生物化学名词解释

生物化学名词解释
生物化学名词解释

1.提问:为什么中间分子都带磷酸基团?

答案:①传递能量;②不能由生物膜渗漏出细胞。

2.提问:发酵不产生能量,其生物意义何在呢?

答案:消耗糖酵解脱下的 H,保持细胞内的pH稳定。

3.糖酵解+三羧酸循环的效率:

糖酵解 1G → 2ATP+2NADH+2H++2丙酮酸

=2+2×3=8ATP

三羧酸循环 2丙酮酸→ 30ATP+6CO2+4H2O

38ATP

储能效率=38 ×7.3/686= 42%

比世界上任何一部热机的效率都高!

提问:其余能量何处去?

答案:以热量形式。一部分维持体温,一部分散失。

4.提问:丙酮酸通过糖异生形成一个G,消耗多少个ATP能量?

答案:6个ATP

5.提问:其他多糖是如何产生的?

答案:由磷酸戊糖途径提供各种单糖,由类似糖元合成途径合成。

6.研究表明反应的平衡常数≈1,但该反应始终能够持续向正反应进行,?答案:PPi水解消耗,平衡右移

7.核苷酸的生物功能

①合成核酸

②是多种生物合成的活性中间物

糖原合成,UDPG.

磷脂合成,CDP-乙醇胺,CDP-二脂酰甘油。

③生物能量的载体ATP、GTP

④腺苷酸是三种重要辅酶的组分(NAD、FAD、CoA)

⑤信号分子cAMP、cGMP

8.肽链合成后的“加工处理”:

(1)切除甲硫氨酸(与起始符对应);

(2)到位置后切除信号肽;

(3)糖基化修饰(对于糖蛋白);

(4) 多亚基、辅基缔合;

9.肽链合成后的“加工处理”

(1)细菌蛋白质的N-端为fMet,往往先被脱甲酰基酶催化水解除去N-端的甲酰基,然后在氨肽酶的作用下,再切去一个或多个N-端氨基酸.在真核生物中,N-端的Met常常在肽键的其他部分还未完全合成时就已经水解下来。

(2)某些蛋白质在合成过程中,在氨基末端额外生成 15~30个氨基酸组成的信号顺序(信号肽),用以指导合成的蛋白质去往细胞的固定部位。最后,这些信号顺序将在特异的肽酶作用下除去。

(3)某些蛋白质的一些Ser、Thr及Tyr残基中的羟基,可通过酶促磷酸化作用,生成磷酸丝氨酸、磷酸苏氨酸及磷酸酪氨酸残基。

(4)mRNA中没有胱氨酸的密码子,二硫键是通过2个Cys的巯基氧化形成的。

(5)某些氨基酸的侧键要经过专一性的改变。如胶原中的Pro和Lys的羟基化,又如在翻译完成后糖蛋白的Asp、Ser和Thr的侧链基团才与糖基相结合。(6)有些新生多肽要在专一性蛋白酶水解去掉部分肽段后,才能转变成有功能的蛋白。

如前胰岛素转变为胰岛素,前胶原转变为胶原,蛋白酶原转变为蛋白酶等。

有些动物病毒的mRNA则先翻译成很长的多肽链,再水解成多个有功能的蛋白质分子。

很多哺乳动物蛋白质在细胞中生成时首先合成较大的前体,再从细胞运出。(7)由多个肽链及其他辅助成分(如脂类、核酸、血红素等)构成的蛋白,在多肽链合成后,还需经过多肽键之间以及多肽键与辅助成分之间的缔合过程,才能形成有活性的蛋白质。

10.目前已经知道有四种DNA修复系统:

光复活光:复活机制是可见光激活了光复活酶,使之能分解由于紫外线照射而产生的嘧啶二体。切除修复:复制前的修复

暗修复(不需要光照)重组修复:复制同时的修复

诱导修复:为了生存——变

名词解释:

1.蔗糖酶:将蔗糖水解成D-葡萄糖和D-果糖。

2.乳糖酶:β-半乳糖苷酶的一种,能将乳糖水解为D-葡萄糖和D-半乳糖。

3.麦芽糖酶:将麦芽糖水解成D-葡萄糖。

4.α-淀粉酶:内切酶。以随机方式水解α-1,4-糖苷键,能将淀粉切断成分子量较小的糊精。

5.β-淀粉酶:仅作用于链的末端单位。从淀粉链的非还原性末端开始,每次切下2个葡萄糖单位-麦芽糖。

6.葡萄糖淀粉酶:外切酶,能够将淀粉链端基葡萄糖水解下来。最终可以将淀粉完全水解成葡萄糖。

7.α-1,6-糖苷酶:水解α-1,6-糖苷键的淀粉酶。

8.糖酵解:葡萄糖 →丙酮酸。此反应过程一般在无氧条件下进行,又称为无氧分解。

9.三羧酸循环:丙酮酸→ CO 2 + H 2O 。由于此氧化过程是通过柠檬酸等几种羧酸

的循环反应来完成的,通常称为三羧酸循环或柠檬酸循环。由于分子氧是此系列反应的最终受氢体,所以又称为有氧分解。

10.激酶:催化ATP 分子的磷酸基转移到底物上的酶称激酶,一般需要Mg 2+或Mn 2+作为辅因子。

11.已糖激酶:专一性不强,可催化Glc 、Fru 、Man (甘露糖)磷酸化。己糖激酶是酵解途径中第一个调节酶,被产物G-6-P 强烈别构抑制。

12.葡萄糖激酶:对Glc 有专一活性,存在于肝脏中,不被G-6-P 抑制。Glc 激酶是一个诱导酶,由胰岛素促使合成.

13. EMP 总反应式:

1葡萄糖+2Pi+2ADP+2NAD +

→2丙酮酸+2ATP+2NADH+2H++2H2O

14.糖酵解:1葡萄糖分解产生2丙酮酸,并伴随ATP 生成的过程。 (细胞质)

15.三羧酸循环:丙酮酸氧化脱羧产物乙酰CoA 与草酰乙酸(三羧酸循环中与乙酰CoA 结合点)结合生成柠檬酸进入循环。在循环过程中,乙酰CoA 被氧化成 H2O 和CO2,并释放出大量能量。

134256789

16.糖异生作用:许多非糖物质如甘油、丙酮酸、乳酸以及某些氨基酸等能在肝脏中转变为糖原,称糖异生作用。

17.脱氢:脂酰CoA在脂酰CoA脱氢酶的催化下,在α-和β-碳原子上各脱去一个氢原子,生成反式α,β-烯脂酰CoA,氢受体是FAD。

18.水化:在烯脂酰CoA水合酶催化下,α,β-烯脂酰CoA水化,生成L(+)-β-羟脂酰CoA。

19.再脱氢:β-羟脂酰CoA在脱氢酶催化下,脱氢生成β-酮脂酰CoA。反应的氢受体为NAD+。此脱氢酶具有立体专一性,只催化L(+)-β-羟脂酰CoA的脱氢。

20.硫解:在β-酮脂酰CoA硫解酶催化下,β-酮脂酰CoA与CoA作用,生成1分子乙酰CoA和1分子比原来少两个碳原子的脂酰CoA。少了两个碳原子的脂酰CoA ,可以重复上述反应过程,一直到完全分解成乙酰CoA。脂肪酸通过β-氧化生成的乙酰CoA,一部分用来合成新的脂肪酸和其它生物分子,大部分则进入三羧酸循环完全氧化。

21.乙酰CoA羧化酶:(辅酶是生物素)为别构酶,是脂肪酸合成的限速酶,柠檬酸可激活此酶,脂肪酸可抑制此酶。需要Mn2+。

22.酮氨基酸:Leu、Lys。在分解过程中转变为乙酰乙酰CoA,后者在动物肝脏中可生成乙酰乙酸和β-羟丁酸,因此这2种aa.称生酮aa.

23.生糖氨基酸:凡能生成丙酮酸、α-酮戊二酸、琥珀酸、延胡索酸、草酰乙酸的aa.都称为生糖aa,它们都能生成Glc。

24.L-氨基酸氧化酶:辅基为FAD或FMN。在体内分布不普遍,而且最适pH为10,在正常生理条件下活力极低,作用不大。

25.D-氨基酸氧化酶:辅基为FAD。体内分布于肝、肾细胞内,活力也强。但体内D-氨基酸不多,故作用也不大。

26.L-谷氨酸脱氢酶:辅酶为NAD+或NANP+,主要催化Glu的脱氨,最适pH近中性,分布广,活力强。

27.氨中毒的机理:脑细胞的线粒体可将氨与α-酮戊二酸作用生成Glu,大量消耗α-酮戊二酸,影响TCA,同时大量消耗NADH,产生肝昏迷。

28.非共生固氮菌: 在土壤和水中能独立地固定分子氮的微生物.

29.共生固氮菌:要与高等植物共生才能起固氮作用的微生物 (如与豆科植物共

生的根瘤菌).

30.铁硫蛋白(Fe-S):是一种与电子传递有关的蛋白质,它与NADH31.辅酶Q (泛醌):它是电子传递链中唯一的非蛋白电子载体。为一种脂溶性醌类化合物。Q (醌型结构) 很容易接受电子和质子,还原成QH2(还原型);QH2也容易给出电子和质子,重新氧化成Q。因此,它在线粒体呼吸链中作为电子和质子的传递体。

32.复制子:基因组能独立进行复制的单位,每个复制子都含有一个复制起点。

33.端粒:是真核细胞染色体末端的特殊结构.人端粒是由6个碱基重复序列(TTAGGG)和结合蛋白组成。端粒有重要的生物学功能,可稳定染色体的功能,防止染色体DNA降解、末端融合,保护染色体结构基因,调节正常细胞生长。34.端粒酶:是使端粒延伸的反转录DNA合成酶。是个由RNA和蛋白质组成的核糖核酸-蛋白复合物。

35.基因工程:又称为遗传工程,即用人工的方法改组基因,从而培育新型生物品种。

36.PCR(聚合酶链式反应):是体外模拟DNA复制过程的核心扩增技术,即无细胞分子克隆技术。

37.反转录酶:以4种dNTP为底物能生成与病毒RNA碱基序列互补的DNA。催化遗传信息从RNA流向DNA,转录作用相反,故称为反转录酶或逆转录酶;含有逆转录酶的病毒称为逆转录病毒。

38.启动子:DNA(模板)链上负责转录启动的;具有特定的核苷酸顺序并形成某种特殊的二级结构;能被RNA聚合酶识别结合的区域。

39.中心法则:生物的遗传信息从 DNA传递给mRNA的过程称为转录。根据mRNA 链上的遗传信息合成蛋白质的过程,被称为翻译和

表达。1958年Crick将生物遗传信息的这种传递方式称为中心法则。

40.mRNA结合部位:大小亚基之间存在一条细沟,用于接纳mRNA.

小亚基的16S rRNA可以与mRNA相互作用,从而参与mRNA与核糖体的结合。41.tRNA结合部位:有2个

氨酰基部位(A位)——氨酰tRNA的结合部位;

肽基部位(P位)——正在延长的多肽基tRNA的结合部位;

42.催化肽键形成的部位:称为肽基转移酶,又叫转肽酶。位于大亚基上。 1992年发现该活性是由23S rRNA提供的。

43.脂肪酸的氧化:是从羧基端β-碳原子开始,每次分解出一个二碳片断。

44.酮血症:因为糖代谢减少,可与乙酰CoA缩合生成柠檬酸的草酰乙酸减少,更减少了酮体的去路,于是酮体积累与体内形成了酮血症。

45.生酮氨基酸:Leu、Lys。在分解过程中转变为乙酰乙酰CoA,后者在动物肝脏中可生成乙酰乙酸和β-羟丁酸,因此这2种aa.称生酮aa.

46.生糖氨基酸:凡能生成丙酮酸、α-酮戊二酸、琥珀酸、延胡索酸、草酰乙酸的aa.都称为生糖aa,它们都能生成Glc。

47.转氨基作用:是α-氨基酸和α-酮酸之间氨基转移作用,结果是原来的 a.a 生成相应的酮酸,而原来的酮酸生成相应的氨基酸。

48..固氮作用:某些微生物和藻类将分子状态的氮转化成氨的过程称为固氮作用.

49.非共生固氮菌:在土壤和水中能独立地固定分子氮的微生物.

50.共生固氮菌:要与高等植物共生才能起固氮作用的微生物 (如与豆科植物共生的根瘤菌).

51.直接脱羧作用:氧化代谢的中间产物羧酸在脱羧酶的催化下,直接从分子中脱去羧基。

52.氧化脱羧作用:氧化代谢中产生的有机羧酸(主要是酮酸)在氧化脱羧酶系的催化下,在脱羧的同时,也发生氧化(脱氢)作用。

53.呼吸链电子传递抑制剂:是能够专一阻断呼吸链中某些部位电子传递的物质和化学药品。它的特点是可抑制呼吸链的某一环节,使呼吸链中断。这类物质和化学药品大多对人类或哺乳动物乃至需氧生物具有极强的毒性。

54.磷酸化作用:生物体通过生物氧化所产生的能量,除用一部分以维持体温外,大部分可以通过磷酸化作用转移至高能磷酸化合物ATP中。此种伴随放能的氧化作用而进行的磷酸化称氧化磷酸化作用。

根据生物氧化方式可将氧化磷酸化分为底物水平磷酸化及电子传递体系磷酸化。

55.底物水平磷酸化:底物水平磷酸化是在被氧化底物上发生的磷酸化作用。即底物被氧化过程中,形成了某种高能磷酸化合物的中间产物,通过酶的作用可使

ADP生成ATP。

56.电子传递体系磷酸化:当电子从NADH或FADH2经过电子传递体系(呼吸链)传递给氧形成水时,同时伴有ADP磷酸化成ATP,这以全过程称为电子传递体系磷酸化。

57.甘油磷酸穿梭:主要存在于肌肉、神经组织,所以葡萄糖在这些组织彻底氧化所产生的ATP比其他组织要少2个,即产生36个ATP。58.酶的区域化:酶在细胞内有一定的布局和定位。催化不同代谢途径的酶类,往往分别组成各种多酶体系。多酶体系存在于一定的亚细胞结构区域中,或存在于胞质中,这种现象称为酶的区域化。

59.一级调节机制:酶的催化活力由内在因素(如底物浓度、辅因子、温度、pH、离子强度等)调节,或某些其他因素(代谢产物或其他小分子调节物)间接调节。这类调节作用具有非共价作用的特点。它们的开始和终止均很快速,时间在毫秒范围。

60. 三级调节机制:此类调节包括酶的合成和降解速度的调节。

三级调节机制属迟缓调机制,一般时间范围可为数小时甚至几天或更长时间。61.二级调节机制:(1)酶的两种或多种形式间的可逆或不可逆转变。

(2)酶通过可逆共价修饰而进行相互转变。

糖原磷酸化酶有两种形式,即有活性的a 型和无活性的的b型。

62.操纵序列(O):是控制操纵子中结构基因转录的开关,阻遏蛋白与操纵序列(O)结合可阻止RNA聚合酶对结构基因的转录

63.半不连续复制:DNA的两条链的方向相反,复制时,如果新生 DNA的一条链从5'向3' 端合成,则另一条链必须从3'端向5'端延伸。可是,迄今发现的DNA 聚合酶都只能催化 DNA链从5' 端向3' 端延伸。

64.冈崎片段:短时间内首先合成较短的DNA片段,接着出现较大分子。一般把这些 DNA片段叫做冈崎片段。

65.新DNA的一条链是按5'→ 3' 方向(与复制叉移动的方向一致)连续合成的,称为“前导链”;另一条链的合成则是不连续的,即先按按5'→ 3' 方向(与复制叉移动的方向相反)合成若干短片段(冈崎片段),再通过酶的作用将这些短片段连在一起构成第二条子链,称为“滞后链”。

生物化学名词解释集锦

生物化学名词解释集锦 第一章蛋白质 1.两性离子(dipolarion) 2.必需氨基酸(essential amino acid) 3.等电点(isoelectric point,pI) 4.稀有氨基酸(rare amino acid) 5.非蛋白质氨基酸(nonprotein amino acid) 6.构型(configuration) 7.蛋白质的一级结构(protein primary structure) 8.构象(conformation) 9.蛋白质的二级结构(protein secondary structure) 10.结构域(domain) 11.蛋白质的三级结构(protein tertiary structure) 12.氢键(hydrogen bond) 13.蛋白质的四级结构(protein quaternary structure) 14.离子键(ionic bond) 15.超二级结构(super-secondary structure) 16.疏水键(hydrophobic bond) 17.范德华力( van der Waals force) 18.盐析(salting out) 19.盐溶(salting in) 20.蛋白质的变性(denaturation) 21.蛋白质的复性(renaturation) 22.蛋白质的沉淀作用(precipitation) 23.凝胶电泳(gel electrophoresis) 24.层析(chromatography) 第二章核酸 1.单核苷酸(mononucleotide) 2.磷酸二酯键(phosphodiester bonds) 3.不对称比率(dissymmetry ratio) 4.碱基互补规律(complementary base pairing) 5.反密码子(anticodon) 6.顺反子(cistron) 7.核酸的变性与复性(denaturation、renaturation) 8.退火(annealing) 9.增色效应(hyper chromic effect) 10.减色效应(hypo chromic effect) 11.噬菌体(phage) 12.发夹结构(hairpin structure) 13.DNA 的熔解温度(melting temperature T m) 14.分子杂交(molecular hybridization) 15.环化核苷酸(cyclic nucleotide) 第三章酶与辅酶 1.米氏常数(K m 值) 2.底物专一性(substrate specificity) 3.辅基(prosthetic group) 4.单体酶(monomeric enzyme) 5.寡聚酶(oligomeric enzyme) 6.多酶体系(multienzyme system) 7.激活剂(activator) 8.抑制剂(inhibitor inhibiton) 9.变构酶(allosteric enzyme) 10.同工酶(isozyme) 11.诱导酶(induced enzyme) 12.酶原(zymogen) 13.酶的比活力(enzymatic compare energy) 14.活性中心(active center) 第四章生物氧化与氧化磷酸化 1. 生物氧化(biological oxidation) 2. 呼吸链(respiratory chain) 3. 氧化磷酸化(oxidative phosphorylation) 4. 磷氧比P/O(P/O) 5. 底物水平磷酸化(substrate level phosphorylation) 6. 能荷(energy charg 第五章糖代谢 1.糖异生(glycogenolysis) 2.Q 酶(Q-enzyme) 3.乳酸循环(lactate cycle) 4.发酵(fermentation) 5.变构调节(allosteric regulation) 6.糖酵解途径(glycolytic pathway) 7.糖的有氧氧化(aerobic oxidation) 8.肝糖原分解(glycogenolysis) 9.磷酸戊糖途径(pentose phosphate pathway) 10.D-酶(D-enzyme) 11.糖核苷酸(sugar-nucleotide) 第六章脂类代谢

(完整版)生物化学名词解释大全

第一章蛋白质 1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。 2.必需氨基酸:指人体(和其它哺乳动物)自身不能合成,机体又必需,需要从饮食中获得的氨基酸。 3. 氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH 值,用符号pI 表示。 4.稀有氨基酸:指存在于蛋白质中的20 种常见氨基酸以外的其它罕见氨基酸,它们是正常氨基酸的衍生物。 5.非蛋白质氨基酸:指不存在于蛋白质分子中而以游离状态和结合状态存在于生物体的各种组织和细胞的氨基酸。 6.构型:指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布。构型的转变伴随着共价键的断裂和重新形成。 7.蛋白质的一级结构:指蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。8.构象:指有机分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。一种构象改变为另一种构象时,不涉及共价键的断裂和重新形成。构象改变不会改变分子的光学活性。 9.蛋白质的二级结构:指在蛋白质分子中的局部区域内,多肽链沿一定方向盘绕和折叠的方式。 10.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的 近似球形的组装体。 11.蛋白质的三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。 12.氢键:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子 结构的构象。 13.蛋白质的四级结构:指多亚基蛋白质分子中各个具有三级结构的多肽链以适当方式聚合所呈现的三维结构。 14.离子键:带相反电荷的基团之间的静电引力,也称为静电键或盐键。 15.超二级结构:指蛋白质分子中相邻的二级结构单位组合在一起所形成的有规则 的、在空间上能辨认的二级结构组合体。 16.疏水键:非极性分子之间的一种弱的、非共价的相互作用。如蛋白质分子中的疏 水侧链避开水相而相互聚集而形成的作用力。 17.范德华力:中性原子之间通过瞬间静电相互作用产生的一种弱的分子间的力。当 两个原子之间的距离为它们的范德华半径之和时,范德华力最强。 18.盐析:在蛋白质溶液中加入一定量的高浓度中性盐(如硫酸氨),使蛋白质溶解 度降低并沉淀析出的现象称为盐析。 19.盐溶:在蛋白质溶液中加入少量中性盐使蛋白质溶解度增加的现象。 20.蛋白质的变性作用:蛋白质分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照、热、有机溶剂以及一些变性剂的作用时,次级键遭到破坏导致天然构象的破坏,但其一级结构不发生改变。 21.蛋白质的复性:指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并 恢复生物活性的现象。 22.蛋白质的沉淀作用:在外界因素影响下,蛋白质分子失去水化膜或被中和其所 带电荷,导致溶解度降低从而使蛋白质变得不稳定而沉淀的现象称为蛋白质的沉淀作

(完整版)食品生物化学名词解释和简答题答案

四、名词解释 1.两性离子(dipolarion) 2.米氏常数(Km值) 3.生物氧化(biological oxidation) 4.糖异生(glycogenolysis) 5.必需脂肪酸(essential fatty acid) 五、问答 1.简述蛋白质变性作用的机制。 2.DNA分子二级结构有哪些特点? 5.简述tRNA在蛋白质的生物合成中是如何起作用的? 四、名词解释 1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。 2.米氏常数(Km值):用Km值表示,是酶的一个重要参数。Km值是酶反应速度(V)达到最大反应速度(Vmax)一半时底物的浓度(单位M或mM)。米氏常数是酶的特征常数,只与酶的性质有关,不受底物浓度和酶浓度的影响。 3.生物氧化:生物体内有机物质氧化而产生大量能量的过程称为生物氧化。生物氧化在细胞内进行,氧化过程消耗氧放出二氧化碳和水,所以有时也称之为“细胞呼吸”或“细胞氧化”。生物氧化包括:有机碳氧化变成CO2;底物氧化脱氢、氢及电子通过呼吸链传递、分子氧与传递的氢结成水;在有机物被氧化成CO2和H2O的同时,释放的能量使ADP转变成ATP。 4.糖异生:非糖物质(如丙酮酸乳酸甘油生糖氨基酸等)转变为葡萄糖的过程。 5.必需脂肪酸:为人体生长所必需但有不能自身合成,必须从事物中摄取的脂肪酸。在脂肪中有三种脂肪酸是人体所必需的,即亚油酸,亚麻酸,花生四烯酸。 五、问答 1. 答: 维持蛋白质空间构象稳定的作用力是次级键,此外,二硫键也起一定的作用。当某些因素破坏了这些作用力时,蛋白质的空间构象即遭到破坏,引起变性。 2.答: 按Watson-Crick模型,DNA的结构特点有:两条反相平行的多核苷酸链围绕同一中心轴互绕;碱基位于结构的内侧,而亲水的糖磷酸主链位于螺旋的外侧,通过磷酸二酯键相连,形成核酸的骨架;碱基平面与轴垂直,糖环平面则与轴平行。两条链皆为右手螺旋;双螺旋的直径为2nm,碱基堆积距离为0.34nm,两核酸之间的夹角是36°,每对螺旋由10对碱基组成;碱基按A=T,G≡C配对互补,彼此以氢键相连系。维持DNA结构稳定的力量主要是碱基堆积力;双螺旋结构表面有两条螺形凹沟,一大一小。

生物化学名词解释

生物化学:在分子水平研究生命体的化学本质及其生命活动过程中化学变化规律 自由能:自发过程中能用于作功的能量。 两性离子:在同一氨基酸分子中既有氨基正离子又有羧基负离子。 必需氨基酸:机体内不能合成,必需从外界摄取的氨基酸. 等电点:氨基酸氨基和羧基的解离度相等,氨基酸分子所带净电荷为零时溶液的pH值。 蛋白质的一级结构:蛋白质多肽链中氨基酸的排列顺序。 蛋白质的二级结构:多肽链沿着肽链主链规则或周期性折叠。 结构域:蛋白质多肽链在超二级结构基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。 超二级结构:蛋白质分子中相邻的二级结构构象单元组合在一起成的有规则的在空间能辨认的二级结构组合体。 蛋白质的三级结构:在二级结构的基础上进一步以不规则的方式卷曲折叠形成的空间结构。 蛋白质的四级结构:由两条或两条以上的多肽链组成,多肽链之间以次级建相互作用形成的特定空间结构。 蛋白质的变性:在某些理化因素的作用下,维持蛋白质空间结构的次级键被破坏,空间结构发生改变而一级结构不变,使生物学活性丧失。 蛋白质的复性:变性了的蛋白质在一定条件下可以重建其天然构象,恢复生物学活性。 蛋白质的沉淀作用:蛋白质分子表面水膜被破坏,电荷被中和,蛋白质溶解度降低而沉淀。电泳:蛋白质分子在电场中泳动的现象。 沉降系数:一种蛋白质分子在单位离心力场里的沉降速度为恒定值,被称为沉降系数。 核酸的一级结构:四种核苷酸沿多核苷酸链的排列顺序。核酸的变性:高温、酸、碱等破坏核酸的氢键,使有规律的双螺旋变成无规律的“线团”。 核酸的复性:变性DNA经退火重新恢复双螺旋结构。 增色效应:变性核酸紫外吸收值增加。 减色效应:复性核酸紫外吸收值恢复原有水平。 Tm值:核酸热变性的温度,即紫外吸收值增加达最大增加量一半时的温度。

生物化学名词解释

生物化学名解解释 1、肽单元(peptide unit):参与肽键的6个原子Cα1、C、O、N、H、Cα2位于同一平面,Cα1和Cα2在平面上所处的位置为反式构型,此同一平面上的6个原子构成了肽单元,它是蛋白质分子构象的结构单元。Cα是两个肽平面的连接点,两个肽平面可经Cα的单键进行旋转,N—Cα、Cα—C是单键,可自由旋转。 2、结构域(domain):分子量大的蛋白质三级结构常可分割成1个和数个球状或纤维状的区域,折叠得较为紧密,具有独立的生物学功能,大多数结构域含有序列上连续的100—200个氨基酸残基,若用限制性蛋白酶水解,含多个结构域的蛋白质常分成数个结构域,但各结构域的构象基本不变。 3、模体(motif):在许多蛋白质分子中,二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象。一个模序总有其特征性的氨基酸序列,并发挥特殊功能,如锌指结构。 4、蛋白质变性(denaturation):在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质的改变和生物活性的丧失。主要发生二硫键与非共价键的破坏,不涉及一级结构中氨基酸序列的改变,变性的蛋白质易沉淀,沉淀的蛋白质不一定变性。 5、蛋白质的等电点( isoelectric point, pI):当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,蛋白质所带的正负电荷相等,净电荷为零,此时溶液的pH称为蛋白质的等电点。 6、酶(enzyme):酶是一类对其特异底物具有高效催化作用的蛋白质或核酸,通过降低反应的活化能催化反应进行。酶的不同形式有单体酶,寡聚酶,多酶体系和多功能酶,酶的分子组成可分为单纯酶和结合酶。酶不改变反应的平衡,只是通过降低活化能加快反应的速度。(不考) 7、酶的活性中心 (active center of enzymes):酶分子中与酶活性密切相关的基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物。参与酶活性中心的必需基团有结合底物,使底物与酶形成一定构象复合物的结合基团和影响底物中某些化学键稳定性,催化底物发生化学反应并将其转化为产物的催化基团。活性中心外还有维持酶活性中心应有的空间构象的必需基团。 8、酶的变构调节 (allosteric regulation of enzymes):一些代谢物可与某些酶分子活性中心外的某部分可逆地结合,使酶构象改变,从而改变酶的催化活性,此种调节方式称酶的变构调节。被调节的酶称为变构酶或别构酶,使酶发生变构效应的物质,称为变构效应剂,包括变构激活剂和变构抑制剂。 9、酶的共价修饰(covalent modification of enzymes):在其他酶的催化作用下,某些酶蛋白肽链上的一些基团可与某种化学基团发生可逆的共价结合,从而改变酶的活性,此过程称为共价修饰。主要包括:磷酸化—去磷酸化;乙酰化—脱乙酰化;甲基化—去甲基化;腺苷化—脱腺苷化;—SH与—S—S—互变等;磷酸化与脱磷酸是最常见的方式。 10、酶原和酶原激活(zymogen and zymogen activation):有些酶在细胞内合成或初分泌时只是酶的无活性前体,必须在一定的条件下水解开一个或几个特定的肽键,使构象发生改变,表现出酶的活性,此前体物质称为酶原。由无活性的酶原向有活性酶转化的过程称为酶原激活。酶原的激活,实际是酶的活性中心形成或暴露的过程。 11、同工酶(isoenzyme isozyme):催化同一化学反应而酶蛋白的分子结构,理化性质,以及免疫学性质都不同的一组酶。它们彼此在氨基酸序列,底物的亲和性等方面都存在着差异。由同一基因或不同基因编码,同工酶存在于同一种属或同一个体的不同组织或同一细胞的不同亚细胞结构中,它使不同的组织、器官和不同的亚细胞结构具有不同的代谢特征。 12、糖酵解(glycolysis):在机体缺氧条件下,葡萄糖经一系列酶促反应生成丙酮酸进而还原生成乳酸的过程称为糖酵解(糖的无氧氧化)。糖酵解的反应部位在胞浆。主要包括由葡萄糖分解成丙酮酸的糖酵解途径和由丙酮酸转变成乳酸两个阶段,1分子葡萄糖经历4次底物水平磷酸化,净生成2分子ATP。关键酶主要有己糖激酶,6-磷酸果糖激酶-1和丙酮酸激酶。它的意义是机体在缺氧情况下获取能量的有效方式;某些细胞在氧供应正常情况下的重要供能途径。 13、糖异生(gluconeogenesis):是指从非糖化合物(乳酸、甘油、生糖氨基酸等)转变为葡萄糖或糖

生物化学 名词解释问答题整理

名词解释 【肽键】 一个氨基酸的α-羧基与另一氨基酸的α-氨基发生缩合反应脱水成肽时形成的酰胺键。 【等电点(pI)】 蛋白质或两性电解质(如氨基酸)所带净电荷为零时溶液的pH, 此时蛋白质或两性电解质解离成阴/阳离子的趋势和程度相等,呈电中性,在电场中的迁移率为零。符号为pI。 【融解温度(Tm)】又称解链温度, DNA变性是在一个相当窄的温度范围内完成的,在这一范围内,紫外光吸收值到达最大值的50%时的温度称为DNA的融解温度。(最大值是完全变性,最大值的50%则是双螺旋结构失去一半)融解温度依DNA种类而定,核苷酸链越长,GC含量越高则越增高。 【增色效应】 由于DNA变性引起的光吸收增加称为增色效应,也就是变性后,DNA溶液的紫外吸收作用增强的效应。 【必需基团】 酶分子整体构象中对于酶发挥活性所必需的基团。(教材) 酶分子中氨基酸残基侧链的化学基团中,一些与酶活性密切相关的化学基团。 【活性中心】 或称“活性部位”,是指必需基团(上述)在空间结构上彼此靠近,组成具有特定空间结构的,能与底物发生特异性结合并将底物转化为产物的区域。 【米氏常数(Km)】 在酶促反应中,某一给定底物的动力学常数(由反应中每一步反应的速度常数所合成的)。根据米氏方程,其值是当酶促反应速度达到最大反应速度一半时的底物浓度。符号Km 。 【糖异生】 生物体将多种非糖物质(如氨基酸、丙酮酸、甘油)转变成糖(如葡萄糖,糖原)的过程,对维持血糖水平有重要意义。在哺乳动物中,肝与肾是糖异生的主要器官。 【糖酵解】 是指在氧气不足的条件下,葡萄糖或糖原分解为乳酸并产生少量能量的过程(生成少量ATP) 【酮体】

生物化学名词解释全

生物化学名词解释全

————————————————————————————————作者: ————————————————————————————————日期: ?

生物化学名词解释集锦 第一章蛋白质 1.两性离子(dipolarion) 2.必需氨基酸(essentialaminoac id) 3.等电点(isoelectric point,pI) 4.稀有氨基酸(rare amino acid) 5.非蛋白质氨基酸(nonprotein aminoacid) 6.构型(configuration) 7.蛋白质的一级结构(protein primary structure) 8.构象(conformation) 9.蛋白质的二级结构(proteinsecond ary structure) 10.结构域(domain) 11.蛋白质的三级结构(protein tertiary structure) 12.氢键(hydrogen bond) 13.蛋白质的四级结构(protein quaternary structure) 14.离子键(ionic bond) 15.超二级结构(super-secondary structure) 16.疏水键(hydrophobic bond) 17.范德华力( vander Waals force) 18.盐析(salting out) 19.盐溶(salting in) 20.蛋白质的变性(denaturation) 21.蛋白质的复性(renaturation) 22.蛋白质的沉淀作用(precipitation) 23.凝胶电泳(gel electrophoresis) 24.层析(chromatography) 第二章核酸 1.单核苷酸(mononucleotide) 2.磷酸二酯键(phosphodiester bonds) 3.不对称比率(dissymmetry ratio) 4.碱基互补规律(complementary base pairing) 5.反密码子(anticodon) 6.顺反子(cistron) 7.核酸的变性与复性(denaturation、renaturation) 8.退火(annealing) 9.增色效应(hyper chromiceffect) 10.减色效应(hypo chromiceffect)11.噬菌体(phage) 12.发夹结构(hairpin structure) 13.DNA 的熔解温度(meltingtemperatureTm) 14.分子杂交(molecularhybridization) 15.环化核苷酸(cyclic nucleotide) 第三章酶与辅酶 1.米氏常数(Km 值) 2.底物专一性(substrate specificity) 3.辅基(prosthetic group) 4.单体酶(monomeric enzyme) 5.寡聚酶(oligomericenzyme) 6.多酶体系(multienzyme system) 7.激活剂(activator) 8.抑制剂(inhibitor inhibiton) 9.变构酶(allostericenzyme) 10.同工酶(isozyme) 11.诱导酶(induced enzyme) 12.酶原(zymogen) 13.酶的比活力(enzymaticcompare energy) 14.活性中心(active center) 第四章生物氧化与氧化磷酸化 1.生物氧化(biological oxidation) 2. 呼吸链(respiratory chain) 3. 氧化磷酸化(oxidativephosphorylation) 4. 磷氧比P/O(P/O) 5.底物水平磷酸化(substrate level phosphorylation) 6. 能荷(energy charg 第五章糖代谢 1.糖异生(glycogenolysis) 2.Q 酶(Q-enzyme) 3.乳酸循环(lactate cycle)

生物化学名词解释完全版

第一章 1,氨基酸(amino acid):就是含有一个碱性氨基与一个酸性羧基的有机化合物,氨基一般连在α-碳上。 2,必需氨基酸(essential amino acid):指人(或其它脊椎动物)(赖氨酸,苏氨酸等)自己不能合成,需要从食物中获得的氨基酸。 3,非必需氨基酸(nonessential amino acid):指人(或其它脊椎动物)自己能由简单的前体合成 不需要从食物中获得的氨基酸。 4,等电点(pI,isoelectric point):使分子处于兼性分子状态,在电场中不迁移(分子的静电荷为零)的pH值。 5,茚三酮反应(ninhydrin reaction):在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸反应生成黄色)化合物的反应。6,肽键(peptide bond):一个氨基酸的羧基与另一个的氨基的氨基缩合,除去一分子水形成的酰氨键。 7,肽(peptide):两个或两个以上氨基通过肽键共价连接形成的聚合物。 8,蛋白质一级结构(primary structure):指蛋白质中共价连接的氨基酸残基的排列顺序。 9,层析(chromatography):按照在移动相与固定相 (可以就是气体或液体)之间的分配比例将混合成分分开的技术。 10,离子交换层析(ion-exchange column)使用带有固定的带电基团的聚合树脂或凝胶层析柱 11,透析(dialysis):通过小分子经过半透膜扩散到水(或缓冲液)的原理,将小分子与生物大分子分开的一种分离纯化技术。 12,凝胶过滤层析(gel filtration chromatography):也叫做分子排阻层析。一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术。 13,亲合层析(affinity chromatograph):利用共价连接有特异配体的层析介质,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术。 14,高压液相层析(HPLC):使用颗粒极细的介质,在高压下分离蛋白质或其她分子混合物的层析技术。 15,凝胶电泳(gel electrophoresis):以凝胶为介质,在电场作用下分离蛋白质或核酸的分离纯化技术。 16,SDS-聚丙烯酰氨凝胶电泳(SDS-PAGE):在去污剂十二烷基硫酸钠存在下的聚丙烯酰氨凝胶电泳。SDS-PAGE只就是按照分子的大小,而不就是根据分子所带的电荷大小分离的。 17,等电聚胶电泳(IFE):利用一种特殊的缓冲液(两性电解质)在聚丙烯酰氨凝胶制造一个pH梯度,电泳时,每种蛋白质迁移到它的等电点(pI)处,即梯度足的某一pH时,就不再带有净的正或负电荷了。 18,双向电泳(two-dimensional electrophorese):等电聚胶电泳与SDS-PAGE的组合,即先进行等电聚胶电泳(按照pI)分离,然后再进行SDS-PAGE(按照分子大小分离)。经染色得到的电泳图就是二维分布的蛋白质图。 19,Edman降解(Edman degradation):从多肽链游离的N末端测定氨基酸残基的序列的过程。N末端氨基酸残基被苯异硫氰酸酯修饰,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。 20,同源蛋白质(homologous protein):来自不同种类生物的序列与功能类似的蛋白质,例如血红蛋白。 第二章 1,构形(configuration):有机分子中各个原子特有的固定的空间排列。这种排列不经过共价键的断裂与重新形成就是不会改变的。构形的改变往往使分子的光学活性发生变化。 2,构象(conformation):指一个分子中,不改变共价键结构,仅单键周围的原子放置所产生的空间排布。一种构象改变为另一种构象时,不要求共价键的断裂与重新形成。构象改变不会改变分子的光学活性。 3,肽单位(peptide unit):又称为肽基(peptide group),就是肽键主链上的重复结构。就是由参于肽链形成的氮原子,碳原子与它们的4个取代成分:羰基氧原子,酰氨氢原子与两个相邻α-碳原子组成的一个平面单位。 4,蛋白质二级结构(protein在蛋白质分子中的局布区域内氨基酸残基的有规则的排列。常见的有二级结构有α-螺旋与β-折叠。二级结构就是通过骨架上的羰基与酰胺基团之间形成的氢键维持的。5,蛋白质三级结构(protein tertiary structure): 蛋白质分子处于它的天然折叠状态的三维构象。三级结构就是在二级结构的基础上进一步盘绕,折叠形成的。三级结构主要就是靠氨基酸侧链之间的疏水相互作用,氢键,范德华力与盐键维持的。 6,蛋白质四级结构(protein quaternary structure):多亚基蛋白质的三维结构。实际上就是具有三级结构多肽(亚基)以适当方式聚合所呈现的三维结构。 7,α-螺旋(α-heliv):蛋白质中常见的二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都就是右手螺旋结构,螺旋就是靠链内氢键维持的。每个氨基酸残基(第n个)的羰基与多肽链C端方向的第4个残基(第4+n个)的酰胺氮形成氢键。在古典的右手α-螺旋结构中,螺距为0、54nm,每一圈含有3、6个氨基酸残基,每个残基沿着螺旋的长轴上升0、15nm、 8, β-折叠(β-sheet): 蛋白质中常见的二级结构,就是由伸展的多肽链组成的。折叠片的构象就是通过一个肽键的羰基氧与位于同一个肽链的另一个酰氨氢之间形成的氢键维持的。氢键几乎都垂直伸展的肽链,这些肽链可以就是平行排列(由N到C方向)或者就是反平行排列(肽链反向排列)。 9,β-转角(β-turn):也就是多肽链中常见的二级结构,就是连接蛋白质分子中的二级结构(α-螺旋与β-折叠),使肽链走向改变的一种非重复多肽区,一般含有2~16个氨基酸残基。含有5个以上的氨基酸残基的转角又常称为环(loop)。常见的转角含有4个氨基酸残基有两种类型:转角I的特点就是:第一个氨基酸残基羰基氧与第四个残基的酰氨氮之间形成氢键;转角Ⅱ的第三个残基往往就是甘氨酸。这两种转角中的第二个残侉大都就是脯氨酸。 10,超二级结构(super-secondary structure):也称为基元(motif)、在蛋白质中,特别就是球蛋白中,经常可以瞧到由若干相邻的二级结构单元组合在一起,彼此相互作用,形成有规则的,在空间上能辨认的二级结构组合体。 11,结构域(domain):在蛋白质的三级结构内的独立折叠单元。结构

生物化学名词解释

名词解释 1. 氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH 值,用符号pI表示。2.构型:指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布。构型的转变伴随着共价键的断裂和重新形成。 3.构象:指有机分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。一种构象改变为另一种构象时,不涉及共价键的断裂和重新形成。构象改变不会改变分子的光学活性。 4.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。 5.盐析:在蛋白质溶液中加入一定量的高浓度中性盐(如硫酸氨),使蛋白质溶解度降低并沉淀析出的现象称为盐析。 6.蛋白质的复性:指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并恢复生物活性的现象。 7.蛋白质的沉淀作用:在外界因素影响下,蛋白质分子失去水化膜或被中和其所带电荷,导致溶解度降低从而使蛋白质变得不稳定而沉淀的现象称为蛋白质的沉淀作用。 8.凝胶电泳:以凝胶为介质,在电场作用下分离蛋白质或核酸等分子的分离纯化技术。9.层析:按照在移动相(可以是气体或液体)和固定相(可以是液体或固体)之间的分配比例将混合成分分开的技术。 10. 碱基互补规律:在形成双螺旋结构的过程中,由于各种碱基的大小与结构的不同,使得碱基之间的互补配对只能在G.C(或C.G)和A.T(或T.A)之间进行,这种碱基配对的规律就称为碱基配对规律。 11. 反密码子:在tRNA 链上有三个特定的碱基,组成一个密码子,由这些反密码子按碱基配对原则识别mRNA 链上的密码子。反密码子与密码子的方向相反。 12. 顺反子:基因功能的单位;一段染色体,它是一种多肽链的密码;一种结构基因。 13. 核酸的变性、复性:当呈双螺旋结构的DNA 溶液缓慢加热时,其中的氢键便断开,双链DNA 便脱解为单链,这叫做核酸的“溶解”或变性。在适宜的温度下,分散开的两条DNA 链可以完全重新结合成和原来一样的双股螺旋。这个DNA 螺旋的重组过程称为“复性”。14. 退火:当将双股链呈分散状态的DNA 溶液缓慢冷却时,它们可以发生不同程度的重新结合而形成双链螺旋结构,这现象称为“退火”。 15. 增色效应:当DNA 从双螺旋结构变为单链的无规则卷曲状态时,它在260nm 处的吸收

生物化学名词解释

9. 增色效应(hyper chromic effect):当DNA 从双螺旋结构变为单链的无规则卷曲状态时,它在260nm 处的吸收便增加,这叫“增色效应”。 10. 减色效应(hypo chromic effect):DNA 在260nm 处的光密度比在DNA 分子中的各个碱基在260nm 处吸收的光密度的总和小得多(约少35%~40%), 这现象称为“减色效应”。 8. 退火(annealing):当将双股链呈分散状态的DNA 溶液缓慢冷却时,它们可以发生 不同程度的重新结合而形成双链螺旋结构,这现象称为“退火” 7. 核酸的变性、复性(denaturation、renaturation):当呈双螺旋结构的DNA 溶液缓慢加热时,其中的氢键便断开,双链DNA 便脱解为单链,这叫做核酸的“溶解”或变性。在适宜的温度下,分散开的两条DNA 链可以完全重新结合成和原来一样的双股螺旋。这个DNA 螺旋的重组过程称为“复性”。 13. DNA 的熔解温度(T m 值):引起DNA 发生“熔解”的温度变化范围只不过几度,这个温度变化范围的中点称为熔解温度(T m)。 14分子杂交cular hybridization):不同的DNA 片段之间,DNA 片段与RNA 片段之间,如果彼此间的核苷酸排列顺序互补也可以复性,形成新的双螺旋结构。这种按照互补碱基配对而使不完全互补的两条多核苷酸相互结合的过程称为分子杂交。 1DNA双螺旋(DNA double helix)是一种核酸的,在该构象中,两条反向平行的多核苷酸链相互缠绕形成一个右手的双螺旋结构。 2 核小体是由DNA和组蛋白形成的染色质基本结构单位。 2.必需氨基酸:指人体(和其它哺乳动物)自身不能合成,机体又必需,需要从饮食中获得的氨基酸。 3. 氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH 值,用符号pI表示。4.蛋白质的一级结构:指蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。 9.蛋白质的二级结构:指在蛋白质分子中的局部区域内,多肽链沿一定方向盘绕和折叠的方式。 10.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。 11.蛋白质的三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。 13.蛋白质的四级结构:指多亚基蛋白质分子中各个具有三级结构的多肽链以适当方式聚合所呈现的三维结构。 15.超二级结构:指蛋白质分子中相邻的二级结构单位组合在一起所形成的有规则的、在空间上能辨认的二级结构组合体。 18.盐析:在蛋白质溶液中加入一定量的高浓度中性盐(如硫酸氨),使蛋白质溶解度降低并沉淀析出的现象称为盐析。 19.盐溶:在蛋白质溶液中加入少量中性盐使蛋白质溶解度增加的现象。 20.蛋白质的变性作用:蛋白质分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照、热、有机溶剂以及一些变性剂的作用时,次级键遭到破坏导致天然构象的破坏,但其一级结构不发生改变。 21.蛋白质的复性:指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并恢复生物活性的现象。 10 同源蛋白质:不同物种中具有相同或相似功能的蛋白质或具有明显序列同源性的蛋白质。 3.辅基:酶的辅因子或结合蛋白质的非蛋白部分,与酶或蛋白质结合得非常紧密,用透析法不能除去。 4.单体酶:只有一条多肽链的酶称为单体酶,它们不能解离为更小的单位。分子量为

生物化学名词解释完整版

生物化学名词解释完全版 第一章 1,氨基酸(amino acid ):是含有一个碱性氨基和一个酸性羧基的有机化合物,氨基一般连在 a -碳上。 2, 必需氨基酸(esse ntial ami no acid):指人(或其它脊椎动物)(赖氨酸,苏氨酸等)自己不能合成,需 要从食物中获得的氨基酸。 3,非必需氨基酸(non esse ntial ami no acid):指人(或其它脊椎动物)自己能由简单的前体合成不需要从食物中获得的氨基酸。 4,等电点(pI,isoelectric point ):使分子处于兼性分子状态,在电场中不迁移(分子的静电荷为零)的pH 值。 5,茚三酮反应(ninhydrin reaction ):在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸反应生成黄色)化合物的反应。 6,肽键(peptide bond):一个氨基酸的羧基与另一个的氨基的氨基缩合,除去一分子水形成的酰氨键。 7,肽(peptide):两个或两个以上氨基通过肽键共价连接形成的聚合物。8,蛋白质一级结构(primary structure )指蛋白质中共价连接的氨基酸残基的排列顺序。 9,层析(chromatography):按照在移动相和固定相(可以是气体或液体)之间的分配比例将混合成分分 开的技术。 10,离子交换层析(ion-exchange column )使用带有固定的带电基团的聚合树脂或凝胶层析柱 11, 透析(dialysis):通过小分子经过半透膜扩散到水(或缓冲液)的原理,将小分子与生物大分子分开的一种分离纯化技术。 12,凝胶过滤层析(gel filtration chromatography ):也叫做分子排阻层析。一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术。 13,亲合层析(affinity chromatograph):利用共价连接有特异配体的层析介质,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术。 14,高压液相层析(HPLC):使用颗粒极细的介质,在高压下分离蛋白质或其他分子混合物的层析技术。 15,凝胶电泳(gel electrophoresis ):以凝胶为介质,在电场作用下分离蛋白质或核酸的分离纯化技术。 16,SDS-聚丙烯酰氨凝胶电泳(SDS-PAGE):在去污剂十二烷基硫酸钠存在下的聚丙烯酰氨凝胶电泳。SDS-PAGE 只是按照分子的大小,而不是根据分子所带的电荷大小分离的。 17,等电聚胶电泳(IFE):利用一种特殊的缓冲液(两性电解质)在聚丙烯酰氨凝胶制造一个pH梯度,电泳时,每种蛋白质迁移到它的等电点(pl)处,即梯度足的某一pH时,就不再带有净的正或负电荷了。 18,双向电泳(two-dimensional electrophorese):等电聚胶电泳和SDS-PAGE的组合,即先进行等电聚胶 电泳(按照pI)分离,然后再进行SDS-PAGE (按照分子大小分离)。经染色得到的电泳图是二维分布的蛋白质图。 19,Edman 降解(Edman degradation ):从多肽链游离的N 末端测定氨基酸残基的序列的过程。N 末端氨基酸残基被苯异硫氰酸酯修饰,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。 20,同源蛋白质(homologous protein ):来自不同种类生物的序列和功能类似的蛋白质,例如血红蛋白。

名词解释及答案生物化学

1. 氨基酸(ami no acid ):是含有一个碱性氨基(-NH )和一个酸性羧基(-COOH)的有机化合物,氨基一般连在a -碳上。氨基酸是蛋白质的构件分子。 2. 必需氨基酸( essential amino acid ):指人(或其它脊椎动物)自己不能合成,需要从食物中获得的氨基酸。 3. 非必需氨基酸( nonessential amino acid ):指人(或其它脊椎动物)自己能由简单的前体合成,不需要从食物中获得的氨基酸。 4. 等电点( pI, isoelectric point ):使氨基酸处于兼性离子状态,分子的静电荷为零, 在电场中不迁移的pH值。 5. 肽键( peptide bond ) : 一个氨基酸的羧基与另一个的氨基酸的氨基缩合,除去一分子水形成的酰氨键。 6. 肽( peptide ) : 两个或两个以上氨基酸通过肽键共价连接形成的聚合物。 7. 茚三酮反应( ninhydrin reaction ):在加热条件下,a -氨基酸或肽与茚三酮反应生成紫色(与脯氨酸及羟脯氨酸反应生成黄色)化合物的反应。 8. 层析( chromatography ) : 按照在移动相和固定相 (可以是气体或液体)之间的分配比例将混合成分分开的技术。 9. 离子交换层析( ion-exchange column ):使用带有固定的带电基团的聚合树脂或凝胶层析柱。一种用离子交换树脂作支持剂的层析技术。 10. 透析( dialysis ):利用蛋白质分子不能通过半透膜的性质,使蛋白质和其他小分子物质如无机盐、单糖等分开的一种分离纯化技术。 11. 凝胶过滤层析(gel filtration chromatography , GPC:也叫做分子排阻层析/凝胶渗 透层析。一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技 术。 12. 亲合层析( affinity chromatograph ):利用共价连接有特异配体的层析介质,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术。 13. 高压液相层析( HPLC):使用颗粒极细的介质,在高压下分离蛋白质或其他分子混合物的层析技术。 14. 凝胶电泳( gel electrophoresis ):以凝胶为介质,在电场作用下分离蛋白质或核酸的分离纯化技术。 15.SDS-聚丙烯酰胺凝胶电泳(SDS-PAG):在去污剂十二烷基硫酸钠存在下的聚丙烯酰胺凝胶电泳。SDS-PAG唄跟分子的大小有关,跟分子所带的电荷大小、多少无关。 16. 等电聚焦电泳( IEF):利用一种特殊的缓冲液(两性电解质)在聚丙烯酰胺凝胶制造一 个pH梯度,电泳时,每种蛋白质迁移到它的等电点( pI )处,即梯度中为某一pH时,就不再带有净的正或负电荷了。 17. 双向电泳(two-dimensional electrophoresis ):等电聚焦电泳和SDS-PAGE的组合,即在同一块胶上先进行等电聚焦电泳(按照pl )分离,然后再进行SDS-PAGE(按照分子大小分离)。经染色得到的电泳图是二维分布的蛋白质图。 18. Edman 降解( Edman degradation ):从多肽链游离的N 末端测定氨基酸残基的序列的过 程。N末端氨基酸残基被苯异硫氰酸酯(PITC)修饰,然后从多肽链上切下修饰的残基,再经 层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。 19. 同源蛋白质( homologous protein ):在不同生物体内行使相同或相似功能的蛋白质,例如血红蛋白。 20. 构型( configuration ) : 有机分子中各个原子特有的固定的空间排列。这种排列不经过共价键的断

生物化学名词解释

1、active site 活性部位:有些必需基团虽然在一级结构上可能相距很远,但在形成空间结构时彼此靠近,集中在一起,形成具有一定空间结构的区域,并能与底物特异地结合,将底物转化为产物。这一区域,称为酶的活性部位。 2、catalytic antibody 催化性抗体:对某一化学反应的过渡态具有特异催化能力的抗体.,可由过渡态类似物作为免疫原产生. 如:N-甲基中卟啉诱导产生的抗体 3、catalytic triad 催化三角区(三分体):胰凝乳蛋白酶的三个残基(组、丝、天冬氨酸)所形成的具特定构象的催化中心。 4、hemophilia 血友病:某些凝血因子的缺陷或缺失所致的遗传性疾病;导致创伤后长时间流血不止.典型的血友病(A)的特点是由于从凝血酶原转变为凝血酶异常缓慢从而血凝固时间延长.病因是抗血友病因子Ⅷ功能缺陷,此性状是X连锁隐性遗传的. 5、double-reciprocal plot双倒数图:此指Lineweaver Burk图,用1/S(X轴)对1/V(Y轴)作图,此为一直线。 6、regulatory subunit of A TCase (A TCase酶的调控亚基):由不同亚基组成的多亚基酶中的一个单位,具有调节功能而无催化功能. 7、concerted model协同(变构)模型:that all subunits in a molecule switch from the T to the R state in unison. The central tenet of the concerted model is that symmetry is preserved in allosteric transitions. 8、PKA蛋白激酶A:是一种结构最简单、生化特性最清楚的蛋白激酶。由两个催化亚基和两个调节亚基组成,在没有cAMP时,以钝化复合体形式存在。cAMP与调节亚基结合,改变调节亚基构象,使调节亚基和催化亚基解离,释放出催化亚基。活化的蛋白激酶A催化亚基可使细胞内某些蛋白的丝氨酸或苏氨酸残基磷酸化,于是改变这些蛋白的活性,进一步影响到相关基因的表达。 9、pseudosubstrate in PKA假底物: 10、zymogen酶原指酶的非活性前体,常可通过蛋白酶部分水解转化为酶.此术语特别指胰腺酶的无催化活性的酶原(如…),它们在分泌后经切除某一肽段而被激活. 11、π-chymotrypsinπ-胰凝乳蛋白酶: 12、master activation step (by protease) 主要激活步骤 13、pancreatic trypsin inhibitor胰腺(分泌的)胰蛋白酶抑制剂 14、γ-carboxyglutamateγ-羧基谷氨酸一种非编码氨基酸,它的多个残基存在于许多钙结合蛋白(如凝血蛋白酶原) 中.它是蛋白质生物合成后谷氨酸残基经依赖VK的羧化作用形成的. 15、S erpins: serine protease inhibitor丝氨酸蛋白酶抑制剂(抑制蛋白) ?Antitrypsin and antithrombin are serpins, a family of serine protease inhibitors. 16、a carbonium ion (in lysozyme)碳正离子 17、a cyclic phosphate (in ribonuclease A)环磷酸(中间物) 18、zinc-containing proteolytic enzyme 含锌蛋白水解酶 19、HIV-1 protease HIV-1蛋白酶一种天冬氨酸蛋白酶,是两个亚基的同二聚体.它作为蛋白水解酶的功能对HIV(病毒)的生命周期是必须的.它的这一功能作为设计抗AIDS药物的目标。 20、ribozyme 核酶具催化活性的RNA分子.如RNase P和L19(兼具核糖核酸酶又具RNA 聚合酶的功能).它对生命起源的研究具有特殊意义. 21、feedback inhibition (in catalytic activity of enzyme)反馈抑制一个酶作为代谢途经中的组分,它的活性受到它以后步骤的产物的累积性抑制.如… 22、calmodulin钙调蛋白一种热稳定的依赖于钙的酸性小型调节蛋白,每个分子与四个钙离子结合因而能刺激许多真核酶(或酶系统).如:许多依赖钙的蛋白激酶

相关文档
最新文档