陈纪修主编的《数学分析》(第2版)辅导书-第1章 集合与映射【圣才出品】

陈纪修主编的《数学分析》(第2版)辅导书-第1章 集合与映射【圣才出品】
陈纪修主编的《数学分析》(第2版)辅导书-第1章 集合与映射【圣才出品】

泛函分析知识点

泛函分析知识点 知识体系概述 (一)、度量空间和赋范线性空间 第一节 度量空间的进一步例子 1.距离空间的定义:设X 是非空集合,若存在一个映射d :X ×X →R ,使得?x,y,z ∈X,下列距离公理成立: (1)非负性:d(x,y)≥0,d(x,y)=0?x=y; (2)对称性:d(x,y)=d(y,x); (3)三角不等式:d(x,y)≤d(x,z)+d(z,y); 则称d(x,y)为x 与y 的距离,X 为以d 为距离的距离空间,记作(X ,d ) 2.几类空间 例1 离散的度量空间 例2 序列空间S 例3 有界函数空间B(A) 例4 可测函数空M(X) 例5 C[a,b]空间 即连续函数空间 例6 l 2 第二节 度量空间中的极限,稠密集,可分空间 1. 开球 定义 设(X,d )为度量空间,d 是距离,定义 U(x 0, ε)={x ∈X | d(x, x 0) <ε} 为x 0的以ε为半径的开球,亦称为x 0的ε一领域. 2. 极限 定义 若{x n }?X, ?x ∈X, s.t. ()lim ,0n n d x x →∞ = 则称x 是点列{x n }的极限. 3. 有界集 定义 若()(),sup ,x y A d A d x y ?∈=<∞,则称A 有界 4. 稠密集 定义 设X 是度量空间,E 和M 是X 中两个子集,令M 表示M 的闭包,如果E M ?,那么称集M 在集E 中稠密,当E=X 时称M 为X 的一个稠密集。 5. 可分空间 定义 如果X 有一个可数的稠密子集,则称X 是可分空间。 第三节 连续映射 1.定义 设X=(X,d),Y=(Y , ~ d )是两个度量空间,T 是X 到Y 中映射,x0X ∈,如果对于任 意给定的正数ε,存在正数0δ>,使对X 中一切满足 ()0,d x x δ < 的x ,有 ()~ 0,d Tx Tx ε <,

实变函数与泛函分析要点

实变函数与泛函分析概要 第一章集合基本要求: 1、理解集合的包含、子集、相等的概念和包含的性质。 2、掌握集合的并集、交集、差集、余集的概念及其运算性质。 3、会求已知集合的并、交、差、余集。 4、了解对等的概念及性质。 5、掌握可数集合的概念和性质。 6、会判断己知集合是否是可数集。 7、理解基数、不可数集合、连续基数的概念。 8、了解半序集和Zorn引理。 第二章点集基本要求: 1、理解n维欧氏空间中的邻域、区间、开区间、闭区间、体积的概念。 2、掌握内点、聚点的概念、理解外点、界点、孤立点的概念。掌握聚点的性质。 3、掌握开核、导集、闭区间的概念及其性质。 4、会求己知集合的开集和导集。 5、掌握开核、闭集、完备集的概念及其性质,掌握一批例子。 6、会判断一个集合是非是开(闭)集,完备集。 7、了解Peano曲线概念。 主要知识点:一、基本结论: 1、聚点性质§2 中T1聚点原则: P0是E的聚点? P0的任一邻域内,至少含有一个属于E而异于P0的点?存在E中互异的点列{Pn},使Pn→P0 (n→∞) 2、开集、导集、闭集的性质§2 中T2、T3 T2:设A?B,则A ?B ,· A? · B, - A? - B。 T3:(A∪B)′=A′∪B′. 3、开(闭)集性质(§3中T1、2、3、 4、5) T1:对任何E?R?,?是开集,E′和― E都是闭集。(?称为开核,― E称为闭包的理由也 在于此) T2:(开集与闭集的对偶性)设E是开集,则CE是闭集;设E是闭集,则CE是开集。T3:任意多个开集之和仍是开集,有限多个开集之交仍是开集。 T4:任意多个闭集之交仍是闭集,有限个闭集之和仍是闭集。 T5:(Heine-Borel有限覆盖定理)设F是一个有界闭集,?是一开集族{Ui}i?I 它覆盖了F(即Fс ∪ i?IUi),则?中一定存在有限多个开集U1,U2…Um,它们

最新泛函分析考试题集与答案

泛函分析复习题2012 1.在实数轴R 上,令p y x y x d ||),(-=,当p 为何值时,R 是度量 空间,p 为何值时,R 是赋范空间。 解:若R 是度量空间,所以R z y x ∈?,,,必须有: ),(),(),(z y d y x d z x d +≤成立 即p p p z y y x z x ||||||-+-≤-,取1,0,1-===z y x , 有2112=+≤p p p ,所以,1≤p 若R 是赋范空间,p x x x d ||||||)0,(==,所以R k x ∈?,, 必须有:||||||||||x k kx ?=成立,即p p x k kx ||||||=,1=p , 当1≤p 时,若R 是度量空间,1=p 时,若R 是赋范空间。 2.若),(d X 是度量空间,则)1,m in(1d d =,d d d +=12也是使X 成为度量空间。 解:由于),(d X 是度量空间,所以X z y x ∈?,,有: 1)0),(≥y x d ,因此0)1),,(m in(),(1≥=y x d y x d 和0) ,(1) ,(),(2≥+= y x d y x d y x d 且当y x =时0),(=y x d , 于是0)1),,(m in(),(1==y x d y x d 和0) ,(1) ,(),(2=+=y x d y x d y x d 以及若

0)1),,(m in(),(1==y x d y x d 或0) ,(1) ,(),(2=+= y x d y x d y x d 均有0),(=y x d 成立,于是y x =成立 2)),(),(y x d x y d =, 因此),()1),,(m in()1),,(m in(),(11y x d y x d x y d x y d === 和),() ,(1) ,(),(1),(),(22y x d y x d y x d x y d x y d x y d =+=+= 3)),(),(),(z y d y x d z x d +≤,因此 }1),,(),(m in{)1),,(m in(),(1z y d y x d z x d z x d +≤= ),(),()1),,(m in()1),,(m in(11z y d y x d z y d y x d +=+≤ 以及设x x x f += 1)(,0)1(1)(2 >+='x x f ,所以)(x f 单增, 所以) ,(),(1),(),(),(1),(),(2z y d y x d z y d y x d z x d z x d z x d +++≤+= ),(),(1) ,(),(),(1),(z y d y x d z y d z y d y x d y x d +++++= ),(),() ,(1) ,(),(1),(22z y d y x d z y d z y d y x d y x d +=+++≤ 综上所述)1,m in(1d d =和d d d += 12均满足度量空间的三条件, 故),(1y x d 和),(2y x d 均使X 成为度量空间。

陈纪修《数学分析》配套题库【课后习题】(数列极限)

第2章数列极限 §1 实数系的连续性 1.(1)证明不是有理数; (2)是不是有理数? 证明:(1)可用反证法若是有理数,则可写成既约分数.由可知m是偶数,设,于是有,从而得到n是偶数,这与是既约分数矛盾.(2)不是有理数.若是有理数,则可写成既约分数,于是 ,即是有理数,这与(1)的结论矛盾.2.求下列数集的最大数、最小数,或证明它们不存在: 解:min A=0;因为,有,所以max A不存在.;因为,使得,于是有 ,所以min B不存在. max C与min C都不存在,因为,所以max C与min C都不存在.

3.A,B是两个有界集,证明: (1)A∪B是有界集; (2)也是有界集. 证明:(1)设,有,有,则,有 . (2)设,有,有,则,有 . 4.设数集S有上界,则数集有下界.且. 证明:设数集S的上确界为sup S,则对,有-x≤sup S,即;同时对,存在,使得,于是.所以-sup S为集合T的下确界,即. 5.证明有界数集的上、下确界惟一. 证明:设sup S既等于A,又等于B,且A

7.证明非空有下界的数集必有下确界. 证:参考定理2.1.1的证明.具体过程略. 8.设并且,证明: (1)S没有最大数与最小数; (2)S在Q内没有上确界与下确界. 证:(1).取有理数r>0充分小,使得,于是.即,所以S没有最大数.同理可证S没有最小数. (2)反证法.设S在Q内有上确界,记(m,n∈N+且m,n互质),则显然有.由于有理数平方不能等于3,所以只有两种可能: (i),由(1)可知存在充分小的有理数r>0,使得,这 说明,与矛盾; (ii),取有理数r>0充分小,使得,于是 ,这说明也是S的上界,与矛盾.所以S没有上确界. 同理可证S没有下确界. §2 数列极限

泛函分析知识总结

泛函分析知识总结与举例、应用 学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。本文主要对前面两大内容进行总结、举例、应用。 一、度量空间和赋范线性空间 (一)度量空间 度量空间在泛函分析中是最基本的概念,它是n维欧氏空间n R(有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。 1.度量定义:设X是一个集合,若对于X中任意两个元素x,y,都有唯一确定的实数d()与之对应,而且这一对 应关系满足下列条件: 1°d()≥0 ,d()=0 ?x=y(非负性) 2°d()= d() (对称性) 3°对?z ,都有d()≤d()() (三点不等式) 则称d()是x、y之间的度量或距离(或),称为 ()度量空间或距离空间()。 (这个定义是证明度量空间常用的方法)

注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(),只要 满足1°、2°、3°都称为度量。这里“度量”这个名 称已由现实生活中的意义引申到一般情况,它用来描 述X 中两个事物接近的程度,而条件1°、2°、3°被 认为是作为一个度量所必须满足的最本质的性质。 ⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个 集合X 上若有两个不同的度量函数1d 和2d ,则我们认为 (X, 1d )和(X, 2d )是两个不同的度量空间。 ⑶ 集合X 不一定是数集,也不一定是代数结构。为直观 起见,今后称度量空间()中的元素为“点” ,例如若 x X ∈,则称为“X 中的点” 。 ⑷ 在称呼度量空间()时可以省略度量函数d ,而称“度 量空间X ” 。 1.1举例 1.11离散的度量空间:设X 是任意的非空集合,对X 中任意两点∈X ,令 ()1x y d x y =0x=y ≠??? ,当,,当,则称(X ,d )为离散度量空间。 1.12 序列空间S :S 表示实数列(或复数列)的全体,d()=1121i i i i i i ?η?η∞=-+-∑; 1.13 有界函数空间B(A):A 是给定的集合,B(A)表示A 上有界

泛函分析度量空间知识和不动点的应用

泛函分析度量空间知识和不动点的应用 第七章度量空间和赋范线性空间知识总结 一、度量空间的例子 定义:设X 为一个集合,一个映射d :X ×X →R 。若对于任何x,y,z 属于X ,有 (I )(正定性)d(x,y )≥0,且d(x,y)=0当且仅当 x = y ; (Ⅱ)(对称性)d(x,y)=d(y,x ); (Ⅲ)(三角不等式)d(x,z )≤d(x,y)+d(y,z ) 则称d 为集合X 的一个度量(或距离)。称偶对(X ,d )为一个度量空间,或者称X 为一个对于度量d 而言的度量空间。根据定义引入度量空间有离散的度量空间、序列空间、有界函数空间、可测函数空间、C 【a ,b 】空间、2l 空间,这6个空间是根据度量空间的定义可证它们是度量空间,在后面几节中给出它们相关的性质。 二、度量空间中的极限,抽密集,可分空间: 证明极限有二种方法: 1、定义法:设{}n x 是(X ,d )中点列,如果存在x ∈X ,是lim (,)n x d x x →∞ =0,则称点列{} n x 是(X ,d )中的收敛点列,x 是点列{}n x 的极限。 2、M 是闭集是充要条件是M 中任何收敛点列的极限都在M 中。即若n x M ∈,n=1、,2……, n x x →,则x M ∈。 给出n 维欧氏空间、C[a,b]序列空间、可测函数空间中点列收敛的具体意义,由这些系列例子可以看到,尽管在各个具体空间中各种极限概念不完全一致,所以我们引入度量空间中的稠密子集和可分空间的概念,根据定义可得出n 维欧氏空间n R 是可分空间,坐标为有理数的全体是n R 的可数稠密集,离散度量空间X 可分的充要条件为X 是可数集。l ∞ 是不可分空间。 三、连续映射 证明度量空间的连续映射有四种方法: 1、定义法:设X=(X ,d ),Y=(Y ,d )是两个度量空间,T 是X 到Y 中的映射,0 x X ∈,如果对于任意给定的正数ε,存在正数δ 0,使对X 中一切满足d (x ,0x )δ 的x ,有 (,)d Tx Tx ε ,则称T 在0x 连续。 2、对0Tx 的每个ε-领域U ,必有0x 得某个δ—邻域V 使TV ?U ,其中TV 表示V 在映射T 作用下的像。 3、定理1:设T 是度量空间(X ,d )到度量空间(Y ,d )中的映射,那么T 在0 x X ∈连

泛函分析习题1

线性与非线性泛函分析◇ - 1 - 习题1 1.(张燕石淼)设在全体实数R 上,定义两个二元映射2(,)()x y x y ρ=-和 (2) (,)d x y ,证明(1)(,)ρR 不是度量空间;(2)(,)d R 是度量空间. 2.(范彦勤孙文静)设X ρ(,)为度量空间,:f ∞→∞[0,+][0,+]为严格单调函数,且满足 ,x y f ?∈∞[0,+],(0)=0,()()()f x y f x f y +≤+,令(,)((,))d x y f x y ρ=,证明X d (,)为度量空间. 3. (武亚静张丹)设X d (,)为度量空间,证明,,,x y z w X ?∈有 (,)(,)(,)(,)d x z d y w d x y d z w -≤+. 4.(崔伶俐杨冰)设全体实数列组成的集合为{}123(,,,....,...)|,1,2,...n i X x x x x x R i =∈=,对于 123(,,,....,...)n x x x x x =及12(,,...,...)n y y y y =∈X ,定义11(,)12k k k k k k x y d x y x y ∞ =-=+-∑ .证明 X d (,)为度量空间. 5.设()X n 为0和1组成的n 维有序数组,例如(3){000,001,010,011,100,101,110,111}X =,对于任意的,()x y X n ∈,定义(,)d x y 为x 和y 中取值不同的个数,例如在(3)X 中,(110,111)1d =, (010,010)0d =(010,101)3d =.证明((),)X n d 为度量空间. 6.(苏艳丁亚男)设X d (,)为度量空间, A X ?且A ≠φ.证明A 是开集当且仅当A 为开球的并. 7.(张振山赵扬扬)设X d (,)和Y ρ(,)是两个度量空间.那么映射:f X Y →是连续映射当且仅当Y 的任意闭子集F 的原象1()f F -是X 中的闭集. 8.(王林何超)设{}n x 与{}n y 是度量空间X d (,)的两个Cauchy 列.证明(),n n n a d x y =是收敛列. 9.(李敬华孙良帅)设X d (,)和Y ρ(,)是两个度量空间,在X Y ?上定义度量 112212121 ((,),(,)){[(,)][(,)]}p p p x y x y d x x d y y γ=+,其中1122(,),(,)x y x y X Y ∈?,1p ≥为正数.证明 X Y ?是完备空间当且仅当X d (,)和Y ρ(,)均是完备空间. 10.(李秀峰钱慧敏)设X d (,)是完备的度量空间,{}11n G x G ∈是X 中的一列稠密的开子集,证明1n n G ∞ = 也是X 中的稠密子集. 11.(王胜训闫小艳)设n A ?R ,证明A 是列紧集当且仅当A 是有界集. 12 (冯岩盛谢星星)设X d (,)为度量空间,A X ?且A φ≠.证明 (1){|,(,)}x x X d x A ε∈<是X 的开集. (2){|,(,)}x x X d x A ε∈≤是X 的闭集,其中0ε>.

实变函数论与泛函分析曹广福1到5章课后答案

第一章习题参考解答 3.等式)()(C B A C B A --=?-成立的的充要条件是什么? 解: 若)()(C B A C B A --=?-,则 A C B A C B A C ?--=?-?)()(. 即,A C ?. 反过来, 假设A C ?, 因为B C B ?-. 所以, )(C B A B A --?-. 故, C B A ?-)(?)(C B A --. 最后证,C B A C B A ?-?--)()( 事实上,)(C B A x --∈?, 则A x ∈且C B x -?。若C x ∈,则C B A x ?-∈)(;若C x ?,则B x ?,故C B A B A x ?-?-∈)(. 从而,C B A C B A ?-?--)()(. A A C B A C B A C =?-?--=?-?)()(. 即 A C ?. 反过来,若A C ?,则 因为B C B ?-所以)(C B A B A --?- 又因为A C ?,所以)(C B A C --?故 )()(C B A C B A --??- 另一方面,A x C B A x ∈?--∈?)(且C B x -?,如果C x ∈则 C B A x )(-∈;如果,C x ?因为C B x -?,所以B x ?故B A x -∈. 则 C B A x ?-∈)(. 从而 C B A C B A ?-?--)()( 于是,)()(C B A C B A --=?- 4.对于集合A ,定义A 的特征函数为????∈=A x A x x A ,0,1)(χ, 假设 n A A A ,,,21是 一集列 ,证明: (i ))(inf lim )(inf lim x x n n A n n A χχ= (ii ))(sup lim )(sup lim x x n n A n n A χχ= 证明:(i ))(inf lim n n m N n n n A A x ≥∈??=∈?,N ∈?0n ,0n m ≥?时,m A x ∈. 所以1)(=x m A χ,所以1)(inf =≥x m A n m χ故1)(inf sup )(inf lim ==≥∈x x m n A n m N b A n χχ

泛函分析第七章 习题解答125

第七章习题解答 1.设(X ,d )为一度量空间,令}),(,|{),(},),(,|{),(0000εεεε≤∈=<∈=x x d X x x x S x x d X x x x U 问),(0εx U 的闭包是否等于),(0εx S ? 解不一定。例如离散空间(X ,d )。)1,(0x U ={0x },而)1,(0x S =X 。因此当X 多于两点时,)1,(0x U 的闭包不等于)1,(0x S 。 2.设],[b a C ∞ 是区间],[b a 上无限次可微函数的全体,定义 证明],[b a C ∞按),(g f d 成度量空间。 证明(1)若),(g f d =0,则) ()(1)()(max ) () ()()(t g t f t g t f r r r r b t a -+-≤≤=0,即f=g (2))()(1)()(max 21 ),()()()()(0 t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞ =∑ =d (f ,g )+d (g ,h ) 因此],[b a C ∞ 按),(g f d 成度量空间。 3. 设B 是度量空间X 中的闭集,证明必有一列开集 n o o o 21,包含B ,而且B o n n =?∞ =1。 证明令n n n o n n B x d Bo o .2,1},1 ),({ =<==是开集:设n o x ∈0,则存在B x ∈1,使n x x d 1 ),(10< 。设,0),(110>-=x x d n δ则易验证n o x U ?),(0δ,这就证明了n o 是开集 显然B o n n ??∞ =1 。若n n o x ∞ =?∈1则对每一个n ,有B x n ∈使n x x d 1 ),(1< ,因此)(∞?→??→? n x x n 。因B 是闭集,必有B x ∈,所以B o n n =?∞ =1 。 4.设d (x ,y )为空间X 上的距离,证明) ,(1) ,(),(___ y x d y x d y x d += 是X 上的距离。 证明(1)若0),(___ =y x d 则0),(=y x d ,必有x=y (2)因),(),(),(z y d z x d y x d +≤而 t t +1在),[∞o 上是单增函数,于是) ,(),(1) ,(),(),(),(1),(),(___ ___ z y d z x d z y d z x d y x d y x d y x d y x d +++=≤+=

数学分析第三版答案下册

数学分析第三版答案下册 【篇一:2015年下学期数学分析(上)试卷a参考答案】> 一、填空题(每小题3分,共15分): 1、126; 2、2; 3、1?x?x2???xn?o(xn); 4、arcsinx?c (或?arccos x?c);5、2. 二、选择题(每小题3分,共15分) 1、c; 2、a; 3、a; 4、d; 5、b 三、求极限(每小题5分,共10分) 1??1、lim1?2? 2、limxlnx ?n??x?0 ?n? ? n 1?? ?lim?1?2?n??n?? 1 n n2? 1n 1 lnx(3分) ?lim?li?? x?0x?011 ?2 xx (3分) (?x)?0 (2分)?lime?1(2分) ?lim? n?? x?0 3n2 ?3 。四、利用数列极限的??n定义证明:lim2(10分) n??n?3 证明:当n?3时,有(1分) 3n299 (3分) ?3??22 n?3n?3n 993n2

因此,对任给的??0,只要??,即n?便有2 ?3?? (3分) n?n?3 3n2x{3,},当n?n便有2故,对任给的??0,取n?ma(2 分) ?3??成立。 ?n?3 9 3n2 ?3(1分)即得证lim2 n??n?3 五、证明不等式:arctanb?arctana?b?a,其中a?b。(10分) 证明:设f(x)?arctanx,根据拉格朗日中值定理有(3分) f(b)?f(a)?f?(?)(b?a)? 1 (b?a),2 1?? (a???b) (3分) 所以有 f(b)?f(a)?(b?a) (2分) bn?arctaan?b?a (2分)即 arcta 六、求函数的一阶导数:y?xsinx。(10分) 解:两边取对数,有: lny?sinxlnx (4分) 两边求一次导数,有: y??xsinx(cosxlnx? y?sinx (4分) ?cosxlnx? yx sinx )(2分) x 七、求不定积分:?x2e?xdx。(10分)解: 2?x2?x xedx?xde = (2分) ?? = ?x2e?x?2?xe?xdx (2分) = ?x2e?x?2?xde?x(2分) = ?x2e?x?2xe?x?2?e?xdx (2分) =?e?x(x2?2x?2)?c (2分) 15 八、求函数f(x)?|2x3?9x2?12x|在闭区间[?,]上的最大值与最小值。(10 42

泛函分析知识总结

泛函分析知识总结与举例、应用 学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。本文主要对前面两大内容进行总结、举例、应用。 一、 度量空间和赋范线性空间 (一)度量空间 度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。 1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y) 与之对应,而且这一对应关系满足下列条件: 1°d(x,y)≥0 ,d(x,y)=0 ? x=y (非负性) 2°d(x,y)= d(y,x) (对称性) 3°对?z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式) 则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空 间或距离空间(metric space )。 (这个定义是证明度量空间常用的方法) 注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为 度量。这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。 ⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。 ⑶ 集合X 不一定是数集,也不一定是代数结构。为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。 ⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。 1.1举例

实变函数与泛函分析基础(第三版)

主要内容 本章讨论的点集理论,不仅是以后学习测度理论和新积分理论的基础,也为一般的抽象空间的研究提供了具体的模型. 学习本章时应注意以下几点. 1、本章的基本概念较多,且有些概念(如内点、聚点、边界点等)相互联系,形式上也常有类似之处,因而容易混淆. 学习这些概念时要细心认真,注意准确牢固地掌握每一个概念的实质,学习时可同其类似的概念对照,注意区别概念间的异同点. 尤其要注意的是,本章对有些概念(如聚点),给出了多种等价(充要)条件,这将有利于理解概念的本质,特别是在讨论某些具体问题时,如能恰当地选用某种条件,常常会给问题的解决带来方便. 所以对等价条件必须深刻理解,熟练灵活地运用. 2、在开集、闭集和完备集的性质的讨论中,开集是基础,因为闭集是开集的补集,完备集是一种特殊的闭集,所以弄清了开集的性质,闭集和完备集的性质也就自然得到了. 3、本章中定理亦较多,对定理的学习,要注意弄清下述三点:一是定理的条件和要证的结论;二是定理的证明方法和推理过程;三是定理的意义和作用. 要特别注意论证思路和方法,这样才能逐步提高分问题和解决问题的能力. 同是定理, 然它们的意义和作用也会不尽相同.本章有些定理,如有限覆盖定理(定理),聚点存在定理(定理)以及直线上开集的结构定理(定理)等都是本章中的重要定理,在今后的学习中常有应用. 4、康托集是本章给出的一个重要例子. 对它的一些特殊性质,在直观上是难以想象的,比如它既是不包含任何区间的完备集,同时它还具有连续基数 ,下章中我们还将证明它的测度为零. 正是因为它的这些“奇怪”性质,使得它在许多问题的讨论中起着重要作用. 复习题 一、判断题 1、设P ,n Q R ∈,则(,)0P Q ρ=?P Q =。(× ) 2、设P ,n Q R ∈,则(,)0P Q ρ>。(× ) 3、设123,,n P P P R ∈,则121323(,)(,)(,)P P P P P P ρρρ≥+。 (× ) 4、设点P 为点集E 的内点,则P E ∈。(√ )

2021数学类考研陈纪修《数学分析》考研真题库

2021数学类考研陈纪修《数学分析》考研真题库 第1部分名校考研真题 第9章数项级数 一、判断题 1.若对任意的自然数p都有,则收敛.()[东南大学研] 【答案】错查看答案 【解析】根据级数收敛的Cauchy收敛准则,举出反例:例如,对任意的自然数p,有 ,但是发散.正确的说法应该是,关于p一致有 . 2.若,且对任意的n,有,则收敛.()[重庆大学研] 【答案】错查看答案 【解析】举反例:例如,虽然对任意的n,有,但是发散.n 必须足够大,才可以成立. 二、解答题 1.设收敛,证明:[华东师范大学研]

证明:记级数的前n项和S n.则 对上式两边取极限,从而 即 2.证明下列级数收敛. [东北师范大学研] 证明:(1)方法一 所以 所以收敛。 方法二 由于

所以 而收敛,从而收敛. (2) 由比值判别法知收敛,再由比较判别法知收敛,即 收敛。 3.证明:[浙江大学研] 证明:因为且单调减, 所以 反复利用分部积分法, 又 所以 将②代入①得 4.讨论级数的敛散性.[复旦大学研] 解:(1)若p、q>1,则

绝对收敛。 (因为,例如p>q,则为优级数); (2)若0<p=q≤1,应用莱布尼兹定理知级数收敛,且是条件收敛; (3)当p、q>0,原级数与级数同时敛散,若p>1,0<q ≤1或q>1,0<p≤1时级数 一敛一散,故原级数发散. 若0<p<q<1,则,且与同阶(当);故级数发散,从而原级数发散. 同理可证,若0<q<p<1,原级数发散. 5.若一般项级数与都收敛且下列不等式成立 证明:级数也收敛.又若与都发散,试问一定发散吗?[汕头大学研、北京工业大学研] 证明:由于级数与都收敛,所以由Cauchy收敛准则知对任意的ε>0,存在N∈N,使得当n>N及对任意的正整数p,都有

实变函数与泛函分析课程教学大纲

实变函数与泛函分析课程教学大纲

《实变函数与泛函分析》课程教学大纲 一、课程基本信息 课程代码:110047 课程名称:实变函数与泛函分析 英文名称:Real variable analysis And Functional analysis 课程类别:专业基础课 学时:50 学分:3 适用对象:信息与计算科学专业本科 考核方式:考试,平时成绩30%,期末成绩70% 先修课程:数学分析和高等代数 二、课程简介 中文简介:实变函数起源于对连续而不可微函数以及Riemann可积函数等的透彻研究,在点集论的基础上讨论分析数学中一些最基本的概念和性质,其主要内容是引入Lebesgue积分并克服了Riemann积分的不足。它是数学分析的继续、深化和推广,是一门培养学生数学素质的重要课程,也是现代数学的基础。泛函分析起源于经典的数学物理边值问题和变分问题,同时概括了经典分析的许多重要概念,是现代数学中一个重要的分支,它综合运用了分析、代数与几何的观点和方法研究、分析数学和工程问题,其理论与方法具有高度概括性和广泛应用性的特点。 英文简介:Real variable analysis And Functional analysis is a theoretical course of mathematics which can be used in variable fields such as engineering and technology, physics, chemical, biology, economic and other fields. The educational aim in this course is to develop the abilities of students in analyzing and solving practical problem by the special ways of Real variable analysis And Functional analysis’ thinking and reasoning. 三、课程性质与教学目的 本课程是在实变函数与泛函分析基本理论的基础上,着重泛函分析的应用,教学的目的是丰富学生的知识和培养学生解决实际问题的能力。本课程就其实质来说是方法性的,但对于应用学科的学生来说,作为授课的目的,则是知识性的,故在教学方法和内容的选择上来说,只能让学生了解那些体现实变函数与泛函分析基本特征的思想内容,冗难的证明过程应尽量避免。本课程要求如下: 1. 理解和掌握集合间的关系和集与映射间的关系,了解度量空间的相关概念和Lebesgue可测集的有关内容和性质。

泛函分析试卷(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改 赠人玫瑰,手留余香。 泛函分析期末考试试卷(总分100分) 一、选择题(每个3分,共15分) 1、设X 是赋范线性空间,X y x ∈,,T 是X 到X 中的压缩映射,则下列哪个式子成立( ). A .10<<-≤-αα, y x Ty Tx B.1≥-≤-αα, y x Ty Tx C.10<<-≥-αα, y x Ty Tx D.1≥-≥-αα, y x Ty Tx 2、设X 是线性空间,X y x ∈,,实数x 称为x 的范数,下列哪个条件不是应满足的条件:( ). A. 0等价于0且,0==≥x x x B.()数复为任意实,αααx x = C. y x y x +≤+ D. y x xy +≤ 3、下列关于度量空间中的点列的说法哪个是错误的( ). A .收敛点列的极限是唯一的 B. 基本点列是收敛点列 C .基本点列是有界点列 D.收敛点列是有界点列 4、巴拿赫空间X 的子集空间Y 为完备的充要条件是( ). A .集X 是开的 B.集Y 是开的

C.集X是闭的 D.集Y是闭的 5、设(1) p l p <<+∞的共轭空间为q l,则有11 p q +的值为(). A. 1- B.1 2 C. 1 D. 1 2 - 二、填空题(每个3分,共15分) 1、度量空间中的每一个收敛点列都是()。 2、任何赋范线性空间的共轭空间是()。 3、1l的共轭空间是()。 4、设X按内积空间成为内积空间,则对于X中任意向量x,y 成立不等式()当且仅当x与y线性相关时不等式等号成立。 5、设T为复希尔伯特空间X上有界线性算子,则T为自伴算子的充要条件是()。 三、判断题(每个3分,共15分) 1、设X是线性赋范空间,X中的单位球是列紧集,则X必为有限维。 ( ) 2、距离空间中的列紧集都是可分的。( ) 3、若范数满足平行四边形法则,范数可以诱导内积。( ) 4、任何一个Hilbert空间都有正交基。( ) 5、设X是线性赋范空间,T是X X的有界线性算子,若T既是单

泛函分析中的度量空间

泛函分析主要内容 泛函分析是20世纪30年代形成的数学分科。是从变分问题,积分方程和理论物理的研究中发展起来的。它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的函数,算子和极限理论。它可以看作无限维向量空间的解析几何及数学分析。主要内容有拓扑线性空间等。泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。 1、度量空间 定义:设X为一个集合,一个映射d:X×X→R。若对于任何x,y,z属于X,有 (I)(正定性)d(x,y)≥0,且d(x,y)=0当且仅当 x = y; (II)(对称性)d(x,y)=d(y,x); (III)(三角不等式)d(x,z)≤d(x,y)+d(y,z) 则称d为集合X的一个度量(或距离)。称偶对(X,d)为一个度量空间,或者称X为一个对于度量d而言的度量空间。 例:实数带有由绝对值给出的距离函数d(x, y) = |y?x|,和更一般的欧几里得n维空间带有欧几里得距离是完备度量空间 2、赋范线性空间 泛函分析研究的主要是实数域或复数域上的完备赋范线性空间。这类空间被称为巴拿赫空间,巴拿赫空间中最重要的特例被称为希尔

伯特空间。 例:任何赋范向量空间通过定义d(x, y) = ||y?x|| 也是度量空间。 (如果这样一个空间是完备的,我们称之为巴拿赫空间)。例:曼哈顿范数引发曼哈顿距离,这里在任何两点或向量之间的距离是在对应的坐标之间距离的总和。 3、希尔伯特空间 希尔伯特空间可以利用以下结论完全分类,即对于任意两个希尔伯特空间,若其基的基数相等,则它们必彼此同构。对于有限维希尔伯特空间而言,其上的连续线性算子即是线性代数中所研究的线性变换。对于无穷维希尔伯特空间而言,其上的任何态射均可以分解为可数维度(基的基数为50)上的态射,所以泛函分析主要研究可数维度上的希尔伯特空间及其态射。希尔伯特空间中的一个尚未完全解决的问题是,是否对于每个希尔伯特空间上的算子,都存在一个真不变子空间。该问题在某些特定情况下的答案是肯定的。 4、巴拿赫空间 巴拿赫空间理论(Banach space)是192O年由波兰数学家巴拿赫(S.Banach)一手创立的,数学分析中常用的许多空间都是巴拿赫空间及其推广,它们有许多重要的应用。大多数巴拿赫空间是无穷维空间,可看成通常向量空间的无穷维推广。

就业方向及导师推荐

专业名称:基础数学(应用数学) 专业概况:数学系一般开设基础数学、应用数学两专业,而这两个专业方向基本是相通的,都是为培养数学和其他高科技复合型人才打下基础。基础数学学科较多地涉及:代数、拓扑、几何、微分方程、动力系统、函数论等,它的专业方向和课程设置覆盖面比较宽,理论知识所占的比重相对较大。应用数学则与其他学科综合交叉。 就业前景:硕士毕业后,因占有数学基础强的优势,利于跨考经济、金融、会计等热门专业的博士研究生;也可以在相关企业、事业单位和经济、管理部门从事统计调查、统计信息管理、数量分析等开发、应用和管理工作,或在科研、教育部门成为从事研究和教学工作的高级专门人才。 专业背景:要求考生具备基础数学、概率论、微积极分分析、计算机理论、统计分析等学科知识。 研究方向:微分动力系统、非线性分析、复分析与几何、拓扑学、代数数论与代数几何、图论、组合数学、常微分方程、微分几何、数学物理、信息科学、计算数学、泛函分析、偏微分方程、几何分析与变分学 设有本专业的科研院校: 北京师范大学、北京邮电大学、清华大学、北京大学、中国人民大学、南京大学、吉林大学、复旦大学、武汉大学、西北大学、中国石油大学、浙江大学、中山大学、北京科技大学、上海交通大学、西安交通大学、北京理工大学、长安大学、北京科技大学、山东大学、大连理工大学。 导师推荐:

日益崛起的新“统”帅 专业名称:概率论与数理统计(概率与统计精算) 专业概况:概率论与数理统计是20世纪迅速发展的学科,主要研究各种随机现象的本质与内在规律,以及自然、社会等学科中不同类型数据的科学的综处理和统计推断方法。随着人类社会各个体系的日益庞大、复杂、精密以及计算机的广泛使用,概率统计在信息时代的重要性也越来越大。本专业的重点在于为学生打下坚实的数学基础,培养科研创新能力,了解并掌握丰富的现代统计方法。 就业前景:硕士毕业后,学生可报考基础数学学科的各专业、计算机科学、概率统计、金融学等与数学相关的或交叉的、高新技术学科的博士研究生; 也可选择出国到知名大学继续深造,如哈佛大学、麻省理工大学等; 当然,你还可到企业从事数学应用开发工作,事实上相当数量的毕业生都会选择在企业、事业单位从事统计调查、统计信息管理、数量分析的工作,随着计算机软件应用的日益加强,统计学,尤其是SPSS软件分析的前景看好,统计人才更是成为了用人单位争相“抢购”的“香饽饽”。 专业背景:要求考生具备基础数学、概率论、数理统计分析、时间序列分析、随机分析、信息技术、计算机等相关学科知识。 研究方向:概率论与随机过程、数理统计、时间序列分析及其应用、保险精算、金融工程、非参数统计、随机分析与随机微分方程、随机动力系统,数学物理 设有本专业的科研院校: 北京大学、清华大学、武汉大学、厦门大学、吉林大学、大连理工大学、南京大学、中山大学、中国科学技术大学、西安交通大学、山东大学、湘潭大学、上海大学、厦门大学、上海师范大学、东北大学、南开大学、西北大学、哈尔滨工业大学、华中科技大学、四川大学、复旦大学、西北工业大学、浙江大学。 导师推荐:

泛函分析第七章 习题解答1-25

第七章 习题解答 1.设(X ,d )为一度量空间,令 }),(,|{),(},),(,|{),(0000εεεε≤∈=<∈=x x d X x x x S x x d X x x x U 问),(0εx U 的闭包是否等于),(0εx S ? 解 不一定。例如离散空间(X ,d )。)1,(0x U ={0x },而)1,(0x S =X 。 因此当X 多于两点时,)1,(0x U 的闭包不等于)1,(0x S 。 2. 设 ],[b a C ∞ 是区间],[b a 上无限次可微函数的全体,定义 )()(1)()(ma x 21 ),()()()()(0 t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞ =∑ 证明],[b a C ∞ 按),(g f d 成度量空间。 证明 (1)若),(g f d =0,则) ()(1)()(max ) () ()()(t g t f t g t f r r r r b t a -+-≤≤=0,即f=g (2))()(1)()(max 2 1 ),()()()()(0t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞ =∑ )()(1)()()()(1)()(ma x 21 )()()()()()()()(0 t g t h t g t h t g t f t g t f r r r r r r r r b t a r r -+-+-+-≤≤≤∞ =∑ )()(1)()(max 21 )()(1)()(max 21)()()()(0 )()()()(0t g t h t g t h t g t f t g t f r r r r b t a r r r r r r b t a r r -+-+-+-≤≤≤∞=≤≤∞ =∑∑ =d (f ,g )+d (g ,h ) 因此],[b a C ∞ 按),(g f d 成度量空间。 3. 设B 是度量空间X 中的闭集,证明必有一列开集 n o o o 21,包含B ,而且B o n n =?∞ =1。 证明 令n n n o n n B x d Bo o .2,1},1 ),({ =<==是开集:设n o x ∈0,则存在B x ∈1,使 n x x d 1),(10< 。设,0),(1 10>-=x x d n δ则易验证n o x U ?),(0δ,这就证明了n o 是 开集 显然B o n n ??∞=1。若n n o x ∞=?∈1则对每一个n ,有B x n ∈使n x x d 1 ),(1<,因此 )(∞?→??→?n x x n 。因B 是闭集,必有B x ∈,所以B o n n =?∞ =1。 4. 设d (x ,y )为空间X 上的距离,证明) ,(1) ,(),(___ y x d y x d y x d +=

相关文档
最新文档