探地雷达图像的自动目标识别和定位

探地雷达图像的自动目标识别和定位
探地雷达图像的自动目标识别和定位

现代城市测绘国家测绘地理信息局重点实验室

课题申请书

课题名称:探地雷达图像的自动目标识别和定位

申请人:刘旭春

申请人单位:北京建筑工程学院

二Ο一一年十月三十日

填写要求

一、请按表中要求如实填写各项;

二、基本信息项中的课题摘要内容包括主要研究内容、创新点和成果。完

成时间填至月,如20**年**月至20**年**月。重点课题需填写预期发表SCI收录文章篇数,一般课题需填写预期发表EI收录文章篇数;或与之相当的预期成果如省部级(含)以上奖励、发明专利等。经费栏需提供其它资金来源的证明,作为附件附后;

三、课题情况项中主要研究内容一般要求1500字左右,国内发展现状与趋

势、拟采取的研究方法要求1000字左右, 研究成果必须说明拟发表文章的数量以及三大检索收录情况、软硬件或预期的奖励以及发明专利等。课题现有工作基础栏要求提供近5年已发表的主要文章(含三大检索情况)、著作及专利、获奖情况等;

四、一般课题经费额度每年2万元,重点课题额度每年5万元;

五、申请书文本中外文名词第一次出现时,要写清全称和缩写,再出现同

一词时可以使用缩写;

六、申请书文本采用A4幅面纸,可以自行以同样幅面纸复制,填写内容需

打印填入,对于篇幅不够的栏目可自行加页;

七、博士研究生(博士后)申请课题,需征得指导导师 (指导合作导师)的同

意,在推荐意见中说明,并说明是否可到实验室从事研究工作。

一、基本信息

.

二、课题组主要研究人员

三、课题情况

四、推荐意见(凡具有高级技术职称的申请者可免填此项)

五、审核意见

探地雷达成像算法研究

探地雷达成像算法研究 摘要 探地雷达(Ground Penetrating Radar,简称GPR)集无损检测、穿透能力强、分辨率高等众多优点而成为检测和识别地下目标的一种有效技术手段。性能优良的探地雷达成像方法有助于精确定位地下目标,同时提高对目标的检测和识别能力,从而推动探地雷达在城市质量监控、地质灾害、考古挖掘、高速公路无损检测、地雷探测等各个方面得到更广泛的应用。 本文以中国电波传播研究所的探地雷达LD-2000为实验设备,从中读取探测数据。以MATLAB为软件平台,实现了探地雷达数据的显示、处理、成像几个部分。其中数据显示方式包括数据的波形堆积图,剖面面色阶图以及带数据波形图;数据处理部分包括直达波的去除、背景噪声的去除、振幅增益等;雷达成像算法部分主要采用波前成像算法和投影层析成像算法。

Imaging Algorithm of Ground Penetrating Radar ABSTRACT GPR (Ground Penetrating Radar, referred GPR) set of non-destructive testing, penetration ability, many advantages of high resolution detection and identification of underground and become the target of an effective technical means. Excellent performance GPR imaging approach helps pinpoint underground targets, while increasing the target detection and identification capabilities, thereby promoting the quality of ground penetrating radar surveillance in the city, geological disasters, archaeological excavation, highway nondestructive testing, mine detection, etc. aspects to be more widely used. In this paper, China Institute of Radiowave Propagation GPR LD-2000 for the experimental apparatus, reads probe data. MATLAB as the software platform to achieve a ground-penetrating radar data display, processing, imaging several parts. Wherein the data includes a data waveform display stacked, with a cross-sectional side view and a gradation data waveform; data processing section includes the removal of the direct wave, the background noise removal, the amplitude gain, etc.; radar imaging algorithm some of the major imaging algorithm and the wavefront projection tomography algorithms.

雷达的目标识别技术

雷达的目标识别技术 摘要: 对雷达自动目标识别技术和雷达目标识别过程进行了简要回顾,研究了相控阵雷达系统中多目标跟踪识别的重复检测问题提出了角度相关区算法,分析了实现中的若干问题,通过在相控阵雷达地址系统中进行的地址实验和结果分析表明:采用角度相关区算法对重复检测的回波数据进行处理时将使识别的目标信息更精确从而能更早地形成稳定的航迹达到对目标的准确识别。 一.引言 随着科学技术的发展,雷达目标识别技术越来越引起人们的广泛关注,在国防及未来战争中扮演着重要角色。地面雷达目标识别技术目前主要有-Se方式,分别是一维距离成象技术、极化成象技术和目标振动声音频谱识别技术。 1.一维距离成象技术 一维距离成象技术是将合成孔径雷达中的距离成象技术应用于地面雷达。信号带宽与时间分辨率成反比。例如一尖脉冲信号经过一窄带滤波器后宽度变宽、时间模糊变大。其基本原理如图1所示。 2.极化成象技术 电磁波是由电场和磁场组成的。若电场方向是固定的,例如为水

平方向或垂直方向,则叫做线性极化电磁波。线性极化电磁波的反射与目标的形状密切相关。当目标长尺寸的方向与电场的方向一致时,反射系数增大,反之减小。根据这一特征,向目标发射不同极化方向的线性极化电磁波,分别接收它们反射(散射)的回波。通过计算目标散射矩阵便可以识别目标的形状。该方法对复杂形状的目标识别很困难。 3.目标振动声音频谱识别技术 根据多普勒原理,目标的振动、旋转翼旋转将引起发射电磁波的频率移动。通过解调反射电磁波的频率调制,复现目标振动频谱。根据目标振动频谱进行目标识别。 传统上我国地面雷达主要通过两个方面进行目标识别:回波宽度和波色图。点状目标的回波宽度等于入射波宽度。一定尺寸的目标将展宽回波宽度,其回波宽度变化量正比于目标尺寸。通过目标回波宽度的变化可估计目标的大小。目标往往有不同的强反射点,如飞机的机尾、机头、机翼以及机群内各飞机等,往往会在回波上形成不同形状的子峰,如图2所示。 这类波型图叫作波色图。根据波色图内子峰的形状,可获得一些目标信息。熟练的操作员根据回波宽度变化和波色图内子峰形状,进行目标识别。

雷达定位与导航习题及答案

雷达定位与导航 第一节物标的雷达图像 2203. 船用导航雷达的显示器属于哪种显示器__________。 A.平面位置B.距离高度 C.方位高度D.方位仰角 2204. 船用导航雷达发射的电磁波属于哪个波段__________。 A.长波B.中波 C.短波D.微波 2205. 船用导航雷达可以测量船舶周围水面物标的__________。 A.方位、距离B.距离、高度 C.距离、深度D.以上均可 2206. 船用导航雷达显示的物标回波的大小与物标的__________有关。 A.总面积B.总体积 C.迎向面垂直投影D.背面水平伸展的面积 2207. 船用导航雷达发射的电磁波遇到物标后,可以__________。 A.穿过去B.较好的反射回来 C.全部绕射过去D.以上均对 2208. 本船雷达天线海面以上高为16米,小岛海面以上高为25米,在理论上该岛在距本船多远的距离内才能探测得到__________。 A.20米B.20海里 C.20千米D.以上均不对 2209. 本船雷达天线海面以上高度为16米,前方有半径为4海里的圆形小岛,四周平坦,中间为山峰,海面以上高度为25米。当本船驶向小岛时,雷达荧光屏上首先出现的回波是小岛那个部分的回波__________。 A.离船最近处的岸线B.离船最远处的岸线 C.山峰D.A、C一起出现 2210. 本船雷达天线海面以上高度16米,前方有半径为2海里的圆形小岛,四周低,中间为山峰,海面以—上高度为49米门当本船离小岛4海里时,雷达荧光屏上该岛回波的内缘(离船最近处)对应于小岛的__________。 A.山峰B.离船最近的岸线 C.山峰与岸线间的某处D.以上均不对 2211. 对于一个点目标,造成其雷达回波横向扩展的因素是__________。 A.目标闪烁B.水平波束宽度 C.CRT光点直径D.A+B+C

目标识别技术

目标识别技术 摘要: 针对雷达自动目标识别技术进行了简要回顾。讨论了目前理论研究和应用比较成功的几类目标识别方法:基于目标运动的回波起伏和调制谱特性的目标识别方法、基于极点分布的目标识别方法、基于高分辨雷达成像的目标识别方法和基于极化特征的目标识别方法,同时讨论了应用于雷达目标识别中的几种模式识别技术:统计模式识别方法、模糊模式识别方法、基于模型和基于知识的模式识别方法以及神经网络模式识别方法。最后分析了问题的可能解决思路。 引言: 雷达目标识别技术回顾及发展现状 雷达目标识别的研究始于"20世纪50年代,早期雷达目标特征信号的研究工作主要是研究达目标的有效散射截面积。但是,对形状不同、性质各异的各类目标,笼统用一个有效散射面积来描述,就显得过于粗糙,也难以实现有效识别。几十年来,随着电磁散射理论的不断发展以及雷达技术的不断提高,在先进的现代信号处理技术条件下,许多可资识别的雷达目标特征信号相继被发现,从而建立起了相应的目标识别理论和技术。 随着科学技术的飞速发展,一场以信息技术为基础、以获取信息优势为核心、以高技术武器为先导的军事领域的变革正在世界范围内兴起,夺取信息优势已成为夺取战争主动权的关键。电子信息装备作为夺取信息优势的物质基础,是推进武器装备信息化进程的重要动力,其总体水平和规模将在很大程度上反映一个国家的军事实力和作战能力。 雷达作为重要的电子信息装备,自诞生起就在战争中发挥了极其重要的作用。但随着进攻武器装备的发展,只具有探测和跟踪功能的雷达也已经不能满足信息化战争的需要,迫切要求雷达不仅要具有探测和跟踪功能,而且还要具有目标识别功能,雷达目标分类与识别已成为现代雷达的重要发展方向,也是未来雷达的基本功能之一。目标识别技术是指:利用雷达和计算机对遥远目标进行辨认的技术。目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。目标识别还可利用再入大气层后的大团过滤技术。当目标群进入大气层时,在大气阻力的作用下,目标群中的真假目标由于轻重和阻力的不同而分开,轻目标、外形不规则的目标开始减速,落在真弹头的后面,从而可以区别目标。 所谓雷达目标识别,是指利用雷达获得的目标信息,通过综合处理,得到目标的详细信息(包括物理尺寸、散射特征等),最终进行分类和描述。随着科学技术的发展,武器性能的提高,对雷达目标识别提出了越来越高的要求。 目前,目标识别作为雷达新的功能之一,已在诸如海情监控系统、弹道导弹防御系统、防空系统及地球物理、射电天文、气象预报、埋地物探测等技术领域发挥出很大威力。为了提高

雷达图像 处理

与光学图像相比,SAR图像视觉可读性较差,并且受到相干斑噪声及阴影、透视收缩、迎坡缩短、顶底倒置等几何特征的影响。因此对SAR雷达图像的图像增强与边缘检测将有别于一般的光学图像。 首先,图像增强技术是指按特定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要的信息,它是一种将原来不清晰的图像变得清晰或强调某些感兴趣的特征,抑制不感兴趣的特征,使之改善图像质量,丰富信息量,加强图像判读和识别效果的图像处理方法。从纯技术上讲,图像技术分为频域处理法和空域处理法。 空域图像增强是直接对图像中的像素进行处理,基本上是以灰度影射变化为基础的,所用的影射变换取决于增强的目的。具体来说,空域法包括点运算和模板处理,其中点运算时针对每个像素点进行处理的,与周围的像素点无关。空域增强方法大致分为3种,它们分别是用于扩展对比度的灰度变换、清除噪声的各种平滑方法和增强边缘的各种锐化技术。灰度变换主要利用点运算来修改图像像素的灰度,是一种基于图像变换的操作;而平滑和锐化都是利用模板来修改像素灰度,是基于图像滤波的操作。 频域处理法的基础是卷积定理。传统的频域法是将需要增强的图像进行傅里叶变换或者离散余弦变换,或者是小波变换,然后将其与一个转移函数相乘,再将结果进行反变换得到增强的图像。 在空域图像增强中,形态学的基本思想是使用具有一定形态的结构元素度量和提取图像中的对应形状,从而达到图像进行分析和识别的目的,利用不同的数学形态学变换滤波方法在对S AR图像直接进行平滑滤波的应用中取得较好的结果。算法简单,物理意义明显。 形态学的基本思想是使用具有一定形态的结构元素度量和提取图像中的对应形状,从而达到图像进行分析和识别的目的。由于形态学算子实质上是表达物体或形状的集合与结构元素之间的相互作用,结构元素的形态就决定了这种运算所提取的信号的形态信息。因此数学形态学对信号的处理具有直观上的简单性和数学上的严谨性,在描述信号形态特征上具有独特的优势。同时,形态学中的形态滤波器可借助于先验的几何特征信息,利用形态学算子有效地滤除噪声,又保留图像中的原有信息。因此在图像平滑滤波、分割、识别、形状描述等方面得到了广泛的应用,它最显著的特点是直接处理图像表面的几何形状,具有快速、健壮和精确的特性。 本文将开运算和闭运算的另外一种组合方法——交替顺序滤波运用到s AR图像增强处理中。它是用一系列不断增大的结构元素来执行开闭滤波。具体过程如下:本文开始使用的是一个2 ×2较小的结构元素,然后增加其大小,直到其大小与获得单个开闭滤波器最佳效果所用的3 ×3结构元素的大小相同为止。 在频域图像增强中,小波变换的时域与频域是具有多分辨率的时频分析方法,我们可以利用它的这个特性来对信号做高通滤波和低通滤波,得到原始信号的逼近信号和细节信号。对一幅图像sar进行基于小波变换的增强处理,主要步骤:1、对图像用mallat快速算法进行小波分解;2、选取增强系数;3、对处理后的小波系数进行小波逆变换,得到增强图像。多尺度积用于图像边缘检测。但小波变换各向同性的性质导致方向选择性差,不能有效地捕捉轮廓信息。 其次图像边缘检测边缘的种类分为两种,一种为阶跃性边缘,它两边的像素的灰度值有着显著的不同;另一种成为屋顶状边缘,它位于灰度值从增加到减少的变化转折点。边缘特征提取的常用方法有Sobel算子和Cannny算子,其中canny算子对高斯加性噪声有一定的抑制作用,提取的边缘方向和位置信息比较准确,但是SAR的噪声为Gamma分布的乘性噪声,

探地雷达在地下管线探测中的应用

探地雷达在地下管线探测中的应用 张进华,马广玲,姚成虎,缪建文 (南京市测绘勘察研究院,江苏南京 210005) 摘 要:探地雷达技术是如今适应快速、准确、无损地探测地下障碍物而迅速发展的电磁技术。本文通过结合工程实例来探讨探地雷达在地下管线探测中的广泛应用。 关键词:探地雷达;地下管线探测;异常反射 1 前 言 探地雷达(Ground Penetrating Radar,简称GPR)是一种对地下或物体内不可见的目标体或界面进行定位的电磁技术。探地雷达以其探测的高分辨率和高工作效率而成为地球物理勘探的一种有力工具。随着信号处理技术和电子技术的不断发展以及工程实践的增多和经验的丰富积累,探地雷达技术进一步发展,仪器不断更新,应用范围逐步扩大,现已被广泛应用于工程地质勘察、建筑结构调查、无损检测、生态环境等众多领域。本文将以探地雷达在地下管线探测中的应用,说明探地雷达可以有效解决工程上的许多疑难问题,并总结了相关经验和应用效果。 2 探地雷达的原理及工作方法 探地雷达由地面上的发射天线将高频带短脉冲形式的高频电磁波定向送入地下,高频电磁波遇到存在电性差异的地下地层或目标体反射后返回地面,由接收天线接收。高频电磁波在传播时,其路径、电磁场强度与波形将随所通过介质的电性及几何形态而变化,故通过对时域波形的采集、处理与分析,可确定地下界面或地质体的空间位置及结构。 探地雷达通常以脉冲反射波的波形形式记录。波形的正负峰分别以黑白表示,或者以灰阶或彩色表示,这样同相轴或等灰线、等色线即可形象地表征出地下反射面或目标体。在波形图上各测点均以测线的铅垂反向记录波形,构成雷达剖面。根据雷达剖面图便可 收稿日期:2003-07-09判断地下不明障碍物。探地雷达在地下介质中的传播遵循波动方程理论。探地雷达的探测效果主要取决于地下目标体与周围介质的电磁性质差异、目标体的深度与介质对电磁波的吸收作用、目标体的几何形态及规模、干扰波的类型、强度及特点等因素。 探地雷达具有不同的野外工作方法,根据工作区的具体情况可选择剖面法、多次覆盖法以及宽角法等测量方式。实际工作中,测量参数(发射接收天线距、时窗、测点点距、天线中心频率、采样率等)可根据不同要求进行选择,从而得到不同分辨率及不同探测精度的雷达剖面。通常在进入工作区前,应有目的地进行类似场地条件的参数选择试验,以达到最佳探测效果。在进入工作区后应根据实际需要布置测线和测点,并让测线和测点尽量通过被测目的物。在不明显的目的物上进行探测时应尽量加密线距和点距,以利于后面的资料处理与解释。 3 探地雷达的数据资料解释处理及在地下管线探测中的应用效果 近几年来,我们采用加拿大生产的pulse EKKO-100A型探地雷达从事了数百次的地下管线探测工作,取得了丰富的探地雷达探测资料及很好的应用效果。 3.1 资料的处理及解释 探地雷达探测资料的解释包括数据处理和图像解释两部分内容。由于地下介质相当于一个复杂的滤波器,介质对电磁波的不同程度吸收及介质的不均匀性, 63城 市 勘 测2004年

导航雷达

导航雷达概念:导航雷达是供探测周围目标位置,以实施航行避让、自身定位等用的雷达。船舶上供探测周围目标位置,以实施航行避让、自身定位等用的雷达。 船上装备雷达始自第二次世界大战期间,战后逐渐扩大到民用商船。国际海事组织(IMO)规定,1600吨位以上的船只须装备导航雷达。导航雷达的一项重要任务是目标标绘,这项任务正逐渐改由自动雷达标绘装置来担任。国际海事组织还规定所有 1万吨位以上的船只逐步装设这种装置。 一般雷达把自身作为不动点表示在平面位置显示器(见雷达显示器)的中心。但在航海中,船舶自身在运动,总是与固定目标或运动目标作相对运动。适应航海环境的雷达,应是真正运动的雷达,须能自动输入船舶自身的航速和航向,数据必须相当准确。 第二次世界大战以后,微波航海雷达的基本结构并无很大的改变,磁控管发射机、高灵敏度接收机、双工器、天线和显示器的工作原理均与以前的相同,但性能和可靠性已经得到改进。应用固态电子技术,使设备的可靠性有了很大的提高。现代航海雷达除磁控管和阴极射线管以外,其他有源电路元件基本上已全部使用晶体管和集成电路。由于电路改进,脉冲宽度已从1~2微秒减至0.1微秒,磁控管峰值功率已从3千瓦提高到50千瓦,从而目标分辨力和灵敏度得到提高。开槽波导天线阵列使天线波束宽度从2°减至0.7°或0.8°,使目标方位辨别能力得到提高。由于这些改进,在40厘米平面位置显示器上可描绘出航线式图像,便于船舶在沿海岸线航行和进出港时标绘。60年代后期,利用小型计算机研制成功自动雷达目标跟踪和估算系统,它能处理雷达视频电压,检测和跟踪目标,测量船舶与目标之间的相对运动,预计目标未来的运动和最接近点,协助驾驶人员采取回避动作。导航雷达和自动雷达标绘装置是航海领域内的重要设备,是驶近陆地、引导船舶出入港口和窄水道的必要设备。 多普勒导航雷达利用多普勒效应测量飞机飞行速度的机载导航雷达,与机上航向设备、导航计算机等组成自主式航位推算多普勒导航系统。 利用多普勒效应测量飞机飞行速度的机载导航雷达,与机上航向设备、导航计算机等组成自主式航位推算多普勒导航系统。多普勒效应用于飞机导航的研究开始于1945年末。随后,美国研制出第一个多普勒导航系统AN/APN-66 。后来很多国家也相继开展多普勒雷达的研制工作。50年代,研制和生产出多种类型和用途的多普勒导航雷达。60年代,多普勒导航雷达在理论、技术和应用上趋于成熟。此后,主要工作是使设备减轻重量、小型化和多功能,提高可靠性和同其他设备组合使用。

雷达空间目标识别技术综述

2006年10月第34卷 第5期 现代防御技术 MODERN DEFENCE TECHNOLOGY O ct.2006 V o.l34 N o.5雷达空间目标识别技术综述* 马君国,付 强,肖怀铁,朱 江 (国防科技大学ATR实验室,湖南 长沙 410073) 摘 要:随着人类航天活动的增加,对于卫星和碎片等空间目标进行监视变得非常重要。为了实现空间监视任务,对空间目标进行识别是非常必要的。对空间目标的轨道特性与动力学特性进行了介绍,对雷达空间目标识别技术的研究现状和发展趋势进行了详细的综述。 关键词:空间目标识别;低分辨雷达;高分辨雷达成像 中图分类号:TN957 52 文献标识码:A 文章编号:1009 086X(2006) 05 0090 05 Survey of radar space target recognition technology MA Jun guo,F U Q iang,X I AO Huai tie,Z HU Jiang (ATR L ab.,N ationa lU n i versity o f De fense T echno l ogy,Hunan Changsha410073,Ch i na) Abst ract:W ith t h e deve l o pm ent of spacefli g ht acti v ity of hum an,surveillance of space tar get such as sate llite and debris beco m es very i m portan.t In or der to i m p le m ent surveillance task,space target recogni ti o n is ver y necessary.Orb it property and dyna m ics property of space targe t are i n troduced,a deta iled sur vey is set forth about current research state and developi n g trend of radar space target recogn iti o n techno l ogy. K ey w ords:space tar get recogniti o n;lo w reso lution radar;h i g h reso lution radar i m aging 1 引 言 自从前苏联发射了第1颗人造地球卫星以来,卫星在预警、通信、侦察、导航定位、监视和气象等方面具有不可替代的优势。随着人类航天活动的增加,空间碎片日益增多,对于卫星等航天器的安全造成极大的威胁,因此对于卫星和碎片等空间目标进行监视变得非常重要。其中空间目标识别是空间监视任务中不可或缺的基本条件,空间目标识别主要是利用雷达等传感器获取空间目标的回波信号,从中提取目标的位置、速度、结构等特征信息,进而实现对空间目标的类型或属性进行识别。 2 空间目标的轨道特性与动力学特性 (1)轨道特性[1,2] 空间目标在轨道上的运动是无动力惯性飞行,本质上空间目标与自然天体的运动是一致的,故研究空间目标的运动可以用天体力学的方法。空间目标在运动时受到地球引力、月球引力、太阳及其他星体引力、大气阻力和太阳光辐射压力等的作用,轨道存在摄动。但是对轨道的实际分析表明,空间目标受到的主要力是地球引力。假设空间目标只是受到地球引力的作用,同时假设地球是一个质量均匀分布的球体,则空间目标与地球构成二体运动系统,开 *收稿日期:2005-12-15;修回日期:2006-01-23 作者简介:马君国(1970-),男,吉林长春人,博士生,主要从事目标识别与信号处理研究。 通信地址:410073 湖南长沙国防科技大学ATR实验室 电话:(0731)4576401

雷达目标识别

目标识别技术 2009-11-27 20:56:41| 分类:我的学习笔记| 标签:|字号大中小订阅 摘要: 针对雷达自动目标识别技术进行了简要回顾。讨论了目前理论研究和应用比较成功的几类目标识别方法:基于目标运动的回波起伏和调制谱特性的目标识别方法、基于极点分布的目标识别方法、基于高分辨雷达成像的目标识别方法和基于极化特征的目标识别方法,同时讨论了应用于雷达目标识别中的几种模式识别技术:统计模式识别方法、模糊模式识别方法、基于模型和基于知识的模式识别方法以及神经网络 模式识别方法。最后分析了问题的可能解决思路。 引言: 雷达目标识别技术回顾及发展现状 雷达目标识别的研究始于"20世纪50年代,早期雷达目标特征信号的研究工作主要是研究达目标的有效散射截面积。但是,对形状不同、性质各异的各类目标,笼统用一个有效散射面积来描述,就显得过于粗糙,也难以实现有效识别。几十年来,随着电磁散射理论的不断发展以及雷达技术的不断提高,在先进的现代信号处理技术条件下,许多可资识别的雷达目标特征信号相继被发现,从而建立起了相应的目标 识别理论和技术。 随着科学技术的飞速发展,一场以信息技术为基础、以获取信息优势为核心、以高技术武器为先导的军事领域的变革正在世界范围内兴起,夺取信息优势已成为夺取战争主动权的关键。电子信息装备作为夺取信息优势的物质基础,是推进武器装备信息化进程的重要动力,其总体水平和规模将在很大程度上反 映一个国家的军事实力和作战能力。 雷达作为重要的电子信息装备,自诞生起就在战争中发挥了极其重要的作用。但随着进攻武器装备的发展,只具有探测和跟踪功能的雷达也已经不能满足信息化战争的需要,迫切要求雷达不仅要具有探测和跟踪功能,而且还要具有目标识别功能,雷达目标分类与识别已成为现代雷达的重要发展方向,也是未来雷达的基本功能之一。目标识别技术是指:利用雷达和计算机对遥远目标进行辨认的技术。目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。目标识别还可利用再入大气层后的大团过滤技术。当目标群进入大气层时,在大气阻力的作用下,目标群中的真假目标由于轻重和阻力的不同而分开,轻目标、外形不规则的目标开始减 速,落在真弹头的后面,从而可以区别目标。 所谓雷达目标识别,是指利用雷达获得的目标信息,通过综合处理,得到目标的详细信息(包括物理尺寸、散射特征等),最终进行分类和描述。随着科学技术的发展,武器性能的提高,对雷达目标识别 提出了越来越高的要求。 目前,目标识别作为雷达新的功能之一,已在诸如海情监控系统、弹道导弹防御系统、防空系统及地球物理、射电天文、气象预报、埋地物探测等技术领域发挥出很大威力。为了提高我国的军事实力,适应未来反导弹、反卫、空间攻防、国土防空与对海军事斗争的需要,急需加大雷达目标识别技术研究的力度雷达目标识别策略主要基于中段、再入段过程中弹道导弹目标群的不同特性。从结构特性看,飞行中段

雷达图像处理(ENVI)

雷达图像处理ENVI ENVI提供基本的雷达图像处理功能,包括雷达数据格式支持、雷达文件定标、消除天线增益畸变、斜距校正、入射角图像生成、斑点噪声压缩、合成彩色图像等。 多标准ENVI图像处理功能也可以用于处理雷达数据的处理,如图像显示功能、图像拉伸、颜色处理、图像分类、几何校正、图像配准、卷积滤波、图像融合等。 目前,大所述雷达成像系统都是侧视成像,这种雷达系统所测量的距离是目标物到平台一侧的距离(倾斜距离),基于这种几何系统获得的图像叫斜距图像。雷达斜距数据在侧向范围有系统几何畸变,实际上,由于入射角的变化使得垂直侧向范围的地距和像素大小发生变化。因此,要使用雷达图像,必须经过从斜距到地距的校正处理。 自适应滤波器被设计成对斑点噪声压缩的同时,对图像分辨率的减少是微笑的。自适应滤波器运用围绕每个像元值标准差来计算一个新的像元值。不同于传统的低通平滑滤波,自适应滤波器在抑制噪声的通透式保留了图像的高频信息和细节。 Lee滤波器用于平滑亮度各图像密切相关的噪声数据以及附加或倍增类型的噪声。 增强型Lee滤波器可以在保持雷达图像纹理信息的同时减少斑点噪声。 Frost滤波器能在保留边缘的情况下,减少斑点噪声。 增强型Frost滤波器可以在保持雷达图像纹理信息的同时减少斑

点噪声。 Gamma滤波器可以用于在雷达图像中保留边缘信息的同时减少斑点噪声。 Kuan滤波器用于在雷达图像中保留边缘的情况下,减少斑点噪声。 Local Sigma滤波器能很好地保留细节并有效地减少斑点噪声,及时是在对比度较低的区域。 Bit Error Filters比特误差误差滤波器可以消除图像中的”bit-error”噪声。

【CN109903306A】一种基于探地雷达图像的层间脱空识别方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910128568.4 (22)申请日 2019.02.21 (71)申请人 东南大学 地址 210000 江苏省南京市江宁区东南大 学路2号 (72)发明人 顾兴宇 章天杰 孙小军 徐向荣  (74)专利代理机构 南京苏高专利商标事务所 (普通合伙) 32204 代理人 王恒静 (51)Int.Cl. G06T 7/136(2017.01) G06T 7/187(2017.01) G01S 13/89(2006.01) (54)发明名称 一种基于探地雷达图像的层间脱空识别方 法 (57)摘要 本发明公开了一种基于探地雷达图像的层 间脱空识别方法,该方法包括:对得到的道路探 地雷达图像转化为灰度图,并将得到的图进行中 值滤波;根据分割阈值点确定层间脱空的位置, 并将中值滤波后的图像以所述分割阈值点进行 二值化;根据估测的层间脱空所在位置,对图像 的部分像素进行删除;选定长条形结构元对图像 进行闭操作,将因分割阈值点导致分离的区域重 新组合成一个区域;对闭操作后的图像进行标记 连通域,对标记了连通域的区域进行特征识别和 提取。本发明的通过自动分析探地雷达图像,快 速准确判断出脱空区域,可节省大量人力资源; 本发明通过设定分割阈值点和闭操作结合能有 效降低脱空数量计算的错误率, 提高检测精度。权利要求书1页 说明书4页 附图4页CN 109903306 A 2019.06.18 C N 109903306 A

权 利 要 求 书1/1页CN 109903306 A 1.一种基于探地雷达图像的层间脱空识别方法,其特征在于,该方法包括以下步骤: (1)对得到的道路探地雷达图像转化为灰度图,并将得到的所述灰度图进行中值滤波; (2)根据中值滤波后的图像的频率直方图选择分割阈值点,根据所述分割阈值点确定层间脱空的位置,并将中值滤波后的图像以所述分割阈值点进行二值化; (3)根据估测的层间脱空所在位置,对图像的部分像素进行删除; (4)选定长条形结构元对步骤(3)得到的图像进行闭操作,将因分割阈值点导致分离的区域重新组合成一个区域; (5)对闭操作后的图像进行标记连通域,对标记了连通域的区域进行特征识别和提取。 2.根据权利要求1所述的基于探地雷达图像的层间脱空识别方法,其特征在于,所述步骤(2)中,分割阈值点为所述频率直方图概率为99.6%的位置处的像素值。 3.根据权利要求1所述的基于探地雷达图像的层间脱空识别方法,其特征在于,所述步骤(3)中,对图像的部分像素进行删除具体包括: (31)计算比值α,其中,d rb为道路的基层厚度,d lt为探地雷达的检测深度; (32)根据比值α得到像素删除临界值H,其中,p pd为探地雷达图像深度方向的总像素数; (33)对探地雷达图像中深度大于H的部分像素进行删除,得到截取后的探地雷达图像。 4.根据权利要求1所述的基于探地雷达图像的层间脱空识别方法,其特征在于,所述步骤(4)中,长条形结构元记为strel=[1 1 1 1 1]。 5.根据权利要求1所述的基于探地雷达图像的层间脱空识别方法,其特征在于,所述步骤(5)中,对标记了连通域的区域进行特征识别和提取包括: (51)通过预设的面积阈值筛除各个标记了连通域的区域中的杂波并判定可能脱空区域; (52)利用层间脱空区域的长条形状,通过计算(51)中确定的可能脱空区域的最小矩形的长轴和短轴的比值β,来最终判定该可能脱空区域是否为脱空区域。 6.根据权利要求5所述的基于探地雷达图像的层间脱空识别方法,其特征在于,所述步骤(51)中,若标记了连通域的区域面积小于等于面积阈值时,则该区域判定为杂波;否则,若标记了连通域的区域面积大于面积阈值时,该区域判定为可能脱空区域。 7.根据权利要求5所述的基于探地雷达图像的层间脱空识别方法,其特征在于,所述步骤(52),若β≥B,其中B为预设的临界值,则判定该区域为脱空;否则,β<B,则判定该区域不是脱空。 2

雷达与定位

雷达定位与导航习题 第一节物标的雷达图像 2203 船用导航雷达的显示器属于哪种显示器。 A.平面位置 B.距离高度 C.方位高度 D.方位仰角 2204 船用导航雷达发射的电磁波属于哪个波段。 A.长波 B.中波 C.短波 D.微波 2205 船用导航雷达可以测量船舶周围水面物标的。 A.方位、距离 B.距离、高度 C.距离、深度 D.以上均可 2206 船用导航雷达显示的物标回波的大小与物标的有关。 A.总面积 B.总体积 C.迎向面垂直投影 D.背面水平伸展的面积 2207 船用导航雷达发射的电磁波遇到物标后,可以。 A.穿过去 B.较好的反射回来 C.全部绕射过去 D.以上均对 2208本船雷达天线海面以上高为16米,小岛海面以上高为25米,在理论上该岛在距本船多远的距离内才能探测得到。 A.20米 B.20海里 C.20千米 D.以上均不对 2209本船雷达天线海面以上高度为16米,前方有半径为4海里的圆形小岛,四周平坦,中间为山峰,海面以上高度为25米。当本船驶向小岛时,雷达荧光屏上首先出现的回波是小岛那个部分的回波。 A.离船最近处的岸线 B.离船最远处的岸线 C.山峰 D.A、C一起出现 2210本船雷达天线海面以上高度为16米,前方有半径为2海里的圆形小岛,四周低,中间为山峰,海面以上高度为49米。当船离小岛4海里时,雷达荧光屏上该岛回波的内缘(离船最近处)对应于小岛的。 A.山峰 B.离船最近的岸线 C.山峰与岸线间的某处 D.以上均不对 2211 对于一个点目标,造成其雷达回波横向扩展的因素是。 A.目标闪烁 B.水平波束宽度 C.CRT光点直径 D.A+B+C 2212 远处小岛上有两个横向分布的陡峰,间距为1海里,海面以上高度均为36米,本船雷达天线海面以上高度为16米,本船离岛至少海里外时,小岛回波将分离成两个回波。 (雷达方位分辨力为6°) A.6 B.9 C.16 D.20 2213 远处小岛上有两个横向分布的陡峰,间距为1海里,海面以上高度均为36米,本船雷达天线海面以上高度为16米,本船驶近该岛海里内时,小岛回波将成为一个回波。(雷达方位分辨力为6°) A.6 B.8 C.16 D.20 2212 本船前方河道入口处两侧有陡山,河口宽度为300米,雷达天线水平波束宽度为1°,本船离河口海里以外时,雷达荧光屏上河口将被两侧陡山回波堵满。 A.7.5 B.9.3 C.10.4 D.6 2215 造成雷达荧光屏边缘附近雷达回波方位扩展的主要因素是。 A.水平波束宽度 B.垂直波束宽度 C.脉冲宽度 D.CRT光点直径 2216 造成雷达荧光屏中心附近雷达回波方位扩展的主要因素是。 A.水平波束宽度 B.垂直波束宽度 C.脉冲宽度 D.CRT光点直径 2217 减小雷达物标回波方位扩展影响的方法是。 A.适当减小增益 B.采用小量程 C.采用X波段雷达 D.A+B+C 2218 哪种操作可减小雷达物标回波方位扩展影响。 A.适当增大扫描亮度 B.适当减小扫描亮度 C.适当减小增益 D.B+C 2219 方法可减小雷达物标回波的失真。 A.调好聚焦 B.将“聚焦”钮顺时针稍稍调偏一些 C.将“聚焦”钮逆时针调偏一些 D.以上均错 2220 造成雷达物标回波径向扩展的因素是。 A.脉冲宽度 B.CRT光点直径 C.目标闪烁 D.A+B+C 2221 造成雷达物标回波径向扩展的主要因素是。 A.脉冲宽度 B.CRT光点直径 C.目标闪烁 D.水平波束宽度 2222 造成雷达图象与物标形状不符的原因是。 A.被高大物标遮挡 B.雷达分辨力差 C.聚焦不佳 D.以上三者都是 2223 造成雷达图象与物标实际形状不符的原因是。 A.CRT光点直径 B.无线水平波束宽度 C.发射脉冲宽度 D.以上都是 2224海图上是连续的岸线,而在雷达荧光屏上变成断续的回波,其原因可能是

探地雷达实验数据处理报告

探地雷达数据基本处理报告 实验目的:学会探地雷达数据的基本处理步骤,掌握一定处理数据能力,学会运用软件处理收集数据,突出有效波,抵制干扰波,收集有利信息,然后可以对地下的情况进行简单的分析,进行简单地分层。实验仪器:Terra SIR-3000,处理软件:RADAN6.5.3.0软件。 实验处理过程: 第一步,装载文件,打开File—Open,加亮文件名FILE____039.DZT,点OK,选定的文件就会在屏幕上显示出来。 第二步,改变输出路径,选择菜单Window>Close ALL,即可关闭所有文件。 选择View>Customize,移动鼠标到输出如果输出路径不存在,利用WINDOWS浏览器创建一个文件夹,然后返回View>Customize选择新建立的文件目录。 第三步,改变显示参数。 1,点击显示按钮。 2,点击线扫描图标。 3,点击线扫描图标。在灰度比例尺中选择彩色表20,显示资料。点OK或者回车,退出线扫描参数对话框,再点OK退出显示参数设置资料显示。

第四步,编辑文件头,选择Edit > File Header。察看文件头信息。

第五步,编辑文件,去除多余道。 a,利用右滑动箭头,将数据文件滑动到文件末。采用高分辨率显示器,就不必用滑动功能。 点击选择按钮,或者在数据窗口点鼠标右键,加亮选择区域。打开选择编辑块体对话框。 b,选择编辑>剪切(Edit-select,使用剪刀按钮。

被选剖面将从文件中剪切,得到新文件。 c,运用窗口振动简图切换图标,演示图像如下

第六步,突出有效波,,采用增益的方法。 1,点击显示按钮-点击线扫描图标-点击线扫描图标,在显示窗口分 别调节Color Table,Color Xform找到突出部分。

雷达目标识别发展趋势

雷达目标识别发展趋势 雷达具备目标识别功能是智能化的表现,不妨参照人的认知过程,预测雷达目标识别技术的发展趋势: (1)综合目标识别 用于目标识别的雷达必将具备测量多种目标特征的手段,综合多种特征进行目标识别。我们人类认知某一事物时,可以通过观察、触摸、听、闻、尝,甚至做实验的方法认知,手段可谓丰富,确保了认知的正确性。 目标特征测量的每种手段会越来越精确,就如同弱视的人看东西,肯定没有正常人看得清楚,也就不能认知目标。 识别结果反馈给目标特征测量,使目标特征测量成为具有先验信息的测量,特征测量精度会有所提高,识别的准确程度也会相应提高。 雷达具备同时识别目标和背景的功能。人类在观察事物的时候,不仅看到了事物的本身,也看到了事物所处的环境。现有的雷达大多通过杂波抑制、干扰抑制等方法剔除了干扰和杂波,未来的雷达系统需要具备识别目标所处背景的能力,这些背景信息在战时也是有用的信息。 雷达具备自适应多层次综合目标识别能力。用于目标识别的雷达虽然需要具备测量多种目标特征的手段,但识别目标时不一定需要综合所有的特征,这一方面是因为雷达系统资源不允许,另一方面也是因为没有必要精确识别所有的目标。比如司机在开车时,视野中有很多目标,首先要评价哪几个目标有威胁,再粗分类一下,是行人还是汽车,最后再重点关注一下靠得太近、速度太快的是行人中的小孩子还是汽车中的大卡车。 (2)自学习功能 雷达在设计、实现、装备的过程中,即具备了设计师的基因,但除了优秀的基因之外,雷达还需要具有学习功能,才能在实战应用中逐渐成熟。 首先,要具有正确的学习方法,这是设计师赋予的。对于实际环境,雷达目标识别系统应该知道如何更新目标特征库、如何调整目标识别算法、如何发挥更好的识别性能。 其次,要人工辅助雷达目标识别系统进行学习,这就如同老师和学生的关系。在目标识别系统学习时,雷达观测已知类型的合作目标,雷达操作员为目标识别系统指出目标的类型,目标识别系统进行学习。同时还可以人为的创造复杂的电磁环境,使目标识别系统能更好地适应环境。 (3)多传感器融合识别 多传感器的融合识别必定会提高识别性能,这是毋容置疑的。这就好比大家坐下来一起讨论问题,总能讨论出一个好的结果,至少比一个人说的话更可信。但又不能是通过投票的方式,专家的话肯定比门外汉更有说服力。多传感器融合识别需要具备双向作用的能力。 并不是给出融合识别的结果就结束了,而是要利用融合识别的结果反过来提高各个传感器的识别性能,这才是融合识别的根本目的所在。反向作用在一定程度上降低了人工辅助来训练目标识别系统的必要性,也减少了分别进行目标识别试验的总成本。

浅谈探地雷达法检测路面结构层

浅谈探地雷达法检测路面结构层 【摘要】以探测雷达在某高速公路上的路面结构层缺陷检测为例,阐述了探测雷达在路面结构检测的原理、方法、数据结果分析等。 【关键词】探测雷达;路面结构;检测 1路面结构层缺陷检测的意义 随着我国道路交通量日益增大,车辆迅速大型化以及超载现象,使公路路面面临严峻的考验。因此路面病害检测的作用凸显出来,其中路面结构层缺陷检测是路面病害检测的一项重要内容,通过探地雷达的检测可以达到识别地下目标物和道路结构层内隐伏缺陷的目的。根据病害程度采取相应的补救措施,保证路面的通行质量同时也有利于对公路路面的设计、施工等各方面提供有力的资料和经验。本文通过探地雷达法对某高速部分路段检测为例浅谈路面结构层缺陷检测。 2设备原理 图2.1探地雷达工作原理示意图 探地雷达方法(Ground Penetration Radar,简称GPR)是一种采用短脉冲宽带高频电磁波信号检测地下介质分布的新技术。根据电磁波在有耗介质中的传播特性,通过天线连续拖动的方式以宽频带短脉冲的形式向地下发射高频电磁波,电磁波信号在地下介质内部传播时遇到不同介质的界面时,就会发生反射、透射,其反射系数(反射信号的强度)主要由上、下层介质的相对介电常数决定。上、下层介质的介电常数差异越大,反射的电磁波能量也越大;反之,越小。反射的电磁波被与发射天线同步移动的接收天线接收后,通过雷达主机精确记录反射回的电磁波的运动特征,获得地下介质的扫描图像,通过对扫描图像进行处理,对地质雷达剖面上目标层(体)的反射波时间延迟、波形特征以及剖面的宏观和微观形态组合进行解译,达到识别地下目标物和道路结构层内隐伏缺陷的目的。 电磁波在特定介质中的传播速度V是不变的,因此,根据探地雷达记录上的地面反射波与地下反射波的时间差△T,即可据下式算出地下异常的埋藏深度H: H=V·△T/2(1) 式中,H即为目标层厚度;V是电磁波在地下介质中的传播速度,由下式表示: V=C/■(2) 式中,C是电磁波在大气中的传播速度,约为3×108m/s;ε为相对介电常数,取决于地下各层构成物质的介电常数。 雷达波反射信号的振幅与反射系数成正比,在以位移电流为主的低损耗介质中,反射系数r可表示为: r=■(3) 式中,ε1、ε2为界面上、下介质的相对介电常数。对公路检测而言,ε1为面层的相对介电常数,ε2为基层的相对介电常数。由公式(3)可知,雷达波的穿透深度主要取决于地下介质的电性和中心频率。导电率越高,穿透深度越小;中心频率越高,穿透深度越小,反之亦然。反射信号的强度主要取决于上、下介质的电性差,电性差越大,反射信号越强;反之,越小。对沥青混凝土面层而言,面层与基层(稳定层)存在明显的电性差,可以预期面层底部会有强反射出现。不同面层(上、中、下)之间所用材料也存在细微差别,因此也可以得到较弱的

相关文档
最新文档