材料制备技术试题及答案

材料制备技术试题及答案
材料制备技术试题及答案

1机械合金化:金属或合金粉末在高能球磨机中通过粉末颗粒与魔球之间长时间激烈地冲击、碰撞,使粉末颗粒反复产生冷焊、断裂,导致粉末颗粒中原子扩散,从而获得合金化粉末的一种粉末制备技术。

2 反应球磨:通过一种球磨化学添加物与金属粉末,诱发低温化学反应,生成了分布均匀的弥散粒子。

3 行星球磨机:靠本身强烈的自传和公转,使磨球产生巨大地冲击、球磨作用,使物料粉碎的机器。

4搅拌式球磨机:主要由一个静止的球磨筒体和一个装在筒体中心的球磨搅拌器组成,由球磨介质重力及螺旋回转产生的挤压力对物料产生冲击、摩擦和剪切作用,使物料被粉碎。

5临界速度:

6球磨介质:在机械合金化过程中,工具钢、铬钢、调质钢、不锈钢、轴承钢和WC-Co硬质合金钢是常用的球磨介质材料。

7球料比和填充系数:球料比是球磨过程中的重要参数。球料比越大,球磨所需要的时间越短。在高球料比下,磨球个数增加,单位时间内碰撞次数增加,从而转移更多的能量给粉末颗粒,非晶化时间变得更短,同时使粉末温升增加但如果温度升过高,非晶相甚至发生晶化。机械合金化的填充系数一般是0.5,如果填充系数过大,没有足够的空间使磨球运动,那么球的冲击作用会降低;如果填充系数过小,则机械合金化的产率较低。

8工艺控制剂PCA:控制冷焊,可以为固体、液体或气体,多为表面活性剂一类的有机化合物。在球磨时被吸附在粉末表面,降低了冷焊,抑制了结块,并且降低了粉末的表面活性,导致球磨时间缩短或可以球磨得到更细的粉末,但过多的PCA也会影响原子扩散和污染粉末。其用量决定于:1,粉末颗粒的冷焊性能;2,PCA的化学和热稳定性;3,粉末和球磨介质的用量。

9弥散强化合金:按其弥散相的种类可分为氧化物弥散强化合金和碳化物弥散强化合金。10喷射沉积:熔融金属或合金在惰性气氛中借助高压惰性气体或机械离心雾化形成固液两相的颗粒喷射流,并直接喷到较冷基底上,产生碰撞、粘结、凝固而形成沉积物。沉积物可以通过各种致密化加工得到性能优异的材料。222

11喷射共沉积:在喷射沉积过程中,把具有一定动量的颗粒增强相喷到雾化液流中,熔融金属和颗粒增强相共同沉积到较冷基底上,从而制备颗粒增强金属基复合材料的一种办法。12反应喷射沉积:将喷射沉积技术与反应合成制备陶瓷粒子技术结合起来,形成共沉积的一种新型制备颗粒增强金属基复合材料的技术。在喷射沉积过程中,金属液体被充分雾化成细小的液滴,从而具有很大的体表面积,在一定的过热条件下,可以为喷射沉积过程中融滴与外加反应剂接触并发生化学反应提供驱动力。230

13 金属基复合材料:简称MMCs以其优良的强度、刚度、抗蠕变、耐磨损、低密度、可控膨胀性等综合性能而受到世界工业发达国家的极大重视,其应用遍布汽车、电子、高速列车航空航天等领域。分为非连续体(陶瓷颗粒、晶须或短纤维)增强型和纤维增强型两大类。

14 自蔓延高温合成:利用外部提供必要的能量诱发放热化学反应(点燃),这种高放热反应所产生的能量使两种或两种以上物质的化学反应以燃烧波的形式自动蔓延下去,从而合成所需要的材料(粉体或固结体)。

15 自蔓延燃烧方式SHS:点燃式,待反应的原料混合物物块的一端点燃反应,反应放出的巨大能量又使邻近材料发生反应。热爆式,将原料混合物块在一定气氛下进行整体加热,使其燃烧反应,反应一旦发生,即停止加热,使物料外部燃烧放出的热量向内部传播使反应进行下去。微播式是从物料内部开始加热并使热量往外扩散从而发生反应,这种办法反应更彻底。16 稳态燃烧:指燃烧过程中火焰以稳定的恒速传播的燃烧模式。

17 非稳态燃烧:燃烧过程中火焰的传播速率不为常数的燃烧模式,又可进一步分为振荡燃

烧、螺旋燃烧、无秩序燃烧。

18 热力学燃烧温度:假定体系没有热损失时体系所能达到的最高燃烧温度,是描述Gibbs 反应特征最重要的热力学参量。

19 SHS图:分别以胚料的起始温度和稀释剂浓度作为纵坐标和横坐标,根据这两个参数的变化,将燃烧波的传播方式分为两个区域,即稳定蔓延燃烧区和非SHS区。

20 SHS烧结:在燃烧过程中发生固相烧结,从而制备具有一定形状和尺寸的零件。该技术,由于反应速率快,反应温度高、成本低,具有特殊的反应机理。反应经过温度剧变的过程,处于亚稳态,粉末烧结活性高。反应中的高温使易挥发的杂质挥发,从而得到较纯净的产物。

21 SHS致密:SHS合成产物的一个明显的缺点就是产物孔隙大、疏松、不致密。方法:SHS 加压法,SHS挤压法,SHS等静压法,使燃烧过程中发出现液相来致密化。

22 SHS熔铸:即在SHS方法下熔铸产生的高温液相可以进行传统的铸造处理,以获得铸锭或铸件。包括两阶段:1由SHS制取高温液相2用铸造方法对液相进行处理。

23 SHS焊接:利用SHS反应所放出的热量以及其反应产物来连接受焊母材的技术。在待焊接的两块材料之间填进合适的燃烧反应原理,以一定的压力夹紧待焊材料,待中间原料的燃烧反应过程完成后,即可实现两块材料的焊接。

24 蠕变:在一定的温度和一定的外力作用下,材料的形变随时间的推移而逐渐发展的现象。

25 应力松弛:在温度恒定、应力保持不变时,材料的应力随时间的延续而逐渐下降的现象。

26 黏结剂:一般由结合剂、润滑剂和增塑剂三部分组成。基本功能即增加流动性能和维持坯件形状。满足条件:1成形性好(主要是指喂料的成形性好);2脱脂性好(加热易分解)3脱模性好(坯料脱模后不崩形)4防变形能力好(脱脂后不变形)

29 结合剂:粘结粉末,保持坯料具有一定的强度和热流动性能。又分为热塑性(流动性好,容易脱除)和热固性(脱脂后防变形性好)结合剂两种。

30 润滑剂和可塑剂:润滑剂主要是增加颗粒间的润滑性,减少摩擦阻力,增加流动性防止注射成形装置和坯料黏结;可塑剂主要是使黏结剂软化。

27 脱脂:成形坯在烧结前必须去除体内所含有的黏结剂,该过程即为脱脂。热脱脂、溶剂脱脂、催化脱脂。必须保证黏结剂从坯块的不同位置沿着颗粒之间的微小通道逐渐地排除,而不伤害成形坯的形状和强度。

28 维泰克工艺:采用微米级(一般为5~10um)的金属、非金属、氧化物、碳化物等微细粉末加入热塑性树脂和石蜡并在圆盘剪切混料机上混合,将混合物调制成可塑性状态,然后注射成形,脱脂和烧结制备高密度、高精度粉末冶金零件的工艺。

31 混炼:把金属粉末和黏结剂两种不同性质的材料混炼成喂料。

32 制粒:把喂料制成类似颗粒状塑料的规格型原料,以便在注射成形机上应用。

33 注射成型:将混合的粒料或粉料放入注塑机的料筒内,经过加热、压缩、剪切、混合和输送作用,使物料达到均匀化和塑化的效果,然后借助于柱塞或螺杆像塑化好的混合物施加压力,高温流体变通过;料筒前面的喷嘴和模具的浇道系统注入预先闭合好的低温模腔中,经过冷却定型后,开启模具、顶出制品,得到一定几何形状和精度的制品。

34 注射缺陷:孔洞、短射、喷射、变形、飞边、表明起泡、开裂、形成熔接痕和表面下凹、弯曲和尺寸精度差等问题。

35 微注射:喂料由微注射成形设备的塑化单元加热到其黏结剂软化温度,并均匀搅拌使熔体性质均一,由抽真空单元将微型腔中的空气抽出,以避免在熔体注射充填过程中,模腔内的空气阻碍流动导致充填欠注及在零件中产生气泡,且由于高温高压作用下空气极度压缩可能使金属粉末氧化。完成微型腔抽真空工序后,必须快速将模具温度升高,保证熔体在未尺度下流动不会过早冷却凝固而引起欠注。注射完毕,为达到缩短生产周期的目的,由模温快速冷系统将模具温度迅速降低,然后动定模分开制品脱模或吸出。

1试简述机械合金化的主要工艺参数

球磨机转速和球磨时间:球磨机转速越高对粉末施加能量越高;当球磨时间超过所需时间时,粉末污染程度会增加,所以球磨时间最好是恰恰所需要的球磨时间,而不应超过该时间。球磨介质:一般认为大尺寸、高密度的磨球对机械合金化有利,因为重的磨球具有更高的冲击能量。

球料比和充填系数:球料比是球磨过程中的重要参数。球料比越大,球磨所需要的时间越短。在高球料比下,磨球个数增加,单位时间内碰撞次数增加,从而转移更多的能量给粉末颗粒,非晶化时间变得更短,同时使粉末温升增加但如果温度升过高,非晶相甚至发生晶化。机械合金化的填充系数一般是0.5,如果填充系数过大,没有足够的空间使磨球运动,那么球的冲击作用会降低;如果填充系数过小,则机械合金化的产率较低。

球磨气氛:粉末在进行机械合金化时,球磨筒要么抽真空,要么充入惰性气体,如氩气或氦气。气氛类型对最终生成相的特性也有影响。

工艺控制剂:控制冷焊,可以加入工艺控制剂(PCA)。

球磨温度:决定球磨粉末最终相组成的参数。在机械合金化过程中,非晶的形成涉及粉末之间微扩散偶的形成,接着发生固态非晶反应,这样球磨温度升高提高了非晶化动力。

2试简述金属粉末的球磨过程

金属粉末在球磨过程中的第一阶段为微锻过程,在这一阶段,颗粒发生变形,但没有发生因焊接而产生的团聚和断裂,最后,由于冷加工,颗粒的变形和脆裂非常严重;第二阶段,在强大聚集力情况下,由于微锻和断裂交替作用,颗粒尺寸不断减小,当颗粒(特别是片状颗粒)被粉碎得较细时,相互间的连接力趋于增加,团粒变得密实;最后阶段,反团聚的球磨力与颗粒间的相互连接力之间达到平衡,从而生成平衡团聚颗粒,这种平衡团聚颗粒的粒度也就是粉碎的极限粒度。

3举一类材料为例说明MA的应用(机理工艺)

镍基ODS超合金:氧化物弥散强化的机理是细小粒子能够阻碍位错的运动,增大合金的蠕变抗力。弥散相粒子还可以阻碍再结晶过程,从而在最终退火期间可以促进稳定的大晶粒生成。在高温加载期间,这种粒子可以阻碍晶粒转动和晶界滑移,使合金的高温强度提高。工艺:把一种或数种金属粉末在高能球磨机中混合,反复进行压合和破碎,从而实现合金化和氧化物的均匀弥散分布,并在传统的固溶强化或析出强化的基础上利用氧化物颗粒的弥散强化效果,以获得更优异的高温强度。

4简述喷射沉积工艺的基本原理与特点

基本原理:熔融金属或合金在惰性气氛中借助高压惰性气体或机械离心雾化形成固液两相的颗粒喷射流,并直接喷到较冷基底上,产生碰撞、粘结、凝固而形成沉积物。沉积物可以通过各种致密化加工得到性能优异的材料。特点:介于铸造冶金IM和粉末冶金PM之间。经济性好,工艺比较简单,生产周期短,效益高。适用性广。产品性能优异,能够得到冷速较高、晶粒细小、无宏观偏析的预成形坯块,经后续加工后,具有优异的性能。

5试述喷射沉积过程原理与机制参数232

大致分为五个阶段:金属液释放阶段、气体雾化阶段、喷射阶段、沉积阶段及沉积体凝固阶段。安装参数,包括液流管直径、雾化气体类型、雾化器种类及基底的几何形状和结构。在线系数,包括金属熔体的过热度、金属流铝、雾化气体压力、喷射高度和基底(材料、表面质量、温度)的运动方式等。

6简述多层喷射沉积工艺及特优点

多层喷射沉积是在喷射沉积过程中将装有熔体的坩埚与雾化器一起移动,这种移动装置代替了各种扫描和V形喷嘴,这种移动引起了沉积原理的变化,造成了一种多层扭和沉积组织的产生。特点:冷速高;由于沉积坯为雾化器往复扫描、喷射沉积而成,管坯尺寸可以很厚,

并且冷凝速率不受影响;所制复合材料的均匀性好,在制备金属/陶瓷复合材料、梯度材料、互不固溶的双金属材料及其他特殊材料有很大优越性;装置制造成本和沉积坯生产成本低,能连续作业,工艺简单,操作简单,安全可靠,是一种适合工业规模生产的大尺寸近形快速凝固沉积坯吧装置,有望完善实现商业化生产。

7试述SHS动力学条件

燃烧速率即反应前沿波向前移进的速率;粒子尺寸极大地影响了反应进行程度、反应速率、反应区温度变化、燃烧波速率等;液相,在固固反应中,颗粒之间的有限接触限制了反应物之间的物质交换;粉末原料压实的影响,当易溶组分体积分数与孔隙的体积分数大致相当时,液相可充分与高熔点组分接触,而获得最佳扩展效果;放热率,如果化学成分不符合要求将导致热力学温度的降低,任何多余的反应物和产物都会由于放热的降低,导致热力学温度的降低;气体种类的影响,在高燃烧温度下气体种类的变化可能导致产品中产生空洞等缺陷,甚至会引发爆炸而完全破坏产品结构;气压的影响,SHS固气需要加入不同气体,以生成氮化物、氧化物、氢化物。

8SHS过程影响因素

原料物性,原料成分配比、原料粒度、原料成分的结构、原料的混料方式以及原料的纯度等;样品压坯质量,燃烧过程外界参数以及外在辅助因素(电场能促进燃烧过程,增大燃烧波速,磁场,重力场)等。

9介绍4种常见的SHS技术

SHS烧结:在燃烧过程中发生固相烧结,从而制备具有一定形状和尺寸的零件。该技术,由于反应速率快,反应温度高、成本低,具有特殊的反应机理。反应经过温度剧变的过程,处于亚稳态,粉末烧结活性高。反应中的高温使易挥发的杂质挥发,从而得到较纯净的产物。SHS致密:SHS合成产物的一个明显的缺点就是产物孔隙大、疏松、不致密。方法:SHS 加压法,SHS挤压法,SHS等静压法,使燃烧过程中发出现液相来致密化。

SHS熔铸:即在SHS方法下熔铸产生的高温液相可以进行传统的铸造处理,以获得铸锭或铸件。包括两阶段:1由SHS制取高温液相2用铸造方法对液相进行处理。

SHS焊接:利用SHS反应所放出的热量以及其反应产物来连接受焊母材的技术。在待焊接的两块材料之间填进合适的燃烧反应原理,以一定的压力夹紧待焊材料,待中间原料的燃烧反应过程完成后,即可实现两块材料的焊接。

10试述金属注射成形工艺过程

将混合的粒料或粉料放入注塑机的料筒内,经过加热、压缩、剪切、混合和输送作用,使物料达到均匀化和塑化的效果,然后借助于柱塞或螺杆像塑化好的混合物施加压力,高温流体变通过;料筒前面的喷嘴和模具的浇道系统注入预先闭合好的低温模腔中,经过冷却定型后,开启模具、顶出制品,得到一定几何形状和精度的制品。

11试述金属注射成形工艺缺陷类型及解决方法

1熔接痕:通过模具的内浇道,在型腔内形成过程的喂料的流动前段发生碰撞,没有完全融合产生的缺陷,残留在成形体的表面或内部,使得浇注状态变得更差。增大注射速率、保压值、提高注射温度和模具温度都能改善。从内浇道到型腔流入的喂料,是要逐次填充的。2表面粗糙度:成形温度、注射速率和注射压力没有达到平衡状态,就会出现表面粗糙的情况。对策:提高金属模具、料筒、喷嘴的温度设定值,在型腔表面内壁原料混合物的流动和固化进行就比较顺利,从而提高注射效率和压力,有利于型腔内壁喂料的适应性,能够得到很好的表面质量3裂纹:在型腔内填充的喂料的冷却固化过程中,产生了很大的体积收缩,可能形成表面凹陷和裂纹。对策:降低注射温度和注射效率,并且考虑到注射的时间,确保从分保压。4表面效应:成形条件、脱脂条件、粉末原料和黏结剂不太匹配的情况下发生。

12试述金属注射成形工艺脱脂技术与过程

【CN110060830A】磁性纳米功能材料的制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910235984.4 (22)申请日 2019.03.27 (71)申请人 吴荣臻 地址 518055 广东省深圳市南山区南方科 技大学湖畔二栋 (72)发明人 吴荣臻 韩臻  (74)专利代理机构 北京华识知识产权代理有限 公司 11530 代理人 汪浩 (51)Int.Cl. H01F 1/01(2006.01) H01F 41/00(2006.01) (54)发明名称磁性纳米功能材料的制备方法(57)摘要本发明公开了磁性纳米功能材料的制备方法,该制备方法包括:(a)将三价铁盐水合物、金属盐(包括钒、钪的金属盐)和乙酸盐混合,得到混合物;(b)向混合物中添加多羟基化合物、搅拌、超声处理,得到混合溶液;(c)将混合溶液升温至160-180℃,并保温密闭反应8-10h;(d)将反应后的混合溶液磁性分离,收集沉淀物、洗涤、真空干燥,即得所述磁性纳米材料;本发明制备方法制备得到的磁性纳米功能材料具备优异的磁性能和吸附性能、催化性能等与负载金属种类相关的特性,而且制作成本较低;此外,该制备方法能够促进纳米材料的生长,提高产率,且操作简单,仅需一步反应, 利于工业生产。权利要求书1页 说明书8页 附图14页CN 110060830 A 2019.07.26 C N 110060830 A

权 利 要 求 书1/1页CN 110060830 A 1.磁性纳米功能材料的制备方法,其特征在于,包括如下步骤: (a)将三价铁盐水合物、金属盐和乙酸盐混合,得到混合物; (b)向混合物中添加多羟基化合物、搅拌、超声处理,得到混合溶液; (c)将混合溶液升温至160-180℃,并保温密闭反应8-10h; (d)将反应后的混合溶液磁性分离,收集沉淀物、洗涤、真空干燥,即得所述磁性纳米功能材料。 2.根据权利要求1所述磁性纳米功能材料的制备方法,其特征在于,所述三价铁盐水合物与金属盐的摩尔比为10∶(0.5-6)。 3.根据权利要求1所述磁性纳米功能材料的制备方法,其特征在于,所述三价铁盐水合物与乙酸盐的摩尔比为1∶(8-10)。 4.根据权利要求1所述磁性纳米功能材料的制备方法,其特征在于,所述混合溶液中三价铁盐水合物的浓度为0.05-0.083mol/L。 5.根据权利要求1-4任一所述磁性纳米功能材料的制备方法,其特征在于,所述三价铁盐水合物选自水合氯化铁、水合溴化铁、水合硝酸铁和水合硫酸铁中的任意一种。 6.根据权利要求1-4任一所述磁性纳米功能材料的制备方法,其特征在于,所述钒、钪金属盐选自水合氯化钪、水合硝酸钪、醋酸钪、溴化钪、氯化钒、溴化钒中的任意一种。 7.根据权利要求1-4任一所述的磁性纳米功能材料的制备方法,其特征在于, 所述乙酸盐选自乙酸钠或乙酸铵。 8.根据权利要求1-4任一所述的磁性纳米功能材料的制备方法,其特征在于,所述多羟基化合物选自乙二醇、甘油和丙二醇中的任意一种或多种。 2

(完整word版)材料合成与制备_复习资料(有答案)

第一章溶胶-凝胶法 名词解释 1. 胶体(Colloid):胶体是一种分散相粒径很小的分散体系,分散相粒子的质量可以忽略不计,粒子之间的相互作用主要是短程作用力。 2. 溶胶:溶胶是具有液体特征的胶体体系,是指微小的固体颗粒悬浮分散在液相中,不停地进行布朗运动的体系。分散粒子是固体或者大分子颗粒,分散粒子的尺寸为1nm-100nm,这些固体颗粒一般由10^3个-10^9个原子组成。 3. 凝胶(Gel):凝胶是具有固体特征的胶体体系,被分散的物质形成连续的网络骨架,骨架孔隙中充满液体或气体,凝胶中分散相含量很低,一般为1%-3%。 4. 多孔材料:是由形成材料本身基本构架的连续固相和形成孔隙的流体所组成。 一、填空题 1.溶胶通常分为亲液型和憎液型型两类。 2.材料制备方法主要有物理方法和化学方法。 3.化学方法制备材料的优点是可以从分子尺度控制材料的合成。 4.由于界面原子的自由能比内部原子高,因此溶胶是热力学不稳定 体系,若无其它条件限制,胶粒倾向于自发凝聚,达到低比表面状 态。 5.溶胶稳定机制中增加粒子间能垒通常用的三个基本途径是使胶粒带表面电荷、利用空间位阻效应、利用溶剂化效应。

6.溶胶的凝胶化过程包括脱水凝胶化和碱性凝胶化两类。 7.溶胶-凝胶制备材料工艺的机制大体可分为三种类型传统胶体型、无机聚合物型、络合物型。 8.搅拌器的种类有电力搅拌器和磁力搅拌器。 9.溶胶凝胶法中固化处理分为干燥和热处理。 10.对于金属无机盐的水溶液,前驱体的水解行为还会受到金属离子半径的大小、电负性和配位数等多种因素的影响。 二、简答题 溶胶-凝胶制备陶瓷粉体材料的优点? 制备工艺简单,无需昂贵的设备;对多元组分体系,溶胶-凝胶法可大大增加其化学均匀性;反应过程易控制,可以调控凝胶的微观结构;材料可掺杂的范围较宽(包括掺杂量及种类),化学计量准确,易于改性;产物纯度高,烧结温度低等。 第二章水热溶剂热法 名词解释 1、水热法:是指在特制的密闭反应器(高压釜)中,采用水溶液作为反应体系,通过将反应体系加热至临界温度(或接近临界温度),在反应体系中产生高压环境而进行无机合成与材料制备的一种有效方法。 2、溶剂热法:将水热法中的水换成有机溶剂或非水溶媒(如有机胺、醇、氨、四氯化碳或苯等),采用类似于水热法的原理,以制备在水溶液中无法长成、易氧化、易水解或对水敏感的材料。 3、超临界流体:是指温度及压力都处于临界温度或临界压力之上的流

09192230材料现代制备技术

09192230材料现代制备技术 Modern Technology for Material Preparation 预修课程:物理化学 面向对象:材料科学与工程专业学生 课程简介: 本课程讲述各种材料合成与制备的原理、方法和技术。针对现代信息社会对材料发展的需求,着重介绍各种新型制备技术的基本概念、制备原理、特征,以及其在各类材料制备中的应用。涉及材料包括超微粒子等零维材料,纤维、纳米线棒等一维材料,薄膜和块体材料(晶态和非晶态材料)。 教学大纲: 一、教学目的与基本要求: 教学目的:材料制备技术是材料科学不可或缺的组成部分。现代科学技术的发展对材料提出了各种各样的新要求,进而推动了材料制备技术的发展。本课程旨在介绍各种材料的合成与制备的原理、方法和技术,使学生掌握各类新型材料的制备方法。 基本要求:通过《材料现代制备技术》的学习,使学生了解各种无机材料的制备原理,初步掌握零维、一维纳米材料,纤维,薄膜,以及三维材料的各种制备方法和技术。 二、主要内容及学时分配: 1. 绪论 材料现代制备方法特点1学时 溶胶凝胶技术3学时 等离子体技术2学时 激光技术概论2学时 2. 零维材料的制备 超微粒子的形成机理和制备4学时 3. 一维材料的制备 纳米棒、线、管的形成机理和制备方法2学时 纤维材料的制备2学时 4. 二维材料的制备

薄膜的物理气相沉积法制备原理和应用4学时 化学气相沉积法制备原理和应用3学时 三束技术与薄膜制备2学时 液相法薄膜制备(浸渍提拉法成膜,旋转涂膜,LB膜,自组装膜)3学时 5. 三维材料的制备 非晶态材料的形成机理及制备方法2学时 晶体生长机理及制备2学时 推荐教材或主要参考书: 《材料现代制备技术》,自编讲义 参考书:郑昌琼,冉均国主编《新型无机材料》,科学出版社,2003 C.N.R. Rao, F.L. Deepak, Gautam Gundiah, A. Govindaraj,Inorganicnanowires,Progress in Solid State Chemistry 31 (2003)

电子材料与元器件论文

CMOS图像传感器工作原理和应用 姓名: 学院: 班级: 组号: 日期:2014年12月9日

摘要 随着集成电路制造工艺技术的发展和集成电路设计水平的不断提高,基于CMOS集成电路工艺技术制造的CMOS图像传感器由于其集成度高、功耗低、体积小、工艺简单、成本低且开发周期较短等优势,目前在诸多领域得到了广泛的应用,特别是数码产品如数码相机、照相手机的图像传感器应用方面,市场前景广泛,因此对CMOS图像传感器的研究与开发有着非常高的市场价值。 本文首先介绍了CMOS图像传感器的发展历程和工作原理及应用现状。随后叙述了CMOS图像传感器的像元、结构及工作原理,着重说明了成像原理和图像信号的读取和处理过程,以及在数字摄像机,数码相机,彩信手机中的应用方式。 一、CMOS图像传感器的发展历史 上世纪60年代末期,美国贝尔实验室提出固态成像器件概念: 互补金属氧化物半导体图像传感器CMOS —Complementary Metal Oxide Semiconductor 电荷耦合器件图像传感器(CCD) CMOS与CCD图像传感器的研究几乎是同时起步,固体图像传感器得到了迅速发展。 CMOS图像传感器: 由于受当时工艺水平的限制,图像质量差、分辨率低、噪声降不下来,因而没有得到重视和发展。 CCD图像传感器: 光照灵敏度高、噪音低、像素少等优点一直主宰着图像传感器市场。 由于集成电路设计技术和工艺水平的提高,CMOS图像传感器过去存在的缺点,现在都可以找到办法克服,而且它固有的优点更是CCD器件所无法比拟的,因而它再次成为研究的热点。 1970年,CMOS图像传感器在NASA的喷气推进实验室JPL制造成功, 80年代末,英国爱丁堡大学成功试制出了世界第一块单片CMOS型图像传感器件, 1995年像元数为(128×128)的高性能CMOS 有源像素图像传感器由喷气推进实验室首先研制成功。 1997年英国爱丁堡VLSI Version公司首次实现了CMOS图像传感器的商品化。 2000年日本东芝公司和美国斯坦福大学采用0.35mm技术开发的CMOS-APS,

材料与材料加工技术

材料加工技术讲义 徐刚,韩高荣编制 浙江大学材料科学与工程学系 二0一二年六月

绪论 材料是人类文明的物质基础,是社会进步和高新技术发展的先导。自上世纪70年代开始,人们把信息、能源和材料看作是现代社会的三大支柱。新材料和新材料技术的研究、开发和应用反映了一个国家的科学技术与工业化水平。以大规模集成电路为代表的微电子技术,以光纤通信为代表的现代通信技术,以及及现代科技与技术于一体的载人航天技术等,几乎所有的高新技术的发展与进步,都以新材料和新材料技术的发展为突破和前提。 材料的制备与加工,和材料的成分与结构,材料的性能是决定材料使用性能的三大基本要素,构成材料科学与工程学四面体的底面,这充分反映了材料制备及加工技术的重要作用和地位。材料制备与加工技术的发展既对新材料的研究开发、应用和产业化具有决定性的作用,同时又可有效地改进和提高传统材料的使用性能,对传统材料产业的更新改造具有重要作用。因此,材料制备与加工技术的研究开发是目前材料科学与工程学最活跃的领域之一。 材料种类很多,按材料的键合特点和组成分类,大致分为四大类:金属材料、无机非金属材料、高分子材料和复合材料;按材料的用途分类,既可分为结构材料和功能材料两大类,也可细分为建筑材料、信息材料、能源材料、生物材料、航空航天材料等等。相应地,为了适应不同种类材料的键合特点,和使用特点及功能要求,材料制备和加工技术也多种多样。 本讲义是面向浙江大学材料科学与工程学专业学位硕士研究生培养而编写的“材料加工技术”。主要涉及金属材料加工和陶瓷粉体成型烧结先进制备技术,包括:金属材料快速凝固、定向凝固、半固态加工、连续铸轧、复合铸造技术,以及金属粉体、陶瓷粉体制备,和先进陶瓷成型、烧结等材料加工新技术新工艺。注重材料制备及加工技术案例分析,从技术个案的起源、开发、改进和完善的整个过程,对材料加工技术特点及其原理进行系统介绍,重点突出新技术创新的基本规律,培养学生自主创新和利用新技术开发新材料的能力。

材料先进加工技术

1. 快速凝固 快速凝固技术的发展,把液态成型加工推进到远离平衡的状态,极大地推动了非晶、细晶、微晶等非平衡新材料的发展。传统的快速凝固追求高的冷却速度而限于低维材料的制备,非晶丝材、箔材的制备。近年来快速凝固技术主要在两个方面得到发展:①利用喷射成型、超高压、深过冷,结合适当的成分设计,发展体材料直接成型的快速凝固技术;②在近快速凝固条件下,制备具有特殊取向和组织结构的新材料。目前快速凝固技术被广泛地用于非晶或超细组织的线材、带材和体材料的制备与成型。 2. 半固态成型 半固态成型是利用凝固组织控制的技术.20世纪70年代初期,美国麻省理工学院的Flemings 教授等首先提出了半固态加工技术,打破了传统的枝晶凝固式,开辟了强制均匀凝固的先河。半固态成型包括半固态流变成型和半固态触变成形两类:前者是将制备的半固态浆料直接成型,如压铸成型(称为半固态流变压铸);后者是对制备好的半固态坯料进行重新加热,使其达到半熔融状态,然后进行成型,如挤压成型(称为半固态触变挤压) 3. 无模成型 为了解决复杂形状或深壳件产品冲压、拉深成型设备规模大、模具成本高、生产工艺复杂、灵活度低等缺点,满足社会发展对产品多样性(多品种、小规模)的需求,20世纪80年代以来,柔性加工技术的开发受到工业发达国家的重视。典型的无模成型技术有增量成型、无摸拉拔、无模多点成型、激光冲击成型等。 4.超塑性成型技术 超塑性成型加工技术具有成型压力低、产品尺寸与形状精度高等特点,近年来发展方向主要包括两个方面:一是大型结构件、复杂结构件、精密薄壁件的超塑性成型,如铝合金汽车覆盖件、大型球罐结构、飞机舱门,与盥洗盆等;二是难加工材料的精确成形加工,如钛合金、镁合金、高温合金结构件的成形加工等。 5. 金属粉末材料成型加工 粉末材料的成型加工是一种典型的近终形、短流程制备加工技术,可以实现材料设计、制备预成型一体化;可自由组装材料结构从而精确调控材料性能;既可用于制备陶瓷、金属材料,也可制备各种复合材料。它是近20年来材料先进制备与成型加工技术的热点与主要发展方向之一。自1990年以来,世界粉末冶金年销售量增加了近2倍。2003年北美铁基粉末。相关的模具、工艺设备和最终零件产品的销售额已达到91亿美元,其中粉末冶金零件的销售为64亿美元。美国企业生产的粉末冶金产品占全球市场的一半以上。可以预见,在较长一段时间内,粉末冶金工业仍将保持较高的增长速率。粉末材料成型加工技术的研究重点包括粉末注射成型胶态成型、温压成型及微波、等离子辅助低温强化烧结等。 6. 陶瓷胶态成型 20世纪80年代中期,为了避免在注射成型工艺中使用大量的有机体所造成的脱脂排胶困难以及引发环境问题,传统的注浆成型因其几乎不需要添加有机物、工艺成本低、易于操作制等特点而再度受到重视,但由于其胚体密度低、强度差等原因,他并不适合制备高性能的陶瓷材料。进入90年代之后,围绕着提高陶瓷胚体均匀性和解决陶瓷材料可靠性的问题,开发了多种原位凝固成型工艺,凝胶注模成型工艺、温度诱导絮凝成形、胶态振动注模成形、直接凝固注模成形等相继出现,受到严重重视。原位凝固成形工艺被认为是提高胚体的均匀性,进而提高陶瓷材料可靠性的唯一途径,得到了迅速的发展,已逐步获得实际应用。 7. 激光快速成型 激光快速成形技术,是20实际90年代中期由现代材料技术、激光技术和快速原型制造术相结合的近终形快速制备新技术。采用该技术的成形件完全致密且具有细小均匀的内部组

准晶材料的制备(color)

准晶材料的制备
整理:滕飞 2011-11-02
1

以色列科学家丹尼尔-舍特曼 (Daniel Shechtman)因发现 准晶体而获得2011年诺贝尔 化学奖。
2

准晶的概念
准晶材料是介于周期结构与无序结构之间的一类 新发现的凝聚态,具有传统的晶体材料所不具备 的对称性,由于其结构的特殊性,例如它具有五 次和十次等特殊的对称性。因此它具有许多优良 的机械性能、物理化学性能和光电磁性能。 准晶分类 ?从热力学角度 热力学
亚稳态准晶:在某个温度区间退火会变为晶体类似相 稳态准晶:热力学上是稳定的
?按结构可分为 一维准晶 二维准晶:八次、十次和十二次准晶 三维准晶:主要是二十面体
3

?
一维准晶:是由二维十面体准晶中的一个二次准周期轴(与十次轴正 交)变为二次周期轴而生成的,即一维准晶具有两个正交的周期方向 和一个与它们正交的准周期方向。 二维准晶:在一个平面上的两个方向上显示准周期性,而在其法线方 向呈现周期性。二维准周期平面的特征可以用这个具有周期性的旋转 轴来表示,从而分为不同形态的二维准晶。 三维准晶:主要是二十面体,它指的是在空间中任何三个正交方向上 都呈现准周期性,而无任何周期性方向。
?
?
4

准晶体的类型
现在已在100多种金属合金体系中发现了准晶相,如已有报 导的准晶合金有基于Al、Cu、Mg、Ni、Ti、Zn、Zr等的 合金。
5

影响准晶生长的因素
?
准晶形成过程大致可有4种基本情况:气体→准晶体、溶体(熔体)→准 晶体、晶体→准晶体、非晶→准晶体。
?
? ? ? ?
影响准晶生长的因素
合金成分,准晶只能在一定范围内形成; 合金成分 原子尺寸,主要元素的原子半径大小相近,以较小的原子为中心; 原子尺寸 电子结构,组元的电子结构与准晶的形成能力有内在联系; 电子结构 冷却速度,影响较大,冷却速度较大有利于准晶的形成,冷却速度过 冷却速度 高会导致过饱和固熔体先于准晶形成甚至出现非晶,因此冷去速度应 控制在一个适应的范围; 温度和压力,改变结构的束缚状态和结构熵, A1-Cu-Fe系合金,压力 温度和压力 增加有助于晶体等向准晶转变,增加压力可使冷却速度降低而保持效 果不变。
6
?

中南大学材料制备技术考试.doc

1 2 超导材料的主要特性有()、()、()和()。 3超塑性的形成机理主要有()、()和()。 4摩擦搅拌焊焊接接头的焊缝组织可分为()、()、()和()。 5稀有金属锻件断面开裂可能的形成原因是()、()和()。 6双丰昆连续铸轧过程的凝固行为是()、()、()和()。 7 有色金属凝固的方式有()、()和()。 8中南大学考试试卷 2007 - 2008学年王学期 时间110分钟 材料制备技术 课程 £1学时3学分 考试形式:开卷 专业年级:材料0501和0502 总分100分,占总评成绩80% 一、名词解释(本题20分,每小题5分) 1、连续铸造 2、钎焊 3、连续铸轧 4、CVD 二、填空题(本题30分,每空1分) 有色金属常见的缺陷主要是()、()、()、()和()。 钛合金中相稳定元素可分为()和(),后者又分为()、()和慢共析型三种。 三、简答题(本题30分,每小题10分) 1、简述连续铸轧与连铸连轧的区别。 2、简述粉末冶金常用的制粉,成形和烧结技术与方法。 3、简述热喷涂的一般原理与基本工艺流程。

四、论述题(本题20分) 试论述摩擦搅拌焊的优缺点及其应用领域和效果。 答案: 一、名词解释(本题20,每小题5分) 1、连续铸造 将熔融金属连续不断地浇注到被成为结晶器的特殊容器中,凝固的铸件不断从结晶器的另一端被引出(3),从而获得任意长度的等横截面铸件的铸造方法⑵。 2、钎焊 钎焊是利用熔点比被焊接金属熔点低的金属作钎料,将钎料与工件一起加热到钎料熔化状态,借助毛细管作用将其吸入到固态间歇内(2),使钎料与固态工件表面发生原子的相互扩散、溶解和化合而连成整体的焊接方法(3)。 3、连续铸轧 指直接将液态金属连续铸轧成板带坯的工艺。在这种工艺中,液态金属在辐式结晶器之间,即两个轧孝昆的孝昆缝间一边凝固一边被轧制。带坯的连续铸轧技术是冶金及材料领域的一项前沿技术,它将合金的熔炼铸造和轧制变形甚至热处理等工序串联为一体,将金属熔体直接“轧制”成带坯或成品带材(2 )。连续铸轧是一个很复杂的过程,其铸造和轧制并非是孤立的单独行为,液体金属在两个轧辐的辐缝之间一边凝固一边被轧制,即一方面连续散热与凝固,另一方面还受到轧制作用,而不是铸造过程和热轧过程的简单混合。在这里轧舞主要起冷凝液体的作用,同时又起到轻量的轧压作用(3)。 4、CVD 化学气相沉积是一种化学的气相生长法,它是指把含有构成薄膜元素的一种或几种化合物、单质气体供给基片,借助气相的作用或在基片上发生的化学反应生成所需要的膜,它具有设备简单、绕射性好、膜组成控制性好等特点,比较适合于制备陶瓷薄膜(3 )。这类方法的实质为利用各种反应,选择适当的温度、气相组成、浓度及压强等参数,可得到不同组分及性质的薄膜,理论上可任意控制薄膜的组成,能够实现以前没有的全新的结构与组成(2 )。 二、填空题(本题30分,每空1分) 1有色金属常见的缺陷主要是(偏析)、(缩孔、缩松)、(裂纹)、(气孔)和(非金属夹杂)o

材料制备方法

陶瓷基复合材料的制备 摘要:现代陶瓷材料具有耐高温、耐磨损、耐腐蚀及重量轻等许多优良的性能。但是,陶瓷材料同时也具有致命的缺点,即脆性,这一弱点正是目前陶瓷材料的使用受到很大限制的主要原因。 因此,陶瓷材料的韧性化问题便成了近年来陶瓷工作者们研究的一个重点问题。现在这方面的研究已取得了初步进展,探索出了若干种韧化陶瓷的途径。其中,往陶瓷材料中加入起增韧作用的第二相而制成陶瓷基复合材料即是一种重要方法。 一.基体与增强体 1.1基体 陶瓷基复合材料的基体为陶瓷,这是一种包括范围很广的材料,属于无机化合物而不是单质,所以它的结构远比金属合金复杂得多。现代陶瓷材料的研究,最早是从对硅酸盐材料的研究开始的,随后又逐步扩大到了其他的无机非金属材料。 目前被人们研究最多的是碳化硅、氮化硅、氧化铝等,它们普遍具有耐高温、耐腐蚀、高强度、重量轻和价格低等优点。 1.2增强体 陶瓷基复合材料中的增强体,通常也称为增韧体。从几何尺寸上增强体可分为纤维(长、短纤维)、晶须和颗粒三类。 纤维:在陶瓷基复合材料中使用得较为普遍的是碳纤维、玻璃纤维、硼纤维等; 晶须为具有一定长径比(直径0.3~1μm,长0~100 μm) 的小单晶体。晶须的特点是没有微裂纹、位错、孔洞和表面损伤等一类缺陷,因此其强度接近理论强度。 颗粒:从几何尺寸上看,颗粒在各个方向上的长度是大致相同的,一般为几个微米。颗粒的增韧效果虽不如纤维和晶须。但是,如果颗粒种类、粒径、含量及基体材料选择适当仍会有一定的韧化效果,同时还会带来高温强度,高温蠕变

性能的改善。所以,颗粒增韧复合材料同样受到重视并对其进行了一定的研究. 二.纤维增强陶瓷基复合材料 在陶瓷材料中,加入第二相纤维制成复合材料是改善陶瓷材料韧性的重要手段,按纤维排布方式的不同,又可将其分为单向排布长纤维复合材料和多向排布纤维复合材料。 2.1单向排布长纤维复合材料 单向排布纤维增韧陶瓷基复合材料的显著特点是它具有各向异性,即沿纤维长度方向上的纵向性能要大大优于其横向性能。 在实际构件中,主要是使用其纵向性能。在单向排布纤维增韧陶瓷基复合材料中,当裂纹扩展遇到纤维时会受阻,这时,如果要使裂纹进一步扩展就必须提高外加应力。 2.2多向排布纤维复合材料 单向排布纤维增韧陶瓷只是在纤维排列方向上的纵向性能较为优越,而其横向性能显著低于纵向性能,所以只适用于单轴应力的场合。而许多陶瓷构件则要求在二维及三维方向上均具有优良的性能,这就要进一步研究多向排布纤维增韧陶瓷基复合材料。 二维多向排布纤维增韧复合材料的纤维的排布方式有两种:一种是将纤维编织成纤维布,浸渍浆料后,根据需要的厚度将单层或若干层进行热压烧结成型。这种材料在纤维排布平面的二维方向上性能优越,而在垂直于纤维排布面方向上的性能较差。一般应用在对二维方向上有较高性能要求的构件上。 另一种是纤维分层单向排布,层间纤维成一定角度。这种三维多向编织结构还可以通过调节纤维束的根数和股数,相邻束间的间距,织物的体积密度以及纤维的总体积分数等参数进行设计以满足性能要求。 2.3制备方法 目前采用的纤维增强陶瓷基复合材料的成型主法主要有以下几种: 1.泥浆烧铸法 这种方法是在陶瓷泥浆中分散纤维。然后浇铸在石膏模型中。这种方法比较古老,不受制品形状的限制。但对提高产品性能的效果显著,成本低,工艺

题库---微电子工艺原理

微电子工艺原理复习知识点与题库 一、绪论微电子工艺的概述 知识点:集成度、摩尔定律、微电子系统的概念 1集成电路的制作可以分成三个阶段:①硅晶圆片的制作;②集成电路的制作;③集成电路的封装。 2评价发展水平:最小线宽,硅晶圆片直径,DRAM容量 二、晶体结构和晶体生长 知识点: 5金刚石结构特点:共价四面体,内部存在着相当大的“空隙” 6面心立方晶体结构是立方密堆积,(111)面是密排面。 7金刚石结构可有两套面心立方结构套购而成,面心立方晶格又称为立方密排晶格。 8双层密排面的特点:在晶面内原子结合力强,晶面与晶面之间距离较大,结合薄弱。两个双层面间,间距很大,而且共价键稀少,平均两个原子才有一个共价键,致使双层密排面之间结合脆弱 9金刚石晶格晶面的性质:由于{111}双层密排面本身结合牢固,而双层密排面之间相互结合脆弱,在外力作用下,晶体很容易沿着{111}晶面劈裂。 由{111}双层密排面结合牢固,化学腐蚀就比较困难和缓慢,所以腐蚀后容易暴露在表面上。因{111}双层密排面之间距离很大,结合弱,晶格缺陷容易在这里形成和扩展。 {111}双层密排面结合牢固,表明这样的晶面能量低。由于这个原因,在晶体生长中有一种使晶体表面为{111}晶面的趋势。 10肖特基缺陷:如果一个晶格正常位置上的原子跑到表面,在体内产生一个晶格空位,称肖特基缺陷。 11弗伦克尔缺陷:如果一个晶格原子进入间隙,并产生一个空位,间隙原子和空位是同时产生的,这种缺陷为弗伦克尔缺陷。 12堆垛层错:在密堆积的晶体结构中,由于堆积次序发生错乱 13固溶体:当把一种元素B(溶质)引入到另一种元素A(溶剂)的晶体中时,在达到一定浓度之前,不会有新相产生,而仍保持原来晶体A的晶体结构,这样的晶体称为固溶体。 14固溶度:在一定温度和平衡态下,元素B能够溶解到晶体A内的最大浓度,称为这种杂质在晶体中的最大溶解度 15固溶体分类:替位式固溶体,间隙式固溶体 16某种元素能否作为扩散杂质的一个重要标准:看这种杂质的最大固溶度是否大于所要求的表面浓度,如果表面浓度大于杂质的最大固溶度,那么选用这种杂质就无法获得所希望的分布。 题目 三扩散工艺 知识点:

第一章 工程材料与制造技术简论

第一章工程材料与制造技术简论 本章教学学时:2 本章内容主要是为了拓宽学生的知识面,所涉及内容十分丰富。从横向看,内容包括工程材料、材料成型、机械加工、计算机技术、自动化技术、工业管理等系列知识;从纵向看,内容则包括了材料与制造技术的发展历程和相关学科发展对制造技术的积极渗透。可以说本章是工科低年级同学进入本课程学习,也是进入专业学习的起点。建议同学在学习中能跳出本课程,站在技术和社会发展的高度,理解该课程的基础地位和重要性。 本章教学方式:课堂讲课及学生自学 主要内容: 一、工程材料发展简述 世界各国对材料传统的分类:金属材料、无机非金属材料(陶瓷)、有机高分子材料和复合材料四大类。 这四类工程材料不同历史阶段所具有的相对重要性急发债趋势见图1-1。 图1-1 工程材料发展历史虽时间推移的相对重要性示意图(时间是非线性的) (一)金属材料的发展史 (二)金属材料的发展现状及趋势 1.高纯材料以超高纯铁为例,在高纯状态,纯铁不仅有优异的软磁性能,良

好的耐腐蚀性能,残余电阻率高,而且以高纯铁为基础进行合金研制,预计在高真空容器、极低温材料、核反应堆材料等方面的应用将十分引人注目。 2.高强度及超高强度金属材料超高强度是当代材料科学家为减轻重量、节省资源而追求的设计目标,这在航空、航天、原子能、深海潜艇等领域有极大的需求。提高材料强度,严格讲,一是指提高抵抗塑性变形的能力,二是提高材料抵抗破坏的能力。提高抵抗塑性变形的能力通常叫强化,提高材料抵抗破坏的能力叫韧化,两者同时提高,则称强韧化。通常典型超高强材料包括超高强度钢、高强度铝合金、高强度钛合金等。 3.超易切削钢和超高易切削钢金属材料通常要求机械加工,据统计,切削加工费用大约占总成本的75%。若改成超高易切削钢,实验表明刀具寿命可提高30倍,因此零件成本会大幅度下降,甚至可减少一半。其社会效益和经济效益极其显著。 4.硬质合金与金属陶瓷金属陶瓷最早是为耐磨材料而设计,它是金属材料与陶瓷的复合材料。 5.高温合金与难熔合金 很大程度上 6.纤维增强金属基复合材料该类复合材料的比强度极高,其强度σ c 。目前可供选择的纤维较多,如硼纤维,碳纤维、碳化硅纤取决于增强体纤维强度σ f 维、玻璃纤维、氧化铝纤维等。纤维的选择原则是:比重小,弹性模量E大,强度σ f 高。金属复合材料的发展目标是:制备出各种比强度、比弹性模量高的材料。 7.共晶合金定向凝固材料该材料属新型复合材料,是共晶合金在特殊工艺条件下制备出来的复合材料,其性能特点是在超高温情况下呈现更高强度。它是通过温度梯度定向凝固,使共晶各相在本身的相上连续长大而成的复合材料,这种复合也叫原生复合。共晶合金定向凝固材料可广泛用于涡轮叶片等耐热材料,也可以用于偏光材料。 8.快速冷凝金属非晶及微晶材料快速冷凝技术是本世纪下半叶以来材料制备技术中的重大突破,由此产生了一系列非平衡态的金属合金。快速冷凝可以导致非晶和微晶材料。 典型非晶和微晶金属材料: (1)金属玻璃;(2)金属微晶材料 9.有序金属间化合物金属间化合物是新一代高温结构材料,这类化合物与正常价化合物之间的区别在于,金属间化合物的晶体结构中,其构成元素的原子以整数比构成化合物,不是按照化学价的概念,而是按照金属键或部分共价键结合,由于原子在晶体中作长程有序排列,因而也称有序金属间化合物。 10.纳米金属材料纳米金属是泛指颗粒径小于100纳米(nm)的金属材料,大于100纳米的金属颗粒称为粉末,小于2纳米的金属颗粒则称为原子簇,纳米金属颗粒具有一些明显不同于块状金属和一般粉末金属的属性。

最新材料制备新技术复习题

第一章 1.实现快速凝固的途径有哪些? 答:a.动力学急冷法 b.热力学深过冷法 c.快速定向凝固法 2.用单辊法制备金属带材的快速凝固工艺特点是什么? 答:答:①单辊需要以2000~10000r∕min的高速度旋转,同时要保证单辊的转速均匀性很高,径向跳动非常小,以控制薄膜的均匀性②为了防止合金溶液的氧化,整个快速凝固过程要在真空或保护性气氛下进行③为了获得较宽并且均匀的非晶合金带材,液流必须在单上均匀成膜,液流出口的设计及流速的控制精度要求很高。 3.常用金属线材的快速凝固方法有哪些?它们的工艺特点是什么? 答:a.玻璃包覆熔融的线法。特点:容易成型、连续等径、表面质量好的线材。但生产效率低,不适合生产大批量工业用线材。 b.合金熔液注入快冷法。特点:装置简单,但液流稳定性差,流速较低、难控制速率,不能连续生产。 c.旋转水纺线法。特点:原理和装置简单、操作方便、可实现连续生产。 d.传送带法。特点:综合了b、c法,可实现连续生产,但装置较复杂,工艺参数调控较难,传送速率不快。 第二章 1喷射成形的基本原理是什么?其基本特点有哪些? 答:原理:在高速惰性气体的作用下,将熔融金属或合金液流雾化成弥散的液态颗粒,并将其喷射到水冷的金属沉积器上,迅速形成高度致密的预成形毛坯。 特点:高度致密,低含氧量,快速凝固的显微组织特征,合金性能高,工艺流程短,成本低,高沉积效率,灵活的柔性制造系统,近终形成形,可制备高性能金属基复合材料。 2.喷射成形关键装置指的是什么?雾化喷嘴系统 3.用喷射成形技术制备复合材料时有什么优势?是否任何复合材料都能用该方法来制备?说明理由。 答:主要优势:在于快速凝固的特性、高温暴露时间短、简化工艺过程。 否;因为有的复合材料容易发生界面反应,且高含氧量、气体含量和夹杂含量,工艺复杂和成本偏高等问题。 4.气体雾化法是利用气体的冲击力作用于熔融液流,使气体的动能转化为熔体的表面,从而形成细小的液滴并凝固成粉末颗粒。 5.喷射成形又称喷射雾化沉积或喷射铸造等是用快速凝固方法制备大块,致密材料的高新技术,它把液态金属的雾化(快速凝固)和雾化熔滴的沉积(熔滴动态致密化)自然结合起来。 6.喷射成型的四个阶段:雾化阶段,喷射阶段,沉积阶段,沉积提凝固阶段。 7.雾化喷射成形工艺一般采用惰性气体。 8.喷射成形装置的技术关键主要包括装置总体布局,雾化喷嘴,沉积器结构,和运动方式。 9.装置结构布局:倾斜布局,垂直布局,水平布局。 10.喷射成形装置应包括:含熔炼部分,金属导流系统,雾化喷嘴,雾化气体控制系统,沉积器及其传动系统,收粉及排气系统。 第三章 1.机械合金化的定义及球磨机理是什么? 答:(MA)是指金属或合金粉末在高能球磨机中通过粉末颗粒与球磨之间长时间激烈地冲击、碰撞,使粉末颗粒反复产生冷焊、断裂,导致粉末颗粒中原子扩散,从而获得合金化粉末的一种粉末制备方法。 球磨机理:取决于粉末组分的力学性能,它们之间的相平衡和在球磨过程中的应力状态。

材料制备技术试题及答案

1机械合金化:金属或合金粉末在高能球磨机中通过粉末颗粒与魔球之间长时间激烈地冲击、碰撞,使粉末颗粒反复产生冷焊、断裂,导致粉末颗粒中原子扩散,从而获得合金化粉末的一种粉末制备技术。 2 反应球磨:通过一种球磨化学添加物与金属粉末,诱发低温化学反应,生成了分布均匀的弥散粒子。 3 行星球磨机:靠本身强烈的自传和公转,使磨球产生巨大地冲击、球磨作用,使物料粉碎的机器。 4搅拌式球磨机:主要由一个静止的球磨筒体和一个装在筒体中心的球磨搅拌器组成,由球磨介质重力及螺旋回转产生的挤压力对物料产生冲击、摩擦和剪切作用,使物料被粉碎。 5临界速度: 6球磨介质:在机械合金化过程中,工具钢、铬钢、调质钢、不锈钢、轴承钢和WC-Co硬质合金钢是常用的球磨介质材料。 7球料比和填充系数:球料比是球磨过程中的重要参数。球料比越大,球磨所需要的时间越短。在高球料比下,磨球个数增加,单位时间内碰撞次数增加,从而转移更多的能量给粉末颗粒,非晶化时间变得更短,同时使粉末温升增加但如果温度升过高,非晶相甚至发生晶化。机械合金化的填充系数一般是0.5,如果填充系数过大,没有足够的空间使磨球运动,那么球的冲击作用会降低;如果填充系数过小,则机械合金化的产率较低。 8工艺控制剂PCA:控制冷焊,可以为固体、液体或气体,多为表面活性剂一类的有机化合物。在球磨时被吸附在粉末表面,降低了冷焊,抑制了结块,并且降低了粉末的表面活性,导致球磨时间缩短或可以球磨得到更细的粉末,但过多的PCA也会影响原子扩散和污染粉末。其用量决定于:1,粉末颗粒的冷焊性能;2,PCA的化学和热稳定性;3,粉末和球磨介质的用量。 9弥散强化合金:按其弥散相的种类可分为氧化物弥散强化合金和碳化物弥散强化合金。10喷射沉积:熔融金属或合金在惰性气氛中借助高压惰性气体或机械离心雾化形成固液两相的颗粒喷射流,并直接喷到较冷基底上,产生碰撞、粘结、凝固而形成沉积物。沉积物可以通过各种致密化加工得到性能优异的材料。222 11喷射共沉积:在喷射沉积过程中,把具有一定动量的颗粒增强相喷到雾化液流中,熔融金属和颗粒增强相共同沉积到较冷基底上,从而制备颗粒增强金属基复合材料的一种办法。12反应喷射沉积:将喷射沉积技术与反应合成制备陶瓷粒子技术结合起来,形成共沉积的一种新型制备颗粒增强金属基复合材料的技术。在喷射沉积过程中,金属液体被充分雾化成细小的液滴,从而具有很大的体表面积,在一定的过热条件下,可以为喷射沉积过程中融滴与外加反应剂接触并发生化学反应提供驱动力。230 13 金属基复合材料:简称MMCs以其优良的强度、刚度、抗蠕变、耐磨损、低密度、可控膨胀性等综合性能而受到世界工业发达国家的极大重视,其应用遍布汽车、电子、高速列车航空航天等领域。分为非连续体(陶瓷颗粒、晶须或短纤维)增强型和纤维增强型两大类。 14 自蔓延高温合成:利用外部提供必要的能量诱发放热化学反应(点燃),这种高放热反应所产生的能量使两种或两种以上物质的化学反应以燃烧波的形式自动蔓延下去,从而合成所需要的材料(粉体或固结体)。 15 自蔓延燃烧方式SHS:点燃式,待反应的原料混合物物块的一端点燃反应,反应放出的巨大能量又使邻近材料发生反应。热爆式,将原料混合物块在一定气氛下进行整体加热,使其燃烧反应,反应一旦发生,即停止加热,使物料外部燃烧放出的热量向内部传播使反应进行下去。微播式是从物料内部开始加热并使热量往外扩散从而发生反应,这种办法反应更彻底。16 稳态燃烧:指燃烧过程中火焰以稳定的恒速传播的燃烧模式。 17 非稳态燃烧:燃烧过程中火焰的传播速率不为常数的燃烧模式,又可进一步分为振荡燃

现代材料制备技术-考试复习资料

注浆成形:将陶瓷原料制备出具有一定流动性的称之为泥浆的浆料。经陈腐、调节添加剂等方法使浆料性能稳定在利于注浆成型的范围。将泥浆注人石膏质多孔模型中,由于石膏的毛细孔吸水作用,将泥浆中部分水分吸人模型壁中,致使泥浆从靠近石膏模型面的部分开始逐渐固化而形成具有一定保型性能的陶瓷坯层。最后将余浆排出,经离型脱模后干燥便得到陶瓷坯体。作为一种主要的成型方法,传统的注浆成型仍在日用瓷和卫生瓷等生产中发挥着重要作用。 反应烧结:反应烧结法是通过多孔坯件同气相或液相发生化学反应,使坯件质量增加、孔隙减小,并烧结成具有一定强度和尺寸精度的成品的一种烧结工艺。 溶胶一凝胶法:溶胶一凝胶法是指将一种或多种固相以微小的胶体颗粒形式均匀地分散在液相介质中,形成稳定的胶体溶液,使不同的颗粒在溶胶中达到分子水平的混合,然后通过适当的加热或调整PH等方法改变胶体溶液的稳定性,使之发生胶凝作用转变成凝胶,凝胶经适当的温度煅烧,在煅烧过程中各物相相互反应生成所需制备的粉体。 反应烧结:反应烧结法是通过多孔坯件同气相或液相发生化学反应,使坯件质量增加、孔隙减小,并烧结成具有一定强度和尺寸精度的成品的一种烧结工艺。 凝胶注浆:陶瓷浆料原位凝固成型是20世纪90年代迅速发展起来的新的胶态成型技术。其成型原理不同于依赖多孔模吸浆的传统注浆成型,而是通过浆料内部的化学反应形成大分子网络结构或陶瓷颗粒网络结构,从而使注模后的陶瓷浆料快速凝固为陶瓷坯体。 简述粉体液相合成过程中防止团聚的办法。 一是在体系中加人有机大分子,使其吸附在颗粒表面,形成空间阻挡层,阻止颗粒之间互相碰撞团聚。常用的有机大分子是聚丙烯酰胺、聚乙二醇等。二是用表面张力小的液体如乙醇、丙酮等有机液体做溶剂,可减轻团聚。另外,可采用冷冻干燥办法,使液相凝固成固体,通过减压,使溶剂升华排除,也可防止团聚。 机械化学法的基本原理及其特点。 机械化学法的基本原理是通过对反应体系施加机械能诱导其发生扩散及化学反应等一系列化学和物理化学过程,从而达到合成新品种粉体的目的。一般的机械粉碎中物料并不发生化学反应,只是物料的几何形态、粒度、比表面积发生变化,物质本身性质并不变化。 机械化学与常规化学比较,具有以下基本特征:机械力作用可以产生一些热能难于或无法进行的化学反应;有些物质的机械化学反应与热化学反应有不同的反应机理;与热化学相比机械化学受周围环境的影响要小得多;机械化学反应可沿常规条件下热力学不可能发生的方向进行。 陶瓷制备工艺中,部分陶瓷原料预先煅烧的主要目的是什么? a)去除原料中易挥发的杂质、化学结合和物理吸附的水分。气体、有机物等,从而提高原料的纯度; b)使原料颗粒致密化及结晶长大,这样可以减小在以后烧结中的收缩,提高产品的合格率: C)完成同质异晶的晶型转变,形成稳定的结晶相,如γAl2O3锻烧成a-AI2O3。 预烧工艺的关键是预烧温度、预烧气氛及外加剂的选择。常用原料的预烧目的与预烧条件列于表45。

电子陶瓷工艺原理图文

电子陶瓷 第三章电子陶瓷工艺原理 1 第三章电子陶瓷工艺原理 一电子陶瓷工艺概述 二电子陶瓷原料与粉碎 三电子瓷料合成原理 四电子陶瓷成型原理 五电子陶瓷烧结原理 六电子陶瓷表面加工 2 一电子陶瓷工艺概述 1 电子陶瓷基本工艺: 通常,从性能的改进来改善陶瓷材料的功能,需要从两方面入手:①内部组成:从材料的组成上直接调节,优化其内在品质②外界条件:改变工艺条件以改善和提高陶瓷材料性能,达到获得优质电子陶瓷材料的目的。 电子陶瓷基本工艺一般包括如下过程: 原料处理和加工、电子瓷料合成、成型、烧结、表面加工等基本单元操作。 3

(a(b (c(d(e (g (f (h 一电子陶瓷工艺概述 2 电子陶瓷工业化流程: 造粒与成型 喷雾造粒干压成型 6 一电子陶瓷工艺概述

2 电子陶瓷工业化流程: 烧结与表面金属化 陶瓷烧结印刷电极 7 一电子陶瓷工艺概述 2 电子陶瓷工业化流程: 测试与包装 测试分选编带包装 8 二电子陶瓷原料与粉碎 1 电子陶瓷原料 2原料粒度与粉碎 3球磨法原理 9 二电子陶瓷原料与粉碎 1 电子陶瓷原料 原料对电子陶瓷的性能至关重要,对于电子陶瓷的粉料,必须了解下列三方面情况: ?化学成分

包括纯度、杂质的种类与含量、化学计量比 ?颗粒度 包括粉粒直径、粒度分布与颗粒外形等 ?结构 包括结晶形态、稳定度、裂纹与多孔性等 10 二电子陶瓷原料与粉碎 1 电子陶瓷原料 原料的化学成分,直接关系到电子陶瓷的各项物 理性能是否能够得到保证,而颗粒度与结构主要决定 坯体的密度及其可成型性。 粒度越细,结构越不完整,则其活性(不稳定性、可烧结性越大,越有利于烧结的进行。 电子陶瓷原料有天然原料和化工原料两类。 11 二电子陶瓷原料与粉碎 1 电子陶瓷原料 ?天然原料: 直接来源于大自然,如粘土,石英,菱镁矿,刚玉矿等。

《材料制备技术》课程教学大纲

《材料制备技术》课程教学大纲 Fabricating Technologies of Materials 课程代码: 适用专业:材料科学与工程 学时数:48 学分数:3 执笔者:编写日期:2004年3月 一、课程性质和目的 材料制备技术是高等工科院校材料科学与工程专业必修的技术基础课。 通过本课程的学习,使学生获得有关材料合成与制备方法的基本理论和基本知识,掌握现代材料常用的制备方法、技术、工艺及应用。 二、课程教学的基本要求 通过本课程的学习,学生应达到下列要求: 1.掌握各类材料合成与制备原理、常用方法、加工工艺及特点; 2.初步掌握一些新材料的制备技术; 3.初步具有对一般材料进行选定合理的制备方法、成形工艺的能力。 三、课程教学内容与学时分配 1.单晶材料的制备(6学时) (1)固相-固相平衡的晶体生长的形变再结晶理论及应变退火和工艺设 备; (2)单组分液相-固相平衡的晶体生长的理论基础、制备工艺。 2.薄膜的制备(6学时) (1)物理气相沉积——真空蒸镀; (2)溅射成膜;化学气相沉积(CVD)。 3.非晶态材料的制备(6学时) (1)非晶态材料的基本概念和基本性质; (2)非晶态材料的形成理论; (3)非晶态材料的制备原理与方法。 4.复合材料的制备(6学时)

(1)复合材料的基本概念和性能; (2)树脂基复合材料、金属基复合材料、陶瓷基复合材料、碳/碳复合材 料的制备原理、方法、技术。 5.功能陶瓷的合成与制备(6学时) (1)功能陶瓷概论; (2)高温超导陶瓷、敏感陶瓷、压电陶瓷、半导体陶瓷、磁性陶瓷的制 备原理及方法。 6.结构陶瓷的制备(6学时) (1)结构陶瓷概论; (2)结构陶瓷的制备方法、技术、工艺; (3)高性能结构陶瓷的应用。 7.功能高分子材料制备(6学时) (1)功能高分子材料概述; (2)医用生物材料——聚乳酸、磁性高分子微球、高分子—无机夹层化 合物、极化聚合物电光材料、高分子液晶的合成。 8.实验教学(6学时)实验教学内容见材料科学与工程专业实验教学大纲。 四、本课程与其它课程的联系与分工 先修课程:《材料科学基础》、《材料学概论》、《物理化学》、金工实习。 后修课程:《金属材料学》、《粉末冶金材料》、《功能材料》、 《现代材料分析方法》。 五、建议教材与教学参考书 《材料合成与制备方法》曹茂盛、徐群等编哈尔滨工业大学出版社《材料制备新技术》吴建生、张春柏主编上海交通大学出版社

相关文档
最新文档