概念模型、物理模型与数学模型

概念模型、物理模型与数学模型
概念模型、物理模型与数学模型

热考培优(七)|概念模型、物理模型与数学模型

[热考解读]

模型方法是以研究模型来揭示原型的形态、特征和本质的方法,是逻辑方法的一种特有形式,模型一般可分为概念模型、物理模型和数学模型三大类。

1.概念模型

含义:指以图示、文字、符号等组成的流程图形式对事物的规律和机理进行描述、阐明。例如光合作用示意图、中心法则图解、免疫过程图解、过敏反应机理图解、达尔文的自然选择学说的解释模型、血糖平衡调节的模型等。概念模型的特点是图示比较直观化、模式化,由箭头等符号连接起来的文字、关键词比较简明、清楚,它们既能揭示事物的主要特征、本质,又直观形象、通俗易懂。

2.物理模型

含义:根据相似原理,把真实事物按比例放大或缩小制成的模型,其状态变化和原事物基本相同,可以模拟客观事物的某些功能和性质。如生物体结构的模式标本、细胞结构模式图、减数分裂图解、DNA分子双螺旋结构、生物膜流动镶嵌模型、食物链和食物网等。物理模型的特点是:实物或图画的形态结构与真实事物的特征、本质非常相像,大小一般是按比例放大或缩小的。

3.数学模型

含义:用来定性或定量表述生命活动规律的计算公式、函数式、曲线图以及由实验数据绘制成的柱形图、饼状图等。如组成细胞的化学元素饼状图,酶的活性受温度、酸碱度影响的曲线,光合作用中随光照强度、温度、CO2等条件变化时光合作用强度的变化曲线,有丝分裂和减数分裂过程中染色体、染色单体以及DNA数量的变化规律,碱基与氨基酸的对应关系,基因分离定律和自由组合定律的图表模型,用数学方法讨论种群基因频率的变化,探究自然选择对种群基因频率的影响,同一植物不同器官对生长素浓度的反应曲线,“J”型种群增长曲线的数学模型和公式N t=N0λt,能量金字塔等。

[命题设计]

1.模型可以简化生物学问题,有助于问题的解决。下列关于模型建立的说法,正确的是() A.可用计算机软件制作真核细胞的三维实物模型

B.用公式N t=N0λt表示单个种群的“S”型增长趋势

C.光合作用过程图解是描述光合作用主要反应过程的数学模型

D.“建立血糖调节模型”活动是用物理模型再构建出概念模型

解析:选D。用计算机软件制作出的真核细胞的三维模型不是实物模型,A错误。公式N t=N0λt表示的是单个种群的“J”型增长趋势,B错误。光合作用过程图解是概念模型,C错误。“建立血糖调节模型”活动是把学生所做的模拟活动看作是构建动态的物理模型,再根据模拟活动的体验构建图解式概念模型,D正确。

2.(2016·高考北京卷)将与生物学有关的内容依次填入下图各框中,其中包含关系错误的选项是(

)

人体细胞的染色体包括常染色体和性染色体,性染色体又包括X 染色体和Y 染色体,B 项正确;物质跨膜运输包括主动运输和被动运输,被动运输又包括自由扩散和协助(易化)扩散,C 项正确;有丝分裂的细胞周期包括分裂期和分裂间期,分裂期会出现姐妹染色单体分离,分裂间期进行DNA 的复制和有关蛋白质的合成,不进行染色单体分离和同源染色体分离,有丝分裂过程中不发生同源染色体联会、分离等行为,D 项错误。 3.下列对种群数量变化曲线的解读,合理的是( )

A .图1所示为种群在自然环境条件下的增长规律,图2所示为曲线Ⅰ条件下种群的存活率

B .鱼类捕捞在图1的e 点和图2的g 点时进行,能获得最大日捕捞量

C .若图1为酵母菌种群数量增长曲线,则曲线Ⅰ为培养早期,曲线Ⅱ的cd 段酒精大量积累

D .图1中曲线Ⅱ的f 点与图2曲线的g 点,种内斗争最激烈

解析:选C 。分析曲线可知:图1中曲线Ⅰ为食物和空间充足、气候适宜、没有天敌的理想条件下的“J ”型增长,种群增长不受密度制约,因此不能用图2表示。图1的e 点对应K /2,此时种群增长速率最大,图2的g 点对应种群存活率最高,种群数量增长迅速,要获得最大

日捕捞量应该选择K值时进行。酵母菌培养早期近似呈“J”型增长,在有限的空间和资源条件下呈“S”型增长,cd段为衰亡期,是有害物质酒精大量积累所致。图1中曲线Ⅱ的f点时种内斗争最激烈,而图2的g点后比g点时的种内斗争要激烈。

数学建模部分概念期末复习.docx

数学建模部分定义概念 第一章 1.1实践.数学与数学模型 相关概念( 1 ?原型:客观存在的各种研究对象。既包括有形的对象,也包括无形的、思维中的对 象,还包括各种系统和过程等 2 ?模型:为了某个特定的目的,将原型的某一部分信息简缩,提炼而构造的整个原型 或其部分或其某一层面的替代物。 3 ?原型与模型的关系:原型是模型的前提与基础,模型是原型的提炼与升华。原型有 各个方面和各个层次的特征,而模型只要求反映与某些目的有关的那些方面和层次。 二什么是数学模型(Mathematical Model 对于现实世界中的一个特定对象,为了一个特定的目的,根据特 有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结 构。 广义上讲,数学模型是指凡是以相应的客观原型作为背景,加以一级抽象或多级抽象的数学概念.数学式子、数学理论等都叫数学模型。 狭义上讲.数学模型是指那些反映特定问题或特定事物的数学符号系统。 (我们所指的数学模型是指狭义上的数学模型) 数学模型不是原型的复制品,而是为了一定的目的,对原型所作的一种 抽象模拟。它用数学算式.数学符号.程序、图表等刻画客观事物的本质属性与内在关 系,是对现实世界的抽象.简化而有本质的描述,它源于现实又高于现实。 三.什么是数学建模 数学建模是指应用数学的方法解决某一实际问题的全过程。包括: (1)对实际问题的较详细的了解、分析和判断; (2 )为解决问题所需相关数学方法的选择; (3 )针对实际问题的数学描述,建立数学模型;

(4 )对数学模型的求解和必要的计算; (5 )数学结果在实际问题中的验证; (6 )将合理的数学结果应用于实际问题之中,从而解决问题。 数学建模流程图(参见教材上册P14 ) 1实际问题2抽象.简化.假设,确定变量和参数3根据某种、、定律"或、、规律"建立变量和参数间的一个明确的数学关系,即在此简化阶段上构造数学模型 4解析地或近似地求解该数学模型5用实际问题的实测数据等来解释.验证该数学模型(若不通过,返回第2步) 6投入使用,从而可产生经济.社会效益 完美的图画““堇金分割 黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整 体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为 1:0.618或,即长段为全段的0.618o 所谓黄金分割■指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。 计算黄金分割最简单的方法:计算斐波那契数列1,1,2,3,5,8,13,21,...从 二位起相邻两数之比,1/2,2/3,3/5,5/8,8/13丿13/21严?的近似值。 1.2八步建模法 1?问题提出 2?量的分析 3.模型假设 4.模型建立 5.模型求解 6.模型分析

功能强大的多物理场耦合分析软件

功能强大的多物理场耦合分析软件 COMSOL Multiphysics(原FEMLAB) COMSOL Multiphysics是一个专业有限元数值分析软件包,是对基于偏微分方程的多物理场模型进行建模和仿真计算的交互式开发环境系统。它为所有科学和工程领域内物理过程的建模和仿真提供了一种崭新的技术! CAE软件。 COMSOL Multiphysics是专为描述和模拟各种物理现象而开发的基于有限元分析的软件包,它使得建立各种物理现象的数学模型并进行数值模拟计算变得更为容易和可能。在使用COMSOL Multiphysics软件的过程中,您可以自己建立普通的偏微分方程形式,也可以使用COMSOL Multiphysics提供的特定的物理应用模型。这些特定的物理应用模型包括预先设定好的模块和在一些特殊应用领域内已经通过微分方程和变量建立起来的用户界面。此外,COMSOL Multiphysics软件通过把任意数目的这种物理应用模块整合成对一个单一问题的描述,使得建立耦合问题变得更为容易。 模型库是整个COMSOL Multiphysics软件包的最特色部分,它囊括了各种工程领域内的所有模型。每一个模型都包含了非常完善的相关文档如工程技术背景、结果讨论和一步一步建立模型的每个过程描述。由于这些模型文件都已经包括了网格划分和运行计算的信息,所以您可以自己打开这些文件并试着进行相应的各种后处理操作和显示。另外,您可以应用、扩充或者修改这些工程模型使它们符合您的个人需求。因此,进入这些模型库就给您提供了建立自己模型的基础和起点。而事实上,这些模型库也会给您建立自己的模型提供宝贵的参考。 能够独立于MATLAB运算的COMSOL Multiphysics软件系统为进一步改进软件提供了一个很好的基础和平台。COMSOL Multiphysics提供了与市场上主流的CAD软件进行接口的直接界面。在已有的三角形、四面体网格划分模型基础上,又新增加了四边形、六面体和棱柱体网格模型。为了更好地进行自动求解运算,COMSOL Multiphysics 还提供了强大的运算求解能力。 COMSOL Multiphysics软件系统具备了在Linux、Solaris和HP-UX等系统下的64位处理能力,尤其是可以在AMD64/Linux平台上进行64位计算。在一个系统上加入64位处理能力意味着COMSOL Multiphysics所能处理问题的规模比原来提高了至少10到100倍。 通过COMSOL Multiphysics的多物理场功能,您可以选择不同的模块,同时模拟任意物理场组合进行耦合分析;通过使用相应模块直接定义物理参数创建模型; 使用基于偏微分方程的模型可以自由定义用户自己的方程;

高中物理二十四种模型

高中物理二十四种模型 ⒈"质心"模型:质心(多种体育运动).集中典型运动规律.力能角度. ⒉"绳件.弹簧.杆件"三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题. ⒊"挂件"模型:平衡问题.死结与活结问题,采用正交分解法,图解法,三角形法则和极值法. ⒋"追碰"模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理方法(参照物变换法.守恒法)等. ⒌"运动关联"模型:一物体运动的同时性.独立性.等效性.多物体参与的独立性和时空联系. ⒍"皮带"模型:摩擦力.牛顿运动定律.功能及摩擦生热等问题. ⒎"斜面"模型:运动规律.三大定律.数理问题. ⒏"平抛"模型:运动的合成与分解.牛顿运动定律.动能定理(类平抛运动). ⒐"行星"模型:向心力(各种力).相关物理量.功能问题.数理问题(圆心.半径.临界问题). ⒑"全过程"模型:匀变速运动的整体性.保守力与耗散力.动量守恒定律.动能定理.全过程整体法. ⒒"人船"模型:动量守恒定律.能量守恒定律.数理问题. ⒓"子弹打木块"模型:三大定律.摩擦生热.临界问题.数理问题. ⒔"爆炸"模型:动量守恒定律.能量守恒定律. ⒕"单摆"模型:简谐运动.圆周运动中的力和能问题.对称法.图象法. ⒖"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应用. ⒗"电路的动态变化"模型:闭合电路的欧姆定律.判断方法和变压器的三个制约问题. ⒘"磁流发电机"模型:平衡与偏转.力和能问题.

⒙"回旋加速器"模型:加速模型(力能规律).回旋模型(圆周运动).数理问题. ⒚"对称"模型:简谐运动(波动).电场.磁场.光学问题中的对称性.多解性.对称性. ⒛电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平面导轨.竖直导轨等,处理角度为力电角度.电学角度.力能角度. 21.电磁场中的"双电源"模型:顺接与反接.力学中的三大定律.闭合电路的欧姆定律.电磁感应定律. 22.交流电有效值相关模型:图像法.焦耳定律.闭合电路的欧姆定律.能量问题. 23."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题. 24.远距离输电升压降压的变压器模型.

数学建模的作用意义

数学建模的背景: 人们在观察、分析和研究一个现实对象时经常使用模型,如展览馆里的飞机模型、水坝模型,实际上,照片、玩具、地图、电路图等都是模型,它们能概括地、集中地反映现实对象的某些特征,从而帮助人们迅速、有效地了解并掌握那个对象。数学模型不过是更抽象些的模型。 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子(称为数学模型),然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个全过程就称为数学建模。 近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。 不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并计算求解。人们常常把数学建模和计算机技术在知识经济时代的作用比喻为如虎添翼。 数学建模日益显示其重要作用,已成为现代应用数学的一个重要领域。为培养高质量、高层次人才,对理工、经济、金融、管理科学等各专业的大学生都提出“数学建模技能和素质方面的要求”。 数学建模在现代社会的一些作用 (1)在一般工程技术领域,数学建模仍然大有用武之地。在以声、光、热、力、电这些物理学科为基础的诸如机械、电机、土木、水利等工程技术领域中,数学建模的普遍性和重要性不言而喻,虽然这里的基本模型是已有的,但是由于新技术、新工艺的不断涌现,提出了许多需要用数学方法解决的新问题;高速、大型计算机的飞速发展,使得过去即便有了数学模型也无法求解的课题(如大型水坝的应力计算,中长期天气预报等)迎刃而解;建立在数学模型和计算机模拟基础上的CAD技术,以其快速、经济、方便等优势,大量地替代了传统工程设计中的现场实验、物理模拟等手段。(2)在高新技术领域,数学建模几乎是必不可少的工具。无论是发展通讯、航天、微电子、自动化等高新技术本身,还是将高新技术用于传统工业去创造新工艺、开发新产品,计算机技术支持下的建模和模拟都是经常使用的有效手段。数学建模、数值计算和计算机图形学等相结合形成的计算机软件,已经被固化于产品中,在许多高新技术领域起着核心作用,被认为是高新技术的特征之一。在这个意义上,数学不再仅仅作为一门科学,它是许多技术的基础,而且直接走向了技术的前台。国际上一位学者提出了“高技术本质上是一种数学技术”的观点。 (3)数学迅速进入一些新领域,为数学建模开拓了许多新的处女地。随着数学向诸如经济、人口、生态、地质等所谓非物理领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学等应运而生。一般地说,不存在作为支配关系的物理定律,当用数学方法研究这些领域中的定量关系时,数学建模就成为首要的、关键的步骤和这些学科发展与应用的基础。在这些领域里建立不同类型、不同方法、不同深浅程度模型的余地相当大,为数学建模提供了广阔的新天地。马克思说过,一门科学只有成功地运用数学时,才

高中物理模型汇总

学习资料收集于网络,仅供参考 高中物理模型汇总大全 模型组合讲解一一爆炸反冲模型 [模型概述] “爆炸反冲”模型是动量守恒的典型应用,其变迁形式也多种多样,如炮发炮弹中的化学能转化为机械能;弹簧两端将物块弹射将弹性势能转化为机械能;核衰变时将核能转化为动能等。 [模型讲解] 例?如图所示海岸炮将炮弹水平射出,炮身质量(不含炮弹)为M,每颗炮弹质量为m, 当炮身固定时,炮弹水平射程为s,那么当炮身不固定时,发射同样的炮弹,水平射程将是多少? 解析:两次发射转化为动能的化学能E是相同的。第一次化学能全部转化为炮弹的动能;第二次化学能转化为炮弹和炮身的动能,而炮弹和炮身水平动量守恒,由动能和动量的关系 2 式E k二丄知,在动量大小相同的情况下,物体的动能和质量成反比,炮弹的动能 2m E, =-mv1 = E,E2 =1mvf M一E,由于平抛的射高相等,两次射程的比等于抛出时初 2 2 M +m 速度之比,即:处亠=.M,所以S2 M。 sv.YM+m *M+m 思考:有一辆炮车总质量为M,静止在水平光滑地面上,当把质量为平面成B角 发射出去,炮弹对地速度为v0,求炮车后退的速度。 提示:系统在水平面上不受外力,故水平方向动量守恒,炮弹对地的水平速度大小为 V o COSV,设炮车后退方向为正方向,则(M -m)v-mv o COSV - 0,v = mV ° C ° S M —m 评点:有时应用整体动量守恒,有时只应用某部分物体动量守恒,有时分过程多次应用动量守恒,有时抓住初、末状态动量即可,要善于选择系统,善于选择过程来研究。 [模型要点] 内力远大于外力,故系统动量守恒P i二p2,有其他形式的能单向转化为动能。所以“爆 m的炮弹沿着与水

建立数学模型 解决物理问题

建立数学模型 解决物理问题 赖文奇 黄代敏 (浙江省永康市明珠学校 浙江 永康 321300) 摘 要:通过对物理问题的探索和求解,总结出中学物理问题的基本规律和基本方法:建立与物理问题对应的数学模型,化物理问题为数学问题,从而用中学数学知识和思想方法求出物理问题. 关键词:物理教学 数学知识 数学模型 随着新课考改的深入及素质教育的全面推开,各学科之间的渗透不断加强,作为对理解能力和演绎推理能力及运算能力都有很高要求的物理学科,如果能与数学知识灵活整合,将会拓展优化解决物理问题的思路,提高运用数学知识解决物理问题的能力。点到直线的距离公式、均值不等式、二次函数的性质、求导数、因式分解、三角函数、有关圆的知识、数形结合思想等中学数学知识,在高中物理解题中都有广泛的应用。 在求解物理过程中要想能与数学知识进行灵活的整合,充分发挥数学的作用,往往要进行数学建模。利用数学解决实际问题的一般模式如下: (一) 二次函数性质的应用: 例1、一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/s 2 的加速度开始行驶。恰在这时一辆自行车以6m/s 的速度匀速驶来,从后边赶过汽车。汽车从路口开动后,在追上自行车之前过多长时间两车相距最远?此时距离是多少? 解:经过时间t 后,自行车做匀速运动,其位移为Vt S =1, 汽车做匀加速运动,其位移为:222 1at S = 两车相距为:22212 3621t t at Vt S S S -=- =-=? 这是一个关于t 的二次函数,因二次项系数为负值,故ΔS 有最大值。 当有最大值时S ,s a b t ?=-?-=-=)(2)2/3(262)(6) 2/3(460442 2m a b ac S m =-?-=-=?。 说明1:对于典型的二次函数c bx ax y ++=2 ,若0>a ,则当a b x 2-=时,y 有最小值,为

数学建模的概念与教学中价值

数学建模的概念与教学中价值 通过这次培训对数学建模的学习,我对数学建模有了新的认识: 从广义上来说,数学模型是从现实世界中抽象出来的,是对客观事物的某些属性的近似反映。例如数学中的各种概念、公式、方程式,以及由公式系列构成的算法系统等,都是从现实世界的原型抽象出来的反映原型量性特点和关系的一种结构,因而它们都是现实世界的数学模型。 从狭义上来说,数学模型是“对现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。”1[①]如就是意大利科学家Galilei为自由落体运动所建立的数学模型;而万有引力定理,则是著名科学家Newton为揭示宇宙万物之间的一种普遍联系而建立的数学模型。 因此,数学模型是针对或参照某种事物特征或数量相依关系,采用形式化的数学语言,概括地或近似地表述出来的一种数学关系结构。 设计数学模型的过程称为数学建模,简称建模。其基本步骤是: 模型准备:了解问题的实际背景,明确其实际意义,尽可能多地掌握对象的各种信息。 模型假设:根据实际对象特征和建模的目的,对问题进行必要的简化,明确变量和参数,并用精确的语言提出恰当的假设。 模型建立:在假设的基础上,尽量使用简单而又恰当的数学工具刻画各变量之间的数学关系,并建立相应的数学结构。 模型求解:利用获取的数据资料,对模型的所有参数做出计算与估计。 模型分析与检验:对所得的结果进行数学上的分析,并与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。若模型与实际较吻合,则对计算结果给出符合实际意义的解释。若模型与实际吻合性较差,则修改假设,重复上述过程,直至所建模型基本符合实际问题情景为止。 模型应用:将所得结论应用于实际问题。 因此在数学建模中,要充分分析原型中各种因素的相互关系、相对地位、数量特征,抓住主要因素与数量关系,通过必要而恰当的人为假设减少系统中变量个数,并采用尽可能简单的数学工具,建立反映现实原型的本质特征和数量关系的数学模型,然后回到具体研究对象中去解决问题或给予解释。同时中学数学建模必须适应中学生的数学水平,必须是通过他们的努力可求解的。如果应用得好,数学建模可以使学生:体会数学的应用价值,培养数学的应用意识;增强数学学习兴趣,学会团结合作,提高分析和解决问题的能力;知道数学知识的发生过程,培养数学创造能力。

高中物理常见的物理模型及分析

高三物理总复习 专题高中物理常见的物理模型 方法概述 高考命题以《考试大纲》为依据,考查学生对高中物理知识的掌握情况,体现了“知识与技能、过程与方法并重”的高中物理学习思想.每年各地的高考题为了避免雷同而千变万化、多姿多彩,但又总有一些共性,这些共性可粗略地总结如下: (1)选择题中一般都包含3~4道关于振动与波、原子物理、光学、热学的试题. (2)实验题以考查电路、电学测量为主,两道实验小题中出一道较新颖的设计性实验题的可能性较大. (3)试卷中下列常见的物理模型出现的概率较大:斜面问题、叠加体模型(包含子弹射入)、带电粒子的加速与偏转、天体问题(圆周运动)、轻绳(轻杆)连接体模型、传送带问题、含弹簧的连接体模型. 高考中常出现的物理模型中,有些问题在高考中变化较大,或者在前面专题中已有较全面的论述,在这里就不再论述和例举.斜面问题、叠加体模型、含弹簧的连接体模型等在高考中的地位特别重要,本专题就这几类模型进行归纳总结和强化训练;传送带问题在高考中出现的概率也较大,而且解题思路独特,本专题也略加论述. 热点、重点、难点 一、斜面问题 在每年各地的高考卷中几乎都有关于斜面模型的试题.如2009年高考全国理综卷Ⅰ第25题、北京理综卷第18题、天津理综卷第1题、上海物理卷第22题等,2008年高考全国理综卷Ⅰ第14题、全国理综卷Ⅱ第16题、北京理综卷第20题、江苏物理卷第7题和第15题等.在前面的复习中,我们对这一模型的例举和训练也比较多,遇到这类问题时,以下结论可以帮助大家更好、更快地理清解题思路和选择解题方法. 1.自由释放的滑块能在斜面上(如图9-1 甲所示)匀速下滑时,m与M之间的动摩擦因数μ=g tan θ. 图9-1甲 2.自由释放的滑块在斜面上(如图9-1 甲所示): (1)静止或匀速下滑时,斜面M对水平地面的静摩擦力为零; (2)加速下滑时,斜面对水平地面的静摩擦力水平向右; (3)减速下滑时,斜面对水平地面的静摩擦力水平向左. 3.自由释放的滑块在斜面上(如图9-1乙所示)匀速下滑时,M对水平地面的静摩擦力为零,这一过程中再在m上加上任何方向的作用力,(在m停止前)M对水平地面的静摩擦力依然为零(见一轮书中的方法概述). 图9-1乙 4.悬挂有物体的小车在斜面上滑行(如图9-2所示): 图9-2 (1)向下的加速度a=g sin θ时,悬绳稳定时将垂直于斜面; (2)向下的加速度a>g sin θ时,悬绳稳定时将偏离垂直方向向上; (3)向下的加速度a<g sin θ时,悬绳将偏离垂直方向向下. 5.在倾角为θ的斜面上以速度v0平抛一小球(如图9-3所示): 图9-3 (1)落到斜面上的时间t= 2v0tan θ g ; (2)落到斜面上时,速度的方向与水平方向的夹角α恒定,且tan α=2tan θ,与初速度无关; (3)经过t c= v0tan θ g 小球距斜面最远,最大距离d= (v0sin θ)2 2g cos θ . 6.如图9-4所示,当整体有向右的加速度a=g tan θ时,m能在斜面上保持相对静止. 图9-4 7.在如图9-5所示的物理模型中,当回路的总电阻恒定、导轨光滑时,ab棒所能达到的稳定速度v m= mgR sin θ B2L2 .

高中物理重要方法典型模型突破7-数学方法(5)--微元法

专题七 数学方法(5) 微元法 【重要方法点津】 在物理学的问题中,往往是针对一个对象经历某一过程或出于某一状态来进行研究,而此过程或状态中,描述此研究对象的物理量有的可能是不变的,而更多的则可能是变化的,对于那些变化的物理量的研究,有一种方法是将全过程分为很多短暂的微小过程或将研究对象的整体分解为很多微小局部,这些微小过程或者是微小的局部常被称为“微元”,而且每个微元所遵行的规律是相同的,取某一微元加以分析,然后在将微元进行必要的数学方法或物理思想处理归纳出适用于全过程或者是整体的结论,这种方法被称为“微元法”。微元法是物理学研究连续变化量的一种常用方法。 微元可以是一小段线段、圆弧、一小块面积、一个小体积、小质量、一小段时间……,但应具有整体对象的基本特征。这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题得到求解。利用“微元法”可以将非理想模型转化为理想模型,将一般曲线转化为圆甚至是直线,将非线性变量转化为线性变量甚至是恒量,充分体现了“化曲为直”、“化变为恒”的思想。 应用“微元法”解决物理问题时,采取从对事物的极小部分(微元)入手,达到解决事物整体的方法,具体可以分以下三个步骤进行:(1)选取微元用以量化元事物或元过程; (2)把元事物或元过程视为恒定,运用相应的物理规律写出待求量对应的微元表达式;(3)在微元表达式的定义域内实施叠加演算,进而求得待求量。微元法是采用分割、近似、求和、取极限四个步骤建立所求量的积分式来解决问题的。 【典例讲练突破】 【例1】 设某个物体的初速度为0v ,做加速度为a 的匀加速直线运动,经过时间t ,则物 体的位移与时间的关系式为2012 x v t at =+,试推导。 【总结】这是我们最早接触的微元法的应用。总结应用微元法的一般步骤:(1)选取微元,时间t ?极短,认为速度不变,“化变为恒”,(2)写出所求量的微元表达式,微元段的意义是位移,写出位移表达式i i x v t =?,(3)对所求物理量求和,即对微元段的位移求和, i i x x v t =∑=∑?。

高中物理模型的归类与分析

本科毕业论文(设计)题目:高中物理模型的归类与分析 作者单位:物理学与信息技术学院 专业:物理学 作者姓名:任艳华 指导教师:郭芳霞 提交日期:二一六年四月

高中物理模型的归类与总结 任艳华 摘要:物理模型是高中物理知识的重要载体,其中绝大多数内容都是以物理模型为基础和载体向学生传递知识的。物理模型不仅是学生获得物理知识的一种基本方法,更是一种培养学生应用能力和创新能力的重要工具。本文主要讲述物理模型的概念及分类方法,并结合整个高中物理中的重点和难点知识对物理模型进行分类与总结,最后指出运用物理模型教学的意义。 关键词:物理模型;高中物理教学;教学意义 物理学是一门重要的自然科学,它研究的对象是自然界最普遍、最基本的运动形态及物质结构相互作用和运动规律的学科。自然界的各种各种事物之间存在着千丝万缕的关系,并且复杂多变。因此,为了探讨物理事物的本质,根据所研究的具体问题或问题的特点,用科学抽象的思维方法对问题进行抽象的描述,抓住事物主要的、本质的特征,忽略其次要的、非本质的因素,将所研究对象进行简化、高度抽象而建立起来的一种新的物理形象----即物理模型。 1.高中物理模型的概述 1.1物理模型的含义 “模型”一词来自于“Modulus”,意为样本、尺度、标准。钱学森先生曾给模型下过这样的定义:模型就是通过对问题现象的分解、分析,利用已知原理,吸取主要因素,省略次要因素,而创造出的一幅图画。[1] 根据物理模型的特点,美国学者David Hestenes(1995)认为,物理模型是对物理系统和某一物理过程的抽象化表征,它可以表征系统的结构及其某一方面的特征或运动规律等。[2]据此我们可以得出物理模型是对客观原型的一种“概念化”的抽象描述,这种描述包括了对客观实物的结构、某一方面的特征等。 1.2建立物理模型的意义 经过抽象思维构思出来的物理模型,可以简化物理学所分析、研究的复杂问题,且模型中得出的结果与客观实际又不会有明显的偏差。 运用物理模型可以帮助人们解决实际生活中的问题。在实际处理时只需要将实际事物抽象成理想模型,然后将模型的研究结果直接运用于实际。面对比较复杂的问题时,首先研究它的物理理想模型,再结合客观实际将其研究结果进行修正,从而使之与实际对象的本质相一致。[3]例如:由理想气体状态方程nRT pV 得出的结果与实际气体不相符合,这是因为在推导理想气体状态方程时,将分子力完全忽略了,而实际气体中气体分子的大小和分子间的相互作用力是不容忽视的。因此,从代表理想气体体积的V中减去分子体积b,对测定的压强值P加上

高中物理必修一概念梳理

物理必修一知识点 一、运动学的基本概念 1、参考系:描述一个物体的运动时,选来作为标准的的另外的物体。 运动是绝对的,静止是相对的。一个物体是运动的还是静止的,都是相对于参考系在而言的。 参考系的选择是任意的,被选为参考系的物体,我们假定它是静止的。选择不同的物体作为参考系,可能得出不同的结论,但选择时要使运动的描述尽量的简单。 通常以地面为参考系。 2、质点: ①定义:用来代替物体的有质量的点。质点是一种理想化的模型,是科学的抽象。 ②物体可看做质点的条件:研究物体的运动时,物体的大小和形状对研究结果的影响可以忽略。且物 体能否看成质点,要具体问题具体分析。 ③物体可被看做质点的几种情况: (1)平动的物体通常可视为质点. (2)有转动但相对平动而言可以忽略时,也可以把物体视为质点. (3)同一物体,有时可看成质点,有时不能.当物体本身的大小对所研究问题的影响不能忽略时,不能 把物体看做质点,反之,则可以. [关键一点] (1)不能以物体的大小和形状为标准来判断物体是否可以看做质点,关键要看所研究问题的性质.当物 体的大小和形状对所研究的问题的影响可以忽略不计时,物体可视为质点. (2)质点并不是质量很小的点,要区别于几何学中的“点”. 3、时间和时刻: 时刻是指某一瞬间,用时间轴上的一个点来表示,它与状态量相对应;时间是指起始时刻到终止时刻之间的间隔,用时间轴上的一段线段来表示,它与过程量相对应。

4、位移和路程: 位移用来描述质点位置的变化,是质点的由初位置指向末位置的有向线段,是矢量; 路程是质点运动轨迹的长度,是标量。 5、速度: 用来描述质点运动快慢和方向的物理量,是矢量。 (1)平均速度:是位移与通过这段位移所用时间的比值,其定义式为v x t ?= ?,方向与位移的方向相同。平均速度对变速运动只能作粗略的描述。 (2)瞬时速度:是质点在某一时刻或通过某一位置的速度,瞬时速度简称速度,它可以精确变速运动。 瞬时速度的大小简称速率,它是一个标量。 6、加速度:用量描述速度变化快慢的的物理量,其定义式为v a t ?= ?。 加速度是矢量,其方向与速度的变化量方向相同(注意与速度的方向没有关系),大小由两个因素决定。 易错现象 1、忽略位移、速度、加速度的矢量性,只考虑大小,不注意方向。 2、错误理解平均速度,随意使用12 V V V 2 += 平均。 3、混淆速度、速度的增量和加速度之间的关系。 二、匀变速直线运动的规律及其应用: 1、定义:在任意相等的时间内速度的变化都相等的直线运动 2、匀变速直线运动的基本规律,可由下面四个基本关系式表示: (1)速度公式t 0 v v t a =+ (2)位移公式2 01v t 2 x at =+ (3)速度与位移式22t 0v =2ax v - (4)平均速度公式()0t v v v 2 x t +==平均 3、几个常用的推论: (1)任意两个连续相等的时间T 内的位移之差为恒量 △x=x 2-x 1=x 3-x 2=……=x n -x n-1=aT 2

多物理场耦合技术的研究进展与发展趋势10页

多物理场耦合技术的研究进展与发展趋势 一、数值计算概述 现代科学技术问题通常有三种研究方法:理论推导、科学实验和科学计算。科学技术可以帮助科学家揭示用物质实验手段尚不能表现的科学奥秘和 科学规律,同时,它也是工程科学家的研究成果——理论、方法和科学数据的归总,成为推动工程和社会进步的最新生产力。数值计算方法则是科学计算核心。 数值计算技术诞生于上个世纪五十年代初,Bruce, G. H.和Peaceman, D. W.模拟了一维气相不稳定径向和线形流。受当时计算机能力及解法限制,数值计算技术只是初步应用于求解一维问题。随着计算机技术和计算方法的发展,复杂的工程问题也可以采用离散化的数值计算方法并借助计算机得到满足工程要求的数值解。 数值计算可理解为用计算机来做实验,比如某一特定LED(发光二极管)工作过程中内部电流密度、温度及热应力问题,通过计算并显示其计算结果。我们可以看到LED 内部电流密度是否存在拥挤现象,内部温度分布的各个细节,以及由于温度的变化引起的应力集中是否存在,它的位置、大小及其随时间的变化等。 我们可以将数值计算分为以下几个步骤:

首先要建立反映问题本质的数学模型。具体说就是要建立反映问题中各物理量之间的偏微分方程及其相应的定解条件,这是数值计算的出发点。比如牛顿型流体流动的数学模型就是著名的纳维—斯托克斯方程及其相应的定解条件。 数学模型建立之后,接下来就是求解这个模型。需要寻求高效、高准确度的计算方法。求解科学问题就是求解偏微分方程。 在确定了计算方法后,就可以开始编制程序并进行计算。实践表明这一部分工作是整个工作的主体,会占据整个工程的绝大部分时间。随着软件技术的发展,出现了应用于各领域的商业软件,运用这些软件使得这部分工作得到大大简化,缩短了模拟过程的周期。这样,科研人员能够将自己的时间和精力更多的投入到自己研究的问题上,而不是编写计算代码。 通过上述描述,用数值计算方法解决科学计算问题的一般过程可以用如下流程来形象地描述: 实际问题→数学模型→计算方法→计算程序→计算机计算→结果分析 在计算工作完成后,需要处理大量的计算结果数据。计算结果的图形后处理也是一项十分重要的工作。现在很多模拟工具已经能将图形编辑成连贯动画进行播放。 数值计算具有很多优点,但是它也有自己的局限性:

数学建模-物理模型

2015年学院第十届数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括、电子、网上咨询等)与队外的任何人研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛的题目是:B题物理实验模型 参赛的组(甲组或乙组):甲组 所属系:土木工程 参赛队员(打印并签名): 日期:年月日评阅编号(由组委会评阅前进行编号):

物理实验模型 摘要 首先对数据进行综合处理,给出函数的定义、性质建立模型并用数学软件求解物理模型。在MATLAB中运用插值法与最小二乘法进行模型拟合,利用函数转化为一般的非线性规划问题从而有效地进行模型建立,模型求解,模型改进。模型改进中根据拟合曲线的拟合程度进行确立模型,求解模型之后比较前后模型的置信区间、误差项平方和、Adjusted R-ssquare、R-square之间的大小已确立模型改进的是否成功。

关键字:插值法最小二乘法拟合曲线拟合程度置信区间误差项平方和Adjusted R-square R-square 问题重述:学院物理实验室一组实验数据(不考虑物理量的含义)如表 建立x与y之间的数学模型。 模型假设:在excel中输入数据,利用插入图表作出散点图(如下图) 根据散点图走向大致为指数型函数,建立模型为x b y 其中a>0 a

数学模型的定义

一、数学模型的定义 现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。一般来说数学建模过程可用如下框图来表明: 数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。 二、建立数学模型的方法和步骤 1. 模型准备 要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 5. 模型分析 对模型解答进行数学上的分析。“横看成岭侧成峰,远近高低各不同”,能否对模型结果

高中物理中常用的三角函数数学模型!!!

高中物理中常用的三角函数数学模型 数学作为工具学科,其思想、方法和知识始终渗透贯穿于整个物理学习和研究的过程中,为物理概念、定律的表述提供简洁、精确的数学语言,为学生进行抽象思维和逻辑推理提供有效方法.为物理学的数量分析和计算提供有力工具。 高考物理试题的解答离不开数学知识和方法的应用,借助物理知识渗透考查数学能力是高考命题的永恒主题。可以说任何物理试题的求解过程实质上是一个将物理问题转化为数学问题经过求解再次还原为物理结论的过程。高考物理考试大纲对学生应用数学工具解决物理问题的能力作出了明确要求。 一、三角函数的基本应用 在进行力的分解时,我们经常用到三角函数的运算.虽然三角函数学生初中已经学过,但笔者在多年的教学过程中发现,有相当一部分学生经常在这里出问题,还有一部分学生一直到高三都没把这部分搞清楚.为此,本人将自己的一些体会写出来,仅供大家参考. (一)三角函数的定义式 (二)探寻规律 1.涉及斜边与直角边的关系为“弦”类,涉及两直角边的关系为“切”类; 2.涉及“对边”为“正”类,涉及“邻边”为“余”类; 3.运算符:由直角边求斜边用“除以”,由斜边求直角边用“乘以”,为更具规律性,两直角边之间互求我们都用“乘以”. (三)速写 第一步:判断运算符是用“乘以”还是“除以”; 第二步:判断用“正”还是用“余”; 第三步:判断用“弦”还是用“切”. 即 (边)=(边)(运算符)(正/余)(弦/切) 1、由直角边求斜边 2、由斜边求直角边 3、两直角边互求 (四)典例分析 经典例题1 如图1所示,质量为m 的小球静止于斜面与竖直挡板之间,斜面倾角为θ,求小球对挡板和对斜面的压力大小分别是多少? 【解析】 2所示。 θtan 1?=mg F 经典例题2 如图3所示,质量为,挡 挡板和使球压紧斜面,重力的分解如图4所示。 二、三角函数求物理极值 因正弦函数和余弦函数都有最大值(为1) 本形式,那么我们可以通过三角函数公式整理出正弦(或余弦)函数的基本形式,然后在确 定极值。现将两种三角函数求极值的常用模型归纳如下: 1.利用二倍角公式求极值 图 3 图 4

数学建模入门基本知识

数学建模知识 ——之新手上路一、数学模型的定义 现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图像、框图等描述客观事物的特征及其在联系的数学结构表达式。一般来说数学建模过程可用如下框图来表明: 数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。 二、建立数学模型的方法和步骤

1. 模型准备 要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成 根据所作的假设分析对象的因果关系,利用对象的在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 5. 模型分析 对模型解答进行数学上的分析。“横看成岭侧成峰,远近高低各不同”,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差分析,数据稳定性分析。

概念模型、物理模型与数学模型

热考培优(七)|概念模型、物理模型与数学模型 [热考解读] 模型方法是以研究模型来揭示原型的形态、特征和本质的方法,是逻辑方法的一种特有形式,模型一般可分为概念模型、物理模型和数学模型三大类。 1.概念模型 含义:指以图示、文字、符号等组成的流程图形式对事物的规律和机理进行描述、阐明。例如光合作用示意图、中心法则图解、免疫过程图解、过敏反应机理图解、达尔文的自然选择学说的解释模型、血糖平衡调节的模型等。概念模型的特点是图示比较直观化、模式化,由箭头等符号连接起来的文字、关键词比较简明、清楚,它们既能揭示事物的主要特征、本质,又直观形象、通俗易懂。 2.物理模型 含义:根据相似原理,把真实事物按比例放大或缩小制成的模型,其状态变化和原事物基本相同,可以模拟客观事物的某些功能和性质。如生物体结构的模式标本、细胞结构模式图、减数分裂图解、DNA分子双螺旋结构、生物膜流动镶嵌模型、食物链和食物网等。物理模型的特点是:实物或图画的形态结构与真实事物的特征、本质非常相像,大小一般是按比例放大或缩小的。 3.数学模型 含义:用来定性或定量表述生命活动规律的计算公式、函数式、曲线图以及由实验数据绘制成的柱形图、饼状图等。如组成细胞的化学元素饼状图,酶的活性受温度、酸碱度影响的曲线,光合作用中随光照强度、温度、CO2等条件变化时光合作用强度的变化曲线,有丝分裂和减数分裂过程中染色体、染色单体以及DNA数量的变化规律,碱基与氨基酸的对应关系,基因分离定律和自由组合定律的图表模型,用数学方法讨论种群基因频率的变化,探究自然选择对种群基因频率的影响,同一植物不同器官对生长素浓度的反应曲线,“J”型种群增长曲线的数学模型和公式N t=N0λt,能量金字塔等。 [命题设计] 1.模型可以简化生物学问题,有助于问题的解决。下列关于模型建立的说法,正确的是() A.可用计算机软件制作真核细胞的三维实物模型 B.用公式N t=N0λt表示单个种群的“S”型增长趋势 C.光合作用过程图解是描述光合作用主要反应过程的数学模型 D.“建立血糖调节模型”活动是用物理模型再构建出概念模型 解析:选D。用计算机软件制作出的真核细胞的三维模型不是实物模型,A错误。公式N t=N0λt表示的是单个种群的“J”型增长趋势,B错误。光合作用过程图解是概念模型,C错误。“建立血糖调节模型”活动是把学生所做的模拟活动看作是构建动态的物理模型,再根据模拟活动的体验构建图解式概念模型,D正确。

高中物理典型物理模型及方法

高中典型物理模型及方法 ◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。解决这类问题的基本方法是整体法和隔离法。 整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程 隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。 连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒) 与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。 平面、斜面、竖直都一样。只要两物体保持相对静止 记住:N= 211212 m F m F m m ++ (N 为两物体间相互作用力), 一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用?F 2 12m m m N += 讨论:①F 1≠0;F 2=0 122F=(m +m )a N=m a N= 2 12 m F m m + ② F 1≠0;F 2≠0 N= 211212 m F m m m F ++ (20F =就是上面的情 况) F=211221m m g)(m m g)(m m ++ F=122112 m (m )m (m gsin )m m g θ++ F=A B B 12 m (m )m F m m g ++ F 1>F 2 m 1>m 2 N 1

相关文档
最新文档