应变测量原理

应变测量原理
应变测量原理

应变片原理

敏感元件的种类很多,其中以电阻应变片(简称电阻片或应变片)最简单、应用最广泛。 电阻片的应变-电性能(图1、图2)

电阻片分丝式和箔式两大类。丝绕式电阻片是用0.003mm‐0.01mm的合金丝绕成栅状制成的;箔式应变片则是用0.003mm‐0.01mm厚的箔材经化学腐蚀制成栅状的,其主体敏感栅实际上是一个电阻。金属丝的电阻随机械变形而发生变化的现象称为应变‐电性能。电阻片在感受构件的应变时(称作工作片),其电阻同时发生变化。实验表明,构件被测量部位的应变ΔL/L与电阻变化率ΔR/R成正比关系,即:

?

?

比例系数 称为电阻片的灵敏系数。

由于电阻片的敏感栅不是一根直丝,所以 不能直接计算,需要在标准应变梁上通过抽样标定来确定。 的数值一般约在2.0左右。

温度补偿片

温度改变时,金属丝的长度也会发生变化,从而引起电阻的变化。因此在温度环境下进行测量,应变片的电阻变化由两部分组成,即:

? ? ?

? ——由构件机械变形引起的电阻变化。

? ——由温度变化引起的电阻变化。

要准确地测量构件因变形引起的应变,就要排除温度对电阻变化的影响。方法之一是,采用温度能够自己补偿的专用电阻片;另一种方法是,把普通应变片,贴在材质与构件相同、但不参与机械变形的材料上,然后和工作片在同一温度条件下组桥。电阻变化只与温度有关的电阻片称作温度补偿片。利用电桥原理,让补偿片和工作片一起合理组桥,就可以消除温

度给应力测量带来的影响。

应变花(图3)

为同时测定一点几个方向的应变,常把几个不同方向的敏感栅固定在同一个基底上,这种应变片称作应变花。应变花的各敏感栅之间由不同的角度α组成。它适用于平面应力状态下的应变测量。应变花的角度α可根据需要进行选择。

电阻片的粘贴方法

粘贴电阻片是电测法的一个重要环节,它直接影响测量精度。粘贴时,首先必须保证被测表面的清洁、平整、光滑、无油污、无锈迹。二要保证粘贴位置的准确、 并选用专用的粘接剂。三、应变片引线的焊接和导线的固定要牢靠,以保证测量时导线不会扯坏应变片。为满足上述要求,粘贴的大致过程如下:打磨测量表面→在测量位置准确画线→清洗测量表面→在画线位置上准确地粘贴应变片→焊接导线并牢靠固定。

电桥工作原理

应变仪测量电路的作用,就是把电阻片的电阻变化率ΔR/ R转换成电压输出,然后提供给放大电路放大后进行测量。

电桥原理

测量电路有多种,最常用的是桥式测量电路。R 1、R 2、R 3、R 4四个电阻依次接在A 、B 、

C 、

D (或1、2、3、4)之间,构成电桥的四桥臂。电桥的对角AC 接电源,电源电压为

E ;对角BD 为电桥的输出端,其输出电压用 表示。可以证明 与桥臂电阻有如下关系:

若4个桥臂电阻由贴在构件上的4枚电阻片组成,而且初始电阻R1 = R2 = R3 = R4,当输出电压 0时,电桥处于平衡状态。构件变形时,各电阻的变化量分别为ΔR 1、ΔR 2、ΔR 3、ΔR 4。输出电压的相应变化为:

? ? ? ? ? ? ?

在小应变 ? 1的条件下,可以证明桥路输出电压为:

? ? ? ? ?

如果ΔR 仅由机械变形引起、与温度影响无关,而且4枚电阻片的灵敏系数 相等时,根据 ,可以写成:

?

4 - + -

如果供桥电压E 不变,那么构件变形引起的电压输出ΔU DB 与4个桥臂的应变值 、 、 、 成线性关系。式中各ε是代数值,其符号由变形方向决定。一般拉应变为"正"、压应变为"负"。根据这一特性:相邻两桥臂的ε( 、 或 、 )符号一致时,两应变相抵消;如符号相反,则两应变的绝对值相加。

相对两桥臂的ε( 、 或 、 )符号一致时,两应变的绝对值相加;如符号相反,则两应变相抵消。

实验如果能很好地利用电桥的这一特性,合理布片、灵活组桥,将直接影响电桥输出电压的大小,从而有效地提高测量灵敏度、并减少测量误差。这种作用称作桥路的加减特性。电阻应变仪是测量应变的专用仪器,桥路输出电压ΔU DB 的大小,是按应变直接标定来显示的。因此与ΔU DB 对应的应变值ε仪可由应变仪直接读出来。

组桥方式

一般贴在构件上参与机械变形的电阻片称作工作片,在不考虑温度影响的前提下,应变

片接入各桥臂的组桥方式不同、与工作片相应的输出电压也不同。几种典型的组桥方式如下:

单臂测量

只有一枚工作片 接在AB 桥臂上。其它3个桥臂的电阻片都不参与变形,应变ε为零。这时电桥的输出电压为:

? ?

单臂测量的结果? 代表被测点的真实工作应变。

半桥测量

两枚工作片 、 分别接在相邻两个桥臂AB 、BC 上。其它两个桥臂是应变仪的内接电阻。这时电桥的输出电压为:

? ? ? 4

对臂测量

两枚工作片 、 分别接在对臂AB 、CD 上。温度补偿片 、 分别接在其它两对臂BC 、AD 上。这时:

? ? ? +

一般贴在构件上参与机械变形的电阻片称作工作片,在不考虑温度影响的前提下,应变片接入各桥臂的组桥方式不同、与工作片相应的输出电压也不同。几种典型的组桥方式如下:

单臂串联测量

两枚串联的工作片2 接AB 臂。而两枚串联的温度补偿片2 接BC 臂。其他两个桥臂接仪器的内接电阻这时:

? ?

工作片串联后 = 2 ,同样? = 2? ,因此? 的测量结果不变,与两枚阻片电阻变化率的平均值成正比。

图表1典型的组桥方式(‐ ‐工作片;‐ ‐补偿片;‐ ‐内接电阻) 组桥方式

输出电压? 桥臂系数 B 温度补偿 单臂测量

4 B=1 BC 臂需接一枚补偿片 半桥测量

4 - 时B=2 不需接补偿片温度影响自动消除 对臂测量

4 + 时B=2 非工作对臂接补偿片 全桥测量

4 - + - 时B=4 不接补偿片,温度影响可自动消除 串联测量 4 ? B=1

阻值与工作片相会地补偿片

串联后接BC 臂

温度补偿

温度补偿是运用桥路的加减特性,合理布片、有效利用温度补偿片正确组桥,以消除温度给应变测量带来的影响。下面讨论桥路原理在温度补偿中的几种典型应用。

单臂测量

工作片R 1接AB 臂,温度补偿片R 2 接BC 臂,剩下的两个桥臂是不参与变形的内接电阻。由于温度的影响,这时电桥的输出电压为:

? 4 ?

? T ? T 相邻两桥臂的电阻片因温度变化引起的电阻变化率: ? T ? T

。根据桥路特性二者在桥路中相互抵消。从而使? 消除了温度的影响。即:? 4

? , 因此单臂测量的结果只反映被测点的工作应变。

半桥测量

两枚工作片 、 分别接在相邻的两个桥臂AB 、BC 臂上,其它两个桥臂是应变仪的内接电阻。这时电桥的输出电压为:

? ?

? T ? ? T

、 的温度电阻变化率相等,即: ? T ? T

。根据桥路特性,二者在桥路中相互抵消。从而不必接温度补偿片就消除了温度的影响。这时桥路的输出电压为:

? ?

? 对臂测量

两枚工作片 、 分别接在对 臂AB 、 CD 上;两个温度补偿片 、 。分别接其他两对臂BC 、AD 上由于4个电阻片都处于同一温度条件下,而且各电阻片由温度引起的电阻变化率相等,温度影响即在桥路中相互抵消。这时电桥的输出电压仍为:

? ?

? 全桥测量

4枚工作片 、 、 、 依次接在电桥的4个桥臂上。由于各工作片由温度引起的电阻变化率相等,温度影响在桥路中相互抵消。这时:

? ?

? ? ? 读数修正

应变仪是应变测量的专用仪器。应变仪测量电路的输出电压? 是被标定成应变值ε仪直接显示的。与电阻片的灵敏系数 相对应,应变仪也有一个灵敏系数 仪,多数仪器的 仪是可调的,测量时一般经过调节令 仪 ,这样应变仪的读数值ε仪与桥路输出的应变值ε测相

等,即ε仪 ε测不必修正。某些应变仪的 仪是固定不变的,不能调节,当 仪 时,读数值ε仪会存在一系统误差,必须按下式进行修正,即: 仪ε仪 ε测。此时桥路输出的实际应变值应为:

ε测 仪

ε仪

桥臂系数

同一个被测值,由于布片和组桥方式不同,桥路的输出电压? 有很大的不同,与单臂测量相比ε仪将不同程度的被放大。即测量灵敏度有不同程度的提高。为说明这种变化,测量灵敏度的大小一般用桥臂系数B 来表示。定义如下: B ε仪ε单

ε仪——应变仪指示的应变值( 仪 时)

ε单——被测点的真实应变值,ε单一般由单臂测量测定。

应变片测量组桥方式

应变片测量组桥方式 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

下图为1/4桥(类型I)轴向应变配置中的应变计电阻:下图为1/4桥(类型I)弯曲应变配置中的应变计电阻: 1/4桥(类型I)的应变计配置具有下列特性: ?单个有效应变计元素位于轴向或弯曲应变的主方向。 ?具有补偿电阻(1/4桥完整电桥结构电阻)和半桥完整桥结构电阻。 ?温度变化可降低测量精度。 ?1000 με时的灵敏度为~ mV out/ V EX输入。 上级主题: 相关概念 1/4桥(类型I)的电路图 电路图使用下列符号: ?R1是半桥的完整电桥结构电阻。 ?R2是半桥的完整电桥结构电阻。 ?R3是1/4桥的完整电桥结构电阻,称为补偿电阻。 ?R4是用于测量伸展应变(+ε)的有效应变计元素。 ?V EX是激励电压。 ?R L是导线电阻。 ?V CH是测量电压。 通过下列方程将1/4桥配置的电压比率转换为应变单位。 V r是虚拟通道用于电压—应变转换方程的电压比率,GF是应变计因子,R L是导线电阻,R g是额定应变计电阻。 下图为1/4桥(类型II)轴向应变配置中的应变计电阻: 下图为1/4桥(类型II)弯曲应变配置中的应变计电阻: 1/4桥(类型II)的应变计配置具有下列特性: ?有效应变计元素和无效应变计元素(1/4桥的温度传感元素,称为补偿电阻)。有效元素位于轴向或弯曲应变的方向。补偿应变计位于连接至应变样本的温度电阻附近,但并未连接至应变样本,通常平行或垂直于主要的轴向应变方向。该配置常被误认为是半桥(类型I)配置,在半桥(类型I)配置中,R3为有效元素且连接至应变样本,用于测量泊松比的效应。 ?完整桥结构电阻可使半桥保持完整。 ?可补偿温度对测量产生的影响。 ?1000 με时的灵敏度为~ mV out/ V EX输入。 上级主题: 相关概念 1/4桥(类型II)的电路图 电路图使用下列符号:

低应变分析

基桩低应变检测实例分析与处理方法 基础工程是建筑工程的重要组成部分,地基基础工程的质量直接关系到整个建筑物的结构安全。桩基础是主要的基础形式之一,由于桩的施工具有高度的隐蔽性,因此桩基工程的设计、施工、质量检测等方面往往比上部建筑结构更为复杂,更容易存在质量隐患。桩基工程的质量问题将直接危及主体结构的正常使用与安全。 桩基质量检测技术,特别是桩基动力试验,涉及到岩土力学、振动学、桩基施工技术和计算机技术等诸多学科知识,它既不同于常规的建筑材料试验,又不同于普通的建筑结构测试。因此,作为一名检测人员,应坚持不懈地学习专业理论知识,不断地积累实际工作经验,努力地提高桩基检测的技术水平,进一步完善基桩质量检测技术。 桩基在施工过程中如果控制不当,就会造成质量事故。特别是钻(冲)孔灌注桩,往往在浇注混凝土时出现质量问题。下面,本人就近几年在基桩低应变检测中测得的几例比较典型的钻(冲)孔灌注桩工程实例进行分析,供同行参考。 图1:中国南洋汽摩集团有限公司综合宿舍楼工程,该桩桩径500mm,有效桩长40m,混凝土强度C20,简易钻孔桩。该桩在2.2m附近有同向反射,并伴有多次反射,断桩,判为Ⅳ类桩。处理方法:开挖处理,开挖至2.2m左右,发现钢筋笼内空心,下去1m左右出现平整的水泥土,继续开挖至5m左右(采用人工挖孔桩的方法),出现密实的混凝土,修整后再测,桩身完整。原因分析:在浇灌至距桩顶标高5m左右,导管拔空,混凝土无法从导管中下去,拔出导管后直接把混凝土从孔口倒下,于是孔中的泥浆和砂浆的混合物就被倒下的混凝土压缩在2.2m至5m 左右的钢筋笼中,水份被吸收后就形成前面的状态。经与浇灌工人核对后,情况完全符合。 图2:瑞安红旭车辆贸易公司综合楼工程,该桩桩径500mm,有效桩长45m,混凝土强度C20,简易钻孔桩。该桩在5.1m附近有同向反射,并伴有多次反射,断桩,判为Ⅳ类桩。原因分析:在该桩所在的轴线上有5根桩出现类似的情况,该轴线靠近河边,在河床底下有一层流动性淤泥,

电阻应变测量原理及方法

目录 电阻应变测量原理及方法 (2) 1. 概述 (2) 2. 电阻应变片的工作原理、构造和分类 (2) 2.1电阻应变片的工作原理 (2) 2.2电阻应变片的构造 (4) 2.3电阻应变片的分类 (4) 3. 电阻应变片的工作特性及标定 (6) 3.1电阻应变片的工作特性 (6) 3.2电阻应变片工作特性的标定 (10) 4. 电阻应变片的选择、安装和防护 (12) 4.1电阻应变片的选择 (12) 4.2电阻应变片的安装 (13) 4.3电阻应变片的防护 (14) 5. 电阻应变片的测量电路 (14) 5.1直流电桥 (15) 5.2电桥的平衡 (17) 5.3测量电桥的基本特性 (18) 5.4测量电桥的连接与测量灵敏度 (19) 6. 电阻应变仪 (24) 6.1静态电阻应变仪 (24) 6.2测量通道的切换 (26) 6.3公共补偿接线方法 (27) 7. 应变-应力换算关系 (28) 7.1单向应力状态 (28) 7.2已知主应力方向的二向应力状态 (29) 7.3未知主应力方向的二向应力状态 (29) 8. 测量电桥的应用 (31) 8.1拉压应变的测定 (31) 8.2弯曲应变的测定 (34) 8.3弯曲切应力的测定 (35) 8.4扭转切应力的测定 (36) 8.5内力分量的测定 (36)

电阻应变测量原理及方法 1. 概述 电阻应变测量方法是实验应力分析方法中应用最为广泛的一种方法。该方法是用应变敏感元件——电阻应变片测量构件的表面应变,再根据应变—应力关系得到构件表面的应力状态,从而对构件进行应力分析。 电阻应变片(简称应变片)测量应变的大致过程如下:将应变片粘贴或安装在被测构件表面,然后接入测量电路(电桥或电位计式线路),随着构件受力变形,应变片的敏感栅也随之变形,致使其电阻值发生变化,此电阻值的变化与构件表面应变成比例,测量电路输出应变片电阻变化产生的信号,经放大电路放大后,由指示仪表或记录仪器指示或记录。这是一种将机械应变量转换成电量的方法,其转换过程如图1所示。测量电路的输出信号经放大、模数转换后可直接传输给计算机进行数据处理。 电阻应变测量方法又称应变电测法,之所以得到广泛应用,是因为它具有下列优点 1.测量灵敏度和精度高。其分辨率达1微应变(με),1微应变=10-6应变(ε)。 2.测量范围广。可从1微应变测量到2万微应变。 3.电阻应变片尺寸小,最小的应变片栅长为0.2毫米;重量轻、安装方便,对构件无 附加力,不会影响构件的应力状态,并可用于应力梯度变化较大的应变的测量。 4.频率响应好。可从静态应变测量到数十万赫的动态应变。 5.由于在测量过程中输出的是电信号,易于实现数字化、自动化及无线电遥测。 6.可在高温、低温、高速旋转及强磁场等环境下进行测量。 7.可制成各种高精度传感器,测量力、位移、加速度等物理量。 该方法的缺点是: 1.只能测量构件表面的应变,而不能测构件内部的应变。 2.一个应变片只能测定构件表面一个点沿某一个方向的应变,不能进行全域性的测量。 3.只能测得电阻应变片栅长范围内的平均应变值,因此对应变梯度大的应力场无法进 行测量。 2. 电阻应变片的工作原理、构造和分类 2.1 电阻应变片的工作原理 由物理学可知,金属导线的电阻值R 与其长度L 成正比,与其截面积A 成反比,若 图1 用电阻应变片测量应变的过程

低应变法检测桩身完整性

低应变反射波法 目前国内外普遍采用瞬态冲击方式,实测桩顶加速度或速度响应时域曲线。籍一维波动理论分析来判定基桩得桩身完整性,这种方法称之为反射波法(或瞬态时域分析法)。 传感器得安装方法: 实心桩得激振点位置应选择在桩中心,测量传感器安装位置宜为距桩中心 2/3 半径处; 空心桩得激振点与测量传感器安装位置宜在同一水平面上,且与桩中心连 线形成得夹角宜为90 度,激振点与测量传感器安装位置宜为桩壁厚得1/2 处。

传感器藕合: 把藕合剂抹在传感器底部,再把传感器放入桩顶部,松手后传感器不会移动与侧斜为佳。传感器安装地点,一点要平整。不然会影响采集效果,藕合可以用牙膏,黄油,口香糖,但不可用泥巴。 敲击: 敲击以力棒自由落体来敲击桩头,力棒落到桩头反弹后,立马抓住力棒。落距为5cm—15cm 为佳。视桩得长度而定,桩稍长可稍加大落距。长桩用得锤头最好为橡胶头,短桩用铝合金头。 波形分析完整桩:入射波与反 射波同相

也有桩底反射与初始入射波先反相再同相得扩底桩 下图为,某小区得住宅楼,长7、2 米人工挖孔桩,设计砼强度为C25。V=3675,经检测桩底反射明显,底部扩底属完整桩 缩径桩:在时程曲线上反映比较规则,缩径部位与缺陷呈先同相再反相,或仅现其同相反射信号,视严重程度,可能有多次反射,此类缺陷 桩一般可见桩底信号

离析:由于离析部位得混凝土松散,对应力波能量吸收较大,形成缺 陷波不规则,后续信号杂乱,而且频率较低,波速偏小,通常很难瞧到 桩底反射。 断桩:测试曲线呈等距多次同相反射。上部断裂往往趾呈高频多次同 时反射,反射幅值较高,衰减较慢,中部断裂反映为多次同相反射, 缺 陷得反射波幅值较低,而深部断裂波形反映下,类就是摩擦桩桩底反射,但算得得波速明显高于正常桩得波速。

梁的应力应变测试

中国石油大学 梁应力应变测量实验报告 专业:机自1401 年级:2014 班级:机自1班 学生学号:1404010103 学生姓名:程浩

梁应力应变测量 一、实验目的 1、了解电阻应变片的结构及种类; 2、掌握电阻应变片的粘贴技巧; 3、掌握利用电阻应变片测量应力应变的原理; 4、掌握动态测试分析系统的使用及半桥、全桥的接法; 二、实验内容 进行悬臂梁的应变测量 三、实验原理 1、电阻应变片的测量技术 将应变片固定在被测构件上,当构件变形时,电阻应变片的电阻值发生相应的变化。通过电阻应变测量装置(简称应变仪)可将电阻应变片中的电阻值的变化测定出来,换算成应变或输出与应变呈正比的模拟电信号(电压或电流),用记录仪记录下来,也可用计算机按预定的要求进行数据处理,得到所需要的应力或应变值。 2、电阻应变式传感器 电阻应变式传感器可测量应变、力、位移、加速度、扭矩等参数。具有体积小、动态响应快、测量精度高、使用简便等优点。电阻应变式传感器可分为金属电阻应变片和半导体应变片两类。 常用的金属电阻应变片有丝式和箔式两种。它由敏感元件、引出线、基底、覆盖层组成,用粘贴剂粘贴在一起,如图所示。 图1 电阻应变片结构图2 电桥 3、应变片的测量电路 在使用应变片测量应变时,必须有适当的方法检测其阻值的微小变化。为此,一般是把应变片接入某种电路,让它的电阻变化对电路进行某种控制,使电路输出一个能模拟这个电阻变化的电信

号,之后,只要对这个电信号进行相应的处理(滤波、放大、调制解调等)就行了。 常规电阻应变测量使用的应变仪,它的输入回路叫做应变电桥 ① 应变电桥:以应变片作为其构成部分的电桥。 ② 应变电桥的作用:能把应变片阻值的微小变化转换成输出电压的变化。 U ) )((U 43214 2310?++-= R R R R R R R R 常用电桥连接方法有三种: (1)单臂半桥接法: R1作为应变片 (2)半桥接法:R1、R2作为应变片 (3)全桥接法: R1、R2、R3、R4均为应变片 电桥的和差特性:电桥的输出电压与电阻(或应变)变化的符号有关。即相邻臂电阻或应变变化,同号相减,异号相加;而相对臂则相反,同号相加,异号相减。 利用桥路的和差特性可以提高电桥灵敏度、补偿温度影响,从复杂应力状态中测取某一应力、消除非测量应力。 本实验采用单臂半桥接法,得到金属梁的拉应变与供桥电压和输出电压之间的关系为: KU 4U 0 M = ε 得到作用在梁上的弯矩为:EW M M ε= 四、实验主要仪器及耗材 DH5923动态电阻应变仪(DH5923动态信号测试分析系统)、电阻应变片、应变适调器、矩形梁、电烙铁、万用变、小螺丝刀、连接导线、502胶、丙酮、棉花、镊子、焊锡、酒精等。 五、实验步骤 1、粘贴应变片 (1) 去污:用砂轮(本实验采用砂纸代替)除去构件表面的油污、漆、锈斑等,并用细纱布交叉打磨出细纹以增加粘贴力,用浸有酒精和丙酮的纱布片或脱脂棉球擦洗。 (2) 贴片:在应变片的表面和处理过的粘贴表面上,各涂一层均匀的粘贴胶(502胶),用镊子将应变片放上去,并调好位置,然后盖上塑料薄膜,用手指揉合滚压,排出下面的气泡。

电阻应变片的结构及工作原理

电阻应变片的结构及工作原理 电阻应变片的结构如图4-1-3所示,其中,敏感栅是应变片中把应变量转换成电阻变化量的 敏感部分,它是用金属丝或半导体材料制成的单丝 或栅状体。引线是从敏感栅引出电信号的丝状或带 状导线。 (1)粘结剂:是具有一定电绝缘性能的粘结 材料,用它将敏感栅固定在基底上。 (2)覆盖层:用来保护敏感栅而覆盖在上面的 绝缘层。 (3)基底:用以保护敏感栅,并固定引线的 几何形状和相对位置。 电阻应变片能将力学量转变为电学量是利用了金属导线的应变——电阻效应。我 们知道,金属导线的电阻R 与其长度L 成正比,与其截面积A 成反比,即 A L R ρ= (4-1-3) 式中ρ是导线的电阻率。 如果导线沿其轴线方向受力产生形变,则其电阻值也随之发生变化,这一物理现象被称为金属导线的应变——电阻效应。为了说明产生这一效应的原因,可将式(4-1-3)取对数后进行微分得 ρ ρd A dA L dL R dR +-= (4-1-4) 式中,L dL 为金属导线长度的相对变化,用轴向应变来表示,即L dL =ε;A dA 是截面积的相对变化。2r A π=(r 为金属导线的半径),,r dr A dA 2= r dr 是金属导线半径的相对变化,即径向应变 r 。导线轴向伸长的同时径向缩小,所以轴向应变与径向应变r 有下列关系: μεε-=r (4-1-5) 为金属材料的泊松比。 根据实验,金属材料电阻率相对变化与其体积的相对变化之间的关系为V dV C d =ρρ,C 为金属材料的一个常数,如铜丝C =1 。 由L A V ?= 我们可导出V dV 与、r 之间的关系。 1 2 3 4 5 图4-1-3 电阻应变片 1-敏感栅;2-引线;3-粘结剂; 4-覆盖层;5-基底

应变式加速度传感器培训讲学

应变式加速度传感器

传感器与测控电路课程设计 说明书 题目应变片式加速度传感器的设计姓名 学院机电工程学院 专业测控技术与仪器 学号 指导教师 成绩 二〇一零年六月二十三日

目录 一、设计题目 (3) 二、设计任务及技术指标 (3) 三、设计要求 (3) 四、构造及其原理概述 (4) 五、结构设计 (5) 六、应变片的选择及其设计计算 (7) 七、转换电路的设计 (9) 八、外部电路的设计 (10) 九、结构和辅助零件的设计 (11) 十、精度误差分析 (12) 十一、课程设计总结 (13) 十二、参考文献 (14) 附录: 传感器设计CAD零件图 (15) 传感器设计CAD装配图 (16) 测控电路原理Proteus图 (17)

一、设计题目 应变式加速度传感器的设计 二、设计任务及技术指标 1、工作在常温、常压、静态、环境良好。 2、精度0.1%FS。 3、测量范围20g。 4、频响:0.1~100HZ。 5、电桥电压:5V。 三、设计要求 1、利用电阻或半导体的应变效应设计加速度传感器,将所测的加速度转换 成电信号。 2、根据被测量,设计传感器的性能参数和结构参数。 3、根据传感器敏感元件输出电量的类型设计转换电路和后续信号处理电 路。

四、构造及其原理概述 1、金属丝在外力作用下发生机械变形时,其电阻值将发生变化。 2、用应变片测量受力变形时,将应变片粘贴于被测对象表面上。在外力作用 下,被测对象表面产生微小机械变形时,应变片的敏感栅也随同变形,其电阻值发生相应的变化。通过转换电路转换为相应的电压或电流的变化。 根据式 σ=Eε 式中σ:测试的应力; E:材料弹性模量 可以测得σ应力值。通过弹性元件将加速度转换为应变,因此可以用应 变片测量加速度,从而做成应变式加速度传感器。 3、如图为加速度传感器的结构示意图。 图1 加速度传感器结构简图

应变测量原理

应变片原理 敏感元件的种类很多,其中以电阻应变片(简称电阻片或应变片)最简单、应用最广泛。 电阻片的应变-电性能(图1、图2) 电阻片分丝式和箔式两大类。丝绕式电阻片是用0.003mm‐0.01mm的合金丝绕成栅状制成的;箔式应变片则是用0.003mm‐0.01mm厚的箔材经化学腐蚀制成栅状的,其主体敏感栅实际上是一个电阻。金属丝的电阻随机械变形而发生变化的现象称为应变‐电性能。电阻片在感受构件的应变时(称作工作片),其电阻同时发生变化。实验表明,构件被测量部位的应变ΔL/L与电阻变化率ΔR/R成正比关系,即: ? ? 比例系数 称为电阻片的灵敏系数。 由于电阻片的敏感栅不是一根直丝,所以 不能直接计算,需要在标准应变梁上通过抽样标定来确定。 的数值一般约在2.0左右。 温度补偿片 温度改变时,金属丝的长度也会发生变化,从而引起电阻的变化。因此在温度环境下进行测量,应变片的电阻变化由两部分组成,即: ? ? ? ? ——由构件机械变形引起的电阻变化。 ? ——由温度变化引起的电阻变化。 要准确地测量构件因变形引起的应变,就要排除温度对电阻变化的影响。方法之一是,采用温度能够自己补偿的专用电阻片;另一种方法是,把普通应变片,贴在材质与构件相同、但不参与机械变形的材料上,然后和工作片在同一温度条件下组桥。电阻变化只与温度有关的电阻片称作温度补偿片。利用电桥原理,让补偿片和工作片一起合理组桥,就可以消除温

度给应力测量带来的影响。 应变花(图3) 为同时测定一点几个方向的应变,常把几个不同方向的敏感栅固定在同一个基底上,这种应变片称作应变花。应变花的各敏感栅之间由不同的角度α组成。它适用于平面应力状态下的应变测量。应变花的角度α可根据需要进行选择。 电阻片的粘贴方法 粘贴电阻片是电测法的一个重要环节,它直接影响测量精度。粘贴时,首先必须保证被测表面的清洁、平整、光滑、无油污、无锈迹。二要保证粘贴位置的准确、 并选用专用的粘接剂。三、应变片引线的焊接和导线的固定要牢靠,以保证测量时导线不会扯坏应变片。为满足上述要求,粘贴的大致过程如下:打磨测量表面→在测量位置准确画线→清洗测量表面→在画线位置上准确地粘贴应变片→焊接导线并牢靠固定。 电桥工作原理 应变仪测量电路的作用,就是把电阻片的电阻变化率ΔR/ R转换成电压输出,然后提供给放大电路放大后进行测量。 电桥原理

低应变检测考试试题与答案

一、填空题 1、基桩的定义为。 2、低应变检测的目的是与。 3、定应变法检测时,受检桩桩身混凝土强度应达到设计强度的,且不小于 。 4、低应变信号时域时间长度应在2L/c时刻后延续不少于,幅频信号分析 的频率范围上限不应小于。 5、低应变检测时,激振方向应桩轴线方向。 6、低应变检测时,应保证桩顶面、。 7、低应变检测时受检桩宜布置到个测点,每个测点记录有效信号不宜少于个。 8、某桩低应变检测不同检测点多次实测时域信号一致性较差,应。 9、当桩长已知、桩底反射信号明确时,应在地基条件、桩型、成桩工艺相同的 基桩中选取不少于根Ⅰ类桩的桩身波速值计算平均值。 10、低应变桩身完整性是反应、以及 的综合定性指标。 11、低应变完整性检测可以判定桩身缺陷的与。 12、低应变检测时,实心桩的激振点位置应选择在,测量传感器安装位 置宜选为距桩中心半径处。 13、低应变检测时,空心桩的激振点位置与传感器位置宜在,且 与桩中心形成夹角宜为。 14、为获得较长桩桩底或深部缺陷信号,激振锤质量宜,锤头刚度宜。 15、低应变桩身完整性判定可采用时域分析与频域分析,以为主。 16、对低应变检测,“波形呈现低频大振幅衰减振动,无桩底反射波”描述的是 类桩。 17、低应变完整性类别划分除需考虑缺陷位置、程度以外,还需要考虑 、、、。 18、低应变检测时,发现多次反射现象出现,一般表明缺陷在。 19、为保证基桩检测数据的与,检测所用计量器具必须送至

法定计量检测单位进行定期检定。 二、简答题 1、简述低应变反射波法的基本原理。 2、现有一钻孔灌注桩需要进行低应变检测,请简述现场检测步骤。 3、请简述进行低应变检测的桩应满足哪些基本现场条件。、 三、计算题 1、某工程有两种桩型,A桩为钻孔灌注桩,C20,桩径为,桩长为20m,波速为3500m/s;B桩为混凝土预制桩,C40,桩长32m,波速为4000m/s。请分析这两根桩缺陷深度与严重程度。 2、某工程灌注桩施工记录桩长为28m,混凝土等级为C30,波速为3500m/s,该桩波形如下图,t1=4ms、t2=10ms,试分析该桩完整性。(1ms=)

应变的计算方法

应变的计算方法 本章介绍了几种网格应变的计算方法,通过分析网格变形的特点及规律,将网格的变形分解为分别沿两个主应变的方向一次变形而得,从而通过欧拉法推导了有限应变解析的方网格应变计算方法,并把三维空间网格的每个网格作为线性孔斯曲面介绍了三维空间网格的应变计算方法。此外还介绍了工程应变、等效应变和厚度的计算。 4.2 基于欧拉法和有限应变理论解析的方网格计算方法 根据有限应变的理论,不同的应力加载可以获得相同的应变结果。对于近似于平面应力状态的板材成形来说,每个单元体的应变主方向(除去因为位移造成的转动)在成形过程中保持不变。这样就可以将应变分成不同的加载阶段,利用真实应变的可叠加性,就可以推导出方网格变形的应变计算方法。 连续体的有限变形有两种表述方法。一种方法的相对位移计算是以变形前后物体内一点作为参考点,即以变形前的坐标作为自变量,这种方法称为拉格朗日法。另一种方法的相对位移计算是以变形后物体内一点作为参考点,以及已变形后的坐标作为自变量,这种方法称为欧拉法[48]。这里给出基于欧拉法和有限应变理论解析的方网格计算原理。 4.2.1 方网格内部的变形 设任意方向正方形网格内接于圆网格,将其变形过程分解为两个阶段,如图4-5所示。第一个阶段沿着X方向变形,Y方向保持不变;第二个阶段沿着Y方向变形,X方向保持不变,即应变主方向与坐标轴相平行。变形的结果使圆网格变形为椭圆,正方形网格变形为平行四边形(假设单元网格内沿主应变方向的变形是均匀的) (a)初始网格 (b)横向变形后的网格 (c)纵向变形后的网格 图4-5 基于有限应变的网格分解变形过程 4.2.2 应变主方向和真实应变的计算 对于方网格中心的应变,假设网格内部变形是均匀的,所以变形前后四边形对角线的交点就是网格中心,对角线把方网格划分成四个三角形。将变形后的网格中心和变形前的网格中心重合,建立直角坐标系,如图4-6所示。 图4-6 以欧拉法建立的变形前后网格中心重合的坐标系统 根据欧拉方法,以变形之后的网格坐标来分析,将主应变方向定为坐标方向,设X方向为主应变的方向,Y方向为主应变的方向,两个方向分别有拉形比: (4-20)

应变片测量组桥方式

应变片测量组桥方式 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

下图为1/4桥(类型I)轴向应变配置中的应变计电阻: 下图为1/4桥(类型I)弯曲应变配置中的应变计电阻: 1/4桥(类型I)的应变计配置具有下列特性: 单个有效应变计元素位于轴向或弯曲应变的主方向。 具有补偿电阻(1/4桥完整电桥结构电阻)和半桥完整桥结构电阻。 温度变化可降低测量精度。 1000 με时的灵敏度为~ mV out/ V EX输入。 上级主题: 相关概念 1/4桥(类型I)的电路图 电路图使用下列符号: R1是半桥的完整电桥结构电阻。 R2是半桥的完整电桥结构电阻。 R3是1/4桥的完整电桥结构电阻,称为补偿电阻。 R4是用于测量伸展应变(+ε)的有效应变计元素。 V EX是激励电压。 R L是导线电阻。 V CH是测量电压。 通过下列方程将1/4桥配置的电压比率转换为应变单位。 V r是虚拟通道用于电压—应变转换方程的电压比率,GF是应变计因子,R L是导线电阻,R g是额定应变计电阻。 下图为1/4桥(类型II)轴向应变配置中的应变计电阻: 下图为1/4桥(类型II)弯曲应变配置中的应变计电阻: 1/4桥(类型II)的应变计配置具有下列特性: 有效应变计元素和无效应变计元素(1/4桥的温度传感元素,称为补偿电阻)。有效元素位于轴向或弯曲应变的方向。补偿应变计位于连接至应变样本的温度电阻附近,但并未连接至应变样本,通常平行或垂直于主要的轴向应变方向。该配置常被误认为是半桥(类型I)配置,在半桥(类型I)配置中,R3为有效元素且连接至应变样本,用于测量泊松比的效应。 完整桥结构电阻可使半桥保持完整。 可补偿温度对测量产生的影响。 1000 με时的灵敏度为~ mV out/ V EX输入。 上级主题: 相关概念

应变片的工作原理

应变片的工作原理 将应变片贴在被测定物上,使其随着被测定物的应变一起伸缩,这样里面的金属箔材就随着应变伸长或缩短。很多金属在机械性地伸长或缩短时其电阻会随之变化。应变片就是应用这个原理,通过测量电阻的变化而对应变进行测定。一般应变片的敏感栅使用的是铜铬合金,其电阻变化率为常数,与应变成正比例关系。 即ΔR/R=K×ε 在这里R:应变片的原电阻值Ω ΔR:伸长或压缩所引起的电阻变化Ω K:比例常数(应变片常数) ε:应变 不同的金属材料有不同的比例常数K.铜铬合金的K值约为2.这样,应变的测量就通过应变片转换为对电阻变化的测量。但是由于应变是相当微小的变化,所以产生的电阻变化也是极其微小的。例如我们来计算1000×10?6的应变产生的电阻的变化。应变片的电阻值一般来说是120 欧姆,即 ΔR/120=2×1000×10—6 ΔR=120×2×1000×10?6= 0.24Ω 电阻变化率为ΔR/R=0.24/120=0。002→0.2% 要精确地测量这么微小的电阻变化是非常困难的,一般的电阻计无法达到要求。为了对这种微小电阻变化进行测量,我们使用带有韦斯通电桥回路的专用应变测量仪。应变片本身的追随能力可以达到数百kHz,通过组合的测定装置可以对冲击现象进行测量。行驶中的车辆,飞行中的飞机等各部位的变动应力可以通过应变片和测定装置进行初步的测量。 测量电路:惠斯通电桥 惠斯通电桥适用于检测电阻的微小变化,应变片的电阻变化也可以用这个电路来测量。如图5 所示,惠斯通电桥由四个电阻组合而成。

图5 图6 如果R1 =R2 =R3 =R4 或R1×R2=R3×R4 则无论输入多大电压,输出电压e总为0,这种状态称为平衡状态。如果平衡被破坏,就会产生与电阻变化相对应的输出电压。如图6 所示,将这个电路中的R1 用应变片相连,有应变产生时,记应变片电阻的变化量为ΔR,则输出电压e的计算公式如下所示。 e=(1/4)*(ΔR/R)*E即e=(1/4)*K*ε*E 上式中除了ε 均为已知量,所以如果测出电桥的输出电压就可以计算出应变的大小。上例电路中只联入了一枚应变片,所以称为单一应变片法(1/4桥)。除此之外,还有双应变片半桥法及四应变片全桥法。 如图7 所示,在电桥中联入了四枚应变片(全桥)。四应变片法是桥路的四边全部联入应变片,在一般的应变测量中不经常使用,但常用于应变片式的变换器中。如图7 所示,当四条边上的应变片的电阻分别引起如R1+ΔR1,R2+ΔR2,R3+ΔR3,R4+ΔR4 的变化时 若四枚应变片完全相同,比例常数为K,且应变分别为ε1,ε2,ε3,ε4。则上面的式子可写成下面的形式。 也就是说,应变测量时,邻臂上的应变相减,对臂上的应变相加。

测试技术课后题答案8力

习题8 8.2一等强度梁上、下表面贴有若干参数相同的应变片,如题图8.1 所示。 题图8.1 梁材料的泊松比为μ,在力P的作用下,梁的轴向应变为ε,用静态应变仪测量时,如何组桥方能实现下列读数? a)ε;b) (1+μ)ε;c) 4ε;d) 2(1+μ)ε;e) 0;f) 2ε 解: 本题有多种组桥方式,例如图所示。 8.2如题图8.2所示,在一受拉弯综合作用的构件上贴有四个电阻应变片。试分析各应变片感受的应变,将其值填写在应变表中。并分析如何组桥才能进行下述测试:(1) 只测弯矩,消除拉应力的影响;(2) 只测拉力,消除弯矩的影响。电桥输出各为多少?

题图8.2 解 组桥如图。 设构件上表面因弯矩产生的应变为ε,材料的泊松比为μ,供桥电压为u0,应变片的灵敏度系数为K。 各应变片感受的弯应变如题表8.1-1。 题表8.1-1 R1R2R3R4 -μεε-εμε 可得输出电压 )] 1(2[ 4 1 ] ( ) ( [ 4 1 με με με ε ε+ = - - + - - =K u K u u y 其输出应变值为) 1(2με + (1)组桥如题图。 2

3 设构件上表面因拉力产生的应变为ε,其余变量同(1)的设定。 各应变片感受的应变如 题表8.1-2。 可得输出电压 )] 1(2[4 1 ]()([4100μεμεε μεε+=--+--= K u K u u y 输出应变值为 )1(2με+ 8.4 用YD -15型动态应变仪测量钢柱的动应力,测量系统如题图10.3所示,若R 1=R 2=120Ω,圆柱轴向应变为220με,μ=0.3,应变仪外接负载为R fz =16Ω,试选择应变仪衰减档,并计算其输出电流大小。(YD -15型动态应变仪的参数参见题表8.3-1和8.3-2。) 解 电桥输出应变 286220)3.011仪=?+=+=()(εμεμε 由题表8.3-1选衰减档3。

应力应变实验方案

运输车应力应变实验方案 一、 实验目的 1. 掌握用电阻应变片贴片技巧与理论分析方法; 2. 掌握应力应变仪数据采集分析和使用方法; 3. 验证测量应变值、理论计算值和仿真分析值的一致性; 4. 做好实验与软件分析的差异性。 二、 实验原理 应变片电测法是用电阻应变计测量结构的表面应变,再根据表面应变——应力关系确定结构件表面应力状态的一种试验应力分析方法。测量时,将电阻应变片粘贴在零件被测点的表面。当零件在载荷作用下产生应变时,电阻应变计发生相应的电阻变化,用应变仪测出这个变化,即可以计算被测点的应力和应变。 三、 仪器与耗材 电阻式应变片(120—3AA ),接线端子,装有DCS-100A 软件的PC 机,PCD —300B 数据分析仪,硅橡胶,502胶水,聚四氟乙烯薄膜,镊子,小螺丝刀,剪刀,酒精,砂纸,电胶带,透明胶带,若干导线,称砣,弹性钢板, 220V 稳压电源,悬臂梁,万用表,电烙铁。 四、 实验内容 测试运输车车架的应力应变。 五、 实验步骤 1. 粘贴应变片 1) 去污:为了使电阻应变片能准确的反映构件被测点的变形,必须使电阻应变片和构件表面能很好地结合。用砂纸去除构件表面的油污、漆、锈斑等,并用纸巾搽干净构件表面以增加粘贴力,用浸有丙酮的脱脂棉球擦洗; 2) 测量:用万用表测量应变片的完好性; 3) 贴片:先用镊子把应变片和接线端子线性的固定在透明胶带的一边,缓慢的将带有应变片和接线端子的透明胶带贴在构件表面,然后用镊子小心翼翼的把带有应变片和接线端子这边的透明胶带挑起,将准备好的502胶水用聚四氟乙烯拨片均匀的涂在构件与透明胶带之间,然后用拇指把准备好的聚四氟乙烯薄膜片迅速垂直压在带有应变片和接线端子这边的透明胶带上,并保持一分钟时间。去掉聚四氟乙烯薄膜片,用镊子小心翼翼的粘在应变片和接线端子上的透明胶带去掉,仔细检查贴在构件表面的应变片和接线端子是否粘贴好; 4) 焊接导线:将应变片上引出的两根导线通过接线端子与外部的导线焊接在一起。然后用电胶带把裸露在外面的导线固定好,最后再用万用表检测贴好的应变片是否完好。 2. 实验的标定 为了在一定程度上模拟运输车车架的承载情况,试验采用悬臂梁的形式实现标定工作,主要在一悬臂梁上粘贴应变片,通过在自由端施加已知质量的重块以施加已知载荷和弯矩,根据材料力学的理论公式26bh PL W M == σ则可得到在不同工况的应力理论值。 在悬臂梁上贴好应变片的前提下,通过采用PCD-300B 数据分析仪和DCS-100A 数据采集软件,将得到具有一定数值的模拟信号,将悬臂梁上悬挂重物质量、理论应力值和试验采集的应力平均值建

应变片的类型及其工作原理

电阻应变片 摘要:电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。本文详细介绍电阻应变片的分类,构造,工作原理及其应用。 关键词:金属电阻应变片半导体应变片 1.电阻应变片的分类及其工作原理 电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。 2.金属电阻应变片 2.1金属电阻应变片的分类及其结构 金属电阻应变片分为丝式、箔式,薄膜式三种。金属丝电阻应变片的典型结构见图。它主要由粘合层1、3,基底2、盖片4,敏感栅5,引出线6构成。 图2.1-2 金属箔式应变片的敏感栅,则是用栅状金属箔片代替栅状金属丝。金属箔栅采用光刻技术制造,适用于大批量生产。由于金属箔式应变片具有线条均匀、尺寸准确、阻值一致性好、传递试件应变性能好等优点,因此,目前使用的多为金属箔式应变片,其结构见下图。

2.3金属电阻应变片工作原理简介 金属电阻应变片的工作原理是电阻应变效应,即金属丝在受到应力作用时,其电阻随着所发生机械变形(拉伸或压缩)的大小而发生相应的变化。电阻应变效应的理论公式如下:

由上式可知,金属丝在承受应力而发生机械变形的过程中,ρ、L、S三者都要发生变化,从而必然会引起金属丝电阻值的变化。当受外力伸张时,长度增加,截面积减小,电阻值增加;当受压力缩短时,长度减小,截面积增大,电阻值减小。因此,只要能测出电阻值的变化, 便可金属丝的应变情况。这种转换关系为 式中: R---金属丝电阻值的变化量; Ko---金属材料的应变灵敏系数,它主要由试验方法确定,且在弹性极限内基本为 常数值; ε---金属材料的轴向应变值,即,因此又称ε为长度应变值,对金属丝而言, 其值勤 在0.24--0.4之间. 在实际应用中,将金属电阻应变片粘贴在传感器弹性元件或被测饥械零件的表面。当传感器中的弹性元件或被测机械零件受作用力产生应变时,粘贴在其上的应变片也随之发生相同的机械变形,引起应变片电阻发生相应的变化。这时,电阻应变片便将力学量转换为电阻的变化量输出。 2.4金属电阻应变片电桥电路图 金属电阻应变片应用于力学测量时,需要和电桥电路一起使用;由于应变片电桥电路的输出信号微弱,采用直流放大器又容易产生零点漂移现象,故多采用交流放大器对信号进行放大处理,所以应变片电桥电路一般都采用交流电供电,组成交流电桥。根据读数方法的不同,电桥又分为平衡电桥和不平衡电桥两种。平衡电桥仅适合测量静态参数,而不平衡电桥则适合测量动态参数。 由于直流电桥和交流电桥在工作原埋上相似,为了方便起见,下面仅就直流不平衡电桥进行介绍。

应变片-实验指导书

静态电阻应变仪操作及应变片组桥实验 1 实验目的 ⑴掌握静态电阻应变仪的使用方法; ⑵了解电测应力原理,掌握直流测量电桥的加减特性; ⑶分析应变片组桥与梁受力变形的关系,加深对等强度梁概念的理解。 2 设备仪器 ⑴50KN电子万能试验机一台; ⑵静态电阻应变仪一台; ⑶等强度测试梁一套。 3 实验原理 图2-1实验装置图 实验装置如图2-1,梁的厚h=11.65mm 、宽b(X)=X/9 ,在X=200mm和X=300mm 处梁的上下表面沿对称轴方向粘贴了四片电阻应变片D1、D2、D3、D4。电阻片阻值:120Ω,灵敏度系数:2.12,电阻片长:5mm。由这四个电阻片在静态电阻应变仪上接成不同的测量

桥路进行测量可以熟练掌握应变仪的使用。 实验中,要明确电阻应变片和静态电阻应变仪的测量原理: ⑴电阻应变片测量原理 目前常用的箔式电阻应变片是用0.003~0.01mm 高阻抗镍铜箔材经化学腐蚀等工序制成电阻箔栅,然后焊接引出线,涂上绝缘胶粘固到塑料基膜上。使用时,只须把基膜面用特制胶水牢固粘贴到构件的测点处。这样当构件受力变形时电阻应变片亦随之变形,则电阻应变片的电阻值将发生改变。其特性关系为: ΔR/R 0∕ΔL/L 0=K 即是说,应变片电阻的改变率与长度的改变率的比为一常数K ,而长度的改变率ΔL/L 0=ε。 常数K 也称电阻应变片的灵敏系数,电阻应变片作为产品出厂时会给出K 、R 0、L 0 。 因此,只要有专门的电子仪器能测出应变片的电阻改变率ΔR/R 0,即可完成应力测量σ=E ε 这种专门的电子仪器已广泛应用,就是静态电阻应变仪。 ⑵静态电阻应变仪测量原理 静态电阻应变仪是依据惠斯顿电桥原理进行测量的。 惠斯顿电桥如图2-2所示: 图2—2 惠斯顿电桥 若在节点A 、C 之间给一直流电压V AC ,则B 、D 之间有电压输出V BD ,且V BD =(R 1R 3-R 2R 4)V AC /(R 1+R 2)(R 3+R 4),当R 1R 3=R 2R 4时,称电桥满足平衡条件,此时V BD =0,且由该电桥特性知当 R 1=R 2=R 3=R 4=R 时,电桥为全等臂电桥。 dV BD = 4 AC V (ΔR 1/R-ΔR 2/R+ΔR 3/R-ΔR 4/R ) 由于电阻应变片有ΔR/R=K ε,上式可写成: dV BD =K 4 AC V (ε1-ε2+ε3-ε4) 即是说电桥输出电压与四个桥臂上电阻应变片所产生应变的代数和成正比。即 BD

抗拔桩静载和低应变检测方案

_ 桩基检测方案 编制: 审核: 审批:

桩基检测方案 1工程概况 1.1工程名称:南京至高淳城际轨道禄口机场至溧水段试验段土建工程(DS7-TA05标) 1.2建设单位:南京地铁建设有限责任公司 1.3建设地点:金龙路站~无想山站 1.4工程概况:本标段二站一区间,金龙路站、无想山站和金龙路站~无想山站区间。 金龙路站采用Φ1000钻孔灌注桩,混凝土等级为C35P8水下,有效桩长5m。设计抗拔承载力特征值为:1000KN(KBZ1~9a、15~22a)、2400KN(KBZ10~14)。金龙路站桩数总计127根。 无想山站采用Φ1000钻孔灌注桩,混凝土等级为C35P8水下,有效桩长5m。设计抗拔承载力特征值为:1000KN(KBZ1~KBZ5)、2400KN(KBZ6~KBZ25)。无想山站桩数总计90根。无想山站抗拔桩平面布置见图2-2。 1.5检测项目及数量: 1.6检测依据: 《建筑基桩检测技术规范》JGJ106-2014 《建筑地基基础处理技术规范》JGJ79-2012 《建筑基桩技术规范》JGJ94-2008 《建筑地基基础检测规程》DGJ32/TJ 142-2012 《建筑地基基础设计规范》GB50007-2011 《钻孔灌注桩成孔、地下连续墙成槽质量检测技术规程》DGJ32/TJ117-2011

《南京轨道交通工程建设质量检测项目和频率规定》2014年版 本工程设计图纸 1.7检测任务: 低应变检测:通过低应变动测对试桩完整性进行检测,以确定试桩的完整性和可靠性。 抗拔检测:测试试验桩单桩竖向抗拔最大值,提供单桩竖向抗拔承载力极限值和特征值; 测定单桩竖向荷载作用下的荷载和变形;判定单桩竖向抗拔承载力是否满足设计要求。2检测方法 2.1静载抗拔检测 2.1.1检测装置及安装示意图 试验装置主要包括千斤顶加载部分和桩顶位移观测两部分。 在抗拔桩的顶部架设一根钢梁,将抗拔桩钢筋锚固于钢梁之上。在抗拔桩两侧的地面上对称放置两块荷载板,荷载板上方分别安装千斤顶进行并联同步加载。千斤顶加载产生的抬升力由钢梁传递给抗拔桩的钢筋笼。桩顶位移用百分表位移传感器测量。 2.1.2检测装置及安装示意图 检测装置主要包括加载部分和桩顶位移观测部分。荷载由安放在抗拔桩顶上方、两根钢梁中间的油压千斤顶提供,千斤顶上方的钢梁与抗拔桩钢筋焊接或锚固连接。千斤顶下

梁应力应变测试

机械工程测试技术基础 梁应力应变测量 :辉 班级:机自1304班 学号:12041427

梁应力应变测量 一、实验目的 1、了解电阻应变片的结构及种类; 2、掌握电阻应变片的粘贴技巧; 3、掌握利用电阻应变片测量应力应变的原理; 4、掌握动态测试分析系统的使用及半桥、全桥的接法; 二、实验容 进行悬臂梁的应变测量 三、实验原理 1、电阻应变片的测量技术 将应变片固定在被测构件上,当构件变形时,电阻应变片的电阻值发生相应的变化。通过电阻应变测量装置(简称应变仪)可将电阻应变片中的电阻值的变化测定出来,换算成应变或输出与应变呈正比的模拟电信号(电压或电流),用记录仪记录下来,也可用计算机按预定的要求进行数据处理,得到所需要的应力或应变值。 2、电阻应变式传感器 电阻应变式传感器可测量应变、力、位移、加速度、扭矩等参数。具有体积小、动态响应快、测量精度高、使用简便等优点。电阻应变式传感器可分为金属电阻应变片和半导体应变片两类。 常用的金属电阻应变片有丝式和箔式两种。它由敏感元件、引出线、基底、覆盖层组成,用粘贴剂粘贴在一起,如图所示。 图1 电阻应变片结构图2 电桥 3、应变片的测量电路

在使用应变片测量应变时,必须有适当的方法检测其阻值的微小变化。为此,一般是把应变片接入某种电路,让它的电阻变化对电路进行某种控制,使电路输出一个能模拟这个电阻变化的电信号,之后,只要对这个电信号进行相应的处理(滤波、放大、调制解调等)就行了。 常规电阻应变测量使用的应变仪,它的输入回路叫做应变电桥 ① 应变电桥:以应变片作为其构成部分的电桥。 ② 应变电桥的作用:能把应变片阻值的微小变化转换成输出电压的变化。 U ))((U 432142310?++-= R R R R R R R R )--KU(4 1][4U U 4321443322110εεεε+=?-?+?-?=R R R R R R R R 常用电桥连接方法有三种: (1)单臂半桥接法: R1作为应变片 (2)半桥接法:R1、R2作为应变片 (3)全桥接法: R1、R2、R3、R4均为应变片 电桥的和差特性:电桥的输出电压与电阻(或应变)变化的符号有关。即相邻臂电阻或应变变化,同号相减,异号相加;而相对臂则相反,同号相加,异号相减。 利用桥路的和差特性可以提高电桥灵敏度、补偿温度影响,从复杂应力状态中测取某一应力、消除非测量应力。 本实验采用单臂半桥接法,得到金属梁的拉应变与供桥电压和输出电压之间的关系为: KU 4U 0M =ε 得到作用在梁上的弯矩为:EW M M ε= 四、实验主要仪器及耗材 DH5923动态电阻应变仪(DH5923动态信号测试分析系统)、电阻应变片、应变适调器、矩形梁、电烙铁、万用变、小螺丝刀、连接导线、502胶、丙酮、棉花、镊子、焊锡、酒精等。 五、实验步骤 1、粘贴应变片 (1) 去污:用砂轮(本实验采用砂纸代替)除去构件表面的油污、漆、锈斑等,并用细纱布交叉打磨出细纹以增加粘贴力,用浸有酒精和丙酮的纱布片或脱脂棉球擦洗。

相关文档
最新文档