平面坐标系

平面坐标系
平面坐标系

7.1.2平面直角坐标系

教学目标:

【知识与技能】

1?知道利用数轴上确定直线上一个点的位置用一个数就可以了.

2. 理解平面直角坐标系及其相关概念.

3. 理解坐标的概念.

4?能利用平面直角坐标系表示点的位置,也能根据坐标找到坐标平面上它所表示的点?

【过程与方法】

先利用数轴确定直线上一点的位置,进而利用两条共原点且互相垂直的两条数轴确定平面点的位置,再学习平面直角坐标系及相关概念,最后用坐标表示平面上的点或根据坐标找到坐标平面上它所表示的点?

【情感态度】

体验从易到难,从简单到复杂的数学探究过程,提高举一反三的数学能力,增强数学学习信心.

【教学重点】

平面直角坐标系及相关概念,各象限及坐标轴上点的坐标特征.

【教学难点】

各象限及坐标轴上点的坐标特征,建立适当的平面直角坐标系,表示平面上点的坐标.

教学过程:

一、情境导入,初步认识

问题1如图,A,B两点在直线I上,怎样表示A,B两点的位置.

I_■A --------- 3—1

问题2如图,平面上有A,B,C三点,怎样用类似于数轴确定直线上点的位置的方法,确定A,B, C的位置.

【教学说明】可提示学生在直线上确定出正方向、原点和单位长度,建立数轴,于是可用一个数表示A,B两点的位置了?

基础上,用类似的方法确定问题2中A,B,C三点的位置.由前节可知,要表示平面上的点,必须用有序数对表示,所以想到要画两条数轴才能表示A, B, C三点的位置?

我们可以在平面内画两条互相垂直,原点重合的数轴,这样我们就可以用有序数对表示A,B,C的位置了.

二、思考探究,获取新知

思考1.什么叫做平面直角坐标系?

2. 坐标平面内各象限及坐标轴上点的坐标特征.

3. 点(a,b)与点(b,a)是否表示同一个点(a^ b) ?

4. 怎样建立恰当的平面直角坐标系?如果建立的平面直角坐标系不同,对于平面上的一个点A,它的坐标相同吗?

【归纳结论】1.平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系.水平的数轴称为x轴或横轴,习惯取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点.

建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成四个象限,右上方叫第一象限,以后按逆时针的方向,依次为第二象限,第三象限和第四象限. 坐标轴上的点不属于任何象限(如图).

2. 坐标:若点A在坐标平面内,过A作x轴的垂线,垂足在x轴上的坐标是a,过A作y轴的垂线,垂足在y轴上的坐标是b,那么A的坐标就是(a,b).

3. 坐标平面内,各象限及坐标轴上点的坐标特征.

点的位置横坐标蒂号

第一象限++

第二嶷限—+

第三象限―—

第三象限——

第四象限+—

在X在正半轴上+0

轴上在负半轴上—0

在y在正半轴上0+

轴上在负半紬上0—

原点00

4. 点(a,b)和点(b,a)表示的是两个点(a^ b).

5. 建立恰当的平面直角坐标系的技巧是要根据实际情况进行正确决策,如在网格点上,原点应选在某一格点处,以后可根据实际情况慢慢体会.如果坐标系建得不相同,则对于平面上一点A的坐标就不相同,恰当地建立坐标系,可使横纵坐标都较整,绝对值都较小,使问题解决起来较简单

三、运用新知,深化理解

1. 坐标平面上,在第二象限内有一点P,且P到x轴的距离是4,到y轴的距离是5,则P点坐标为()

A. (-5, 4)

B.(-4, 5)

C.(4, 5)

D.(5, -4)

2. 在平面直角坐标系中,点P(-3, 4)到x轴的距离为()

A.3

B.-3

C.4

D.-4

3. 在一次科学探测活动中,探测人员发现一目标在如图所示的阴影区域内,

则目标的坐标可能是()

A. (-3, 300)

B. (7, -500)

C. (9, 600)

D. (-2, -800)

4若点P (2, a)到x轴的距离为3,则a= __________ .

5. (四川德阳中考)已知点P (a+1,2-a)在y轴上,那么P的坐标是___________ .

6. 如果点M (a+b,ab)在第二象限,那么N (a,b)在第___________ 限.

7. 已知A (3, 2), AB// y轴,且AB=4写出B点的坐标.

8. 设P点的坐标为(x,y),根据下列条件判定点P在坐标平面内的位置.

(1)xy=0; (2) xy>0; (3) x+y=0.

9. 在一次“寻宝”游戏中,寻宝人已经找到了坐标分别为(3, 2)和(3, -2) 的两个标点A, B,并且知道藏宝地点C的坐标为(4, 4),除此之外不知道其它信息,如何确定直角坐标系并找到“宝藏”(即在图中先正确画出平面直角坐标系,再描出点C的位置)?

【教学说明】题1、2、3、4为基础概念题,可让学生自主完成.题1、2 容易出现坐标与距离相混淆的错误.点P (a,b)到x轴的距离为|b|,到y轴的距离为|a|.题4容易遗漏a=-3的情况.题5、6、7、8、9可根据教学的实际情况选择性地让同学们交流完成.

【答案】1.A 2.C 3.B 4.± 3

5. (0,3)解析:a+1=0得a=-1,则P 为(0, 3).

6. 三解析:a+b v 0且ab >0,则a v 0,b v 0,即N在第三象限.

7. 解:设B点坐标为(a,b),依题意有a=3,|b-2|=4,解得b=6或-2,所以B点的坐标为(3, 6)或(3, -2).

8. 解: (1) x轴或y轴或原点;

(2)第一象限或第三象限;

(3)第二象限或第四象限或原点.9.略

四、师生互动,课堂小结

请学生口头总结,最后用课件在屏幕上出示小结.

课后作业:

练习第3、4 题.

2.完成练习册中本课时的练习. 教学反思:

本课灵活运用了多种数学方法,既有教师的讲解,又有讨论,在教师指导下的自学,组织游戏等活动.调动了学生学习的积极性,充分发挥了学生的主体作用.

本课不仅归纳了知识点,还注重了数学思想方法在课堂中的渗透.拓宽了学生的知识面,培养了学生的发散思维能力和创新能力.

ansys坐标系的总结

ANSYS坐标系总结 直角坐标系 在平面内画两条互相垂直,并且有公共原点的数轴。其中横轴为X轴,纵轴为Y 轴。这样就说在平面上建立了平面直角坐标系,简称直角坐标系。 平面极坐标系 坐标系的一种。在平面上取一定点o,称为极点,由o出发的一条射线ox,称为极轴。对于平面上任意一点p,用ρ表示线段op的长度,称为点p的极径或矢径,从ox到op的角度θε[0,2π],称为点p的极角或辐角,有序数对(ρ,θ)称为点p的极坐标。极点的极径为零,极角不定。除极点外,点和它的极坐标成一一对应。 柱面坐标系 柱坐标系中的三个坐标变量是 r、φ、z。与直角坐标系相同,柱坐标系中也有一个z变量。各变量的变化范围是:0 ≤ r < +∞, 0 ≤φ≤ 2π -∞

x=rsinθcosφ y=rsinθsinφ z=rcosθ https://www.360docs.net/doc/2a12188561.html,/zhishi/184852.html ANSYS坐标系以及工作平面的具体说明 ANSYS中定义点(K)的坐标是在当前激活的坐标系(CSYS)中进行,包括由点生成线,与工作平面的位置以及全局坐标系无关。而体(V)是在工作平面内(WP)进行,不依赖于当前激活的坐标系以及全局坐标系。 ▲ANSYS中定义局部坐标系是通过LOCAL命令:LOCAL, KCN, KCS, XC, YC, ZC, THXY, THYZ, THZX, PAR1, PAR2 其中,KCN为编号,从11开始,KCS为坐标系的类型,XC, YC, ZC值采用全局坐标系,为要定义的局部坐标系的原点位置,THXY, THYZ, THZX为局部坐标系相对全局坐标系沿着各个坐标轴旋转的角度。输入过程中未给出值的符号用0 默认。LOCAL的目的主要是为了建模方便以及选取便利。 LOCAL,11,0 !定义局部坐标系11,笛卡尔类型,原点在全局坐标(0,0,0) LOCAL,12,1 !定义局部坐标系12,圆柱类型,原点在全局坐标(0,0,0) LOCAL,13,2,0,1,2 !定义局部坐标系12,球坐标类型,原点在全局坐标(0,1,2) 【注意】:执行LOCAL以后,CSYS会自动激活为该坐标系(This local system becomes the active coordinate system).仅此命令有这个功能,其他的均要附加CSYS才能改变当前的激活坐标系。 ▲ANSYS中激活坐标系采用CSYS命令:CSYS, KCN ANSYS启动后CSYS默认为0(全局笛卡尔坐标),直到有LOCAL或者CSYS命令才改变。这个命令影响到点(K)坐标的输入类型。工作平面(WP)与全局坐标系重合。CSYS,0 !激活全局笛卡尔坐标,原点在全局坐标的原点 CSYS,1 !激活全局圆柱坐标,原点在全局坐标的原点 CSYS,2 !激活全局球坐标,原点在全局坐标的原点

(完整版)平面直角坐标系经典题(难)含答案.doc

第六章平面直角坐标系水平测试题(一) 一、(本大题共 10 小题,每题 3 分,共 30 分 . 在每题所给出的四个选项中,只有一项是符合题意的. 把所选项前 的字母代号填在题后的括号内 . 相信你一定会选对!) 1.某同学的座位号为(2,4 ),那么该同学的位置是() ( A )第 2 排第 4 列( B )第 4 排第 2 列( C)第 2 列第 4 排(D )不好确定 2.下列各点中,在第二象限的点是() ( A )( 2, 3)( B )( 2,- 3)( C)(- 2,- 3)(D )(- 2, 3) 3. P 到y 轴的距离为 3, 则点 P 的坐标为() 若 x 轴上的点 ( A )( 3,0)( B)( 0,3)(C)( 3,0)或(- 3,0)( D)( 0,3)或( 0,-3) 4.点M(m 1,m 3)在x轴上,则点 M 坐标为(). ( A )( 0,- 4)( B )( 4, 0)( C)(- 2, 0)( D)( 0,- 2) 5.一个长方形在平面直角坐标系中三个顶点的坐标为(- 1,- 1),(- 1,2),( 3,- 1)?,则第四个顶点的坐标为() ( A )( 2,2)( B)( 3,2)( C)( 3,3)( D)( 2,3) 6.线段 AB 两端点坐标分别为 A (1,4 ),B(4,1),现将它向左平移 4 个单位长度,得到线段 A 1B1,则 A 1、 B 1 的坐标分别为() ( A ) A 1(5,0 ),B1(8, 3 )( B) A 1(3,7), B1( 0, 5) ( C) A 1(5,4 )B1 (- 8, 1)(D ) A 1(3,4) B 1(0,1) 7、点 P( m+3, m+1)在 x 轴上,则 P 点坐标为() A .( 0, -2) B .( 2, 0)C.( 4, 0)D.( 0, -4) 8、点 P( x,y )位于 x 轴下方, y 轴左侧,且x =2 , y =4,点P的坐标是() A.( 4, 2) B .(- 2,- 4) C .(- 4,- 2) D .( 2, 4) 9、点 P( 0,- 3),以 P 为圆心, 5 为半径画圆交 y 轴负半轴的坐标是() A.( 8, 0) B .( 0 ,- 8) C .(0, 8) D .(- 8, 0) 10、将某图形的横坐标都减去2,纵坐标保持不变,则该图形() A.向右平移 2 个单位 B .向左平移 2 个单位 C .向上平移 2 个单位 D .向下平移 2 个单位 11、点 E(a,b )到 x 轴的距离是4,到 y 轴距离是3,则有() A. a=3, b=4 B . a=± 3,b= ± 4 C . a=4, b=3 D . a=± 4,b= ± 3 12、如果点 M到 x 轴和 y 轴的距离相等,则点M横、纵坐标的关系是() A.相等 B .互为相反数 C .互为倒数 D .相等或互为相反数 13、已知 P(0 , a) 在 y 轴的负半轴上,则Q( a2 1, a 1)在( ) A、 y 轴的左边, x 轴的上方 B 、y 轴的右边, x 轴的上方

平面直角坐标系知识结构图

平面直角坐标系知识结构图 平面直角坐标系是沟通代数和几何的桥梁,是非常重要的数学工具.要掌握以下几点: 1.坐标平面内的点和有序实数对一一对应 已知点P(x,y),它的横坐标x和纵坐标y的顺序是不能任意交换的,A(3,2)和B(2,3)表示两个不同的点. 对于坐标平面内的任意一点P,存在唯一的一对有序实数(x,y)和它对应;反过来,对于任意一对有序实数(x,y),在坐标平面内有唯一的P点和它对应.这里,(x,y)称为点P 的坐标,x是横坐标,y是纵坐标,x写在前,y写在后. 各象限内坐标的符号 点P(x,y)在第一象限内,则x>0,y>0,反之亦然. 点P(x,y)在第二象限内,则x<0,y>0,反之亦然. 点P(x,y)在第三象限内,则x<0,y<0,反之亦然. 点P(x,y)在第四象限内,则x>0,y<0,反之亦然. 2.特殊点的坐标 x轴上点的纵坐标为零,即(x,0),如果某点的坐标为(x,0),则它在x轴上. y轴上点的横坐标为零,即(0,y),如果某点的坐标为(0,y),则它在y轴上. 第一、三象限角平分线上点的横坐标和纵坐标相等,即(x,x),如果点的坐标为(x,x),则它必定在一、三象限角平分线上. 第二、四象限角平分线上点的横坐标和纵坐标互为相反数,即(x,-x),如果点的坐标为(x,-x),则它在二、四象限角平分线上. 原点的坐标是(0,0),反之,坐标是(0,0)的点是原点. 3.对称点 关于x轴对称的两个点的横坐标相等,纵坐标互为相反数. 关于y轴对称的两点的横坐标互为相反数,纵坐标相等. 关于原点对称的两点的横坐标纵坐标都互为相反数.如果一个点的坐标为(a,b),那么这个点关于x轴、y轴、原点的对称点分别是(a,-b),(-a,b),(-a,-b).它的逆命题亦成立. 4.点P(x,y)到两坐标轴的距离 点P(x,y)到x轴和y轴的距离分别是|y|和|x|. 点P(x,y).(由勾股定理可证)

ANSYS坐标系和工作平面介绍

!总体和局部坐标系:用来定位几何形状参数(节点,关键点)的空间位置 !显示坐标系:用于几何形状参数的列表和显示 !节点坐标系:定义每个节点的自由度方向和节点结果数据的方向!单元坐标系:确定材料特性主轴和单元坐标系结果数据的方向 !结果坐标系:用来列表,显示或在统一后处理操作中将节点或单元转换到一个特定的坐标系 1局部坐标系定义方法:workplane-local coordinate system-create local cs- at specified loc (1)局部坐标系的激活,workplane –change active cs to-specified coord sys (2)显示坐标系:workplane –change display cs to –specified coord sys (3)节点坐标系:节点坐标系用于节点自由度的方向,每个节点 都有自己的节点坐标系 Preprocessor –modeling- move modify-rotate node cs to-active cs (4)单元坐标系:加面压力和结果的输出方向preprocessor –modeling-move-elements- modify attribute (5)结果坐标系:general postprocessor –options for output List –results- options

@ 工作平面 工作平面是一个无限平面,有原点,二维坐标系,捕捉增量和显示栅格。当定义一个新的工作平面就会删除已有的工作平面,工作平面与坐标系是独立的,它们可以有不同的原点和旋转方向 定义一个新的工作平面 Workplane –align Wp with-specified coord sys 移动工作平面 workplane-offset wp to-global original 工作平面旋转:workplane-offset wp by increment

(完整版)平面直角坐标系规律题(带答案)

1. 2. 3. 平面直角坐标系规律题 如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图 中方向排列,如(1, 0), (2 , 0), ( 2, 1) , (1 , 1), (1 , 2), (2 , 2) ??…根据这个规律,第2016个点的坐标为什么? 如图,一个质点在第一象限及x轴、y轴上运动,一秒钟后,它从原点运动 到(0,1),然后接着按图中箭头所示方向运动[即(0,0)T( 0,1) T( 1,1) T( 1,0) T…],且每秒运动一个单位长度,那么第2016秒后质点所在位置的坐标是( 如图,在平面直角坐标系上有点 A (1, 0),点A第一次跳动 至点A1( -1 ,1),第四次向右跳动5个单位至点A4( 3,2 ),???, 依此规 律跳动下去,点A第100次跳动至点A100的坐标是 .第2016次呢? ) 6 5 % 5 -4 -3-2 -1 ° 1 2 3 4 5'玄 如图,在平面直角坐标系上有个点P ( 1 , 0),点P第1次向上跳动1个单位至点P1 (1, 1),紧接着第2次向左跳动2个单位至点P2 (-1 , 1 ),第3次向上跳动1个单位,第4次向 J A ----------------------------- 右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单 位,……,依此规律跳动下去,点P第100次跳动至点P100的坐标是()。电------------- 第2016个点的坐标是( ) 4 -------------- 4. 5、如图,在平面直角坐标系中,一动点从原点0出发,按向上、向右、向 下、向右的方向依次不断地移动,每次移动一个单位,得到点A1(0, 1),A2(1, 1),A3(1, 0),A4(2, 0),…,那么点A4n +1(n是自然数)的坐标为_________

平面直角坐标系经典题含答案

第六章 平面直角坐标系水平测试题(一) 一、(本大题共10小题,每题3分,共30分. 在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!) 1.某同学的座位号为(),那么该同学的位置是( ) (A )第2排第4列 (B )第4排第2列 (C )第2列第4排 (D )不好确定 2.下列各点中,在第二象限的点是( ) (A )(2,3) (B )(2,-3) (C )(-2,-3) (D )(-2,3) 3.若轴上的点到轴的距离为3,则点的坐标为( ) (A )(3,0) (B )(0,3) (C )(3,0)或(-3,0) (D )(0,3)或(0,-3) 4.点(,)在轴上,则点坐标为( ). (A )(0,-4) (B )(4,0) (C )(-2,0) (D )(0,-2) 5.一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1)?,则第四个顶点的坐标为( ) (A )(2,2) (B )(3,2) (C )(3,3) (D )(2,3) 6.线段AB 两端点坐标分别为A (),B (),现将它向左平移4个单位长度,得到线段A 1B 1,则A 1、B 1的坐标分别为( ) (A )A 1(),B 1() (B )A 1(), B 1(0,5) (C )A 1() B 1(-8,1) (D )A 1() B 1() 7、点P (m+3,m+1)在x 轴上,则P 点坐标为( ) A .(0,-2) B .(2,0) C .(4,0) D .(0,-4) 8、点P (x,y )位于x 轴下方,y 轴左侧,且x =2 ,y =4,点P 的坐标是( ) A .(4,2) B .(-2,-4) C .(-4,-2) D .(2,4) 9、点P (0,-3),以P 为圆心,5为半径画圆交y 轴负半轴的坐标是 ( ) A .(8,0) B .( 0,-8) C .(0,8) D .(-8,0) 10、将某图形的横坐标都减去2,纵坐标保持不变,则该图形 ( ) A .向右平移2个单位 B .向左平移2 个单位 C .向上平移2 个单位 D .向下平移2 个单位 11、点 E (a,b )到x 轴的距离是4,到y 轴距离是3,则有 ( ) A .a=3, b=4 B .a=±3,b=±4 C .a=4, b=3 D .a=±4,b=±3 12、如果点M 到x 轴和y 轴的距离相等,则点M 横、纵坐标的关系是( ) A .相等 B .互为相反数 C .互为倒数 D .相等或互为相反数 13、已知P(0,a)在y 轴的负半轴上,则Q(2 1,1a a ---+)在( ) A 、y 轴的左边,x 轴的上方 B 、y 轴的右边,x 轴的上方 14.七年级(2)班教室里的座位共有7排8列,其中小明的座位在第3排第7列,简记为(3,7),小华坐在第5排第2列,则小华的座位可记作__________. 15. 若点P (,)在第二象限,则点Q (,)在第_______象限. 16. 若点P 到轴的距离是12,到轴的距离是15,那么P 点坐标可以是________. 17.小华将直角坐标系中的猫的图案向右平移了3个单位长度,平移前猫眼的坐标为(-4,3),(-2,3),则移动后

高中数学平面直角坐标系下的图形变换及常用方法

高中数学平面直角坐标系下的图形变换及常用方法 摘要:高中数学新教材中介绍了基本函数图像,如指数函数,对数函数等图像等。而在更多的数学问题中,需要将这些基本图像通过适当的图形变换方式转化成其他的图像,要让学生理解并掌握图形变换方法。 高中数学研究的对象可分为两大部分,一部分是数,一部分是形,高中生是最需要培养的能力之一就是作图解图能力,就是根据给定图形能否提炼出更多有用信息;反之,根据已知条件能否画出准确图形。图是数学的生命线,能不能用图支撑思维活动是学好初等数学的关键之一;函数图像也是研究函数性质、方程、不等式的重要工具。 提高学生在数学知识的学习中对图形、图像的认知水平,是中学数学教学的主要任务之一,教师在教学过程中应该确立以下教学目标:一方面,要求学生通过对数学教材中基本的图形和图象的学习,建立起关于图形、图象较为系统的知识结构;培养和提高学生认识、研究和解决有关图形和图像问题的能力。为达到这一目标,教师应在教学中让学生理解并掌握图形变换的思想及其常用变换方法。 函数图形的变换,其实质是用图像形式表示的一个函数变化到另一个函数。与之对应的两个函数的解析式之间有何关系?这就是函数图像变换与解析式变换之间的一种动态的对应关系。在更多的数学问题中,需要将这些基本图像通过适当的图形变换方式转化成其它图像,要让学生理解并掌握图像变换方法。 常用的图形变换方法包括以下三种:缩放法、对称性法、平移法。 1.图形变换中的缩放法 缩放法也是图形变换中的基本方法,是蒋某基本图形进行放大或缩小,从而产生新图形的过程。若某曲线的方程F (x ,y )=0可化为f (ax ,by )=0(a ,b 不同时为0)的形式,那么F (x ,y )=0的曲线可由f (x ,y )=0的曲线上所有点的横坐标变为原来的1/a 倍,同时将纵坐标变为原来的1/b 倍后而得。 (1)函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到; (2)函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵 坐标不变横坐标伸长(1)a >或压缩(01a <<)为原来的1a 倍得到. ①y=f(x)ω?→x y=f(ω x );② y=f(x)ω?→y y=ωf(x). 缩放法的典型应用是在高中数学课本(三角函数部分)介绍函数)s i n (?ω+=x A y 的图像的相关知识时,课本重点分析了由函数y=sinx 的图像通

ANSYS坐标系以及工作平面的区别联系

ANSYS坐标系以及工作平面的区别联系 基本概念: 工作平面(Working Plane) 工作平面是创建几何模型的参考(X,Y)平面,在前处理器中用来建模(几何和网格) 总体坐标系 在每开始进行一个新的ANSYS分析时,已经有三个坐标系预先定义了。它们位于模型的总体原点。三种类型为: CS,0: 总体笛卡尔坐标系 CS,1: 总体柱坐标系 CS,2: 总体球坐标系 数据库中节点坐标总是以总体笛卡尔坐标系,无论节点是在什么坐标系中创建的。 局部坐标系 局部坐标系是用户定义的坐标系。局部坐标系可以通过菜单路径Workplane>Local CS>Create LC来创建。激活的坐标系是分析中特定时间的参考系。缺省为总体笛卡尔坐标系。当创建了一个新的坐标系时,新坐标系变为激活坐标系。这表明后面的激活坐标系的命令。菜单中激活坐标系的路径Workplane>Change active CS to>。 节点坐标系 每一个节点都有一个附着的坐标系。节点坐标系缺省总是笛卡尔坐标系并与总体笛卡尔坐标系平行。节点力和节点边界条件(约束)指的是节点坐标系的方向。时间历程后处理器/POST26 中的结果数据是在节点坐标系下表达的。而通用后处理器/POST1中的结果是按结果坐标系进行表达的。 例如: 模型中任意位置的一个圆,要施加径向约束。首先需要在圆的中心创建一个柱坐标系并分配一个坐标系号码(例如CS,11)。这个局部坐标系现在成为激活的坐标系。然后选择圆上的所有节点。通过使用"Prep7>Move/Modify>Rotate Nodal CS to active CS", 选择节点的节点坐标系的朝向将沿着激活坐标系的方向。未选择节点保持不变。节点坐标系的显示通过菜单路径Pltctrls>Symbols>Nodal CS。这些节点坐标系的X方向现在沿径向。约束这些选择节点的X方向,就是施加的径向约束。 注意:节点坐标系总是笛卡尔坐标系。可以将节点坐标系旋转到一个局部柱坐标下。这种情况下,节点坐标系的X方向指向径向,Y方向是周向(theta)。可是当施加theta方向非零位移时,ANSYS总是定义它为一个笛卡尔Y位移而不是一个转动(Y位移不是theta位移)。 单元坐标系 单元坐标系确定材料属性的方向(例如,复合材料的铺层方向)。对后处理也是很有用的,诸如提取梁和壳单元的膜力。单元坐标系的朝向在单元类型的描述中可以找到。 结果坐标系 /Post1通用后处理器中(位移, 应力,支座反力)在结果坐标系中报告,缺省平行于总体笛卡尔坐标系。这意味着缺省情况位移,应力和支座反力按照总体

《平面直角坐标系》经典练习题(9)

《平面直角坐标系》章节复习 考点1:考点的坐标与象限的关系 知识解析:各个象限的点的坐标符号特征如下: (特别值得注意的是,坐标轴上的点不属于任何象限.) 1、在平面直角坐标中,点M (-2,3)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2、在平面直角坐标系中,点P (-2,2x +1)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3、点P (m ,1)在第二象限内,则点Q (-m ,0)在( ) 、 A .x 轴正半轴上 B .x 轴负半轴上 C .y 轴正半轴上 D .y 轴负半轴上 4、若点P (a ,b )在第四象限,则点M (b -a ,a -b )在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 5、在平面直角坐标系中,点(12)A x x --,在第四象限,则实数x 的取值范围是 . 6、对任意实数x ,点2(2)P x x x -,一定不在.. ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 7、如果a -b <0,且ab <0,那么点(a ,b)在( ) A 、第一象限 B 、第二象限 C 、第三象限, D 、第四象限. 考点2:点在坐标轴上的特点 ` x 轴上的点纵坐标为0, y 轴上的点横坐标为0.坐标原点(0,0) 1、点P (m+3,m+1)在x 轴上,则P 点坐标为( ) A .(0,-2) B .(2,0) C .(4,0) D .(0,-4) 2、已知点P (m ,2m -1)在y 轴上,则P 点的坐标是 。 考点3:考对称点的坐标 知识解析:

ANSYS第三章 坐标系

第三章坐标系 3.1坐标系的类型 ANSYS程序提供了多种坐标系供用户选取。 2 总体和局部坐标系用来定位几何形状参数(节点、关键点等)的空间位置。 2 显示坐标系。用于几何形状参数的列表和显示。 2 节点坐标系。定义每个节点的自由度方向和节点结果数据的方向。 2 单元坐标系。确定材料特性主轴和单元结果数据的方向。 2 结果坐标系。用来列表、显示或在通用后处理(POST1)操作中将节点或单元结果转换到一个特定的坐标系中。 工作平面与本章的坐标系分开讨论,以在建模中确定几何体素,参见§4中关于工作平面的详细信息。 3.2总体和局部坐标系 总体和局部坐标系用来定位几何体。缺省地,当定义一个节点或关键点时,其坐标系为总体笛卡尔坐标系。可是对有些模型,定义为不是总体笛卡尔坐标系的另外坐标系可能更方便。ANSYS程序允许用任意预定义的三种(总体)坐标系的任意一种来输入几何数据,或在任何用户定义的(局部)坐标系中进行此项工作。 3.2.1总体坐标系 总体坐标系统被认为是一个绝对的参考系。ANSYS程序提供了前面定义的三种总体坐标系:笛卡尔坐标、柱坐标和球坐标系。所有这三种系统都是右手系。且由定义可知它们有共同的原点。它们由其坐标系号来识别:0是笛卡尔坐标,1是柱坐标,2是球坐标(见图总体坐标系)

图3-1总体坐标系 2 (a) 笛卡尔坐标系(X, Y, Z) 0 (C.S.0) 2 (b)柱坐标系(R,θ, Z com ponents) 1 (C.S.1) 2 (c) 球坐标系(R,θ,φcomponents) 2 (C.S.2) 2 (d)柱坐标系 (R,θ,Y components) 5 (C.S.5) 3.2.2局部坐标系 在许多情况下,有必要建立自己的坐标系。其原点与总体坐标系的原点偏移一定的距离,或其方位不同于先前定义的总体坐标系(如图3-2所示用局部、节点或工作平面坐标系旋转定义的一个坐标系的例子)。用户可定义局部坐标系,按以下方式创建: 图3-2欧拉旋转角 2按总体笛卡尔坐标定义局部坐标系。 命令:LOCAL GUI : Utility Menu>WorkPlane>Local Coordinate Systems>Create Local CS>At Specified Loc 2通过已有节点定义局部坐标系。 命令:CS GUI : Utility Menu>WorkPlane>Local Coordinate Systems>Create Local CS>By 3 Nodes 2通过已有关键点定义局部坐标系。 命令:CSKP GUI : Utility Menu>WorkPlane>Local Coordinate Systems>Create Local CS>By 3 Keypoints 2在当前定义的工作平面的原点为中心定义局部坐标系。 命令:CSWPLA

平面直角坐标系中有关计算的问题

0022 Ax By C A B d +++= 平面直角坐标系中有关计算的问题 ◆知识讲解 ①点P (a ,b )到x 轴的距离为 ,到y 轴距离为 ,到原点距离为 。 ②点P (a ,b ):若点P 在x 轴上?a 为任意实数,b= ; 若点P 在y 轴上?a= ,b 为任意实数; 若点P 在一,三象限坐标轴夹角平分线上?a= ; 若点P 在二,四象限坐标轴夹角平分线上?a= 。 ③A (x 1,y 1),B (x 1,y 2):A ,B 关于x 轴对称?x 1= ,y 1= ; A 、 B 关于的y 轴对称?x 1= ,y 1= ; A 、B 关于原点对称?x 1= ,y 1= ; ④AB ∥x 轴?y 1=y 2且x 1≠x 2;AB ∥y 轴?x 1=x 2且y 1≠y 2(A ,B 表示两个不同的点). 当AB 平行于x 轴时,AB=|x 2-x 1|; 当AB 平行于y 轴时,AB=|y 2-y 1|; ⑤当AB 不平行于坐标轴,也不在坐标轴上时,AB= ()() 22 2121x x y y -+- △⑥平面直角坐标系中,点到直线的距离: 已知点P (x 0, y 0)、直线L :0Ax By C ++=, 则点P (x 0, y 0)到直线L :0Ax By C ++=的 距 离公式为 △⑦平面直角坐标系中,两平行线之间的距离: 两条平行直线 00 2211=++=++C By Ax l C By Ax l ::之间的距离是2 2 2 1B A C C d +-= ⑧若直线11y k x b =+与直线22y k x b =+平行时,12k k =;若直线11y k x b =+与直线 22y k x b =+垂直时,121k k ?=-。 ◆课前热身 1、点A (-2,-3)到x 轴的距离是 ,到y 轴的距离是 。 2、若点P 在第三象限且到x 轴的距离为 2 ,到y 轴的距离为5,则点P 的坐标是 。 4、点A 在x 轴上,距离原点4个单位长度,则A 点的坐标是 _______________。 5、平面直角坐标系中,与点(2,-3)关于原点中心对称的点是 。 6、如图所示,在平面直角坐标系中,菱形MNPO 的顶点P 坐标是(3,4),则顶点M 、N 的坐标分别是( ) A .M (5,0),N (8,4) B .M (4,0),N (8,4) C .M (5,0),N (7,4) D .M (4,0),N (7,4) 7、若点A (m -3,1-3m )在第三象限,则m 的取值范围是 . B 2 B 1 A 2 A 1 B (x 2,y 2) A (x 1,y 1) O y x C ___ ___,)2(______,)1(: )5,(),3(3====-b a N M b a N M a N b M 角平分线上,则两点都在第二、四象限、若点角平分线上,则两点都在第一、三象限、若点,、已知点

极坐标系的概念教案

课题:选修4-4《1.2.1极坐标系的概念》 执教人:高朝孟 执教班级:高二年级(18,26,27)班 执教时间:2016年06月18日 一、教学目标: 1、知识与技能: (1)理解极坐标的概念,弄清极坐标系的结构(建立极坐标系的四要素);(2)理解广义极坐标系下点的极坐标(ρ,θ)与点之间的多对一的对应关系;(3)已知一点的极坐标会在极坐标系中描点,以及已知点能写出它的极坐标。 2、过程与方法: 能在极坐标系中用极坐标刻画点的位置,体会在极坐标系中刻画点的位置. 3、情感、态度与价值观: 通过观察、探索、发现的创造性过程,培养创新意识。 二、学情分析 学生在学习了数轴、平面直角坐标系、空间直角坐标系的初步知识的基础上,积累了一定类比、归纳推理等数学思维方法,对极坐标思想有一定的了解。 三、教学重点难点: 教学重点:理解极坐标的意义。 教学难点:能够在极坐标系中用极坐标确定点位置。 三、教学过程: 一、问题情境,导入新课: 情境1:钓鱼岛问题:中国海警如何确定日本渔船? 3:利用数学建模,从问题情境中发现数学问题:分析利用方向、距离确定位置,

引出另一种更简单的坐标思想—极坐标的思想。 二、讲解新课: 1、合作探究,概念形成。 (1)学生阅读教材P8-P10页; (2)学生表述极坐标的建立,教师结合学生表述,展示PPT对极坐标的概念作深入分析。 极坐标系的建立: 在平面上取一个定点O,自点O引一条射线OX,同时确定一个单位长度和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系。(其中O称为极点,射线OX称为极轴。) 强调:极点、极轴、长度单位、角度单位和它的方向构成极坐标系的四要素,缺一不可。极坐标系就是用长度和角度来确定平面内点的位置。 2、极坐标系内一点的极坐标的表示 对于平面上任意一点M,用ρ表示线段OM的长度,用θ表示从OX到OM的角度,ρ叫做点M的,θ叫做点M的,有序数对(,) ρθ就叫做M的 . 强调:一般地,不作特殊说明时,我们认为ρ≥0,θ可取任意实数.特别地,当点M在极点时,它的极坐标为(0,θ),θ可以取任 意实数. 3、典型例题 例1 写出下图中各点的一个极坐标 A()B()C() D()E()F()G() 【反思感悟】 (1)写点的极坐标要注意顺序:极径ρ在前,极角θ在后,不能

平面直角坐标系作图

7.1.2平面直角坐标系(2) 班级姓名 【学习目标】 1、会根据坐标描点,能理解“平面内点与坐标一一对应”的关系; 2、能总结出“各象限内的点”和“坐标轴上的点”的符号特点; 3、能为简单图形建立坐标系,并读出图形各顶点的坐标,体会数形结合思想。【学习内容】 【活动一:描点】 1、在平面直角坐标系中描出下列各点: A(4,5), B(-2,3), C(-4,-1), D(2.5,-2),E(0,-4), F(-4,0)。 2、在上图中添加以下各点: L(-5,-3), M(3,0), N(-6,2), P(5,-3.5), Q(0,5), R(6,2)。3、指出坐标系内各点所在的象限:(填写点和坐标) (1)第一象限内的点有;(2)第二象限内的点有;(3)第三象限内的点有;(4)第四象限内的点有。 【活动二:观察并发现】 4、根据各点所在的位置, 用“+”、“-”或“0”填表。

5、小试牛刀(2分钟) (1)在平面直角坐标系中位于第四象限内的点是( ) A.(-3,-2) B.(-3,2) C.(3,2) D.(3,-2) (2)若点P (x ,y )在第二象限,那么x 0,y 0(用“>”、“<”或“=”填空); (3)若点M(a ,b)在第四象限,则点N(a ,-b)在第______象限; (4)点P(m+3,m+1)在直角坐标系的x 轴上,则点P 的坐标是多少? 【活动三:合作探究】 6、如图,正方形ABCD 的边长为6,利用“透明坐标系”开展实验, (1)建立适当的平面直角坐标系; (2)写出正方形的顶点A 、B 、C 、D 的坐标。 7、在平面直角坐标系中,点M (3,1),点N (3,-2),连接M 、N 两点所形成的线段与 轴平行。 A D C B (6题)

《平面直角坐标系》经典练习题

《平面直角坐标系》章节复习 考点1:考点的坐标与象限的关系 知识解析:各个象限的点的坐标符号特征如下: (特别值得注意的是,坐标轴上的点不属于任何象限.) 1、在平面直角坐标中,点M (-2,3)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2、在平面直角坐标系中,点P (-2,2x +1)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3、若点P (a ,a -2)在第四象限,则a 的取值范围是( ). A .-2<a <0 B .0<a <2 C .a >2 D .a <0 4、点P (m ,1)在第二象限内,则点Q (-m ,0)在( ) A .x 轴正半轴上 B .x 轴负半轴上 C .y 轴正半轴上 D .y 轴负半轴上 5、若点P (a ,b )在第四象限,则点M (b -a ,a -b )在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 6、在平面直角坐标系中,点(12)A x x --,在第四象限,则实数x 的取值范围是 . 7、对任意实数x ,点2(2)P x x x -,一定不在.. ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 8、如果a -b <0,且ab <0,那么点(a ,b)在( ) A 、第一象限 B 、第二象限 C 、第三象限, D 、第四象限. 考点2:点在坐标轴上的特点 x 轴上的点纵坐标为0, y 轴上的点横坐标为0.坐标原点(0,0) 1、点P (m+3,m+1)在x 轴上,则P 点坐标为( ) A .(0,-2) B .(2,0) C .(4,0) D .(0,-4) 2、已知点P (m ,2m -1)在y 轴上,则P 点的坐标是 。

ansys工作平面和坐标

ansys工作平面和坐标 ANSYS坐标系总结 工作平面(Working Plane) 工作平面是创建几何模型的参考(X,Y)平面,在前处理器中用来建模(几何和网格) 4.1什么是工作平面 尽管光标在屏幕上只表现为一个点,但它实际上代表的是空间中垂直于屏幕的一条线。为了能用光标拾取一个点,首先必须定义一个假想的平面,当该平面与光标所代表的垂线相交时,能唯一地确定空间中的一个点。这个假想的平面就是工作平面。从另一种角度想象光标与工作平面的关系,可以描述为光标就象一个点在工作平面上来回游荡。工作平面因此就如同在上面写字的平板一样。(工作平面可以不平行于显示屏) 工作平面是一个无限平面,有原点、二维坐标系,捕捉增量(下面讨论)和显示栅格。在同一时刻只能定义一个工作平面(当定义一个新的工作平面时就会删除已有的工作平面)。工作平面是与坐标系独立的。例如,工作平面与激活的坐标系可以有不同的原点和旋转方向。见§4.3.5,详细讨论了如何迫使激活的坐标系跟踪工作平面。 4.2生成一个工作平面 进入ANSYS程序时,有一个缺省的工作平面,即总体笛卡尔坐标系的X-Y平面。工作平面的X、Y轴分别取为总体笛卡尔坐标系的X轴和Y轴。 4.2.1生成一个新的工作平面 用户可利用下列方法生成一个新的工作平面。 ·由三点生成一个工作平面或能过一指定点的垂直于视向量的平面定义为工作平面,用下列方法: 命令:WPLANE GUI : Utility Menu>WorkPlane>Align WP with>XYZ Locations ·由三节点定义一个工作平面或通过一指定节点的垂直于视向量的平面定义为工作平面,用下列方法: 命令:NWPLAN GUI : Utility Menu>WorkPlane>Align WP with>Nodes ·由三关键点定义一个工作平面或能过一指定关键点的垂直于视向量的平面定义为工作平面,用下列方法: 命令:KWPLAN GUI : Utility Menu>WorkPlane>Align WP with>Keypoints ·由过一指定线上的点的垂直于视向量的平面定义为工作平面,用下列方法: 命令:LWPLAN GUI: Utility Menu>WorkPlane>Align WP with>Plane Normal to Line ·还可以通过现有坐标系的X─Y(或R─θ)平面上定义工作平面。 命令:WPCSYS GUI : Utility Menu>WorkPlane>Align WP with>Active Coord Sys Utility Menu>WorkPlane>Align WP with>Global Cartesian

第七单元_平面直角坐标系单元检测试题(含答案)

第六章 平面直角坐标系 一、选择题:(本大题共8小题,每小题3分,共24分) 1、在直角坐标系中,点(2,1)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2、如果点P 在第二象限内,点P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为( ) A.(-4,3) B.(-4,-3) C.(-3,4) D.(-3,-4) 3、点M (2,-3)关于y 轴的对称点N 的坐标是( ) A.(-2,-3) B.(-2, 3) C.(2, 3) D.(-3,2) 4、已知点P (3,-2)与点Q 关于x 轴对称,则Q 点的坐标为( ) A .(-3,2) B.(-3,-2) C.(3,2) D.(3,-2) 5、已知△ABC 在平面直角坐标系中的位置如图所示,将△ABC 先向下平移5个单位,再向左平移2个单位,则平移后C 点的坐标是( ) A .(5,-2) B .(1,-2) C .(2,-1) D .(2,-2) 6、如图,在平面直角坐标系中,以O (0,0),A (1,1),B (3,0)为顶 点,构造平行四边形,下列各点中不能..作为平行四边形顶点坐标的是( A .(-3,1) B .(4,1) C .(-2,1) D .(2,-1) 7、小华的爷爷每天坚持体育锻炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家。 下面能反映当天小华的爷爷离家的距离y 与时间x 的函数关系的大致图象是( ) 8、已知点A (0,-1),M (1,2),N (-3,0),则射线AM 和射线AN 组成的角的度数( ) A.一定大于90° B.一定小于90° C.一定等于90° D.以上三种情况都有可能 二、填空题(本大题共8小题,每小题3分,共24分) 9、电影票上“4排5号”,记作(4,5),则5排4号记作 . 10、点(-2,3)先向右平移2个单位,再向下平移3个单位,此时的位置是___. 11、已知点P 的坐标为(5,a ),且点P 在第二、四象限角平分线上,则a = 。

平面问题的极坐标解

第七章平面问题的极坐标解 一.内容介绍 在弹性力学问题的处理时,坐标系的选择从本质上讲并不影响问题的求解,但是坐标的选取直接影响边界条件的描述形式,从而关系到问题求解的难易程度。 对于圆形,楔形,扇形等工程构件,采用极坐标系统求解将比直角坐标系统要方便的多。本章的任务就是推导极坐标表示的弹性力学平面问题基本方程,并且求解一些典型问题。 二.重点 1. 基本未知量和基本方程的极坐标形式; 2. 双调和方程的极坐标形式; 3. 轴对称应力与厚壁圆筒应力; 4. 曲梁纯弯曲、楔形体和圆孔等典型问题。

知识点 极坐标下的应力分量 极坐标下的应变分量 极坐标系的Laplace算符 轴对称应力分量 轴对称位移和应力表达式 曲梁纯弯曲 纯弯曲位移与平面假设 带圆孔平板拉伸问题 楔形体问题的应力函数 楔形体应力 楔形体受集中力偶作用 极坐标平衡微分方程 几何方程的极坐标表达 应力函数 轴对称位移 厚壁圆筒作用均匀压力 曲梁弯曲应力 曲梁作用径向集中力 孔口应力 楔形体边界条件 半无限平面作用集中力 讨论题:楔形体顶端应力和无穷远应力分析

§7.1 平面问题极坐标解的基本方程 学习思路: 选取极坐标系处理弹性力学平面问题,首先必须将弹性力学的基本方程以及边界条件通过极坐标形式描述和表达。 本节的主要工作是介绍基本物理量,包括位移、应力和应变的极坐标形式;并且将基本方程,包括平衡微分方程、几何方程和本构关系转化为极坐标形式。 由于仍然采用应力解法,因此应力函数的极坐标表达是必要的。 应该注意的是坐标系的选取与问题求解性质无关,因此弹性力学直角坐标解的基本概念仍然适用于极坐标。 学习要点: 1. 极坐标下的应力分量; 2. 极坐标平衡微分方程; 3. 极坐标下的应变分量; 4. 几何方程的极坐标表达; 5. 本构方程的极坐标表达; 6. 极坐标系的Laplace算符; 7. 应力函数。 为了表明极坐标系统中的应力分量,从考察的平面物体中分割出微分单元体ABCD,其由两个相距dρ的圆柱面和互成d?的两个径向面构成,如图所示。

ANSYS坐标系以及工作平面几点心得

ANSYS坐标系以及工作平面的具体说明 ANSYS中定义点(K)的坐标是在当前激活的坐标系(CSYS)中进行,包括由点生成线,与工作平面的位置以及全局坐标系无关。而体(V)是在工作平面内(WP)进行,不依赖于当前激活的坐标系以及全局坐标系。 ▲ANSYS中定义局部坐标系是通过LOCAL命令:LOCAL, KCN, KCS, XC, YC, ZC, THXY, THYZ, THZX, PAR1, PAR2 其中,KCN为编号,从11开始,KCS为坐标系的类型,XC, YC, ZC值采用全局坐标系,为要定义的局部坐标系的原点位置,THXY, THYZ, THZX为局部坐标系相对全局坐标系沿着各个坐标轴旋转的角度。输入过程中未给出值的符号用0默认。LOCAL的目的主要是为了建模方便以及选取便利。 LOCAL,11,0 !定义局部坐标系11,笛卡尔类型,原点在全局坐标(0,0,0) LOCAL,12,1 !定义局部坐标系12,圆柱类型,原点在全局坐标(0,0,0) LOCAL,13,2,0,1,2 !定义局部坐标系12,球坐标类型,原点在全局坐标(0,1,2) 【注意】:执行LOCAL以后,CSYS会自动激活为该坐标系(This local system becomes the active coordinate system).仅此命令有这个功能,其他的均要附加CSYS才能改变当前的激活坐标系。 ▲ANSYS中激活坐标系采用CSYS命令:CSYS, KCN ANSYS启动后CSYS默认为0(全局笛卡尔坐标),直到有LOCAL或者CSYS命令才改变。这个命令影响到点(K)坐标的输入类型。工作平面(WP)与全局坐标系重合。 CSYS,0 !激活全局笛卡尔坐标,原点在全局坐标的原点 CSYS,1 !激活全局圆柱坐标,原点在全局坐标的原点 CSYS,2 !激活全局球坐标,原点在全局坐标的原点 CSYS,4(WP) !激活工作平面,原点在工作平面的原点 CSYS,11 !激活先前定义的局部坐标11,原点在局部坐标的原点 ▲ANSYS中定义工作平面的位置采用WPLANE或者WPAVE命令: 1)WPLANE, WN, XORIG, YORIG, ZORIG, XXAX, YXAX, ZXAX, XPLAN, YPLAN, ZPLAN 注:所有点的坐标均是全局坐标。 XORIG, YORIG, ZORIG为要定义的工作平面原点O的位置,坐标类型为全局坐标系,与当前激活的坐标类型(CSYS)无关。XXAX, YXAX, ZXAX为确定局部坐标系的X轴的方向,坐标类型为全局坐标系,局部坐标系的X轴就沿着原点O与此点的连线方向。XPLAN, YPLAN, ZPLAN为确定局部坐标系的Y轴方向,类型为全局坐标系,原点O与此点的连线确定Y轴的方向,不要求与OX垂直,只要成一弧度就可以确定。 wplane,,1,0,0 !将工作平面原点平行移动到全局坐标点(1,0,0),X和Y方向均

相关文档
最新文档