可以有多种组合形式,它们的共同点就是由燃气轮机完成热力循环的高温部分,而由蒸汽轮机完成热力循环的低温部分,从而获得具有较高卡诺效率的热力循环,这样的热力循环称为燃气—蒸汽联合循环。目前有所应用的燃气—蒸汽联合循环主要包括余热锅炉型、平行双工质型,增压锅炉型三种基本型式。不过,按照目前的燃气轮机技术特点和燃气初温水平,余热锅炉型联合循环的热效率比另两种联合循环的高,因此近些年来得到了快速的发展。而另两种联合循环除了热效率低以外,各自还有另外的缺点,使它们的应用和发展受到了限制。余热锅炉型燃气—蒸汽联合循环系统的组成和各部件特点按照前面的分析,最基本的燃气—蒸汽联合循环动力装置就是采用一种专门设计的锅炉,利用燃气轮机的高温排气作为锅炉的工作热源,产生蒸汽在蒸汽轮机中做功的系统。因为在这样的系统中,锅炉本身不消耗燃料,仅仅利用燃气轮机排气余热工作,所以叫做余热锅炉,因此上述系统也就称为余热锅炉型燃气—蒸汽联合循环系统,简称为HRSG-Repowering。在余热锅炉型联合循环基础上还发展出了多种衍生型式,包括补燃锅炉型联合循环、平行混合型联合循环、给水预热型联合循环等。不过这几种衍生型式多数用于对现有发电站进行

大型天然气联合循环发电技术

大型天然气联合循环发电技术 Power Generation T echnology of Large-Scale Natural Gas –Fired Combined Cycle 浙江省电力设计院何语平 摘要:为配合“西气东输”和液化天然气(LNG)的输入,我国东部地区正在建设一批大型联合循环电厂。为了使建成后的电厂单位投资省、热效率高、投产后具有较好的效益,对大型天然气联合循环发电技术进行全面而系统的研究和优化至关重要。本文对影响大型天然气联合循环电厂效率的各种因素进行了研究,对联合循环系统的优化、燃气轮机选型、蒸汽系统的优化、参数选择、余热锅炉和汽轮机选型、机组轴系配置、动力岛布置等方面进行了深入的分析研究,并提出了明确的优化途径和结论。 关键词:天然气;联合循环发电 0 前言 我国东部地区经济发达,但一次能源匮乏。目前火力发电厂以煤炭消费为主,环境污染日趋严重。为了减少SO2排放并控制酸雨的危害,许多已投运的机组纷纷补上尾部烟气脱硫装置(FGD)。 为了优化能源结构、改善环境,国家决定利用西气东输,东海油气和进口液化天然气(LNG)等清洁能源,建设一批大型天然气联合循环电厂。 天然气是高效清洁能源,燃气-蒸汽联合循环机组燃用天然气将极大地改善环境污染问题。燃用天然气没有粉尘、没有灰渣。天然气几乎不含硫,因而几乎没有SO2排放。由于采用低NO x燃烧器,NO x 的排放也降到极低的程度。又由于天然气成分中主要是CH4,烟气中CO2的排放也大大减少。 近几年由于燃气轮机的单机功率和热效率有了很大程度的提高,特别是联合循环的理论研究、产品开发和电厂运行实践更趋成熟,目前大型燃气轮机的单机功率已超过250MW,热效率已超过36%;所组成的联合循环的功率已达到390MW,热效率也已达到56.7%~58.5%。其热效率之高,不仅远远超过现有燃煤蒸汽轮机电厂,甚至比超超临界参数的燃煤蒸汽轮机电厂还要优越。世界上的联合循环电厂正向大型化和高效化发展。 在电厂投资方面,根据华东地区西气东输的大型单轴联合循环机组(江苏戚墅堰、望亭、张家港、杭州半山,均为老厂扩建)的可行性研究统计,投资估算为3104元/kW~3356元/kW,比带脱硫装置的300MW燃煤蒸汽轮机电厂的造价低19.6%~25.7%。 我国天然气价格相对较高,为使建成后的电厂单位投资最省、热效率最高、投产后具有较好的效益,对大型天然气联合循环发电技术进行全面而系统的研究和优化至关重要。 1 联合循环系统优化 1.1提高联合循环效率的途径 图1 燃气循环 图2 蒸汽循环 图3 燃气-蒸汽联合循环

燃气轮机余热锅炉情况简介

燃气轮机余热锅炉情况简介 杭州锅炉厂 1.概述 燃气一蒸汽联合循环发电是当今世界上发展极为迅速的一种高效、低污染发电技术,它己成为发达国家新建热力发电厂的首选系统。 经过近三十年的研究和不断改进,联合循环发电不仅在效率上超过蒸汽发电效率(后者 <=42%),而且在众多方面均体现出明显的优势。它己成为全世界公认的具有发电效率高,调峰能力强,单位功率投资少,建设周期短。占地面积小,污染程度低的新一代发电设备。1.1原理及应用 燃气一蒸汽联合循环发电系统是由燃气轮机发电系统和锅炉蒸汽轮机发电系统所组成。众所周知,锅炉一蒸汽轮机发电是利用高中压过热蒸汽(通常参数为3.82~16.7MPa,450~550℃)在汽轮机中作功转换成机械能,完成朗肯循环过程;燃气轮机发电系统是燃气在燃气涡轮机中经绝热膨胀作功的过程,这种热力循环又称布雷顿循环,它是由压气机将空气加压进入燃烧室,燃料燃烧后燃气在透平中膨胀作功,燃机将高温高压燃气的能量(通常参数约0.5~1Mpa 1000~1300℃)转换成机械能。在烟气温度降至500℃左右时排放,人们充分利用这两种热力循环的特点,把它们结合在一起,组成“联合循环”,使其具有较高的吸热平均温度和较低的放热平均温度,为提高电站热效率开辟了一条新途径,这是人类发电事业上继发明蒸汽轮机发电后技术上的又一突破。 目前燃气轮机发电在世界上已广为应用,其发电容量占世界总发电容量的11%。近些年来,世界上发达国家常规联合循环发电得到快速发展;每年新增的联合循环机组总装机容量约占火电总新增容量的的40%~50%。据报道,1981~1990年,世界各燃机制造公司共售出1661台燃机,总容量为54900MW,其中用于联合循环的占37.9%,1992年,这个比例上升为44.7%。美国在1992~1996年中,新增火力发电厂总装机容量的38.5%是采用燃机联合循环的。当今世界上单台燃机最大功率己达250MM,联合循环总功率达350MW。能生产300MW等级联合循环厂家有GE、SIEMENS、ABB和ALSTOM等著名公司,联合循环电站效率高达58%以上。现在燃气轮机正向着大功率、高燃烧温度发展。联合循环采用三压再热循环机组,具有更高的机组效率和可靠性。燃气一蒸汽联合循环已经成为世界上火电建设的重要组成部分。 我国早在六十年代就己开始关注这项技术的发展,由于工业技术、经济能力及能源政策等诸多因素的影响,这种高难度的大型设备在我国一直停留在研究状态。近些年来,特别是改革开放以来,随着国民经济的发展和电力供应的需要。燃气轮机发电机组在我国己开始投入使用并获得快速发展。我国己陆续引进了几十套燃气轮机发电机组和联合循环系统,到1998年6月,20MW以上的燃气轮机发电机组及联合循环电站总装机容量为6268.9MW,占国内火电机组总容量的3.5%。为联合循环发电设备在我国的推广应用建立了良好的条件。1.2杭州锅炉厂开发燃机余热锅炉概况 1.2.1基础工作 杭州锅炉厂长期致力于燃机余热锅炉的研究和产品开发,早在七十年代中,就被原机械工业部定点作为我国余热锅炉的研究开发和制造基地。并于1977年批准成立杭州余热锅炉研究所。七十年代后期,我厂成功研制了燃机余热锅炉的高效换热元件及其关键非标绕制设备;八十年代初建成大型传热风洞试验台,进行了国产螺旋鳍片管的热力和阻力特性研究,获得

9F级燃气_蒸汽联合循环机组总体性能优化

第27卷 第8期2006年8月 电 力 建 设 Electric Power Constructi on Vol.27 No.8 Aug,2006 9F级燃气-蒸汽联合循环机组总体性能优化 秦刚华1,李硕平2 (1.浙江浙能宁波天然气发电有限责任公司,浙江省宁波市,315012; 2.浙江省电力设计院,杭州市,310014) [摘 要] 目前,燃用天然气的9F级燃气-蒸汽联合循环电厂发电成本较高,竞争力不强。可通过优化机组的总体性能,以获得更高的出力与效率,从而提高该类型电厂的竞争力。可对联合循环机组的进气系统优化、主机参数匹配优化、汽机冷端优化。主机参数匹配优化包括余热锅炉的热端温差、窄点温差、接近点温差、气侧阻力、排烟温度及余热锅炉的受热面、出口蒸汽压力、温度等参数进行优化。汽机冷端的优化如降低汽机排气背压,能有效提高汽机出力。 [关键词] 9F级燃气轮机联合循环性能优化主机参数匹配冷端优化 中图分类号:T M611.31文献标识码:B文章编号:1000-7229(2006)08-0041-05 Op ti m izati on of Overall Perfor mance for9F Class Gas-steam Combined Circulating Unit Q in G anghua1,L i S huop ing2 (1.Zhejiang Zheneng N ingpo Natural Gas Power Generati on L td.Co.,N ingbo City Zhejiang Pr ovince,315012; 2.Zhejiang Pr ovincial Electric Power Design I nstitute,Hangzhou City,310014) [Keywords] 9F class gas turbine;combined circulati on;op ti m izati on of perfor mance;matching of main machine para meters;op ti m izati on of cold-end 目前,已有部分9F级燃气-蒸汽联合循环电厂陆续投入商业运行。但是,使用清洁能源成本较高。浙江沿海地区标煤价大约为520元/t,折合成低位发热量价为0.0177元/MJ。而西气及东海气在浙江的价格目前大约为1.5元/m3,折合成低位发热量价为0.0429元/MJ。9F级燃机电厂上网电价为0.5~0.6元/(k W?h),与1000M W超超临界机组电厂上网电价0.4元/(k W?h)左右相比,竞争力不容乐观。 因此,如对主机参数进行优化匹配,对辅助系统进行优化,提高机组的出力和效率,从而最大限度降低发电成本,可有效提高9F级燃机电厂的竞争力。下面讨论可能的各种优化技术,包括针对特定气象条件的燃机进气部分、利用燃机排烟余热的余热锅炉系统、汽机冷端系统的优化。 1燃机进气系统的优化 1.1燃机出力与进气系统参数的关系 燃气轮机从大气连续吸取空气做工质,经压缩、加热、膨胀做功后排回大气。膨胀过程做功扣除压缩过程耗功及其他损耗功后才是装置的输出功。所以,当地气象条件变化对燃机压气机的耗功有很大影响。某型9F级联合循环机组的出力与大气温度、压力、相对湿度间的关系见图1~3。 从图1~3可知,燃机出力随气温增加而减少,随气压增加而增加。当气温在25℃以下时,燃机出力随相对湿度增加而增加;在25℃以上时,燃机出力随相对湿度增加而减少。其中,通过减少进气滤网、进气道的压降,使燃机压气机进气压力增高。气温可调节的方法较多。当气候炎热时,可通过各种降温手段使压气机进气温度下降,从而使压气机功耗减少,以增加净输出功。燃机进气的相对湿度通常随进气冷却而增加。需注意,降低进气温度,会增加机组的出力,但对联合循环机组的效率来说未必如此。9F级燃机机组的最佳效率点随机型的不同而不同,一般为10~15℃。所以,进气的冷却效益需考虑联合循环机组的整体效率影响而引起的总燃料消耗量的变化。 收稿日期:2006-03-28 作者简介:秦刚华(1963-),男,浙江宁波人,高级工程师。 ? 1 4 ?

相关文档
最新文档