管道焊接接头超声波检测

管道焊接接头超声波检测
管道焊接接头超声波检测

作业指导书控制页:

*注:项目主管工程师负责每项目上交一本已执行完成的、并经过完善有完整签名的作业指导书。

重要工序过程监控表

作业指导书(技术措施)修改意见征集表

回收签名(日期):

目录

1 编制依据及引用标准 (1)

2 工程概况及施工范围: (1)

2.1工程概况 (1)

2.2施工范围 (1)

3 施工作业人员配备与人员资格 (1)

4 施工所需机械装备及工器具、安全防护用品配备(注:按600MW机组配备) (1)

4.1仪器 (1)

4.2探头 (2)

4.3仪器和探头组合性能 (2)

4.4试块 (2)

4.5其他工器具 (3)

5 施工条件及施工前准备工作 (3)

6 作业程序、方法及要求 (4)

6.1作业程序流程图 (4)

6.2作业方法及要求 (5)

6.3专项技术措施 (7)

7 质量控制及质量验收 (9)

7.1质量控制标准 (9)

7.2中间控制见证点设置 (9)

7.3中间工序交接点设置 (9)

7.4工艺纪律及质量保证措施 (9)

8 安全、文明施工及环境管理要求和措施 (10)

表8-1职业健康安全风险控制计划表(RCP) (11)

表8-2环境因素及控制措施 (12)

1 编制依据及引用标准

1.1《工程建设标准强制性条文》(电力工程部分)

1.2 DL/T869-2004电力建设施工及验收技术规范(火力发电厂焊接篇)

1.3 DL/T820-2002管道焊接接头超声波检验技术规程。

1.4 JB/T9214-1999《A型脉冲反射式超声探伤系统工作性能测试方法》

1.5 JB/T10062-1999《超声波用探头性能测试方法》

1.6 JB/T10061-1999《A型脉冲反射式超声波仪通用技术条件》

1.7《电力建设安全工作规程》

1.8公司《质量、安全健康、环境管理手册》

1.9公司焊检中心管理制度

2 工程概况及施工范围:

2.1工程概况

(略)

2.2施工范围

本作业指导书适用于外径ф≥32mm,壁厚在4~160mm,单面施焊、双面成型的碳钢及合金钢熔化焊对接接头的超声波检测。也适用于外径ф≥32mm、≤159mm,壁厚在4~8mm的奥氏体不锈钢管对接焊接接头的超声波检测。

除非设计图纸或甲方合同另有规定,超声波检测比例应按照DL/T869-2004《火力发电厂焊接技术规程》执行。

3 施工作业人员配备与人员资格

4 施工所需机械装备及工器具、安全防护用品配备(注:按600MW机组配备)4.1仪器

4.1.1仪器选用见下表:

4.1.2仪器性能要求

4.1.2.1所用仪器应具有产品质量合格证。

4.1.2.2工作频率为0.5MHz~10MHz

4.1.2.3仪器至少在荧光屏满刻度的80%范围内呈线性显示。

4.1.2.4应具有80dB以上的连续可调衰减器,步进级每档不大于2dB,其精度为任意12dB的误差在±1dB。水平线性误差不大于1%,垂直线性误差不大于5%。

4.2探头

4.2.1探头选用

斜探头的选用见下表:

直探头选用2.5MHz(φ20、φ25、φ30)或5MHz(φ10、φ20)。

4.2.2探头的性能要求

4.2.2.1斜探头主声束在垂直方向不应有明显的双峰或多峰;

4.2.2.2斜探头主声束的偏离不应大于±2°。

4.3仪器和探头组合性能

4.3.1仪器和探头的组合灵敏度:在达到所检工件最大声程时,其灵敏度余量应≥10dB;

4.3.2直探头的远场分辨力应不小于30dB,斜探头的远场分辨力应不小于6dB。

4.4试块

4.4.1试块的选用

标准试块CSK-ⅠB,对比试块RB-3。

4.4.2试块性能要求

4.4.2.1试块应采用与被检工件相同或近似声学性能的材料制成,该材料用直探头检测时,不得有大于Φ2mm平底孔当量直径的缺陷。

4.4.2.2标准试块应经计量部门检定合格。

4.5其他工器具

5 施工条件及施工前准备工作

5.1完善现场安全设施,安全通道、脚手架的搭设。

5.2需热处理的被检物必须在热处理后进行探伤,尽量避免在强磁场区工作。

5.3对有影响检验结果评定的表面形状突变应进行适当的修磨,并做圆滑过渡。

5.4仪器和探头性能测试

5.4.1水平线性的测试

5.4.1.1调节仪器旋钮使时基线清晰明亮,并与水平刻度重合;

5.4.1.2将直探头置于CSK-ⅠA试块上,对准25mm厚的大平底面;

5.4.1.3调[微调]、[水平]或[脉冲移位]等旋钮,使示波屏上出现5次底波,且使B1前沿对准2.0,B5对准10.0,记录B2、B3、B4与水平刻度4.0、

6.0、8.0的偏

差值a

2、a

3

、a

4

5.4.1.4计算水平线性误差

δ=│a

max

│/0.8b×100%

5.4.2垂直线性的测试

5.4.2.1[抑制]至0,[衰减器]保留30dB余量;

5.4.2.2将直探头置于CSK-ⅠA试块上,对准25mm厚的大平底面,并用压块恒定压力;

5.4.2.3调[增益]使底波达荧光屏满刻度100%,但不饱和,作为0 dB;

5.4.2.4固定[增益],调[衰减器],每次衰减2dB,并记下相应回波高度H

i

,直至消失;

实测相对波高%=(衰减△

i dB后的波高H

i

/衰减0dB后的波高H

)×100%

理想相对波高(H

i /H

)%=10(△i/20)×100%

5.4.2.5计算垂直线性误差

D=(│d

1│+│d

2

│)%

d 1、d

2

分别为实测值与理想值的最大正、负偏差

5.4.3灵敏度余量的测试

5.4.3.1直探头灵敏度余量测试

1、抑制]关、[增益]最大、[发射强度]至强;

2、连接探头,调节[衰减器]使仪器噪声电平为满刻度的10%,记录这时[衰减器]的读数N

1

3、探头置于灵敏度余量试块上(200/φ2平底孔试块),使回波达到50%,记下

此时[衰减器]读数N

2

4、灵敏度余量为

N= N

2 - N

1

dB

5.4.3.2斜探头灵敏度余量测试

1、抑制]关、[增益]最大、[发射强度]至强;

2、连接探头,调节[衰减器]使仪器噪声电平为满刻度的10%,记录这时[衰减器]的读数N

1

3、探头置于CSKⅠB试块上,使R100圆弧面的第一次反射波最高达到50%,记下

此时[衰减器]读数N

2

4、灵敏度余量为: N= N

2 - N

1

dB

6 作业程序、方法及要求

6.1作业程序流程图

6.2作业方法及要求

6.2.1受理委托单

6.2.1.1检测人员接到委托单后,应对委托单进行确认,确认的内容包括:被检测对象规格、材质、热处理状况、检验项目、比例或数量,同时还应对委托单填写的规范性、内容齐全性进行确认。

6.2.1.2委托单由UTⅡ级及以上检验员签收。签收后的委托单应妥善保管。

6.2.2前期准备工作

6.2.2.1根据检测对象,按本作业指导书4.2条规定选择探头和进行性能测试,

6.2.2.2根据试件的表面状况耦合剂的选用,如浆糊或机油。

6.2.3试件表面的打磨

所有影响超声检测的锈蚀、污物等都应予以清除,必要时可用带角向磨光机打磨,直至露出金属光泽。打磨宽度为探头移动范围,大于1.25P,P=2Ttgβ。

6.2.4仪器调校

6.2.4.1扫描比例调节

扫描比例调节依据管件厚度和选用的探头的角度来确定,一般采用深度调节,当板厚较薄时,可采用水平和声程调节。

最大检测范围应调至时基线满刻度60%以上。

6.2.4.2距离波幅曲线

距离波幅曲线一般应绘制在荧光屏刻度板上,其绘制方法见DL/T820-2002附录D。

按B级检验,三线的灵敏度分别是:

判废线φ3×40-4dB

定量线φ3×40-10dB

评定线φ3×40-16dB

6.2.5母材的检验

6.2.5.1焊缝两侧的母材,检验前应测量管壁厚度,至少每隔90°测量一点,并作好记录。

6.2.5.2斜探头扫查声束通过的母材区域应用直探头进行检查,以便确定是否存在分层性或其他种类的缺陷。

6.2.6探伤

6.2.6.1探伤灵敏度为ф3x40-16dB,补偿4 dB。可提高6 dB作为粗扫灵敏度。

6.2.6.2扫查时,先全面粗扫一遍,查看主要危险缺陷。然后再仔细扫查,确定每个缺陷的性质、位置、尺寸,并做好记录。扫查时,探伤速度应小于150mm/秒,探头的每次扫查覆盖率应大于探头直径的10%。

6.2.6.3扫查方式:一般采用探头沿焊接接头作矩形移动的基本扫查方式。扫查时,探头每次移动的距离s不得超过探头晶片的宽度。在保持探头移动方向与焊缝中心线垂直的同时,还可采用前后、左右、转角等扫查方式,确定缺陷的位置、方向、形状。

6.2.7缺陷定量检测

6.2.

7.1灵敏度应调到定量线灵敏度。

6.2.

7.2对所有反射波幅超过定量线的缺陷,均应确定其位置、最大反射波幅和缺陷当量。

6.2.8缺陷定量

应根据缺陷最大反射波幅确定缺陷指示长度△L,采用以下测定方法:

6.2.8.1当缺陷反射波只有一个高点,且位于Ⅱ区时,应以6 dB法测其指示长度。6.2.8.2当缺陷反射波幅值起伏变化,有多个高点,且位于Ⅱ区时,应以端点6dB法测其指示长度。

6.2.8.3当缺陷反射波峰位于Ⅰ区,如认为有必要记录时,将探头左右移动,使波幅降到评定线,以此测定缺陷指示长度。

6.3专项技术措施

6.3.1中小径薄壁管焊接接头的检验

对于外径φ32mm~φ159mm、壁厚4mm~14mm的应采用专门的检测工艺。

6.3.1.1仪器

CTS-22等模拟式超声波探伤仪

6.3.1.2试块:DL-1型专用试块

6.3.1.3探头

选择短前沿、大K值、小晶片、高频率的探头,且探头应进行修磨,确保与检测面紧密接触。具体选择和其性能要求应符合DL/T820-2002第6.2.4条规定。

6.3.1.4耦合剂:应选择浆糊或甘油。

6.3.1.5 DAC曲线的绘制

当管子厚度小于等于6mm时,DAC测绘如图

将h=5mm的φ1mm通孔调节到垂直刻度的80%,画一条直线用于直射波检验,然后再降4dB再画一条直线用于一次反射波检验。

当管子厚度大于6mm时,DAC测绘按大径管的进行。

6.3.1.6扫查方式

探头只做前后、左右移动。

6.3.1.7扫查灵敏度为DAC曲线增益10dB。

6.3.1.8根据DL/T820-2002附录F对缺陷进行判定。

6.3.2奥氏体中小径薄壁管焊接接头的检验

由于奥氏体不锈钢焊缝凝固时未发生相变,室温下仍以铸态柱状晶粒存在,晶粒粗大、组织不匀,因此要采用专门的检测工艺。

本部分适用于外径φ32mm~φ159mm、壁厚4mm~8mm的奥氏体中小径薄壁管焊接接头的检验。

6.3.2.1仪器

CTS-22等模拟式超声波探伤仪

6.3.2.2试块

试块选用规格相同或声学性能相近的管子制作,在管子内外壁表面加工短槽。具体要求应符合DL/T820-2002第7.1条规定。

6.3.2.3探头

选择短前沿、大K值、小晶片、较高频率的探头,且探头应进行修磨,确保与检测面紧密接触。具体选择和其性能要求应符合DL/T820-2002第7.2.4条规定。

6.3.2.4耦合剂

应选择浆糊或甘油。

6.3.2.5 DAC曲线的绘制

将短槽直射波调至垂直刻度的80%,在此状态下找出一次反射波的最大回波,画两条直线即可。

6.3.2.6扫查方式

探头只做前后、左右移动。

6.3.2.7扫查灵敏度为DAC曲线。

6.3.2.8 根据DL/T820-2002附录F对缺陷进行判定。

7 质量控制及质量验收

7.1质量控制标准

按DL/T820-2002第 5.5.3条规定对缺陷进行评定,具体的验收级别应遵循DL/T869-2004的规定。

7.2中间控制见证点设置

为确保检测质量,检测完后应对仪器和探头的系统进行复核。

7.2.1每次检测前均应在对比试块上对扫描线、灵敏度进行校验。遇到有下述情况时应随时对其进行重新核查:

7.2.1.1校准后的探头、耦合剂和仪器调节旋钮发生改变时;

7.2.1.2开路电压波动或者检测者怀疑灵敏度有变化时;

7.2.1.3连续工作4小时以上时;

7.2.1.4工作结束时。

7.2.2时基调节校验时,如发现检验点反射波在扫描线上偏移超过原校验点刻度读数的10%或满刻度的5%(两者取较小值),则扫描比例应重新调整,并对上一次复核以来所有的检测部位进行复核。

7.2.3灵敏度校验时,如反射波幅下降2dB,则仪器灵敏度应重新调整,并对上一次复核以来所有的检测部位进行复核。如反射波幅上升2dB,则应对所有的记录信号进行重新评定。

7.3中间工序交接点设置

7.3.1受理委托

7.3.2需热处理的部位必须在热处理后进行探伤

7.3.3签发检测报告

7.4工艺纪律及质量保证措施

7.4.1严格执行现行的标准、规程、规范。

7.4.2坚持持证上岗制度。

7.4.3检验部位必须打磨干净,打磨宽度符合要求。

7.4.4仪器和探头组合性能符合规定要求,检验前进行校验,检验后进行复核。

7.4.5对有疑问部位应用射线检测方法进行探伤复核。

7.4.6缺陷位置标示齐全,正确。

7.4.7无法进行单面双侧扫查时,应采用两种及以上折射角的探头在焊缝一侧进行探测。

7.4.8探侧焊缝根部缺陷时,不宜使用折射角为60°左右的探头。

7.4.9按统一的表格填写原始记录和签发试验报告,要求记录数据完善、字迹工整、术语规范。

7.4.10不合格的焊接接头应及时予以返修,返修部位及返修时受影响的区域,均应按原条件进行复检和评定。

8 安全、文明施工及环境管理要求和措施

8.1进入施工现场必须遵守现场安全规定。

8.2现场施工不抽烟、不嚼槟榔。

8.3超声波探伤完后及时清理受检部位耦合剂及破布,做到工完料尽场地清。

8.4爱护现场的已装设备和金属外护,严禁乱踩乱踏。

表8-1职业健康安全风险控制计划表(RCP)

职业健康安全风险控制计划表(RCP)

施工单位:施工班组:金属试验室作业项目:管道焊接接头超声波检测

注:控制方法:W:见证; H:停工待检; S:连续监护; A:提醒; R:记录确认。

控制时机:P:作业开始前:D;每天至少一次:Z每周一次(4Z每月一次,12Z:每季度一次):T:活动连续过程或中断后重新开始作业

表8-2环境因素及控制措施

环境因素及其控制措施一览表

施工单位:施工班组:金属试验室作业项目:管道焊接接头超声波检测

注:重大危险/危害因素要确定目标或指标

(注:素材和资料部分来自网络,供参考。请预览后才下载,期待你的好评与关注!)

超声导波检测技术的研究进展_周正干

综 述 NDT 无损检测 2006年第28卷第2期 超声导波检测技术的研究进展 周正干,冯海伟 (北京航空航天大学机械工程及自动化学院,北京 100083) 摘 要:综述近年来超声导波检测研究的最新进展。介绍导波在不同材料和结构中的频散特性及与之相关的理论成果。从导波的结构出发,分析了导波在介质中能量与位移的分布。论述了导波检测技术领域中数值分析方法和信号处理方面的一些新技术。 关键词:超声检测;导波;频散特性;有限元;边界元;信号处理 中图分类号:T G 115.28 文献标识码:A 文章编号:1000 6656(2006)02 0057 07Progress in Research of Ultrasonic Guided Wave Testing Technique ZHOU Zheng gan,FENG Hai wei (School of M echanical Engineering and Automation,Beijing University of Aeronautics and Astr onautics,Beijing 100083,China) Abstract:T he recent advances in ult rasonic g uided w ave testing technique are summar ized.Firstly,the disper se char acter istics and the r elated t heo retical r esults of the g uided wav es in differ ent mater ials and distinct structur es ar e intro duced.T hen,based o n the structure o f the g uided waves,the distr ibution o f the energ y and displacement o f guided w aves is ana lyzed.L ast ly ,some new techniques o f numer ical analy sis and signal pro cessing fo r g uided wav e no ndest ructive testing are descr ibed. Keywords:U ltr aso nic t esting ;G uided wav e;Disperse characterist ic;F inite element;Boundary element;Signal pr ocessing 相对于传统的超声波检测技术,超声导波具有传播距离远、速度快的特点,因此,在大型构件(如在役管道)和复合材料板壳的无损检测中有良好的应用前景。但目前,导波的一些机理和特性仍然不很清楚,导波的理论研究成为近年来无损检测界的热点。随着理论研究的深入,产生了很多有关导波的 新技术,促使其应用于更广泛的领域。 1 导波的分类 导波是由于声波在介质中的不连续交界面间产生多次往复反射,并进一步产生复杂的干涉和几何弥散而形成的。主要分为圆柱体中的导波以及板中的SH 波、SV 波、兰姆波(Lam b)和漏兰姆波[1]等。 根据Silk 和Bainto n 的理论[2] ,圆柱体中的导波分为 轴对称纵向模式L(0,m)(m =1,2,3, 收稿日期:2005 01 13 基金项目:国家自然科学基金资助项目(50475006) )。 轴对称扭转模式T (0,m )(m =1,2,3, )。 非轴对称弯曲模式F(n,m )(n,m =1,2,3, )。各模式中整数m 是计数变量,反映该模式在管壁厚方向上的振动形态;整数n 反映该模式绕管壁螺旋式传播形态。其中,L(0,m )和T (0,m )模式是F(n,m )模式中n =0的特例。 虽然上述定义已被广泛接受,但是针对某些具体问题,研究人员也提出了不同的导波分类方法,以利于分析在具体问题中表现出来相似特征的导波模式。如Vo gt T 等[3] 在研究部分埋地圆柱体结构中的导波散射问题时提出了单一(v ,n)模式,其中v 1对应原弯曲模式;v =0对应原纵波和扭转模式。两种模式用计数变量n 区别。两种定义方式的模式,(0,1)对应L(0,1),(0,2)对应T(0,1),(0,3)对应L(0,2),(0,4)对应T (0,2)等。 2 频散特性与频散方程 频散是导波的主要特性之一,即导波的相速度 57

管道对接焊接接头超声波探伤漏检

95管道对接焊接接头超声波探伤漏检 朱春芳 (贵州电力建设第二工程公司金属焊接检验中心,贵州贵阳 550002) 摘要:火电站安装过程中,超声波探伤常应用于壁厚大于20mm对接焊接接头的无损检测,在保 证探伤系统灵敏度的前提下,由于探头选择的不恰当,管道外表面和内表面不能使声束按预计路径 传播,造成焊接缺陷漏检,给设备安全运行带平隐患,希望能引起重视。 关键词:超声波探伤;焊接缺陷;漏检;检测面 超声波探伤对面状缺陷敏感,对焊接接头中的裂纹、未焊透和未熔合等缺陷的检出率高,探测距离大,超声波探伤仪体积小、重量轻、检测速度快,检测中只消耗耦合剂和磨损探头,检测费用低,所以在火电厂安装过程中,大于20mm 的管道对接焊接接头都用超声波探伤。中厚壁压力管道焊接采用氩弧焊打底,电焊填充盖面的焊接方法,对接焊接接头不允许存在裂纹、未焊透和未熔合等面状缺。在保证探伤系统灵敏度满足规定要求的前提下,由于检测面等客观因素和探伤人员判断的主观因素影响,造成焊接缺陷漏检,给设备安全运行带来隐患。 1 探头的影响 1.1 K值选择 1.1.1 探头K值的选择应从以下三个方面考虑(1)使声束能扫查到整个焊接接头截面;(2)使声束中心线尽量与主要危险性缺陷垂直; (3)保证有足够的探伤灵敏度。 用一、二次波单面双侧探测焊接接头截面时,d1=(a+l0)/T,d2=b/K,其中一次波只能扫查到d1以下的部分(受余高限制),二次波只能扫查到d2以上的部分(受根部成形限制)。为保证能扫查整个焊接接头截面,必须满足d1+d2≤T,从而得到:式①K≥(a+b+l0)/T,式中a—上焊接接头宽度的一半;b—下焊接接头宽度的一半;l0—探头的前沿距离;T—管壁厚度;K—探头的K值。 采用单面焊双面成型焊接工艺时,b值很小,可以忽略不计,则K≥(a+l0)/T。从式①中可看出,随着管壁厚度T增大,探头K值减小,也就是说如果管壁越厚,一、二次波探伤,用较小K 值的探头就能保证扫查到整个焊接接头截面,管壁越薄需要使用的探头K值越大。 当选择的探头K<(a+l0)/T时,用一、二次波单面双侧扫查焊接接头截面,从图2中可看出一次波扫查不到焊接接头截面,两侧二次声束都扫查不到E区域,造成该区域漏检。 K值发生变化,探头使用过程中,有机玻璃耦合面被磨损,由于探头前后受力不均,前后磨损程度不一样,引起K值发生变化,如探头前面磨损严重,K值变小,如果K值小于(a+l0)/T,则会造成如图2所示的E区域漏检。如探头后面磨损较大,则K值变大。无论K值变大还是变小都会因为K值变化而引起缺陷定位不准,这会影响对缺陷的分析和判定。 1.2 探头晶片尺寸 探头晶片尺寸的大小会影响近场区的长度和声能传播远近,但会不会影响对接焊接接头超声波探伤呢?对接焊接接头一般用横波超声波探伤,设有机玻璃中入射点至晶片的距离为12mm,钢中声速为3230ms,由公式N’=Fscosβ/πλs2cosα-L1tgα/tgβ,计算出不同探头在钢中的近场长度,见表1。 2008年第12期2008年12月 化学工程与装备 Chemical Engineering & Equipment

焊缝无损检测要求

焊缝等级分类及无损检测要求 焊缝应根据结构的重要性、荷载特性、焊缝形式、工作环境以及应力状态等情况,按下述原则分别选用不同的质量等级, 1. 在需要进行疲劳计算的构件中,凡对接焊缝均应焊透,其质量等级为 1) 作用力垂直于焊缝长度方向的横向对接焊缝或T形对接与角接组合焊缝,受拉时应为一级,受压时应为二级; 2)作用力平行于焊缝长度方向的纵向对接焊缝应为二级。 2 .不需要计算疲劳的构件中,凡要求与母材等强的对接焊缝应予焊透,其质量等级当受拉时应不低于二级,受压时宜为二级 3 .重级工作制和起重量Q≥50t吊车梁的腹板与L冀缘之间以及吊车析架上弦杆与节点板之间的T形接头焊缝均要求焊透.焊缝形式一般为对接与角接的组合焊缝,其质量等级不应低于二级 4 .不要求焊透的’I'形接头采用的角焊缝或部分焊透的对接与角接组合焊缝,以及搭接连接采用的角焊缝,其质量等级为: 1)对直接承受动力荷载且需要验算疲劳的结构和吊车起重量等于或大于50t的中级工作制吊车梁,焊缝的外观质量标准应符合二级; 2) 对其他结构,焊缝的外观质量标准可为二级。 外观检查一般用目测,裂纹的检查应辅以5 倍放大镜并在合适的光照条件下进行,必要时可采用磁粉探伤或渗透探伤,尺寸的测量应用量具、卡规。 焊缝外观质量应符合下列规定: 1 一级焊缝不得存在未焊满、根部收缩、咬边和接头不良等缺陷,一级焊缝和二级焊缝不得存在表面气孔、夹渣、裂纹和电弧擦伤等缺陷; 2 二级焊缝的外观质量除应符合本条第一款的要求外,尚应满足下表的有关规定; 3 三级焊缝的外观质量应符合下表有关规定

设计要求全焊透的焊缝,其内部缺陷的检验应符合下列要求: 1 一级焊缝应进行100%的检验,其合格等级应为现行国家标准《钢焊缝手工超声波探伤方法及质量分级法》(GB 11345)B 级检验的Ⅱ级及Ⅱ级以上; 2 二级焊缝应进行抽检,抽检比例应不小于20%,其合格等级应为现行国家标准《钢焊缝手工超声波探伤方法及质量分级法》(GB 11345)B级检验的Ⅲ级及Ⅲ级以上; 3 全焊透的三级焊缝可不进行无损检测。 4 焊接球节点网架焊缝的超声波探伤方法及缺陷分级应符合国家现行标准JG/T203-2007《钢结构超声波探伤及质量分级法》的规定。 5 螺栓球节点网架焊缝的超声波探伤方法及缺陷分级应符合国家现行标准JG/T203-2007《钢结构超声波探伤及质量分级法》的规定。 6 箱形构件隔板电渣焊焊缝无损检测结果除应符合GB50205-2001标准第7.3.3 条的有关规定外,还应按附录C 进行焊缝熔透宽度、焊缝偏移检测。 7 圆管T、K、Y 节点焊缝的超声波探伤方法及缺陷分级应符合GB50205-2001标准附录D的规定。 8 设计文件指定进行射线探伤或超声波探伤不能对缺陷性质作出判断时,可采用射线探伤进行检测、验证。 9 射线探伤应符合现行国家标准《钢熔化焊对接接头射线照相和质量分级》(GB 3323)的规定,射线照相的质量等级应符合AB 级的要求。一级焊缝评定合格等级应为《钢熔化焊对接接头射线照相和质量分级》(GB 3323)的Ⅱ级及Ⅱ级以上,二级焊缝评定合格等级应为《钢熔化焊对接接头射线照相和质量分级》(GB 3323)的Ⅲ级及Ⅲ级以上。 10 以下情况之一应进行表面检测: 1)外观检查发现裂纹时,应对该批中同类焊缝进行100%的表面检测; 2)外观检查怀疑有裂纹时,应对怀疑的部位进行表面探伤; 3)设计图纸规定进行表面探伤时; 4)检查员认为有必要时。 铁磁性材料应采用磁粉探伤进行表面缺陷检测。确因结构原因或材料原因不能使用磁粉探伤时,方可采用渗透探伤。磁粉探伤应符合国家现行标准《焊缝磁粉检验方法和缺陷磁痕的分级》(JB/T 6061)的规定,渗透探伤应符合国家现行标准《焊缝渗透检验方法和缺陷迹痕的分级》(JB/T 6062)的规定。磁粉探伤和渗透探伤的合格标准应符合外观检验的有关规定。 设计要求全焊透的一、二级焊缝应采用超声波探伤进行内部缺陷的检验,超声波探伤不能对缺陷作出判断时,应采用射线探伤,其内部缺陷分级及探伤方法应符合现行国家标准《钢焊缝手工超声波探伤方法和探伤结果分级》GB11345或《钢熔化焊对接接头射结照相和质量分级》GB3323的规定。 焊接球节点网架焊缝、螺栓球节点网架焊缝及圆管T、K、Y形点相贯线焊缝,其内部缺陷分级及探伤方法应分别符合国家现行标准JG/T203-2007《钢结构超声波探伤及质量分级法》、《建筑钢结构焊接技术规程》JGJ81的规定。一级、二级焊缝的质量等级及缺陷分级应符合下表的规定。

大型薄板中超声导波的产生与鉴别

综 述 大型薄板中超声导波的产生与鉴别Ξ 冯占英1,2 周正干2 高翌飞2 (1.军事交通学院装运机械系,天津 300161;2.北京航空航天大学机械工程及自动化学院,北京 100083) 摘 要:介绍了目前大型构件超声检测的发展现状;讲述了导波特性的频散特性和模式;说明了导波在大型铝板中的激励方法;分析了导波的表现形式及其与普通横波的区别;阐明了导波模式的鉴别方法。 关键词:导波;频散;模式;相速度;群速度 中图分类号:T G115.28 文献标识码:A 文章编号:167124423(2007)05201204 常规的超声检测方法是用超声探头在被测试件表面进行逐点扫描。当被检工件较大时,一般使用C 扫描方法对工件进行结果显示。这种方法费时且效率较低。随着大型构件在工业中越来越广泛的应用,迫切需要一种高效便捷的检测方法。于是,超声导波方法应运而生。由于导波检测快速方便的应用特点,目前已成为超声检测领域研究的热点。国外如英国帝国理工大学[1],美国宾西法尼亚大学[2]等,国内如北京工业大学[3],同济大学[4]等,研究领域主要集中在大型板壳、管道、铁轨等,其中部分产品已投入实际使用。但是在众多的文献资料中,几乎没有文献论述导波波形和模式的鉴别,这就给不少研究人员带来很大的不便,本文将着重对大型薄板中导波的产生和鉴别进行详细论述。 1 导波的特性 普通的体波是指在无限介质中传播的波,同体波不同,导波是指由于介质边界的存在而产生的波,如表面波、L am b波和界面波等。正是因为边界的存在,波的传播以反射与折射的方式与边界发生作用,且发生横波和纵波间的模态转换。于是,导波就呈现出了普通超声波所不具有的一些特点。最主要的特征就是导波的频散现象和多模式。 1.1 频散现象 对于普通的纵波、横波,它们在介质中传播时,传播过程中其振动相位不会随频率变化,因此它们的群速度和相速度相同。导波则不同,导波在介质中传播时,传播速度随频率而变化。由于一般超声脉冲都是由许多不同频率的连续波叠加而成的,即有多次谐波成分,所以导波中各成分相应的传播速度不同,介质中的质点振动是各谐波作用下的振动合成。对于板中的导波(兰姆波)而言,它的相速度是相同频率波前的传播速度,是板厚与频率乘积的函数,而它的群速度是不同频率所组成的波包的传播速度[1,5]。铝板的频散曲线如图1所示 。 图1 铝板中兰姆波的频散曲线 第31卷第5期2007年10月 无损探伤 N D T V o l.31N o.5 O ctober.2007 ()

超声导波检测技术的发展与应用

2008大庆石化情报课题 超声导波检测技术的发展与应用 王学增侯贵富刘华王辉 李媛媛李健奇 大庆石化工程检测技术公司 2008年12月8日

超声导波检测技术的发展与应用 相对于传统的超声波检测技术,超声导波具有传播距离远、速度快的特点,因此在大型构件(如在役管道)和复合材料板壳的无损检测中有良好的应用前景。 一、超声导波技术的原理 1.1超声导波的产生 机械振动在弹性介质中的传播称为弹性波(声波)。将弹性介质定义为波导,在波导中传播的超声波称为超声导波。超声波的本质是机械振动,在扰动源的激发下产生,并通过介质传播,因而它既携带扰动源的信息,同时又包含介质本身的特征。 导波是由于声波在介质中的不连续交界面间产生多次往复反射,并进一步产生复杂的干涉和几何弥散而形成的。 导致超声波弥散的原因有物理弥散和几何弥散。物理弥散是由于介质的特性而引起的,而几何弥散是由于介质的几何效应引起。超声导波技术则是利用传播介质几何上某些特征尺寸而导致的几何工件往往有很多声学性质不连续的交界面存在。当介质中有一个以上的交界面存在时,超声波就会在这些界面间产生多次往复反射,并进一步产生复杂的干涉作用,由于受到这些界面几何尺寸的影响,超声波的传播速度将依赖于波的频率,从而导致波的几何弥散。由于超声波在交界面上的复杂行为,如果工件的交界面复杂无规则,则导波信号很难识别,所以导波技术一般用于特殊的规则的工件(板、管、棒等)检测。无缝管中的超声导波技术则是利用管子的几何效应,在管子中

激发导波。导波可沿轴向传播数米至数十米,因此利用管壁中沿管子轴向传播的导波可对管子进行长距离快速无损检测。 1.2 导波的频散特性和谐振模式 1.2.1导波的频散特性 当把被测物件视为无限均匀弹性介质时,各种类型的反射波、透射波以及界面等以恒定的速度传播,传播速度只与传播介质本身材质有关。而当超声波倾斜入射到各向同性的管子边界上,波源处的机械振动在管子中传播时,由于管子自由表面的反射,波运动变为轴向运动和径向运动的合成,使得超声波被拘束在管状的边界内而形成导波。 频散是导波的特征之一,即超声波的相速度随频率不同而有所变化。频散特性是导波应用于复合材料无损检测的主要依据。由于导波脉冲由多个不同频率的谐波成分叠加而成,介质质点振动是各个波作用下振动的合成,质点振动最大振幅的传播速度(群速度)不同于各单个波的传播速度(相速度),导波能量以群速度向前传播,相速度则随频率的不同而有所改变。 导波在介质中的传播特性与介质特性有很大的关系。目前的研究已不仅仅局限于导波在各向同性弹性介质中的传播特性,还涉及到各项异性和具有黏弹性的材料。 导波相速度不仅取决于探头频率,还与管材的特性(包括材质的声学性质和规格尺寸)有关,即使是同类材料的管子,如果其壁厚和直径不同,其频散曲线也不同。这给导波技术的实际检测应用带来了

焊缝超声波探伤

焊缝手动超声波探伤 锅炉压力容器和各种钢结构主要采用焊接方法制造。射线探伤和超声波探 伤是对焊缝进行无损检测的主要方法。 对于焊缝中的裂纹、 未熔合等面状危害性 缺陷,超声波比射线有更高的检出率。 随着现代科技快速发展, 技术进步。 超声 仪器数字化, 探头品种类型增加, 使得超声波检测工艺可以更加完善, 检测技术 更为成熟。但众所周知: 超声波探伤中人为因素对检测结果影响甚大; 工艺性强; 故此对超声波检测人员的素质要求高。 检测人员不仅要具备熟练的超声波探伤技 术,还应了解有关的焊接基本知识; 如焊接接头形式、 坡口形式、 焊接方法和可 能产生的缺陷方向、 性质等。 针对不同的检测对象制定相应的探伤工艺, 选用合 适的探伤方法,从而获得正确的检测结果。 射线检测局限性: 辐射影响,在检测场地附近,防护不当会对人体造成伤害。 受穿透力等局限影响,对厚截面及厚度变化大的被检物检测效果不 好。 5. 需接近被检物体的两面。 6. 检测周期长,结果反馈慢。设备较超声笨重。成本高。 常规超声波检测不存在对人体的危害,它能提供缺陷的深度信息和检出射 线照相容易疏漏的垂直于射线入射方向的面积型缺陷。 能即时出结果; 与射线检 测互补。 超声检测局限性: 1. 由于操作者操作误差导致检测结果的差异。 2. 对操作者的主观因素(能力、经验、状态)要求很高。 3. 定性困难。 4. 无直接见证记录(有些自动化扫查装置可作永久性记录) 5. 对小的(但有可能超标的缺陷)不连续性重复检测结果的可能性小。 6. 对粗糙、形状不规则、小而薄及不均质的零件难以检查。 7. 需使用耦合剂使波能量在换能器和被检工件之间有效传播。 1. 2. 3. 面状缺陷受方向影响检出率低。 4. 不能提供缺陷的深度信息。

超声导波检测技术原理

超声导波检测技术 超声导波(Ultrasonic Guided Wave)检测技术利用低频扭曲波(Torsinal Wave)或纵波(Longitudinal Wave)可对管路、管道进行长距离检测,包括对于地下埋管不开挖状态下的长距离检测。 超声导波(也称为制导波)的产生机理与薄板中的兰姆波激励机理相类似,也是由于在空间有限的介质内多次往复反射并进一步产生复杂的叠加干涉以及几何弥散形成的。但是对于管道检测,在一般管壁厚度下要产生适当的波型,则需要使用比通常超声波探伤低得多的频率,导波通常使用的频率f<100KHz,因此导波对单个缺陷的检出灵敏度与通常使用频率在MHz级别的超声检测相比是比较低的,但是导波检测的优点是能传播20~30米长距离而衰减很小,因此可在一个位置固定脉冲回波阵列就可做大范围的检测,特别适合于检测在役管道的内外壁腐蚀以及焊缝的危险性缺陷。低频导波长距离超声检测法用于管道在役状态的快速检测,内外壁腐蚀可一次探测到,也能检出管子断面的平面状缺陷。 超声导波应用的主要波型包括-扭曲波(Torsinal Wave,也简称为扭波)和纵波(Longitudinal Wave)。 扭曲波的特点是能够一边沿管子周向振动,一边沿管子轴 向传播,声能受管道内部液体影响较小(在导波检测时, 液体在管道中流动是允许的),回波信号能包含管轴方向 的缺陷信息,通常能得到清晰的回波信号,信号识别较容 易,在应用中需要换能器数量少,重量轻、费用省、因管 内液体介质而产生的扩散效应较小,波型转换较少,检测 距离较长,对轴向缺陷灵敏度高。 纵波特点是一边沿管子轴向振动,一边沿管子轴向传播, 回波幅度与缺陷性状关系不大,回波信号不如扭波清晰, 因为受管内流体流动的影响,也受探头接触面的表面状态 影响较大(油漆、凹凸等)受被测管内液体介质流动的影 响很大。 超声导波检测装置主要由固定在管子上的探伤套环(探头矩阵)、检测装置本体(低频超声探伤仪)和用于控制和数据采样的计算机三部分组成。 探头套环由一组并列的等间隔的环能器阵列组成,组成阵列的换能器数量取决于管径大小和使用波型,换能器阵列绕管子周向布置。 探伤套环的结构按管道尺寸采用不同节环-可以是一分为二,用螺丝固定以便于装拆(多用于直径较小的管道),或者充气式环(柔性探头套环),靠空气压力紧套在管子上(多用于直径较大的管道)。接触探头套环的管子表面需要进行清理但无须耦合剂,亦即除安放探头环的位置外,无需在清除和复原大面积包覆层或涂层上花费功夫,这也是超声导波检测的优点之一。超声导波探头套环上的探

管道超声导波检测技术

管道超声导波检测技术 发表时间:2018-08-14T11:41:10.603Z 来源:《防护工程》2018年第7期作者:张加恬[导读] 超声导波检测技术作为一种长距离、全范围的检测手段,已经发展成为国内外前沿的管道检测技术 浙江赛福特特种设备检测有限公司浙江杭州 310000 摘要:超声导波检测技术作为一种长距离、全范围的检测手段,已经发展成为国内外前沿的管道检测技术。超声导波技术作为新型的无损检测技术,因为其具有检测距离长、速度快、成本低并且可以检测到一般常规检测器无法检测的地方,例如有套管或者埋地管道等特殊管道。本文通过介绍管道超声导波检测技术的一些基础理论知识,提出这一检测技术的应用关键,对此,为以后人们能广泛应用管道超 声导波技术提出合理化的建议。 关键词:超声导波技术;管道;检测技术 在化工及其相关类工厂中大量压力管道被集中在管廊上,沿着装置或在厂区外布置。管廊上压力管道的距离长,离地距离高,而常规检测技术是单点检测,对于数量庞大的管道,其检测成本高,效率低。超声导波检测技术具有检测距离长,效率高且可以同时检测管道内外壁的优点。超声导波检测技术作为一种长距离、全范围的检测手段,已经发展成为重要的管道检测技术。 1 超声导波技术 1.1基本原理 导波原理好像平板中的板波,它发出的超声波频率比板波更低,它横穿整个管壁,并可以继续沿管壁传播上百米。当在传播过程中碰到缺陷、结构变化的地方,脉冲波会发生反射并沿管壁传播到传感器而被接收。这一特殊的工作原理决定了管道超声波可以应用于工业企业中大范围、远距离的检测中去,实现全覆盖管道壁。 1.2导波检测技术的应用范围、优缺点 应用于:管道、管状设备等。检测管道类型:无缝管、纵焊管等。优点:(1)一般常规超声波检测只能检测到管壁一个点的腐蚀情况,而管道导波检测技术可以利用一个检测点,从两个方向检测到几米甚至上百米管道腐蚀情况。(2)可以检测到常规检测技术无法检测到的地方,如埋地管道等特殊管道。(3)检测速度快、效率高、全方位覆盖,无漏检。(4)可敏感地感应到横截面检测面的金属损失,检测深度也达到管道横截面的4%。缺点:(1)超声导波不能对缺陷准确定性,定量也是不准确的,对可疑地方只能再根据其他检测方法进行进一步检测。(2)超声导波检测技术很难将单个点状缺陷和轴向条状缺陷检测出来。(3)焊接处的管道因为结构发生变化影响整个检测的长度和准确度。 2 弯管检测研究现状 导波在弯头部位容易发生频散和模态转换,并且导波能量将主要集中在弯头的背弯部位。因此导波检测弯头时,容易发现处于弯头背弯部位的缺陷,而可能漏检内弯的缺陷。在弯头生产时,弯头背弯处壁厚将小于内弯壁厚,且背弯处受到管道中介质冲刷的影响,更容易产生缺陷。因此采用超声导波检测弯头部位缺陷是可行的,但其难点在于信号分析。国内外对于弯管的研究还较少。 2.1国内研究概况 目前大多数从事导波检测的科研人员主要针对的是直管道的缺陷检测展开的研究,然而管道系统里的直管道绝大部分是 90°弯曲管道连接起来的,研究导波在弯曲管道中的传播在近年来变成一个热门的话题。学者已经对导波在弯曲处的传播特性进行了研究,并对弯管中缺陷的进行了检测,模态具有检测弯曲管道外侧区域的能力。也有学者通过改变90度弯头的曲率半径进行试验,模态在不同的曲率半径下,穿过90度弯头的能力(即透射系数)。 2.2导波检测仪器对比 超声导波的激励方式主要有压电晶片和磁致伸缩,相比于压电晶片式导波仪器,磁致伸缩激励方式易于实现非耦合状态下检测,且易于激励扭转模态导波。其中磁致伸缩导波检测是通过磁致伸缩效应和逆磁致伸缩效应激发和接收超声导波信号。铁磁体在外磁场作用下会引起磁畴的变化,而磁畴的变化也引起晶格的变形,从而产生振动激发应力波。反之,在磁场的作用下,铁磁体中晶格的变化会改变磁畴,从而影响外磁场的变化。磁磁致伸缩仪器的功放研制是关键点和难点。压电晶片激励超声导波的研究难点和热点在于晶片的研制。采用压电方式激励导波时难以激励纯正的扭转模态,但是很容易激励纵向模态导波,而磁致伸缩激励方式正好相反。在价格方面,压电晶片导波检测仪器比磁致伸缩导波仪器更昂贵。 3 超声导波检测方法 经过这么多年的发展,超声导波检测技术在压力管道中进行检测的技术得到了国内外很多研究机构的关注与研究。因为在实际生产作业中非常需要利用先进的检测技术对压力管道检测管道情况,所以超声导波技术逐渐浮出水面,成为管道检测的一大技术。 3.1单一模式导波检测 一般来说,激励源产生的波是处于其所在频域范围内所有的模式,是很复杂的,几乎是没办法直接利用这种信号直接进行分析的。但是如果利用一些特定的激励形式把复杂的信号转化成具有单一模式的信号,这样将大大减少工作强度。当前在国外研究领域,超声导波检测经常使用的单一模式导波是 L的模式。采用L模式的导波的优点在于:(1)在某个固定的频率带宽内,这种模式下的信号基本都是非频散的,意思就是导波的群速度和相速度都不会随着频率的变化而发生巨大变化,所以这样当导波进行传播时是相对稳定的,几乎不发生变形;(2)这种模式下的导波的传播速度是最快的,这样会使其他杂乱的、不需要利用的信号处在后面;(3)这种方法对内表面和外表面的灵敏度都很高,因此这种模式的导波不但可以检测内外表面的损伤,还可以沿径向方向进行检测。 3.2模态声发射技术 声发射技术是近五十年才发展起来的,但是因为其有很大的优势所以发展很迅速。这种技术是利用其在发生作用的时候可以快速释放能量对管带物体进行检测的,它的优势在于能够形成动态检测,而且覆盖面广。 3.3多模式导波检测

焊缝无损检测符号

焊缝无损检测符号 1主题内容与适用范围 本标准规定了焊缝无损检测符号表示方法。 本标准适用于焊缝无损检测。应用本标准时,原则上是指对焊完后的焊接部位或部件进行检测。本标准也可为铸件或锻件无损检测符号的规定提供参考。 2引用标准 GB324 焊缝符号表示法 3无损检测符号(NDT符号) 3.1无损检测符号的要素 无损检测符号由以下要素组成: a、基准线; b、箭头; c、检测方法代号; d、检测尺寸、面积和抽检数目; e、辅助符号; f、基准线的尾部; g、技术说明、检测规范或其它参考标准; 无损检测符号只需包括说明检测要求的要素。 3.2检测方法代号 无损检测方法代号规定如下: 射线RT 中子射线NRT 超声波UT 磁粉MT 渗透PT 涡流ET 声发射AET 泄漏LT 目视VT 测厚TM 耐压试验PRT 3.3辅助符号

全周检测现场检测射线方向 3.4无损检测符号要素的标准位置 无损检测符号要素彼此间的标准位置,如图1所示。 图1 无损检测符号要素的标准位置 4标注方向 4.1箭头 简明头应该由基准线指向检测部分,箭头指向的检测部分一侧称为检测部分的箭头侧,与箭头侧相反的一侧称为非箭头侧。 4.2检测方法代号的位置 4.2.1基准线 为了确切地表示检测侧的位置,规定基准线由一条实线和一条虚线组成,基准线的虚线可以画在基准线的实线上侧或下侧。 4.2.2箭头侧的检测 当检测方法代号置于基准线的实线侧时,表示箭头侧将要进行该种检测,如图2a、b 所示。

a b 图2 箭头侧的检测 4.2.3非箭头侧的检测 当检测方法代号置于基准线的虚线侧时,表示非箭头侧将要进行该种检测,如图3a、b所示。 a b 图3 非箭头侧的检测 4.2.4箭头侧和非箭头侧的检测 当检测方法代号同时置于基准线两侧时,表示箭头侧和非箭头侧均需进行该种检测,此时,可不用基准线的虚线,如图4a、b所示。 a b 图4 箭头侧和非箭头侧的检测 4.2.5箭头侧和非箭头侧的检测 当检测方法代号置于基准线中间时,表示可在箭头侧或非箭头侧中任选一侧进行检测方法代号规定的检测,此时,也可不加基准线的虚线,如图5a、b所示。 a b 图5 箭头侧或非箭头侧的检测 4.2.6多种检测 当对同一部分使用两种或两种以上检测方法时,应该把所选择的几种检测方法代号放在相对于基准线的正确位置上。当把两种或两种以上的检测方法代号置于基准线同侧或基准

焊缝无损检测规定

无损检测规定 《海上高速船入级与建造规范》(1996) 第124页第8章船体结构建造工艺第6节质量检验 8.6.2焊缝检验 8.6.2.1.所有完工焊缝均应经外观检查。外观检查可用眼或5倍放大镜检查。焊缝的尺寸应符合图纸或有关标准的要求,表面平顺,成形良好。 8.6.2.2.焊缝表面不允许有裂纹、夹渣、未填满、气孔、焊穿、过烧和焊瘤等缺陷。板厚小于或等于3mm者,不允许存在咬边;板厚大于3mm者咬边深度应不大于0.5mm,其累积长度不得超过单条焊缝长度的10%,且不得大于100mm。 8.6.2.3.船体主要结构的焊缝应经无损检测,检测范围由工厂与验船师商定。建议射线检查范围应不少于主船体对接焊缝的5%。重要结构的角焊缝应经超声波检查。缺陷的评定标准应经本社同意。 《内河小型船舶建造检验规程》(1987) 适用范围: 钢质船舶:船长不超过30m;主柴油机额定功率不超过220KW(300马力),或双机不超过440KW(600马力);发电机单机容量不超过15KW。如船舶某部分超过规定,超过部分的

技术监督检验应按本局的《船舶建造检验规程》实施。 第258页第3章船体装配及焊接的检验 3.4焊缝无损探伤的检验 3.4.1.船体焊缝的无损探伤检验应在焊缝表面质量检验合格后进行。 无损探伤检验可采用射线透视,超声波探伤或其它有效的方法进行。 3.4.2.射线透视的底片质量和焊缝无损探伤质量的评级,应按验船部门同意的评定标准。3.4.3.无损探伤的检查范围和位置,应经验船师同意,验船师可根据实际情况适当增加或减少检查范围或指定检查位置。 探测位置应重点选在船中部0.4L区域内的强力甲板、舷侧外板、船底板等纵横焊缝交叉点和分段大合拢的环形焊缝。 探测长度与船舶主体焊缝总长的比例,应不少于0.5%~1%,具体拍片数量应征得验船师同意。 对非机动船和船长小于20米以下的机动船,验船师可根据实际情况少探或免探。 3.4.4.经无损探伤后发现有不允许存在内在缺陷的焊缝时,应对该段焊缝中认为缺陷有可能延伸的一端或两端进行延伸探伤。不合格的焊缝应批清重焊,返修后应再次进行无损探伤。如仍不合格,须查明原因后才准进行第二次批清重焊。 3.4.5.验船师如对超声波探伤的检查结果有疑问时,可对有疑问的焊缝部位要求用射线透视复查。 《船舶建造检验规程》(1984) 1.2适用范围: 本规程适用于悬挂中华人民共和国国旗的下列钢质船舶: 总吨位为150及以上的海船;

管道的焊接与探伤的相关规范要求

管道的焊接与探伤的相关规范要求《压力管道规范工业管道》GB/T20801-2006是基础性标准。规定了工业金属压力管道设计、制作、安装、检验和安全防护的基本要求。 GB/T 20801《压力管道规范工业管道》由六个部分组成: ——第1部分:总则; ——第2部分:材料; ——第3部分:设计和计算; ——第4部分:制作与安装; ——第5部分:检验与试验; ——第6部分:安全防护。 适用于《特种设备安全监察条例》规定的“压力管道”中金属工业管道的设计和建造。基础标准只是最低标准。所以应在满足基础标准的前提下,通过其他“标准规范”或“工程规定”纳入其他需要采纳的材料、管道元件、设计、施工、检验试验和验收及其附加要求。 GB/T20801.4-2006 压力管道规范—工业管道第4部分:制作与安装 对焊接作了基础性规定 7 焊接 7.1 焊接工艺评定和焊工技能评定 7.2 焊接材料 7.3 焊接环境 7.4 焊前准备 7.5 焊接的基本要求 7.6 焊缝设置 等作了详细可操作的规定。 TSG D0001-2009《压力管道安全技术监察规程-工业管道》第六十七条对应当采用氩弧焊焊接的金属管道作了规定, GC1 级管道的单面对接焊接接头,设计温度低于或者等于-200C的管道,淬硬倾向较大的合金钢管道,不锈钢以及有色金属管道应当采用氩弧焊进行根部焊接,且表面不得有电弧擦伤。 GB/T20801.5-2006 压力管道规范—工业管道第5 部分检验与试验 对检验与试验作了基础性规定 6.1.1一般规定 a)压力管道的检查等级分为Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ五个等级,其

中Ⅰ级最高,Ⅴ级最低; 6.1.2按管道级别和剧烈循环工况确定管道检查等级: a) GC3 级管道的检查等级应不低于Ⅴ级; b) GC2 级管道的检查等级应不低于Ⅳ级; c) GC1 级管道的检查等级应不低于Ⅱ级; d) 剧烈循环工况管道的检查等级应不低于Ⅰ级。 6.1.3 按材料类别和公称压力确定管道检查等级: a)除GC3 级管道外,公称压力不大于PN50 的碳钢管道(本规范无冲击试验要求)的检查等级应不低于Ⅳ级; b) 除GC3 级管道外,下列管道的检查等级应不低于Ⅲ级: 1)公称压力不大于PN50 的碳钢(本规范要求冲击试验)管道; 2) 公称压力不大于PN110 的奥氏体不锈钢管道。 c) 下列管道的检查等级应不低于Ⅱ级: 1) 公称压力大于PN50 的碳钢(本规范要求冲击试验)管道; 2) 公称压力大于PN110 的奥氏体不锈钢管道; 3)低温含镍钢、铬钼合金钢、双相不锈钢、铝及铝合金管道; d) 下列管道的检查等级应不低于Ⅰ级: 1)钛及钛合金、镍及镍基合金、高铬镍钼奥氏体不锈钢管道; 2)公称压力大于PN160 的管道。 注2:角焊缝包括承插焊和密封焊以及平焊法兰、支管补强和支架的连接焊缝;

焊缝无损检测报告样本

百度文库- 让每个人平等地提升自我 1 XXX无损检测有限公司超声波探伤检测报告Non-destructive Test . UT Repor 委托单位Consigner 报告编号:Report No. 结构名称Structure Name DN200 无缝钢管 对接焊 检测部位 Testing Location 如图示 As figure 产品图号 Product No. 工件材质Material / 材料厚度 Thickness ㎜ 检测数量 Quantity 接头型式Joint Type 对接焊缝 Butt weld 坡口型式 Bevel Type V 焊接方法 Welding Method FCAW(CO2) 仪器型号Instrument Type 仪器编号 Serial No. 检测时机 Test time > hrs 探头型号Probe Type 5P 9×9 4 °参考试块 Test Block CSK-IA/RB-2 扫查灵敏度 Scan Sensitivity φ3-16 dB 表面状况Surface condition 打磨 Grinding 耦合剂 Coupling 化学浆糊 CMC 综合补偿 Compensation 4 dB 执行标准UT standard GB/T11345-89 合格级别 Acc Criteria Grade II 检测日期 Inspection Date 开工---结束 检测部位示意图和详细说明:管对接部位 Testing location sketch and description: 拍张照片插入 检测结果:Test results: 按规程对图示焊缝进行了UT检测,结果符合GB/T11345-89 II级质量要求。 According to the requirements of NDE procedure, carried out UT inspection of marked locations where lifting eyes removed in the figures, the results are complied to grade I of GB/T11345-89. 检测员:Inspector: 证书号Cert. No.:日期Date:审核者: Manager: 证书号Cert. No.: 日期Date: 验收者: Surveyor: 日期Date:

EN1712焊缝的无损检测—焊接接头的超声波检测—验收等级

EN 1712 焊缝的无损检测—焊接接头的超声波检测—验收等级 1. 应用范围 该标准规定了铁素体钢对接焊缝全焊透结构的超声波探伤合格极限2和3;它们与EN 25 817的B、C级相对应。同时根据合同双方之间的协议也可以采用其它的合格极限。 和EN 25817中D级相对应的合格极限不列入该欧洲标准,因为不推荐按照该等级进行焊缝的无损检测。 这些合格极限可用于按照prEN 12062引用标准进行的检测。如果对于调节灵敏度使用同等类型的基准反射器,并且经合同双方商定,也可和其它规则一起使用。 该标准适用于母材厚度8~100mm的铁素钢对接焊缝全焊透结构的超声波探伤。也可以用于其它形式的焊缝,其它的材料和壁厚大于100mm的材料。但是前提是,探伤必须是在考虑到组件几何形状和声学特性的情况下进行的,并且调节的检测灵敏度和该标准中合格极限的比例适中。要是没有,该欧洲标准探头的额定频率采用2~5MHz。如果检测频率超出设定范围时采用该标准的合格极限必须要事先经缜密的考虑。 2. 引用标准(略) 3. 显示评定 3.1 概述

对按照prEN 1714进行探伤时检出的显示进行评定。 3.2 灵敏度调节 在探伤前对于任何一个探伤方向必须要由参与检验的人员商定采用何种方法调节灵敏度。在进行下列探伤时通常情况下也要遵循这些调节方法。调节灵敏度可以按照下列方法进行: 方法1:3mm长横孔 方法2:AVG曲线 壁厚8mm≤t<15mm,如果探头角度≥70o,可以采用1mm 深的矩形沟槽。 如果采用长横孔或沟槽,其长度必须大于声束宽度,且应该在-20 dB以外。沟槽宽度在这里关系不大。 采用方法2的合格极限的前提是使用表1中规定的探头。 表1:方法2的超声波探头频率 厚度横波探头频率 MHz 纵波探头频率 MHz 8≤t<15 4 4~5 15≤t<40 2~4 2~5 40≤t<100 2 2~5 如果使用其它探头频率则必须把对合格极限的影响考虑进去;并且要进行必要的修正。

焊缝的无损检测要求及等级分类解释

焊缝的无损检测要求及等级分类解释 焊缝应根据结构的重要性、荷载特性、焊缝形式、工作环境以及应力状态等情况,按下述原则分别选用不同的质量等级, 1. 在需要进行疲劳计算的构件中,凡对接焊缝均应焊透,其质量等级为 1) 作用力垂直于焊缝长度方向的横向对接焊缝或T形对接与角接组合焊缝,受拉时应为一级,受压时应为二级; 2)作用力平行于焊缝长度方向的纵向对接焊缝应为二级。 2 .不需要计算疲劳的构件中,凡要求与母材等强的对接焊缝应予焊透,其质量等级当受拉时应不低于二级,受压时宜为二级 3 .重级工作制和起重量Q≥50t吊车梁的腹板与L冀缘之间以及吊车析架上弦杆与节点板之间的T形接头焊缝均要求焊透.焊缝形式一般为对接与角接的组合焊缝,其质量等级不应低于二级. 4.不要求焊透的I形接头采用的角焊缝或部分焊透的对接与角接组合焊缝,以及搭接连接采用的角焊缝,其质量等级为: 1)对直接承受动力荷载且需要验算疲劳的结构和吊车起重量等于或大于50t的中级工作制吊车梁,焊缝的外观质量标准应符合二级; 2) 对其他结构,焊缝的外观质量标准可为二级。 外观检查一般用目测,裂纹的检查应辅以5 倍放大镜并在合适的光照条件下进行,必要时可采用磁粉探伤或渗透探伤,尺寸的测量应用量具、卡规。 焊缝外观质量应符合下列规定: 一级焊缝不得存在未焊满、根部收缩、咬边和接头不良等缺陷,一级焊缝和二级焊缝不得存在表面气孔、夹渣、裂纹和电弧擦伤等缺陷; 二级焊缝的外观质量除应符合本条第一款的要求外,尚应满足下表的有关规定;

8 设计文件指定进行射线探伤或超声波探伤不能对缺陷性质作出判断时,可采用射线探伤进行检测、验证。 9 射线探伤应符合现行国家标准GB/T 3323-2005《钢熔化焊对接接头射线照相和质量分级》的规定,射线照相的质量等级应符合AB级的要求。一级焊缝评定合格等级应为GB/T 3323-2005《钢熔化焊对接接头射线照相和质量分级》的Ⅱ级及Ⅱ级以上,二级焊缝评定合格等级应为GB/T 3323-2005《钢熔化焊对接接头射线照相和质量分级》的Ⅲ级及Ⅲ级以上。 10 以下情况之一应进行表面检测: 1)外观检查发现裂纹时,应对该批中同类焊缝进行100%的表面检测; 2)外观检查怀疑有裂纹时,应对怀疑的部位进行表面探伤; 3)设计图纸规定进行表面探伤时; 4)检查员认为有必要时。 铁磁性材料应采用磁粉探伤进行表面缺陷检测。确因结构原因或材料原因不能使用磁粉探伤时,方可采用渗透探伤。磁粉探伤应符合国家现行标准JB/T 6061-2007《焊缝磁粉检验方法和缺陷磁痕的分级》的规定,渗透探伤应符合国家现行标准JB/T 6062-2007《焊缝渗透检验方法和缺陷迹痕的分级》的规定。磁粉探伤和渗透探伤的合格标准应符合外观检验的有关规定。 设计要求全焊透的一、二级焊缝应采用超声波探伤进行内部缺陷的检验,超声波探伤不能对缺陷作出判断时,应采用射线探伤,其内部缺陷分级及探伤方法应符合现行国家标准GB/T 11345-2013《钢焊缝手工超声波探伤方法及质量分级法》或GB/T 3323-2005《钢熔化焊对接接头射线照相和质量分级》的规定。 焊接球节点网架焊缝、螺栓球节点网架焊缝及圆管T、K、Y形点相贯线焊缝,其内部缺陷分级及探伤方法应分别符合国家现行标准JG/T 203-2007《钢结构超声波探伤及质量分级法》、《建筑钢结构焊接技术规程》JGJ81的规定。一级、二级焊缝的质量等级及缺陷分级应符合下表的规定。

相关文档
最新文档