FTSR线铁素体轧制低碳钢板的组织性能分析

FTSR线铁素体轧制低碳钢板的组织性能分析
FTSR线铁素体轧制低碳钢板的组织性能分析

强度定义

强度定义 1、材料、机械零件和构件抵抗外力而不失效的能力。强度包括材料强度和结构强度两方面。强度问题有狭义和广义两种涵义。狭义的强度问题指各种断裂和塑性变形过大的问题。广义的强度问题包括强度、刚度和稳定性问题,有时还包括机械振动问题。强度要求是机械设计的一个基本要求。 材料强度指材料在不同影响因素下的各种力学性能指标。影响因素包括材料的化学成分、加工工艺、热处理制度、应力状态,载荷性质、加载速率、温度和介质等。 按照材料的性质,材料强度分为脆性材料强度、塑性材料强度和带裂纹材料的强度。①脆性材料强度:铸铁等脆性材料受载后断裂比较突然,几乎没有塑性变形。脆性材料以其强度极限为计算强度的标准。强度极限有两种:拉伸试件断裂前承受过的最大名义应力称为材料的抗拉强度极限,压缩试件的最大名义应力称为抗压强度极限。②塑性材料强度:钦钢等塑性材料断裂前有较大的塑性变形,它在卸载后不能消失,也称残余变形。塑性材料以其屈服极限为计算强度的标准。材料的屈服极限是拉伸试件发生屈服现象(应力不变的情况下应变不断增大的现象)时的应力。对于没有屈服现象的塑性材料,取与0.2%的塑性变形相对应的应力为名义屈服极限,用σ0.2表示。③带裂纹材料的强度:常低于材料的强度极限,计算强度时要考虑材料的断裂韧性(见断裂力学分析)。对于同一种材料,采用不同的热处理制度,则强度越高的断裂韧性越低。 按照载荷的性质,材料强度有静强度、冲击强度和疲劳强度。材料在静载荷下的强度,根据材料的性质,分别用屈服极限或强度极限作为计算强度的标准。材料受冲击载荷时,屈服极限和强度极限都有所提高(见冲击强度)。材料受循环应力作用时的强度,通常以材料的疲劳极限为计算强度的标准(见疲劳强度设计)。此外还有接触强度(见接触应力)。

钢铁中常见的金相组织

钢铁中常见的金相组织区别简析 钢铁中常见的金相组织 1.奥氏体-碳与合金元素溶解在γ-fe中的固溶体,仍保持γ-fe的面心立方晶格。晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处 2.铁素体-碳与合金元素溶解在a-fe中的固溶体。亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。 3.渗碳体-碳与铁形成的一种化合物。在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。过共析钢冷却时沿acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。铁碳合金冷却到ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。 4.珠光体-铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。 珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。在a1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。 5.上贝氏体-过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。转变时先在晶界处形成上贝氏体,往晶内长大,不穿晶。 6.下贝氏体-同上,但渗碳体在铁素体针内。过冷奥氏体在350℃~ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度比低碳低合金钢高,针叶比低碳低合金钢细。 7.粒状贝氏体-大块状或条状的铁素体内分布着众多小岛的复相组织。过冷奥氏体在贝氏体转变温度区的最上部的转变产物。刚形成时是由条状铁素体合并而成的块状铁素体和小岛状富碳奥氏体组成,富碳奥氏体在随后的冷却过程中,

金属材料蠕变

金属材料蠕变 早期,人们对金属材料强度的认识不足,设计金属构件时仅以短时强度作为设计依据。不少构件,即使使用应力低于弹性极限,使用一段时间后仍然会发生因塑性受形而失效或因破断而失效的现象。随着科学技术的发展,金属材料的使用温度逐步提高,这种矛盾越来越突出。这就使人们进一步认识到材料强度与使用期限之问尚有密切的联系,从而相继开拓了蠕变、蠕变断裂、松弛、疲劳、断裂力学等长时强度研究领域。蠕变则是其中研究最早、内容较丰富而成果较显着的一个领域,成为其他几个研究领域的基础。 金属在持续应力作用下(即使在远低于弹性极限的情况下)会发生缓慢的塑性变形。熔点较低的金属容易产生这种现象;金属所处的温度越高,这种现象越明显。在一定温度下,金属受持续应力的作用而产生缓慢的塑性变形的现象称为金属的蠕变。引起蠕变的这一应力称蠕变应力。在这种持续应力作用下,蠕变变形逐渐增加,最终可以导致断裂,这种断裂称蠕变断裂。导致断裂的这一初始应力称蜕变断裂应力。在有些情况下(特别是在工程上),把蠕变应力及蠕变断裂应力作为材料在特定条件下的一种强度指标来讨论时,往往又把它们称为蠕变强度及蠕变断裂强度,后者又称为持久强度。蠕变现象的发生是温度和应力共同作用的结果。温度和应力的作用方式可以是恒定的,也可以是变动的。常规的蠕变试验则是专门研究在恒定载荷及恒定温度下的蠕变规律。为了与变动情况相区别,把这种试验称为静态蠕变试验。 蠕变现象很早就被人们发现,远在1905年F. Philips等就开始进行专门研究。最初研究的是铅、锌等低熔点纯金属,因为这些金属在室温下就已表现出明显的蠕变现象。以后逐步研究了较高熔点的铝、镁等纯金属的蠕变现象,进而又研究了铁、镍以至难熔金属钨、铂等的蠕变规律。对纯金属的研究后来又发展到对铁、钴、镍基合金及其他各种高温合金的研究。对这些合金,要求它们在几百度的高温下才能表现出明显的蠕变现象(例如碳钢>0.35Tm,不锈钢>0.4Tm)。 蠕变现象的研究是与工业技术的发展密切相关的。随着工作温度的提高,材料蠕变现象越来越明显,对材料蠕变强度的要求越来越高。不同的工作温度需选用具有不同蠕变性能的材料,因此蠕变强度就成为决定高温金属材料使用价值的重要因素。 蠕变曲线 在恒定温度下,一个受单向恒定载荷(拉或压)作用的试样,其变形e与时间t的关系可用如图9.76所示的典型的蠕变曲线表示。曲线可分下列几个阶段: 图9.76 典型的蠕变曲线 第I阶段:减速蠕变阶段(图中AB段),在加载的瞬间产生了的弹性变形e0,以后随加载时间的延续变形连续进行,但变形速率不断降低; 第II阶段:恒定蠕变阶段,如图中曲线BC段,此阶段蠕变变形速率随加载时间的延续而保持恒定,且为最小蠕变速率; 第III阶段:曲线上从C点到D点断裂为止,也称加速蠕变阶段,随蠕变过程的进行,蠕变速率显着增加,直至最终产生蠕变断裂。D点对应的tr就是蠕变断裂时间,er是总的蠕变应变量。 温度和应力也影响蠕变曲线的形状。在低温(<0.3Tm)、低应力下(曲线1)实际上不存在蠕变第III阶段,而且第II阶段的蠕变速率接近于零;在高温(>0.8Tm)、高应力下(曲线3)主要是蠕变第III阶段,而第II阶段几乎不存在。

FTSR铁素体区轧制生产SPHE钢的组织与性能

材料热处理技术Material&Heat Treatment2009年12月 铁素体区轧制技术最早是由比利时冶金研究中心于1994年开发的,主要目的是生产超薄规格、具有良好深冲性能的热轧板卷来取代部分冷轧产品[1]。国外许多学者对于铁素体区轧制进行了广泛的研究[2-3],在铁素体区热轧不仅在工艺上可行,而且经随后的冷轧及退火可使材料具有良好的深冲性能[4]。目前国内只有宝钢和鞍钢在生产IF钢的过程中采用了铁素体轧制技术,关于铁素体区轧制方面进行的研究和开发并不多。 唐山钢铁股份有限公司的薄板坯连铸连轧生产线(FTSR)采用意大利达涅利的FTSR工艺技术,是国内第一条采用此项技术的薄板坯连铸连轧生产线[5],2005年曾进行了铁素体轧制低碳钢板的生产实践。2008年9月,唐钢将FTSR线上的铁素体区轧制与罩式退火工艺相结合,试制了一批铁素体区轧制SPCE级冷轧深冲用钢。在铁素体区轧制历史上,未见有采用此种工艺生产微碳深冲用铝镇静钢的报道,因此本文利用光学显微镜、透射电镜、XRD等手段对此工艺下的SPHE 热轧板进行了组织分析和性能测试,探讨这种生产SPCE级深冲用钢冷轧基板的新思路。 1实验材料及方法 实验材料为唐钢FTSR线铁素体轧制工艺生产的3.5mm厚的SPHE热轧板,化学成分(质量分数,%)为:0.009C,0.01Si,0.19Mn,0.015P,0.011S,0.028Als,0.013Cu,0.0024N。热轧工艺见表1。 对热轧板分别制取轧制面和纵截面的金相试样, FTSR铁素体区轧制生产SPHE钢的组织与性能 夏培培1,康永林1,王强2,梅淑文2 (1.北京科技大学材料学院,北京100083;2.唐山钢铁集团公司技术中心,河北唐山063000) 摘要:采用金相观察、透射电镜、化学相分析、XRD织构检测及性能测试等手段分析了FTSR铁素体区轧制工艺生产的SPHE热轧板的微观组织及力学性能,探讨了一种生产SPCE级深冲用钢冷轧基板的新思路。研究结果表明:热轧态组织为粗大而不均匀的铁素体,晶粒沿轧向伸长,组织中有较多细小的析出粒子和高密度位错,有利于冲压性能的{111}织构较弱,但各种类型的织构分布相对较均匀;SPHE热轧板的性能水平:σ0.2为220 MPa,σb为290MPa,伸长率δ为37.5%,n值为0.20。 关键词:铁素体区轧制;SPHE;微观组织;织构;性能 中图分类号:TG142.1;TG335.5文献标识码:A文章编号:1001-3814-(2009)24-0020-03 Microstructure and Properties of SPHE Steel Produced by Ferrite Rolling Using FTSR XIA Peipei1,KANG Yonglin1,WANG Qiang2,MEI Shuwen2 (1.School of Materials Science and Engineering,University of Science&Technology Beijing,100083Beijing,China; 2.Technology Center of Tangshan Iron&Steel Co.,Ltd.,Tangshan063000,China) Abstract:The microstructure and properties of SPHE hot rolled sheets produced by ferrite rolling using FTSR were studied by means of metallographic observation,TEM,chemical phase analysis,XRD texture measurement and property testing.The results show that the hot rolling microstructure is coarse and inhomogeneous ferrite,and the grains stretch along the rolling direction,there exists a huge amount of secondary phase precipitates and high density dislocations,the {111}texture which is favorable to tensile properties is weak,however,the texture distribution of each type is relatively uniform.The properties of SPHE holt rolled sheets are as follows:σ0.2=220MPa,σb=290MPa,δ=37.5%and n=0.20. Key words:ferrite rolling on FTSR;SPHE;microstructure;texture;properties 收稿日期:2009-06-09 作者简介:夏培培(1985-),女,山东泰安人,硕士研究生,主要从事微碳深冲汽车板方面的研究工作;电话:010-********; E-mail:snowflake_0@https://www.360docs.net/doc/283702038.html, 表1铁素体区轧制实验钢的热轧参数(℃) Tab.1Hot rolling parameters of experimental steel in ferrite rolling(℃) 加热温度粗轧出口温度精轧入口温度终轧温度卷取温度1000950850~860802730

金相组织定义和特征

金相组织定义和特征文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

一、金相组织的定义及特征区别 (一)金相:指金属组织中化学成分、晶体结构和物理性能相同的组成,其中包括固溶体、金属化合物及纯物质。金相组织是反映金属金相的具体形态,如马氏体,奥氏体,铁素体,珠光体等等。 (二)各种金相组织特征: 1、奥氏体碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe 的面心立方晶格晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体针间的空隙处 2、铁素体碳与合金元素溶解在a-Fe中的固溶体亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出 3、渗碳体碳与铁形成的一种化合物在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状 4、 珠光体铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体在650~600℃形成的珠光体

用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体 5、上贝氏体过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。转变时先在晶界处形成上贝氏体,往晶内长大,不穿晶 6、下贝氏体同上,但渗碳体在铁素体针内过冷奥氏体在350℃~Ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度比低碳低合金钢高,针叶比低碳低合金钢细 7、粒状贝氏体大块状或条状的铁素体内分布着众多小岛的复相组织过冷奥氏体在贝氏体转变温度区的最上部的转变产物。刚形成时是由条状铁素体合并而成的块状铁素体和小岛状富碳奥氏体组成,富碳

铁素体区轧制xiugai

铁素体区轧制高强IF钢 摘要 本发明涉及一种铁素体区轧制高强IF钢的方法。该高强IF钢是在普通 Nb+Ti-IF钢种添加微量的Mn≤1.8%、P≤0.1%、Cr≤0.5%、Mo≤0.5%等固容强化行合金元素,以提高IF钢的强度。生产该高强IF钢加热温度≤1150℃,保温0.5~1小时,开轧温度1100℃,粗轧在奥氏体区进行,粗轧压下率为80%,以细化粗轧后奥氏体晶粒;精轧在铁素体区轧制进行,终轧温度≤780℃,层流冷却后进行卷取。

专利要求 1.本发明涉及一种用于在铁素体区轧制生产高强IF钢的方法,在普通Nb+Ti-IF 钢中添加微量的Mn1.2~1.8%、P≤0.01~0.1%、Cr≤0.1~0.5%、Mo≤0.1~0.5%等固溶强化行合金元素,以提高IF钢的强度。生产该高强IF钢加热温度1100?1220℃,保温2~3小时,粗轧在奥氏体区进行以细化粗轧后奥氏体晶粒;精轧在铁素体区轧制进行,终轧温度800-850℃,并所有精轧机的机架上进行有润滑的轧制,保证热轧板发生完全再结晶,降低轧制力,获得高表面质量,层流冷却后进行卷取。 2.如专利1要求的高强IF钢的成分,其特征在于采用固溶强化、析出强化和细晶强化等强化手段,获得较高的强度和优良的深冲性。 3.按照专利1要求的轧制方法,其特征为在初轧轧机至少一个机架上进行有润滑的轧制,采用无碳热轧润滑剂,以防止轧件表面增碳。粗轧之后采用保温罩进行保温,以保证中间坯料头尾的温度均匀性。 。 。 4.如前所述,带钢在离开最终轧制装置之后采用层流冷却装置,冷却到600℃进行卷曲,在冷却装置中,用以高的位置密度放置的喷嘴将水喷在带钢上。

金属材料常见金相组织的名称和特征

金属材料常见金相组织的名称和特征 名称定义特征 奥氏体 碳与合金元素溶解在γ-Fe中 的固溶体,仍保持γ-Fe的面心立 方晶格 晶界比较直,呈规则多边形;淬火钢中残余奥氏 体分布在马氏体针间的空隙处 铁素体碳与合金元素溶解在a-Fe中的固 溶体 亚共析钢中的慢冷铁素体呈块状,晶界比较圆 滑,当碳含量接近共析成分时,铁素体沿晶粒边界析 出 渗碳体碳与铁形成的一种化合物在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状 珠光体 铁碳合金中共析反应所形成 的铁素体与渗碳体的机械混合 物 珠光体的片间距离取决于奥氏体分解时的过冷 度。过冷度越大,所形成的珠光体片间距离越小在 A1~650℃形成的珠光体片层较厚,在金相显微镜下放 大400倍以上可分辨出平行的宽条铁素体和细条渗碳 体,称为粗珠光体、片状珠光体,简称珠光体在 650~600℃形成的珠光体用金相显微镜放大500倍,从 珠光体的渗碳体上仅看到一条黑线,只有放大1000倍 才能分辨的片层,称为索氏体在600~550℃形成的珠 光体用金相显微镜放大500倍,不能分辨珠光体片层, 仅看到黑色的球团状组织,只有用电子显微镜放大 10000倍才能分辨的片层称为屈氏体 上贝氏体 过饱和针状铁素体和渗碳体 的混合物,渗碳体在铁素体针间 过冷奥氏体在中温(约350~550℃)的相变产物, 其典型形态是一束大致平行位向差为6~8od铁素体板 条,并在各板条间分布着沿板条长轴方向排列的碳化 物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称 轴,由于方位不同,羽毛可对称或不对称,铁素体羽 毛可呈针状、点状、块状。若是高碳高合金钢,看不 清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳 低合金钢,羽毛很清楚,针粗。转变时先在晶界处形 成上贝氏体,往晶内长大,不穿晶 下贝氏体同上,但渗碳体在铁素体针内 过冷奥氏体在350℃~Ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度比低碳低合金钢高,针叶比低碳低合金钢细

第23例 材料蠕变分析实例

第23例材料蠕变分析实例—受拉平板本例简单地介绍了蠕变的概念及蠕变材料模型的创建方法,简单地介绍了结构蠕变分析的方法、步骤及要点。 23.1蠕变简介 蠕变是指金属材料在长时间的恒温、恒载作用下,持续发生缓慢塑性变形的行为,大多数金属材料在高温下都会表现出蠕变行为。 如果材料发生了蠕变,在恒载作用下结构会发生持续变形;如果结构承受恒位移,则应力会随时间而减小,即产生应力松弛。 图23-1 蠕变曲线 蠕变一般分为蠕变初始阶段(Primary)、蠕变稳定阶段(Secondary)和蠕变加速阶段(Tertiary)三个阶段,如图23-1所示。蠕变初始阶段时间很短,应变率随时间而减小;在蠕变稳定阶段,应变以常速率发展;在蠕变加速阶段,应变率急剧增大直至材料失效。研究蠕变行为,主要针对蠕变初始阶段和蠕变稳定阶段。 研究问题时一般以蠕变方程(又称本构关系)来表征蠕变行为,蠕变方程以蠕应变率的,形式表示dεcr/dt =AσBεC t P式中,εcr为蠕应变。A、B、C、D是由实验得到的材料特性参数。当D<0时,蠕应变率随时间减小,材料处于蠕变初始阶段;当D=0时,蠕应变率不随时间变化,材料处于蠕变稳定阶段。

在ANSYS中,有一个蠕应变率库供选择。 23.2问题描述 一矩形平板,左端固定,右端作用有恒定压力p=100MPa,矩形平板尺寸如图23-2所示,材料的弹性模量为2xl05MPa,泊松比为0.3,蠕变稳定阶段蠕变方程dεcr/dt =C1σC2。C2,式中,C1=3.125 x10-14,C2=5。试分析平板右端的位移随时间的变化情况。 提示:为避免出现较小值,力单位用N,长度单位用mm,时间单位为h。 图23-2受拉矩形平板 23.3分析步骤 23.3.1改变任务名 拾取菜单Utility Menu→File→Change Jobname,弹出如图23-3所示的对话框,在“[/FJLNAM]”文本框中输入EXAMPLE23,单击“OK”按钮。 图23-3改变任务名对话框 23.3.2选择单元类型 拾取菜单Main Menu→Preprocessor→Element Type→Add/Edit/Delete,弹出如图23-4所示的对话框,单击“Add…”按钮,弹出如图23-5所示的对话框,

特殊钢棒线材轧制工艺的发展趋势-压缩比

特殊钢棒线材轧制工艺的发展趋势 陆波 摘要通过对世界特殊钢主要生产国家的棒材生产品种、规模、坯料断面、产品质量和发展方向等研究,对我国特殊钢厂的引进和改造提出建议 关键词棒线材特殊钢发展 当今世界特殊钢工业生产技术发展十分迅速,工业发达国家相继开发了许多新工艺、新技术和新设备,特殊钢的棒线材轧制工艺也发生了质的飞跃。本文通过对德国、意大利、法国、日本和瑞典等世界特殊钢主要生产国家的棒线材生产品种、规模、坯料断面、产品质量和发展方向的研究,为我国特殊钢厂的引进和改造提出一些想法和建议,以供参考。 1 产品品种从多种类型向同类型发 在我们过去的概念中,一条特殊钢棒线材生产线往往是一机多能,既能够生产合金结构钢、弹簧钢,又能够生产轴承钢、不锈钢、模具钢、工具钢;既能够生产大棒材、小棒材,又能够生产线材和大盘卷;是一种多品种多类型的生产线。这种观念至今还影响着我们的建设和改造思路。然而,外国一些先进的、著名的特殊钢企业,从80年代起,特别是近10年来大多进行了一定的专业化的改组或改造。这些改组或改造可以分为3种类型,一种是不同公司之间的专业化改组,另一种是同一公司内的专业化改组,第3种是一条生产线向简化生产流程和适当集中的同类型产品品种方向进行改造。 1.1 不同公司之间的专业化改组 瑞典的特殊钢工业在世界上占有十分重要的地位,尽管近20年来世界钢铁工业起伏不定,瑞典的钢铁工业仍有长足的进步。早在70年代中期瑞典的特殊钢工业已进入世界前列,尤其是轴承钢、钎钢、工具钢和不锈钢,几个主要特殊钢公司虽有各自的特长,但其产品还是相互交叉。后来受到能源危机和造船工业衰退的影响,瑞典的3个大型钢铁公司:位于Lulea的国营NJA公司和位于Boulange及Oxelosund的两个私营公司很快地陷入了经济困境。这种情况导致了1978年这3个公司的合并和1978~1982年及1986~1991年间进行的两次结构调整。此外,Uddedholm公司和Fagersta公司的两个高速钢厂合并组建Kloster高速钢公司,使得该公司产品在世界上占有领先地位;改组后的Uddedholm公司不再生产不锈钢棒材,而专营工具钢,成为Uddedholm工具钢厂。在瑞典这种例子还很多,如Ovako公司专营轴承钢等。 这些调整的特点是:打乱了原有的公司界线,关闭部分钢厂,将生产分品种集中于少数几个地点,再投入资金进行现代化的改造。

强度-刚度--弹性模量区别

强度-刚度--弹性模量区别强度定义: 1、材料、机械零件和构件抵抗外力而不失效的能力。强度包括材料强度和结构强度两方面。强度问题有狭义和广义两种涵义。狭义的强度问题指各种断裂和塑性变形过大的问题。广义的强度问题包括强度、刚度和稳定性问题,有时还包括机械振动问题。强度要求是机械设计的一个基本要求。 材料强度指材料在不同影响因素下的各种力学性能指标。影响因素包括材料的化学成分、加工工艺、热处理制度、应力状态,载荷性质、加载速率、温度和介质等。 按照材料的性质,材料强度分为脆性材料强度、塑性材料强度和带裂纹材料的强度。①脆性材料强度:铸铁等脆性材料受载后断裂比较突然,几乎没有塑性变形。脆性材料以其强度极限为计算强度的标准。强度极限有两种:拉伸试件断裂前承受过的最大名义应力称为材料的抗拉强度极限,压缩试件的最大名义应力称为抗压强度极限。②塑性材料强度:钦钢等塑性材料断裂前有较大的塑性变形,它在卸载后不能消失,也称残余变形。塑性材料以其屈服极限为计算强度的标准。材料的屈服极限是拉伸试件发生屈服现象(应力不变的情况下应变不断增大的现象)时的应力。对于没有屈服现象的塑性材料,取与0。2%的塑性变形相对应的应力为名义屈服极限,用σ0。2表示。③带裂纹材料的强度:常低于材料的强度极限,计算强度时要考虑材料的断裂韧性(见断裂力学分析)。对于同一种材料,采用不同的热处理制度,则强度越高的断裂韧性越低。 按照载荷的性质,材料强度有静强度、冲击强度和疲劳强度。材料在静载荷下的强度,根据材料的性质,分别用屈服极限或强度极限作为计算强度的标准。材料受冲击载荷时,屈服极限和强度极限都有所提高(见冲击强度)。材料受循环应力作用时的强度,通常以材料的疲劳极限为计算强度的标准(见疲劳强度设计)。此外还有接触强度(见接触应力)。 按照环境条件,材料强度有高温强度和腐蚀强度等。高温强度包括蠕变强度和持久强度。当金属承受外载荷时的温度高于再结晶温度(已滑移晶体能够回复到未变形晶体所需要的最低温度)时,塑性变形后的应变硬化由于高温退火而迅速消除,因此在载荷不变的情况下,变形不断增长,称为蠕变现象,以材料的蠕变极限为其计算强度的标准。高温持续载荷下的断裂强度可能低于同一温度下的材料拉伸强度,以材料的持久极限为其计算强度的标准(见持久强度)。此外,还有受环境介质影响的应力腐蚀断裂和腐蚀疲劳等材料强度问题。 结构强度指机械零件和构件的强度。它涉及力学模型简化、应力分析方法、材料强度、强度准则和安全系数。 按照结构的形状,机械零件和构件的强度问题可简化为杆、杆系、板、壳、块和无限大体等力学模型来研究。不同力学模型的强度问题有不同的力学计算方法。材料力学一般研究杆的强度计算。结构力学分

特殊钢棒线材轧制工艺的发展趋势-压缩比

特殊钢棒线材轧制工艺的发展趋势-压缩比

特殊钢棒线材轧制工艺的发展趋势 陆波 摘要通过对世界特殊钢主要生产国家的棒材生产品种、规模、坯料断面、产品质量和发展方向等研究,对我国特殊钢厂的引进和改造提出建议 关键词棒线材特殊钢发展 当今世界特殊钢工业生产技术发展十分迅速,工业发达国家相继开发了许多新工艺、新技术和新设备,特殊钢的棒线材轧制工艺也发生了质的飞跃。本文通过对德国、意大利、法国、日本和瑞典等世界特殊钢主要生产国家的棒线材生产品种、规模、坯料断面、产品质量和发展方向的研究,为我国特殊钢厂的引进和改造提出一些想法和建议,以供参考。 1 产品品种从多种类型向同类型发 在我们过去的概念中,一条特殊钢棒线材生产线往往是一机多能,既能够生产合金结构钢、弹簧钢,又能够生产轴承钢、不锈钢、模具钢、工具钢;既能够生产大棒材、小棒材,又能够生产线材和大盘卷;是一种多品种多类型的生产线。这种观念至今还影响着我们的建设和改造思路。然而,外国一些先进的、著名的特殊钢企业,从80年代起,特别是近10年来大多进行了一定的专业化的改组或改造。这些改组或改造可以分为3种类型,一种是不同公司之间的专业化改组,另一种是同一公司内的专业化改组,第3种是一条生产线向简化生产流程和适当集中的同类型产品品种方向进行改造。 1.1 不同公司之间的专业化改组 瑞典的特殊钢工业在世界上占有十分重要的地位,尽管近20年来世界钢铁工业起伏不定,瑞典的钢铁工业仍有长足的进步。早在70年代中期瑞典的特殊钢工业已进入世界前列,尤其是轴承钢、钎钢、工具钢和不锈钢,几个主要特殊钢公司虽有各自的特长,但其产品还是相互交叉。后来受到能源危机和造船工业衰退的影响,瑞典的3个大型钢铁公司:位于Lulea的国营NJA公司和位于Boulange及Oxelosund的两个私营公司很快地陷入了经济困境。这种情况导致了1978年这3个公司的合并和1978~1982年及1986~1991年间进行的两次结构调整。此外,Uddedholm公司和Fagersta公司的两个高速钢厂合并组建Kloster高速钢公司,使得该公司产品在世界上占有领先地位;改组后的Uddedholm公司不再生产不锈钢棒材,而专营工具钢,成为Uddedholm工具钢厂。在瑞典这种例子还很多,如Ovako公司专营轴承钢等。 这些调整的特点是:打乱了原有的公司界线,关闭部分钢厂,将生产分品种集中于少数几个地点,再投入资金进行现代化的改造。

关于金相组织的基本知识

关于金相组织的基本知识

首先金相人员进行试样组织分析时候,必须了解铁碳相图Fe-C(Fe-Fe?C)的意义和特点,以及点、线、区的之间意义;大家可以参考资料铁碳相图的原理和知识基础。 图中ABCD为液相线,AHJECF为固相线; 相图中有五个单相区,它们是:ABCD以上--液相区(用L符号表示); AHNA--固溶体区(用θ表示) NJESGN—奥氏体区(用A或表示)

GPQG—铁素体区(用F表示) DFKZ—渗碳体区(用Fe3C或Cm表示) 相图中有七个两相区,分别是:L+γ,L+δ,L+Fe3C,γ+δ,γ+α,γ+Fe3C, α+Fe3C 鉄碳相图中的特性点; A点 1538℃w(C) 0% 纯铁的熔点; B 点 1495℃w(C)0.53% 包晶转变时液态合金的成分; C点 1148℃w(C) 0.43% 共晶点; D 点 1227℃w(C)6.69% 渗碳体的熔点; E点 1148℃w(C) 2.11% 碳在γ-Fe中的最大溶解度;G点912℃w(C) 0% α-Fe<=>γ-Fe 转变温度; H点 1495℃w(C) 0.09% 碳在γ-Fe中的最大溶解度;J点 1495 w(C)包晶点; K点 727 ℃w(C) 6.69% 渗碳体的成分; M 点 700 w(C) 0%纯铁的磁性转变点; N点 1394 ℃w(C) 0% γ-Fe<=>δ-Fe的转变温度; P 点 727℃w(C) 0.0218% 碳在α-Fe中的最大溶解度; S点 727℃w(C) 0.77% 共析点; Q点 600℃w(C) 0.0057% 600℃时碳在α-Fe中的溶解度; 相图中还有两条磁性转变线:MO线(770℃)为铁素体的磁性 转变线; 230℃虚线为渗碳体的磁性转变线。 Fe-Fe3C相图上有3条水平线,即HJB-包晶转变线;ECF-共晶转变线;PSK- 共析转变线 HJB-包晶线:在1495℃恒温下,碳的质量分数为0.53%的液相与碳的质量 分数为0.09%的的δ铁素体发生包晶反应,形成碳的质量分数为0.17%的奥氏体, 其反应式为:LB+δh<=>γj 共晶转变线(ECF线):发生在1148℃的恒温中,由碳的质量分数为4.3%的 液相转变为碳的质量分数2.11%的奥氏体和渗碳体[w(C)=6.69%]所组成的混合物,称为莱氏体,用Ld表示;反应式为:Ld<=>γE+Fe3C。

对蠕变的初步认识

对蠕变的初步认识 温度对金属材料力学性能的影响很大,随着温度升高,材料的强度降低而塑性增加;而材料在高温下,载荷持续时间对力学性能也会产生影响。因此,在高温下工作的材料,其力学性能与温度和时间两个因素有关。所谓高温,是指金属 的服役温度超过了它的再结晶温度约0.4~0.5T m ,T m 是金属的熔点。在这样的高温 下长时服役的金属,其微观结构、形变和断裂机制都会发生变化,在宏观上则会出现高温蠕变、持久断裂、应力松弛、高温腐蚀等现象。 材料在恒定应力作用下,其应变随时间的延长而逐渐增加的现象称为蠕变。由于蠕变而导致的断裂称为蠕变断裂。金属在低温下也会产生蠕变,但通常只有当温度升高到0.3T m 以上时,蠕变现象才会比较显著。金属在高温下还会发生应力松弛现象,即在保持应变恒定的情况下,应力随着时间延长而减小的现象。由于蠕变和应力松弛的发生,应力和应变之间已不是单值的对应关系,而必须考虑温度和时间的影响。 温度对金属材料力学性能的影响很大,随着温度升高,材料的强度降低而塑性增加;而材料在高温下,载荷持续时间对力学性能也会产生影响。因此,在高温下工作的材料,其力学性能与温度和时间两个因素有关。所谓高温,是指金属 的服役温度超过了它的再结晶温度约0.4~0.5T m ,T m 是金属的熔点。在这样的高温 下长时服役的金属,其微观结构、形变和断裂机制都会发生变化,在宏观上则会出现高温蠕变、持久断裂、应力松弛、高温腐蚀等现象。 1. 蠕变曲线 蠕变:材料在恒定应力作用下,其应变随时间的延长而逐渐增加的现象称为蠕变。由于蠕变而导致的断裂称为蠕变断裂。金属在低温下也会产生蠕变,但通常只有当温度升高到0.3T m 以上时,蠕变现象才会比较显著。金属在高温下还会发生应力松弛现象,即在保持应变恒定的情况下,应力随着时间延长而减小的现象。由于蠕变和应力松弛的发生,应力和应变之间已不是单值的对应关系,而必须考虑温度和时间的影响。 蠕变曲线:常载荷条件下的典型单轴蠕变曲线见图1 , 从图中可以看出蠕变的3 个典型阶段: 第一蠕变阶段AB (减速蠕变阶段),第二蠕变阶段BC (稳定蠕变阶段),第三阶段蠕变CD(加速蠕变阶段) 。在第二蠕变阶段(稳定蠕变阶段) , 蠕变速率近似为常数; 而在第三蠕变阶段, 蠕变速率逐渐增加,直至试件完全破坏。图1 中εe 代表瞬时弹性(或弹塑性) 应变,εp表示塑性应变,εc代表蠕变应变。

针状铁素体钢的性能和显微组织

控轧低C-Mn-Mo-Nb针状铁素体钢的性能和显微组织 付俊岩、东涛等 摘要:本文专门讨论了低C-Mn-Mo-Nb针状铁素体钢的组织形态及其结构的特征,并阐明 了主要控轧工艺因素对钢的组织和性能的影响。 关键词:针状铁素体,组织,性能 1前言 微合金化和控制轧制技术的发展为生产高强度、高韧性、良好可焊性和成形性的结构 钢提供了极其广阔的发展领域。 七十年代初,为适应高寒地带大口径石油天然气输送管线工程对材料高强度、低温韧 性、可焊性等综合性能不断增长的要求,在Mn-Nb系HSLA钢的基础上,降碳(≤0.06%C) 提锰(>1.6%Mn)加钼(0.15~0.54%Mo),发展了X-70级低 C-Mn-Mo-Nb系针状铁素体钢 (AF)[1][2]。这种针状铁素体钢控轧状态的屈服强度可达470-530MPa,夏氏V型缺口冲击平台 能可达165J,50%剪切断口的脆性转折温度(FATT)可低于-60℃以下[3]。针状铁素体钢比 常规铁素体珠光体钢优越的另一个主要特点,是在制管成型过程中有较大的加工硬化特性, 可抵消包申格效应引起强度的损失,这对高强度厚壁大口径管线用U-O-E和螺旋焊管的制造 是很重要的[1~4]。 X-70低C-Mn-Mo-Nb钢的最佳性能是通过合金成分的合理设计和最佳控轧工艺参量的 选择,利用轧制过程中的晶粒细化、相变和位错强化、固溶强化、沉淀强化、亚晶强化等机 制,按预期要求的方向发展而获得的。关于合金元素的作用及控制轧制工艺提高钢材强韧性 的机制,已有许多文章报导[3~7]。在本文作者的另一项工作中[8],也进行了系统的研究,确 认采用Ⅱ型控轧低C-Mn-Mo-Nb钢可得到理想的强韧性配合,σs≥550MPa,vTrs<-100℃, 而且性能对加工条件不敏感。 本文以研制X-70壁厚小于12.7mm,高韧性螺旋焊管线用热轧带钢为目标,就控轧低 C-Mn-Mo-Nb针状铁素体钢性能和显微组织结构进行了研究,以探讨性能-组织-工艺之间的 内在关系。 2 试验准备 试验用钢化学成分见表1。用100KW中频感应电炉非真空冶炼。试验的准备和加工条 件见图1。试验轧机ф300,轧制速度45米/分。 表1、试验用钢化学成分(%) 钢号 C Si Mn P S Mo 钢1# 0.05 0.18 1.87 <0.0050.008 0.18 钢2# 0.05 0.15 1.60 <0.0050.008 0.42 钢3# 0.05 0.15 1.61 <0.0050.007 0.37

蠕变机理

镁质耐火材料高温蠕变特性的研究现状 张国栋1)游杰刚1)刘海啸1)罗旭东1)袁政禾2) 1)辽宁科技大学鞍山114044 2)鞍钢集团耐火材料公司鞍山114001 摘要:本文介绍了镁质材料高温蠕变特性的研究现状,并对镁质耐火材料的高温蠕变特性的理论进行了阐述,同时指出了将镁质蓄热材料用在高炉热风炉上的可行性。 关键词:镁质材料蠕变特性研究现状 1、引言 高炉生产的大型化发展,要求热风炉向着高风温和长寿命的方向发展,为了实现这一目标,除了热风炉本体的大型化与更合理的结构以外,作为热风炉中的关键材料之一——蓄热材料的发展将直接影响到热风炉的使用温度和使用寿命。而高炉热风炉对耐火材料的要求是:蓄热体各层材料的选择必须要在相应的使用温度下有很好的抗压,蠕变性能,抗碱金属蒸气与烟尘侵蚀性能,抗温度急变而不破坏的性能;蓄热体砖要有足够高的换热表面积以及有利于热交换的几何形状;蓄热体材质要尽可能高的导热系数以及材料体积比热容。 目前,我国采用以Al2O3-SiO2系材料的系列低蠕变砖,在热风炉的顶部和隔墙及蓄热室的上部采用优质硅砖,中部应用不同牌号的低蠕变高铝砖,下部采用低蠕变粘土砖。镁质材料与高铝质和硅质材料相比具有良好的蓄热性能和热导率以及很强的抗渣侵蚀性能;这些特点有利于热风炉的高炉的大风量高风温的操作和降低高炉焦比,提高高炉利用系数,增加生铁产量。但是,镁质材料的热震性能差、抗压蠕变性能不好,因此限制了这类材料在热风炉上的使用。所以,提高和改善镁质材料的这两方面性能是将镁质材料应用到热风炉上的关键。因此研究镁质材料的高温蠕变性能对扩大我国镁资源综合利用和炼铁产业有着重大的意义。 2、蠕变理论 高温蠕变理论是在对多种金属所作的完整的蠕变试验的基础上建立起来的。材料的高温蠕变是指材料在恒定的高温和一定的荷重作用下,产生的变形和时间的关系[1]。由于施加的载荷不同,耐火材料的高温蠕变可以分为高温压缩蠕变、高温拉伸蠕变、高温抗折蠕变、高温扭转蠕变等。其中压缩蠕变和抗折蠕变

金相组织及特点

金相组织就是指材料的显微组织 有关金相组织与特性: 铁索体(F) 1.组织:碳在a 铁中的固溶体 2.特性:呈体心立方晶格。 溶碳能力最小,最大为0.02%;硬度和强度很低,HB=80~120、sb=250N/mm2;而塑性和韧性很好,d=50%、?=70~80%。因此,含铁素体多的钢材(软钢)中用来做可压、挤、冲板与耐冲击震动的机件。这类钢有超低碳钢,如:0Cr13、1Cr13、硅钢片等。 奥氏体 1.组织:碳在? 铁中的固溶体 2.特性:呈面心立方晶格。 最高溶碳量为 2.06%,在一般情况下,具有高的塑性,但强度和硬度低 (HB=170~220),奥氏体组织除了在高温转变时产生以外,在常温时亦存在于不锈钢、高铬钢和高锰钢中,如奥氏体不锈钢等 渗碳体(C) 1.组织:铁和碳的化合物(Fe3C) 2.特性:呈复杂的八面体晶格。 含碳量为 6.67%、硬度很高、HRC70~75、耐磨,但脆性很大。因此,渗碳体不能单独应用,而总是与铁素体混合在一起。 碳在铁中溶解度很小,所以在常温下,钢铁组织内大部分的碳都是以渗碳体或其他碳化物形式出现。 珠光体(P) 1.组织:铁素体片和渗碳体片交替排列的层状显微组织,是铁素体与渗碳体机械混合物(共析体)。 2.特性:是过冷奥氏体进行共析反应的直接产物。 其片层组织的粗细随奥氏体过冷程度不同,过冷程度越大,片层组织越细性质也不同。 奥氏体在约 600℃分解成的组织称为细珠光体(有的叫一次索氏体),在 500~600℃分解转变成用光学显微镜不能分辨其 片层状的组织称为极细珠光体(有的一次屈氏体),它们的硬度较铁素体和奥氏体高,而较渗碳体低,其塑性较铁素体和 奥氏体低而较渗碳体高。正火后的珠光体比退火后的珠光体组织细密,弥散度大,故其力学性能较好,但其片状渗碳体在 钢材承受负荷时会引起应力集中,故不如索氏体。 莱氏体(L) 1.组织:奥氏体与渗碳体的共晶混合物 2.特性:铁合金溶液含碳量在2.06%以上时,缓慢冷到1130℃便凝固出莱氏体。当温度到达共析温度莱氏体中的奥氏转变为珠光体。因此,在723℃以下莱氏体是珠光体与渗碳体机械混合物(共晶混合)。

低碳钢超低碳钢铁素体区轧制技术

低碳钢、超低碳钢铁素体区轧制技术 一、项目简介 本项目是基于现代热连轧带钢生产工艺,开发出适合大生产的低碳钢、超低碳钢铁素体区轧制生产技术和相应的铁素体热轧和相关的冷轧带钢产品。 铁素体区轧制工艺,又称为温轧(Warm Rolling),是一种出产可直接使用或供随后冷轧生产的价格便宜、质软、非时效的热轧板的方法。由于超低碳钢的γ→α转变温度较高,很难保证这类钢在奥氏体区终轧,相反容易实现铁素体区轧制,因此超低碳钢的铁素体区轧制技术得到了推广。铁素体区轧制工艺与传统的超低碳钢生产工艺区别在于传统热轧生产中粗轧和精轧温度均在Ar3以上,即在奥氏体区轧制,而铁素体区轧制时精轧在Ar3以下,即铁素体区进行。在铁素体区轧制的带钢拉伸、屈服强度低,延伸率高,而且因其要求的轧制温度低,非常利于生产的深冲性能要求高的热轧薄规格品种。这也是目前国际带钢市场上以热代冷这一趋势的有利工艺保证条件。 二、主要技术指标 通过应用铁素体区轧制工艺,开发出适合推广企业的热连轧带钢机组的铁素体轧制工艺,生产出薄规格超低碳热轧带钢和热轧深冲带钢产品(热轧、冷轧和热镀锌产品)。具体技术指标如下: 1.在推广企业实现铁素体轧制,形成铁素体轧制工艺规程; 2.铁素体精轧模型轧制力设定精度不低于常规热轧设定精度; 3.生产出铁素体区轧制的最终产品(热轧、冷轧或热轧热镀锌产品),且产品的尺寸和温度精度高于或不低于目前常规轧制的同规格产品的精度。其中:(1)热轧酸洗板的表面质量优于常规热轧酸洗板,延伸性能提高5%; (2)热轧热镀锌产品表面质量优于常规热轧酸洗板,r值达到1.2以上; (3)铁素体热轧+冷轧+退火IF钢产品表面质量优于常规冷轧板,r值不低于常规冷轧产品; (4)铁素体热轧+中间退火+冷轧+退火IF钢产品表面质量优于常规冷轧板,r值高于常规产品0.3。 三、应用范围及市场分析 1.应用范围 (1)在卷板以热代冷方面的应用 可直接应用的热轧薄带钢,属软而有韧性的钢种,它可取代传统的冷轧退火钢。 适用于直接退火,尤其是酸洗后热镀锌处理的薄和超薄带钢。

相关文档
最新文档