一台变频器拖动多台电机的事项你注意了吗精选文档

一台变频器拖动多台电机的事项你注意了吗精选文档
一台变频器拖动多台电机的事项你注意了吗精选文档

一台变频器拖动多台电机的事项你注意了吗精

选文档

TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

一台变频器拖动多台电机的事项你注意了吗?【工控老鬼分享】

变频器可以实现一拖二甚至一拖多,但需要遵循一些原则,本文作下简要分析:

1、设备选型

A. 变频器选型

在选型的时候,首先要考虑运行工况——其中一台或多台电机是否要在变频器运行过程中随时启停。

如果在变频器的运行过程中,电机不需要随时启动,只是停止或者停止都不用,那么在变频器容量选型的时候只需要注意变频器的额定功率大于所有电机的总功率,然后再放大一级选型即可。在这种情况下,进行电气设计的时候,就必须保证一个原则:变频器处于停止状态才能切换接触器,投入或者变频电机的运行状态;在变频器运行过程中,严禁单独启停某台设备或者多台设备。

如果在变频器的运行过程中,电机需要随时启动停止,那么在变频器容量选型的时候需要特别注意!首先统计可能要随时启停电机的总功率,然后把这个功率乘以5~7(在变频器运行过程中,随时启动的电机相当于直接启动,电机启动电流差不多为额定电流的5~7倍),最后把这个结果与不需要随时启停的电机总功率相加,得到的和就是所需变频器的理论功率。如果需要启停的设备很多,那么这个功率就可以作为变

频器的选型功率,不需要再放大一级了——因为平常很难可能多个电机在同时启动。如果需要启停的设备很少,那么这个功率需要再放大一级,才能作为变频器的选型功率。

B. 交流接触器选型

对于需要随时启停的电机,需要配置交流接触器。对于交流接触器的选型,遵循一般选型原则即可——电机的额定电流再放大一级选型即可。

C. 热继电器或电动机保护器选型

对于变频器一拖多的情况,为保护每个电机以及变频器的设备安全,原则上必须在电机主回路安装热过载继电器或电动机保护器。对于热继电器的选型,遵循一般选型原则即可——电机的额定电流在热继电器的整定范围以

内。

变频器控制多台电动机

使用一台变频器控制多台电动机,主要使用控制风扇,水泵的流量及 流压的地方。变频器的内置PI 控制器收到工程的控制量的反馈来PI 控制主电动机,根据需要选择补助电动机当公频运行保持一定的控制量。 反馈系统的控制量,通过变频器内部的内置PI 控制器来实现主电动机(主水泵)的速度控制。 设定基准值(Reference ) PI 控制器的基准值(Reference )利用面板或端子排(V1;电压0~10V / I ;电流4~20mA )设定。设定方法如下。 1. 面板(Key-Pad ) 利用频率设定,根据反馈种类如下设定。 -.反馈信号为4~20mA ,设定点为12mA 的情况 Hz Max F 3060*16 8 _*4)m A -(204)m A -(12Hz]Ref erence[=== 设定目标频率方式里输入30Hz 。 -.反馈信号为0~10V 设定点为国为7V 的情况 什么是多台 电机控制 ? Multi-Motor Control? 内置PI 控制器

Hz Hz Max F 4260*10 7 _*10V 7V Hz]Reference[=== 2.V1输入(0~10V ) -.反馈由 I 输入(4~20mA )设定 -.设定点为10mA 的情况(压力设定点为20%) V V mA 75.310*)420(4)m A -(10V]Ref erence[=-= Hz Max F 5.2260*10 75.3_*10V 3.75V [Hz]Display === ??? 输入电压为3.75V 时目标频率设定方式里显示22.5Hz 。 3.I 输入(4~20mA ) -.反馈由V1(0~10V )设定 -.设定点为3V 时(压力设定点为30%) mA mA V 8.843*10V 4)m A -(20m A]Reference[=+= Hz Max F mA 1860*16 8.4_*)420(4)mA -(8.8[Hz]Diaplay ==-=??? 电流输入为8.8mA 时目标频率设定方式里显示18Hz 。 反馈(Feedback )设定 1. 选择 -. 在FUN75设定。 可以选择0~10V 电压 或者4~20mA 电流使用。 *基准值设定方式设为4~20mA 时,反馈应设定0~10V (反馈V1) *基准值设定方式设为0~10V 时,反馈应设定4~20mA (反馈I ) 显示频率 显示频率

怎样解决西门子变频器对电机的影响

怎样解决西门子变频器对电机的影响 变频器的英文译名是VFD(Variable-frequency Drive),这可能是现代科技由中文反向译为英文的为数不多实例之一。变频器是应用变频技术与微电子技术,通过改变电机工作电源的频率和幅度的方式来控制交流电动机的电力传动元件。 1、电动机的效率和温升的问题 变频器在中、韩等亚洲地区受日本厂商影响而曾被称作VVVF(Variable V oltage Variable Frequency Inverter)。在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。拒资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u1(u为调制比)。 PWM即脉冲宽度调制,是一种利用微处理器的数字输出来控制模拟电路的控制技术。PWM以其控制简单、灵活、效率高和动态响应好等优点而被广泛应用在从测量、通信到功率控制与变换的许多领域中。PWM是开关型稳压电源中的术语。这是按稳压的控制方式分类的,除了PWM型,还有PFM型和PWM、PFM混合型。如今的很多微型控制器中都有PWM控制器。 高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显着的是转子铜(铝)耗。因为异步电动机是各类电动机中应用最广、需要量最大的一种。异步电动机由气隙旋转磁场与转子绕组感应电流相互作用产生电磁转矩,从而实现机电能量转换为机械能量的一种交流电机。作电动机运行的异步电机。因其转子绕组电流是感应产生的,又称感应电动机。 是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。除此之外,还需考虑因集肤效应所产生的附加铜耗。这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦条件下,其温升一般要增加10%--20%。 电源是向电子设备提供功率的装置,也称电源供应器,它提供计算机中所有部件所需要的电能。 2、谐波电磁噪声与震动

如何为电机选择变频器

A.请问如何选变频器,比如我的电机功率5.5千瓦,4级的1470转 型号:WGB2-5.5KW/3是什么意思 答: 1.看功率选就行,电机5.5Kw,选变频器就选6Kw的。必须多一点。这样变 频器不爱坏! 2.220V单相进线,380V三相出线 3.选变频器要看你用的场合,一般你选5.5KW就行,要是用到机床,提升机 等地方就要增加了。 4.我决的主要问题是在选电机上,因为它要考虑负载 变频器的选型,注意两点就OK了 1.电机的额定电流 2.电机的功率 2.电机的极数 补充知识,Other answer: 1.变频器一般向下兼容两个功率等级, 比如7.5kw的变频器兼容3.7kw到7.5kw之间的电机, 但是只有当7.5kw的变频器带7.5kw的电机,发挥性能才是最佳的, 一般来说,随着变频器带的电机功率越来越小,性能会逐渐变差。 所以为保证性能,一般不用变频器带两个功率等级以下的电机。 2.电机的容量是变频器的50%-100%的都可以用,选容量大一些儿的不易出现过载,可以提高启动转矩,尤其是起重上用 B.变频器选型风机用电机功率28KW 电流55A ----question 要求是风机专用变频器,比如西门子mm430就是,然后再选择功率,可以选择大于等于这个输出功率和输出电流的变频器即可。 C.变频器如何控制电机功率 电机在变频器的控制下以低频率运行时,变频器的输出电压会随着频率的降低而降低,但电机定子阻值不变,为什嬷电流却和工频运行时差不多,与频率有关系吗?望各位高手赐教,不胜感激! 问题补充: 比如V/F控制时以10赫兹运行,变频器的输出电压只有75~80伏左右,但电流却和工频时差不多,为什么? Answer: 1.变频器控制的电机基本都是交流电机,交流电机转速是由电压频率决定的,国内都是50HZ,所以普通电机转速都是50转/秒。也就是3000转/分,有一定误差。变频器原理就是先把交流变成直流,然后再用单片机控制6个晶闸管把直流再变回交流,根据你的设定值来决定这6个晶闸管开关的速度,来输出不同频率的交流电,从而控制电机转速。 所以电压应该不会变,只是频率变了。电压不变电流也就不会变。 2.当电机转矩一定时,电机的输出功率与转速成正比,当频率降低时,电机的输出功率自然降低。

变频器可以实现一拖二甚至一拖多

1、设备选型 A. 变频器选型 在选型的时候,首先要考虑运行工况——其中一台或多台电机是否要在变频器运行过程中随时启停。 如果在变频器的运行过程中,电机不需要随时启动,只是停止或者停止都不用,那么在变频器容量选型的时候只需要注意变频器的额定功率大于所有电机的总功率,然后再放大一级选型即可。在这种情况下,进行电气设计的时候,就必须保证一个原则:变频器处于停止状态才能切换接触器,投入或者变频电机的运行状态;在变频器运行过程中,严禁单独启停某台设备或者多台设备。 如果在变频器的运行过程中,电机需要随时启动停止,那么在变频器容量选型的时候需要特别注意!首先统计可能要随时启停电机的总功率,然后把这个功率乘以5~7(在变频器运行过程中,随时启动的电机相当于直接启动,电机启动电流差不多为额定电流的5~7倍),最后把这个结果与不需要随时启停的电机总功率相加,得到的和就是所需变频器的理论功率。如果需要启停的设备很多,那么这个功率就可以作为变频器的选型功率,不需要再放大一级了——因为平常很难可能多个电机在同时启动。如果需要启停的设备很少,那么这个功率需要再放大一级,才能作为变频器的选型功率。 B. 交流接触器选型 对于需要随时启停的电机,需要配置交流接触器。对于交流接触器的选型,遵循一般选型原则即可——电机的额定电流再放大一级选型即可。 C. 热继电器或电动机保护器选型 对于变频器一拖多的情况,为保护每个电机以及变频器的设备安全,原则上必须在电机主回路安装热过载继电器或电动机保护器。对于热继电器的选型,遵循一般选型原则即可——电机的额定电流在热继电器的整定范围以内。 2. 其它注意事项 在一台变频器驱动N台电机的情况下,如果线路过长,可能存在比较大的分布电容,造成较大的高频电流而导致变频器过流、漏电流增加、电流显示精度变低等。如果线路过长,需要采用输出滤波器。以下以富士变频器为例来进行说明。 3.7kW以下电机连线不得超过50米,3.7kW以上电机连线不得超过100米。驱动多台电机时,应按至个电动机配线总长来计算。 变频器和电机之间有热继电器时,尤其是400V系列的话,即使连线小于50也可能发生热继电器的无动作。此时请使用输出滤波器,或者降低变频器的载波频率。 驱动多台电机时,如果配置了输出滤波器,电机连线总长应当不得高于400米。 3. 应用举例

变频器载波频率对电动机运行的影响

电动机知识 变频器载波频率对电动机运行的影响 变频器大多是采用PWM调制的形式进行变频器的。也就是说变频器输出的电压其实是一系列的脉冲,脉冲的宽度和间隔均不相等。其大小就取决于调制波和载波的交点,也就是开关频率。开关频率越高,一个周期内脉冲的个数就越多,电流波形的平滑性就越好,但是对其它设备的干扰也越大。载波频率越低或者设臵的不好,电机就会发出难听的噪音。通过调节开关频率可以实现系统的噪音最小,波形的平滑型最好,同时干扰也是最小的。1低压变频器概述对电压≤500V的变频器,当今几乎都采用交—直—交的主电路,其控制方式亦选用正弦脉宽调制即SPWM,它的载波频率是可调的,一般从1-15kHz,可方便地进行人为选用。但在实际使用中不少用户只是按照变频器制造单位原有的设定值,并没有根据现场的实际情况进行调整,因而造成因载波频率值选择不当,而影响正确,感觉的有效工作状态,因此在变频器使用过程中如何来正确选择变频器的载波频率值亦是重要的事。本文就此提供应该从以下诸方面来考虑,并正确选择载波频率值的依据。2 载波频率与功率损耗功率模块IGBT的功率损耗与载波频率有关,且随载波频率的提高、功率损耗增大,这样一则使效率下降,二则是功率模块发热增加,对运行是不利的,当然变频器的工作电压越高,影响功率损耗亦加大。对3 载波频率与环境温度当变频器在使用时载波频率要求较高,而且环境温度亦较高的情况下,对功率模块是非常不利的,这时对不同功率的变频器随着使用的载波频率的高低及环境温度的大小,对变频器的允许恒输出电流要适当的降低,以确保功率模块IGBT安全、可靠、长期地运行。4 载波频率与电动机功率电动机功率大的,相对选用载波频率要

变频器对电机的影响

变频器对电机的影响 一、一般异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。 以下为变频器对电机的影响 1、电动机的效率和温升的问题 不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。拒资料介绍,以日前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍右左的高次谐波重量为:2u+1(u为调制比)。 高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。除此之外,还需考虑因集肤效应所产生的附加铜耗。这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将一般三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。 2、电动机绝缘强度问题 日前中小型变频器,不少是采纳PWM的操纵方式。他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。别的,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。 3、谐波电磁噪声与震动

一般异步电动机采纳变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波彼此干涉,形成各种电磁激振力。当电磁力波的频率和电动机机体的固有振动频率同意或接近时,将产生共振现象,从而加大噪声。由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。 4、电动机对频繁启动、制动的适应能力 由于采纳变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动制造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲惫和加速老化问题。 5、低转速时的冷却问题 首先,异步电动机的阻抗不尽理想,当电源频率较底时,电源中高次谐波所引起的损耗较大。其次,一般异步电动机再转速降低时,冷却风量与转速的三次方成比例减小,致使电动机的低速冷却状况变坏,温升急剧增加,难以实现恒转矩输出。 二、变频电动机的特点 1、电磁设计对一般异步电动机来说,再设计时主要考虑的性能参数是过载能力、启动性能、效率和功率因数。而变频电动机,由于临界转差率反比于电源频率,可以在临界转差率接近1时直接启动,因此,过载能力和启动性能不在需要过多考虑,而要解决的要害问题是如何改善电动机对非正弦波电源的适应能力。方式一般如下: 1)尽可能的减小定子和转子电阻。减小定子电阻即可降低基波铜耗,以弥补高次谐波引起的铜耗增 2)为按捺电流中的高次谐波,需适当增加电动机的电感。但转子槽漏抗较大其集肤效应也大,高次谐波铜耗也增大。因此,电动机漏抗的大小要兼顾到整个调速范围内阻抗匹配的合理性。 3)变频电动机的主磁路一般设计成不饱和状态,一是考虑高次谐波会加深磁路饱和,

变频器的选型和使用

变频器得选型与使用 作者:佚名发布日期:2008-5-30 17:33:09 (阅1624次) 所属频道:继电保护关键词: 变频变频器 通用变频器得选择包括通用变频器得型式选择与容量选择两个方面,选择得原则就就是:首先其功能特性能保证可靠地事项工艺要求,其次就就是获得较好得性能价格比。通用变频器类型得选择要根据负载特性进行。对于风机、泵类等平方转矩,低速下负载转矩较小,通常可选择专用或普通功能型通用变频器。对于恒转矩类负载或有较高静态转速精度要求得机械应选用具有转矩控制功能得高功能型通用变频器,这种通用变频器低速转矩、静态机械特性硬度大,不怕负载冲击,具有挖土机特性。为了实现大调速比得恒转矩调速,常采用加大通用变频器容量得办法。对于要求精度高、动态性能好、速度响应快得生产机械(如造纸机械、注塑机、轧钢机等),应采用矢量控制或直接转矩控制型通用变频器。 1、电机得规格指标参数 变频器在使用过程中带动得就就是电机,所以,变频器得选型可以从电机得角度来选择型号、规格。那首先,我们就必须先了解电机得各项规格指标参数。

每台电机都有它自己出厂得铭牌,从铭牌上,我们不难找到电机得各项参数。这些参数中,我们需要了解得主要参数有:电机得额定电压、额定电流、额定频率、额定转速等。 电机得额定电压:电机得额定电压一般有110V、220V、380V、690V、1140V、6kV等。 我公司现生产得变频器电压等级有:220V、380V、690V、1140V。如有其它非标准得电压等级,请及时咨询生产厂家或各地办事处及经销商。 电机得额定电流:电机得额定电流根据电机得功率不同而不同。选择变频器时,变频器得额定电流应大于或等于电机得额定电流,特殊情况应将变频器功率档次放大一档。 电机得额定频率:普通电机得额定频率一般就就是50~60Hz,高速电机有1000~3000Hz等。CH_100系列可满足0~600Hz电机得需要,如需更高频率,请选用CH_150系列变频器。 电机得额定转速:电机有分为2极、4极、6极、8极等,极数越高,转速越低,同功率电流也越大。我们一般用得电机得额定转速就就是1500rpm对应4极电机。变频器也就就是根据4极电机来设计得。2极对应3000rpm、6极对应960rpm、8极对应720rpm左右。2、温度与湿度

一台变频器拖动多台电机的事项你注意了吗精选文档

一台变频器拖动多台电机的事项你注意了吗精 选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

一台变频器拖动多台电机的事项你注意了吗?【工控老鬼分享】 变频器可以实现一拖二甚至一拖多,但需要遵循一些原则,本文作下简要分析: 1、设备选型 A. 变频器选型 在选型的时候,首先要考虑运行工况——其中一台或多台电机是否要在变频器运行过程中随时启停。 如果在变频器的运行过程中,电机不需要随时启动,只是停止或者停止都不用,那么在变频器容量选型的时候只需要注意变频器的额定功率大于所有电机的总功率,然后再放大一级选型即可。在这种情况下,进行电气设计的时候,就必须保证一个原则:变频器处于停止状态才能切换接触器,投入或者变频电机的运行状态;在变频器运行过程中,严禁单独启停某台设备或者多台设备。 如果在变频器的运行过程中,电机需要随时启动停止,那么在变频器容量选型的时候需要特别注意!首先统计可能要随时启停电机的总功率,然后把这个功率乘以5~7(在变频器运行过程中,随时启动的电机相当于直接启动,电机启动电流差不多为额定电流的5~7倍),最后把这个结果与不需要随时启停的电机总功率相加,得到的和就是所需变频器的理论功率。如果需要启停的设备很多,那么这个功率就可以作为变

频器的选型功率,不需要再放大一级了——因为平常很难可能多个电机在同时启动。如果需要启停的设备很少,那么这个功率需要再放大一级,才能作为变频器的选型功率。 B. 交流接触器选型 对于需要随时启停的电机,需要配置交流接触器。对于交流接触器的选型,遵循一般选型原则即可——电机的额定电流再放大一级选型即可。 C. 热继电器或电动机保护器选型 对于变频器一拖多的情况,为保护每个电机以及变频器的设备安全,原则上必须在电机主回路安装热过载继电器或电动机保护器。对于热继电器的选型,遵循一般选型原则即可——电机的额定电流在热继电器的整定范围以 内。

变频器对电机与电网的影响

1 引言 变频器的调速性能能够满足各种生产工艺机械设备的要求,对风机水泵调速调节流量的节能效果很明显,故变频调速已获得广泛应用,但也带来一些特殊问题,不可掉以轻心。 2 采用普通鼠笼电动机 变频调速专用电动机为变频调速而设计,在电机设计中,已考虑了一定的必要的对策措施,问题是原为电网电源供电设计的电机(以下简称普通电机),现在欲用于变频器供电,这就有一些特殊的问题要探讨。 为变频调速而采用普通电动机,可能见之于下列场合:技术改造工程,例如为了节能而对水泵风机调速,电机早已有了。即使是新建工程,如果采取某些措施,也不是非用变频电机不可,何况普通电机价格相对较低,也易于获得需要的一般机械电气性能参数和机械结构型式,最常见的是风机水泵应用。 采用的变频器最常见的是电压源型变频器,其逆变器输出通常都是正弦波脉宽调制(spwm)方式,输出电压除了正弦形基波外,还有khz数量级(可达几十khz)的高频成分,这类变频器是讨论的重点。偶而可以遇到电流源型变频器,其输出电流是阶梯形波,谐波次数为5,7,11,13……等,本文不多讨论,讨论的内容也不涉及电机的启动和瞬变现象,但内容覆盖了调速范围内各种速度下的性能。

3 电机转矩的降低 普通电机由电压源型变频器供电时,转矩要有所降低。这里的电机转矩降低不是指电机在调速运行时不能够产生原有的额定转矩,因为现代的变频器技术可以克服各种障碍以得到足够的转矩,而是由于谐波引起电机的铁损和铜损增加,若维持额定转矩运行可能就会因温升过高而缩短绝缘寿命。考虑上述各种因素,转矩降低系数的典型值为0.8~1.0。对于恒转矩特性负载(负载要求的转矩不随速度而变)且电机是共轴自冷却风扇时,由于低速时冷却能力明显降低而恒转矩运行表明电流不变,若较长时间运行是肯定不行的(温升过高)。由于离心式风机水泵消耗的功率随转速降低而急骤(约为三次方关系)降低,且所配套的电机功率一般都有一定的裕度,因而电机转矩的降低对风机水泵负载来说一般都不会有问题。 对于恒转矩负载,电机不是共轴的自冷却风扇,而是独立的通风冷却例如强迫通风冷却,这种场合,普通电机是否可行,要看电机功率的原选配是否有约20%的富裕能力,以克服铁损铜损的增加而导致的过高温升问题。 4 电机的绝缘寿命 电压源型变频器的逆变部分通常用快速电力电子半导体器件如igbt,因而电压上升速度很高,使电机的匝间绝缘承受很大的电压应力,特别是首端线卷的匝间。其所承受的电压应力的强度大小决定于电压脉冲的峰值、电压的上升速度和调制频率、变频器和电动机之间的电缆特性和长度、电机绕组的设计以及其它的系统参数。

变频调速电机的选型

变频调速电机的选型

————————————————————————————————作者:————————————————————————————————日期:

变频调速电机的选型 变频调速电机一般均选择4级电机,基频工作点设计在50Hz,频率0-50Hz(转速0-1480r/min)范围内电机作恒转矩运行,频率50-100Hz(转速1480-2800r/min)范围内电机作恒功率运行,整个调速范围为(0-2800r/min),基本满足一般驱动设备的要求,其工作特性与直流调速电机相同,调速平滑稳定。如果在恒转矩调速范围内 要提高输出转矩,也可以选择6级或8级电机,但电机的体积相对要大一点。 由于变频调速电机的电磁设计运用了灵活的CAD 设计软件,电机的基频设计点可以随时进 行调整,我们可以在计算机上精确的模拟电机在各基频点上的工作特性,由此也就扩大了 电机的恒转矩调速范围,根据电机的实际使用工况,我们可以在同一个机座号内把电机的 功率做的更大,也可以在使用同一台变频器的基础上将电机的输出转矩提的更高,以满足 在各种工况条件下将电机的设计制造在最佳状态。变频调速电机可以另外选配附加的转速 编码器,可实现高精度转速、位置控制、快速动态特性响应的优点。也可配以电机专用的 直流(或交流)制动器以实现电机快速、有效、安全、可靠的制动性能。由于变频调速电 机的基频可调性设计,我们也可以制造出各种高速电机,在高速运行时保持恒转矩的特性 ,在一定程度上替代了原来的中频电机,而且价格低廉。变频调速电机为三相交流同步或 异步电动机,根据变频器的输出电源有三相380V或三相220V,所以电机电源也有三相380V 或三相220V的不同区别,一般4KW以下的变频器才有三相220V可,由于变频电机是以电机 的基频点(或拐点)来划分不同的恒功率调速区和恒转矩调速区的,所以变频器基频点和 变频电机基频点的设置都非常重要。 同步变频与异步变频调速电机的区别 异步变频调速电机是由普通异步电机派生而来,由于要适应变频器输出电源的特性,电机在转子槽型,绝缘工艺 ,电磁设计校核等作了很大的改动,特别是电机的通风散热,它在一般情况下附加了一个独立式强迫冷却风机, 以适应电机在低速运行时的高效散热和降低电机在高速运行时的风摩耗。变频器的输出一般显示电源的输出频率 ,转速输出显示为电机的极数和电源输出频率的计算值,与异步电机的实际转速有很大区别,使用一般异步变频 电动机时,由于异步电机的转差率是由电机的制造工艺决定,故其离散性很大,并且负载的变化直接影响电机的 转速,要精确控制电机的转速只能采用光电编码器进行闭环控制,当单机控制时转速的精度由编码器的脉冲数决 定,当多机控制时,多台电机的转速就无法严格同步。这是异步电机先天所决定的。 同步变频调速电机的转子内镶有永磁体,当电机瞬间起动完毕后,电机转入正常运行,定子旋转磁场带动镶有永 磁体的转子进行同步运行,此时电机的转速根据电机的极数和电机输入电源频率形成严格的对应关系,转速不受 负载和其他因数影响。同样同步变频调速电机也附加了一个独立式强迫冷却风机,以适应电机在低速运行时的高 效散热和降低电机在高速运行时的风摩耗。由于电机的转速和电源频率的严格对应关系,使得电机的转速精度主 要就取决于变频器输出电源频率的精度,控制系统简单,对一台变频器控制多台电机实现多台电机的转速一致, 也不需要昂贵的光学编码器进行闭环控制。 TYP 变频调速永磁同步电机具有的三大优点: 1、高效节能与异步变频调速电机相比,高效节能。同规格相比,该系列电机效率比异步变频电机效率高 3~10个百分点。以1.5kW为利,两者效率差近7个百分点; 2、可精确调速与异步变频系统相比,无需编码器即可进行准确的速度控制; 3、高功率因数既可减少无功能量的消耗,又能降低变压器的容量

两台电机驱动同一负载变频控制技术的研究

两台电机驱动同一负载变频控制技术的研究 收藏此信息打印该信息添加:刘宏鑫王玉雷张科孟来源:未知 1 引言 在起重、冶金,玻璃生产等场合.由于可靠性要求、机械负载平衡性要求或者速度同步性的要求,需要两台同功率电机驱动同1个机械负载。驱动两台电机的变频器可以由1台变频器来驱动,也可以分别由两台变频器来驱动。这种场合往往对速度精度、转矩动态响应、负荷自动分配等有比较严格的要求,一般v/f控制的变频器又难以满足要求,如何采用矢量控制变频器来实现1台变频器拖动2台电机或者2台变频器分别拖动2台电机来实现高精度、大转矩调速是本文探讨的重点问题。 2 单台v/f控制变频器拖动二台电机的原理 v/f控制变频器的控制算法一般与电机参数无关,因此可以直接实现1台变频器拖动2台电机,如图1所示。在这种应用情况下,需要变频器容量为电机功率两倍的基础上再放大一档使用,并且为了防止电机过载烧坏,需要每台电机与变频器之间添加热继电器,如图1 中的th1、th2,而且需要将热继电器的常闭触点串联到变频器外部故障输入端子,进行保护处理。需要特别注意个别变频器具有自动转矩补偿功能与电机某些参数有关,采用电机并联运行时,容易引起电流的振荡,需要将该功能关闭。 图1 1台v/f控制变频器拖动2台电机的原理 3 一台矢量控制变频器拖动二台电机的原理 (1) 适用场合 矢量控制变频器实现一拖二的基本条件是2台电机参数完全相同或者接近。可应用于起重机械、冶金钢包、轨道车前后轮控制等需要一拖二的场合。 (2) 异步电机稳态等值电路

异步电机稳态等值电路如图2所示,图中的r1、l1、r2、l2、lm、i0、s分别代表定子电阻、定子电感、转子电阻、转子电感、互感、空载激磁电流和转差率。 (3) 矢量控制变频器实现一拖二的原理 图2 异步电机稳态等值电路 在2台相同电机并联运行的时候,在稳态时,根据图2,可以看出并联后电机等效参r1、l 1、r2、l2、lm数均为单个电机参数的1/2,而空载激磁电流i0为单个电机的2倍。下面分析以下有速度传感器矢量控制(带pg)变频器控制一拖二的原理。有速度传感器电流矢量控制变频器控制原理如图3所示。 图3 有速度传感器(带pg)电流矢量控制变频器控制原理 根据电机的转差计算公式,转差与电机转矩电流ir*成正比,与电机励磁电流im*成反比。电机励磁电流im*在额定运行频率下,与电机空载激磁电流i0相等;转差与转子时间常数成反比,由于并连后r2、l2均为单个电机参数的1/2,转子时间常数不变,而电机转矩电流ir *与电机空载激磁电流i0均增加一倍,因此转差计算公式不受影响,因此可以将传感器装在速度精度要求高的一个电机上,实现一拖二功能。该方案还有一个优点,如果一个电机的电动负载突然增加,整个系统的转矩电流会突然增大,转差频率会增加,变频器输出频率会增加,除其本身的转矩会增加外,另外一台的转速也上升,达到了负荷转矩的自动动态分配。反之对于制动负载也完全适合。 对于开环矢量控制变频器,转差的计算同有pg矢量控制,可以证明电机并联模型不影响电机的转速的正确估计,因此同样可以保证电机的正常运行。 (4) td3000矢量控制变频器实现一拖二的方法 电路连接如图1所示。需要注意的是,2台电机的方向要与工艺要求方向一致。pi参数调节

变频器对电机的要求及影响

变频器对电机的要求及影响 1 应用于标准电机 变频器驱动标准电机时,和工频电源比较,损耗将有所增加,低速冷却效果变差,电机温升将增加,因此低速时应降低电机的负载。普通电机的容许负载特性是在额定转速时可100%负载连续运行,在低速100%负载连续运行的场合应考虑使用变频电机。 冲击电压的影响:配线的LC共振等引起的冲击电压将会加在电机的定子绕组上,冲击电压较大时可能会发生损坏电机绝缘的情况。单相变频器驱动时,直流电压约311V,冲击电压在电机端子上的最高值为直流电压的2倍,在绝缘强度上没有问题。但是三相变频器驱动的场合,直流电压约为537V,随着配线长度增加,冲击电压会增大,有可能因为电机绝缘耐压不够而发生损坏绝缘的情况,此时应考虑在变频器输出侧加装输出电抗器。 高速运行:普通电机50Hz以上高死运行时电动势平衡及轴承特性等会改变,请谨慎使用。同时超过电机额定频率运行,电机力矩会下降,此时电机处在恒功率调节状态。 力矩特性:变频器驱动时,力矩特性和工频电源驱动时的特性有所不同,机械负载的力矩特性必须加以确认。 机械震动:西林全系列采用了高载波方式PWM控制,电机震动小,基本上和工频电源相同。但在以下场合会有一定的增大: A、和机械固有震动频率的共振:特别是原来恒速运行的机械改为调速运行时,可 能会发生共振,在电机端设防震橡胶或跳跃频率控制可有效解决此问题。 B、旋转体自身残留的不平衡:50.00Hz以上高速时,要特别注意。 噪音:基本上同工频电源驱动时相同,在低载波运行时可听到电磁声,属于正常现象;但转速高于电机额定转速时,机械噪音、电机风扇噪音较明显。 2 应用于特殊电机 变极电机:因电机的额定电流和标准电机不同,要确认电机的最大电流后再选用变频器。极数的切换务必在变频器停止输出之后进行。运转中进行极数切换,会产生过电压、过电流等保护动作,变频器会故障停机。 水下电机:一般水下电机额定电流比标准电机大,在变频器容量选择时应注意电机额定电流。另外电机和变频器之间配线距离较长时,可能因漏电流过大而引起变频器故障报警,此时应考虑加装变频器输出电抗器;配线距离较长时还会造成电机力矩下降,要配足够粗的电缆。 防爆电机:驱动防爆电机时,电机和变频器配套后的防爆检查是必要的。西林通用型变频器本身是非防爆结构,如果使用同通用型变频器,需要将变频器放在非防爆的地方。带减速机的电机:因润滑方式和厂家的不同,连续使用的速度范围也不同。特别是油润滑时,低速范围连续运转时因油润滑不足有烧毁危险。另外超过50Hz高速时,请咨询电机和减速机厂家。

变频器和电机的选型

变频器和电机的选型 一、电机的选择: 首先应该根据负载运动时所需要的平均功率、最高功率,折算到电机轴侧(可能有减速机、皮带轮等减速装置)选择电机的功率,同时也要考虑电机的过载能力。电机厂商可以提供电机的力矩特性曲线,不同温度下电机特性会变化。 顺便说:选型的顺序当然是先选电机再根据电机选择变频器,因为控制的最终目的不是变频器也不是电机,而是机械负载。 二、变频器的选型: 第一应该强调的是,应该根据电流选型。对于一般负载,可以根据电机的额定电流选择变频器,即变频器额定电流(即常规环境下的最大持续工作电流)大于电机额定电流即可。但是必须要考虑极限状况的出现。因此变频器还需要可以提供短时间的过载电流。 (注意:电机的电流是由机械负载决定的) 变频器有一条过载电流曲线,是一条反时限曲线,描述了过载电流和时间的关系。这就是变频器厂商经常说得过载能力可以达到150%额定电流2秒、180%额定电流2秒云云,实际上是一条曲线。因此,只要电机的电流曲线在变频器的过载电流曲线之内,就是正确的选型。这就是为什么有时候变频器功率要大于电机功率1档或2档(比如起重应用),有时候小功率变频器仍然可以驱动大功率电机(比如输送带)的原因。 另一个必须注意的:在非正常环境下,比如高海拔、高环境温度(例如大于50度小于60度环境)、并排安装方式(有些变频器并排安装不降容,有些要降容,根据变频器设计决定)等情况下,要考虑变频器的降容。这方面的资料变频器厂商都可以提供。 结果是:变频器的额定功率可能大于电机功率,也可以小于电机功率,事实上变频器的选型也是根据机械负载决定的。 结论:变频器选型的最终依据,是变频器的电流曲线包罗机械负载的电流曲线。 三、Y型电机和变频电机 Y型电机,应该就是普通异步电机(印象中是,不太确定)。 变频器的根本功能就是改变电源频率,从而改变电机转速。因此理论上讲,不管是什么电机,只要可以通过改变频率调速的,都可以使用变频器。 如上面某位朋友所说,变频电机有着特殊的设计,更适合变频使用,我同意。 因此,并不是有个独立风扇就是所谓变频电机了。 普通异步电机使用变频器控制时,需要注意的是: 1、低频时(一般小于25hz),由于电机采用同轴风扇,低速时散热效果会很差,电机发热后,力矩特性变软,从而出现速度不稳、电流大等问题。

变频器拖动多台电机

纺织机械中一台变频器拖动多台电机的应用 1 引言 在纺织机械行业中,近几年中,越来越多的设备中使用单锭单电机的控制方式,单锭单电机的拖动方式虽然成本很高,但是减少了传动环节,简化了机械设备结构,提高了纺丝速度,并且减少了断头带来的产量损失,提高了生产效率等等非常多的优点,所以还是有许多应用的场合。 对于这一类设备的变频调速,有两种方案,一种是单独驱动,一台电机一台变频,另一种是集中传动,所有电机用一台变频器,本文结合作者的实际使用经验,对第二种情况进行讨论。这一类传动的特点有三个,一是电机数量多,不是三台五台,而是十几台,几十台,甚至几百台。二是电机功率小,一般在几十瓦到几百瓦。三是每台电机功率相同。具有这三个特点的符合本文讨论的范围。对于这一类拖动本篇中起名字叫“一拖多”。 2 控制方式 目前变频器的控制方式多种多样,叫法也五花八门,有压频比控制、标量控制、电流矢量控制、电压矢量控制、无传感器矢量控制、直接转矩控制、高精度闭环控制等等,应该承认,不同厂家、不同控制方法的控制效果区别很大,但是无论名称如何,从技术上分类,根据电机是否有速度传感器可以分为闭环和开环两种,开环控制中又大致上可以分成两种,一种是常见的压频比控制,即v/f控制,这是变频器最初出现时广泛采用的方法,几乎目前所有品牌的变频器全部支持这种方法。它是根据用户设定的电压(v)和频率(f)的线性关系来进行控制的,这是一种比较粗糙的控制方法,因为几乎没有考虑不同制造厂家电机的差异,对于电机的运行状态也没有补偿,所以对电机的控制效果一般,但是却简单可靠,成本低廉。另一种控制方法是矢量控制,矢量控制的理论基础是:建立电机的等效电路,作为数学模型,利用矢量代数进行分析,建立起空间矢量矩阵,从而进行精确的计算,达到精确的控制效果。不同的建立数学模型的方法,不同的计算方法,效果也不相同,名称也各不相同。这种方法需要大量的计算,需要cpu较快的运算速度,也需要电路有较快的执行速度,所以总体成本较高,但确实控制效果要好得多。 显而易见,对于一拖多的情况,变频器其实相当于一个变频电源,它不可能对所有的电机都进行精确控制,这么多的电机,即使是同一个厂家制造,同一个工艺,同一个模具,也不可能完全一致,而且每台电机的工况并不相同,因此,不能把这些电机的简单并联等效成一个大电机来控制,因为没有办法建立近似的电机模型,所以矢量控制不适合于这种应用情况。事实上,矢量控制对于在两个以上的电机,控制效果随着电机数量的增加,逐渐会变差,由于变频器的动态补偿不可能分别针对每台并联的电机,补偿反而会导致运转的不稳定,所以需采用v/f控制方式。

变频器对电机影响及解决办法

变频器对电机影响 一、普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。 以下为变频器对电机的影响 1、电动机的效率和温升的问题 不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。拒资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。 高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。除此之外,还需考虑因集肤效应所产生的附加铜耗。这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。 2、电动机绝缘强度问题 目前中小型变频器,不少是采用PWM的控制方式。他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。 3、谐波电磁噪声与震动 普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。 4、电动机对频繁启动、制动的适应能力 由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因

变频器对电机的十大保护作用

变频器对电机的十大保护作用 电机在生产使用过程中,往往因为操作不当而导致电机损坏,不仅损失了金钱,同时对生产进度产生了较大影响。因此,变频器的正确使用对保护电机产生了积极的作用。华东五金网经过与多家电机卖家的沟通了解后,将电机中的变频器对电机的保护做了如下归纳: 1、过电压保护: 变频器的输出有电压检测功能,变频器能自动调整输出电压,使电机不承受过电压。即使在输出电压调整失效和输出电压超过正常电压的110%时,变频器也会通过停机对电机起到保护作用。 2.欠电压保护: 当电机的电压低于正常电压的90%时,变频器保护停机。 3.过电流保护: 当电机的电流超过额定值的150%/3秒钟,或额定电流的200%/10微秒,变频器通过停机来保护电机。 4.缺相保护 监测输出电压,当输出缺相时,变频器报警,一段时间后变频器通过停机来保护电机。 5.反相保护: 变频器使电机只能沿一个方向旋转,无法设定旋转方向,除非用户改动电机A、B、C接线的相序,否则没有反相的可能。 6.过负荷保护: 变频器监测电机电流,当电机电流超过额定电流的120%/1分钟

时,变频器通过停机来保护电机。 7.接地保护: 变频器配有专门的接地保护电路,一般由接地保护互感器和继电器构成,当发生一相或两相接地时,变频器报警。当然如果用户要求,我们也可以设计为接地后立即保护停机。 8.短路保护: 变频器输出短路后,必然引起过流,在10微秒内变频器通过停机来保护电机。 9.超频保护: 变频器有最大和最小频率限制功能,使输出频率只能在规定的范围内,由此实现超频保护功能。 10.失速保护: 失速保护一般针对同步电机。对于异步电机,加速过程中的失速必然表现为过电流,变频器通过过电流和过负荷保护实现此项保护功能。减速过程中的失速可通过在调试过程中设定安全的减速时间来避免。

变频器的选型和使用

变频器的选型和使用 作者:佚名发布日期:2008-5-30 17:33:09 (阅1624次) 所属频道: 继电保护关键词: 变频变频器 通用变频器的选择包括通用变频器的型式选择和容量选择两个方面,选择的原则是:首先其功能特性能保证可靠地事项工艺要求,其次是获得较好的性能价格比。通用变频器类型的选择要根据负载特性进行。对于风机、泵类等平方转矩,低速下负载转矩较小,通常可选择专用或普通功能型通用变频器。对于恒转矩类负载或有较高静态转速精度要求的机械应选用具有转矩控制功能的高功能型通用变频器,这种通用变频器低速转矩、静态机械特性硬度大,不怕负载冲击,具有挖土机特性。为了实现大调速比的恒转矩调速,常采用加大通用变频器容量的办法。对于要求精度高、动态性能好、速度响应快的生产机械(如造纸机械、注塑机、轧钢机等),应采用矢量控制或直接转矩控制型通用变频器。 1、电机的规格指标参数 变频器在使用过程中带动的是电机,所以,变频器的选型可以从电机的角度来选择型号、规格。那首先,我们就必须先了解电机的各项规格指标参数。

每台电机都有它自己出厂的铭牌,从铭牌上,我们不难找到电机的各项参数。这些参数中,我们需要了解的主要参数有:电机的额定电压、额定电流、额定频率、额定转速等。 电机的额定电压:电机的额定电压一般有110V、220V、380V、690V、1140V、6kV等。 我公司现生产的变频器电压等级有:220V、380V、690V、1140V。如有其它非标准的电压等级,请及时咨询生产厂家或各地办事处及经销商。 电机的额定电流:电机的额定电流根据电机的功率不同而不同。选择变频器时,变频器的额定电流应大于或等于电机的额定电流,特殊情况应将变频器功率档次放大一档。 电机的额定频率:普通电机的额定频率一般是50~60Hz,高速电机有1000~3000Hz等。CH_100系列可满足0~600Hz电机的需要,如需更高频率,请选用CH_150系列变频器。 电机的额定转速:电机有分为2极、4极、6极、8极等,极数越高,转速越低,同功率电流也越大。我们一般用的电机的额定转速是1500rpm对应4极电机。变频器也是根据4极电机来设计的。2极对应3000rpm、6极对应960rpm、8极对应720rpm左右。 2、温度和湿度

变频电机与普通电机的区别

变频电机与普通电机的区别: 一、普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。以下为变频器对电机的影响,即变频电机与普通 电机的区别: 1、电动机的效率和温升的问题 不论那种形式的变频器,在运行中均产生不同程度的谐波电压 和电流,使电动机在非正弦电压、电流下运行。据资料介绍,以目 前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。 高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显着的是转子铜(铝)耗。因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较 大的转差切割转子导条后,便会产生很大的转子损耗。除此之外, 还需考虑因集肤效应所产生的附加铜耗。这些损耗都会使电动机额 外发热,效率降低,输出功率减小,如将普通三相异步电动机运行 于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。 2、电动机绝缘强度问题

目前中小型变频器,不少是采用PWM的控制方式。他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。 3、谐波电磁噪声与震动! 普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。. 4、电动机对频繁启动、制动的适应能力 由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。

相关文档
最新文档