递推关系式数学

递推关系式数学
递推关系式数学

由递推公式求通项公式的方法

由递推公式求通项公式的方法 已知数列的递推公式,求取其通项公式是数列中一类常见的题型,这类题型如果单纯的看某一个具体的题目,它的求解方法灵活是灵活多变的,构造的技巧性也很强,但是此类题目也有很强的规律性,存在着解决问题的通法,本文就高中数学中常见的几类题型从解决通法上做一总结,方便于学生学习和老师的教学,不涉及具体某一题目的独特解法与技巧。 一、1()n n a a f n +=+型数列,(其中()f n 不是常值函数) 此类数列解决的办法是累加法,具体做法是将通项变形为1()n n a a f n +-=,从而就有 21321(1),(2),,(1).n n a a f a a f a a f n --=-=-=- 将上述1n -个式子累加,变成1(1)(2)(1)n a a f f f n -=+++- ,进而求解。 例1. 在数列{}n a 中,112,21,.n n n a a a n a +==+-求 解:依题意有 213211,3,,23n n a a a a a a n --=-=-=- 逐项累加有221(123)(1)1323(1)212n n n a a n n n n +---=+++-= =-=-+ ,从而223n a n n =-+。 注:在运用累加法时,要特别注意项数,计算时项数容易出错. 变式练习:已知{}n a 满足11=a ,) 1(11+=-+n n a a n n ,求}{n a 的通项公式。 二、)(1n f a a n n ?=+型数列,(其中()f n 不是常值函数) 此类数列解决的办法是累积法,具体做法是将通项变形为1()n n a f n a +=,从而就有 32121 (1),(2),,(1)n n a a a f f f n a a a -===- 将上述1n -个式子累乘,变成1 (1)(2)(1)n a f f f n a =???- ,进而求解。 例2. 已知数列{}n a 中11123,(2)321 n n n a a a n n --==?≥+,求数列{}n a 的通项公式。

由递推关系求通项公式的类型与方法

由递推关系求通项公式的类型与方法 递推公式是给出数列的基本方式之一,在近几年高考题中占着不小的比重。2008年高考数学19份理科试卷,共19道数列部分的解答题,其中有17道涉及递推数列,(福建卷理科有两道题涉及数列问题,江苏卷、江西卷中数列题不涉及递推),说每卷都有数列问题,数列必出递推也不为过。不能不感受到高考数学试题中“递推”之风的强劲。为此本文主要以2008年试题为例重点研究由递推关系求数列通公式的类型与求解策略。 一、递推关系形如:1()n n a a f n +=+的数列 利用迭加或迭代法得:1(1)(2)(1)n a a f f f n =++++-L ,(2n ≥) 例1(08天津文20)在数列{}n a 中,11a =,22a =,且11(1)n n n a q a qa +-=+-(2,0n q ≥≠). (Ⅰ)设1n n n b a a +=-(*n N ∈),证明{}n b 是等比数列; (Ⅱ)求数列{}n a 的通项公式;(Ⅲ)略 (Ⅰ)证明:由题设11(1)n n n a q a qa +-=+-(2n ≥),得 11()n n n n a a q a a +--=-,即1n n b qb -=,2n ≥. 又1211b a a =-=,0q ≠,所以{}n b 是首项为1,公比为q 的等比数列. (Ⅱ)解法:由(Ⅰ)211a a -=,32a a q -=, 22121321()()()11n n n n a a a a a a a a q q q --=+-+-++-=+++++L L ,(2n ≥). 所以当2n ≥时,1 1,,. 1,111n n q q q a n q -≠=?-+ ?=-??? 上式对1n =显然成立. 二、递推关系形如:1()n n a a f n +=的数列 利用迭乘或迭代法可得: 1(1)(2)(1)n a a f f f n =-L ,(2n ≥) 例2 (2008天津理22)在数列{}n a 与{}n b 中,4,111==b a ,数列{}n a 的前n 项和n S 满足()031=+-+n n S n nS ,12+n a 为n b 与1+n b 的等比中项,*N n ∈.

高中数学几种常见的数列递推关系式专题辅导

高中数学几种常见的数列递推关系式 数列的递推关系是指数列中的前一项(前几项)与后一项的关系式。递推数列是数列中的重要内容,通过递推关系,观察,探求数列的规律,进而可求出整个数列的通项公式。通过递推关系的学习,可以培养学生的观察能力,归纳与转化能力,综合运用知识等能力,因此,是近几年高考与竞赛的热点。 下面针对几种高中常见的递推形式及处理方法做一总结。 一. 定义法 常见形式: 已知:a a a a d n n 11==++, ① 或a a a a q n n 110=≠=+, ② (其中,d 常数,q ≠0为常数) 定义法即高中所学的两大基本数列——等差数列与等比数列的基本定义式。 已知首项,与递推关系,数列的通项即知,在此不做赘述。但这两个基本数列的求通项公式的方法在后续学习中,在方法上起到了指导作用。即我们下面要介绍的方法。 二. 迭代法 常见形式:已知 a a a a f n n n 110=≠=++,() ③ 或a a a a f n f n n n 110=≠=+,,()()不恒为零 ④ (这里的f n ()是关于n 的关系式)。 这两个形式的递推关系式,虽然不是等差与等比数列,但表达方式上非常接近。我们可以利用迭代的方法来求出通项a n 也可以分别称为叠加法和叠乘法。 如:③a a f 211-=() a a f 322-=() …… a a f n n n N n n -=-≥∈-112()()*, 将以上n -1个式子叠加,可得 a a f f f n n n N n -=+++-≥∈11212()()()()*…, 这里,我们只须已知数列的首项a 1利用求和求出上述等式右端的和,即可求出数列 {}a n 的通项公式来。 如:④的具体例子: 例1. (2006年东北三省三校一模试题21)已知数列{}a n ,S n 是数列的前n 项和, a S n a n n 212 ==,。求S n 。 解:因为S n S S n n N n n n =-≥∈-2 21()()*, 所以n S n S n n 22 21-=- S S n n n n N n n -= -≥∈123()*, S S S S S S S S n n n n n n N n n n n 324312131425364132 3·…····… ·,---=---≥∈()*

如何求数列通项公式

如何求数列通项公式 一、累加法(也叫逐差求和法):利用1211()()n n n a a a a a a -=+-+???-求通项公式的方法称为累加法。累加法是求型如1()n n a a f n +=+的递推数列通项公式的基本方法(()f n 可求前n 项和). 例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2 (1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而利用逐差求和法求得数列{}n a 的通项公式。 例2 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 解:由1231n n n a a +=+?+得1231n n n a a +-=?+则 11232211 1 221 1 2 2 1 1 ()()()()(231)(23 1)(231)(231)3 2(3333)(1)33(13 ) 2 (1)3 13 331331 n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=?++?+++?++?++=+++++-+-=+-+-=-+-+=+- 所以3 1.n n a n =+- 评注:本题解题的关键是把递推关系式1231n n n a a +=+?+转化为1231n n n a a +-=?+, 例3 已知数列{}n a 满足1132313n n n a a a +=+?+=,,求数列{}n a 的通项公式。

数列的递推关系

数列的递推关系 ? 教学重点: 数列的任意连续若干项能满足的关系式称为该数列的一个递推公式,由递推公式和相应有尽有前若干项可以确定一个数列.这种表示方法叫做递推公式法或递推法. ? 教学难点: 1.根据数列的首项和递推公式写出它的前几项,关归纳出通项公式. 2.n n S a 的关系 ???-=-1 1S S S a n n n )1() 2(=≥n n . ? 教学过程: 一、复习 数列的定义,数列的通项公式的意义(从函数观点出发去刻划). 二、递推公式 钢管的例子 3+=n a n 从另一个角度,可以: 1 4 11+==-n n a a a Λ ) 2() 1(≥=n n “递推公式”定义:已知数列{}n a 的第一项,且任一项n a 与它的前一项1-n a (或前n 项)间的关系可以用一个公式来表示,这个公式就叫做这个数列的递推公式. 例1.已知21=a ,41-=+n n a a 求n a . 解一:可以写出:21=a ,22-=a ,63-=a ,104-=a ,…… 观察可得:)1(42)4)(1(2--=--+=n n n a n 解二:由题设: 41-=-+n n a a

∴ Λ Λ4 4 432211-=--=--=------n n n n n n a a a a a a ) +412-=-a a )1(41--=-n a a n ∴ )1(42--=n a n 例2.若记数列{}n a 的前n 项之和为S n 试证明:?? ? -=-1 1 S S S a n n n ) 1()2(=≥n n 证:显然1=n 时 ,11S a = 当1≠n 即2≥n 时, n n a a a S +++=Λ21 1211--+++=n n a a a S Λ ∴ n n n a S S =--1 ∴???-=-1 1S S S a n n n )1() 2(=≥n n 注意:1? 此法可作为常用公式; 2? 当)(11S a =时 满足1--n n S S 时,则1--=n n n S S a . 例3.已知数列{}n a 的前n 项和为① n n S n -=22 ② 12 ++=n n S n ,求数列{}n a 的 通项公式. 解:1.当1=n 时,111==S a 当2≥n 时,34)1()1(222 2-=-+---=n n n n n a n 经检验 1=n 时 11=a 也适合 34-=n a n 2.当1=n 时,311==S a 当2≥n 时,n n n n n a n 21)1()1(12 2=-----++= ∴ ?? ?=n a n 23 ) 2()1(≥=n n 例4.已知21=a ,n n a a 21=+ 求n a .

递推公式求通项公式的几种方

由递推公式求通项公式的常用方法 由数列的递推公式求通项公式是高中数学的重点问题,也是难点问题,它是历年高考命题的热点题。对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列。 方法一:累加法 形如a n +1-a n =f (n )(n =2,3,4,…),且f (1)+f (2)+…+f (n -1)可求,则用累加法求a n 。有时若不能直接用,可变形成这种形式,然后利用这种方法求解。 例1:(07年北京理工农医类)已知数列{a n }中,a 1=2,a n +1=a n +cn (c 是常数,n =1,2,3,…)且a 1,a 2,a 3成公比不为1的等比数列 (1)求c 的值 (2)求{a n }的通项公式 解:(1)a1,a2,a3成公比不为1的等比数列 2 022)2(2)() ,3,2,1(111113 12 2===++?=+∴=+=?=∴+c c a c c a a c a n cn a a a a a n n 因此(舍去)或解得又 (2)由(1)知n a a n a a n n n n 2,211=-+=++即,将n =1,2, …,n -1,分别代入 ) 1(2322 2121342312-=-?=-?=-?=--n a a a a a a a a n n 将上面n -1个式子相加得a n -a 1=2(1+2+3+…+n -1)=n 2 -n 又a 1=2,a n =n 2 -n +2 方法二:累乘法 形如 a n +1 a n =g (n )(n =2,3,4…),且f (1)f(2)…f (n -1)可求,则用累乘法求a n .有时若不能直接用,可变形成这种形式,然后用这种方法求解。

已知数列递推公式求通项公式的几种方法

已知数列递推公式求通项公式的几种方法 Revised on November 25, 2020

求数列通项公式的方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则11 3 222 n n n n a a ++-=,故数列{}2n n a 是以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 11 3 222 n n n n a a ++-=,说明数列{}2 n n a 是等差数列,再直接利用等差数列的通项公式求出3 1(1) 22n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为 121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+, 即得数列{}n a 的通项公式。 例3 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 解:由1231n n n a a +=+?+得1231n n n a a +-=?+则 所以3 1.n n a n =+-

母函数与递推关系习题

母函数与递推关系习题 1、 有n 阶台阶,一人从下往上走,每次走一或两级,求他走这n 级台阶的方法数。 2、 {1,2,3,}n S n = 的一个子集为交替的:如果按递增次序列出该子集的元素时,它们的 奇偶性为:奇、偶、奇、偶、 。空集也算作交替的。求n S 的交替自己的树木。 3、 某人有n 元钱,他一天买一样东西,或一元钱的甲、或二元钱的乙、或二元钱的丙,问他用完这n 元钱有多少种方法? 4、 求{,,}S a b c =∞?的n 排列数,要求在排列中a 与a 不相邻。 5、 设40n n i a i == ∑,0n ≥,求n a 。 6、 求1003102-?? ???。 7、 平面上有n 条直线,其中任意两条都相交于一点,但没有三条相交于同一点,求这n 条直线将平面分成的区域数。 8、 空间中有n 个平面,其中任意两个都有唯一交线,任意三个都有唯一一个交点,但没有四个相交于同一点。求这n 个平面将空间分成的区域数。 9、 在平面上画一个圆,然后再依次画n 条与圆都相交的直线,其中当k 是大于1的奇数时,第k 条直线只与前面(1)k -条直线中的一条在圆内相交,当k 是偶数时,第k 条直线与前面(1)k -条直线都在圆内相交,又没有三条直线在圆内相交于同一点。求这n 直线将圆分成的区域数。 10、 求{1,2,3}S =∞?的k 排列的个数,要求在排列中同一元素至多连续出现两次。 11、 将一个凸(1)n +边形用它的对角线划分成三角形,要求所用的对角现在多边形内部无交点,求划分的方法数。 12、 设一克、三克、七克重的砝码分别有1枚、3枚、2枚。问用这些砝码能称出哪些重量?称每一重量又各有几种方案? 13、 有两种拆分:(1)1{1,12,3,14,}S =∞??∞?? ;(2)23{1,2,3,}S =? 。证明对 同一正整数n ,这两种拆分的拆分数相等。 14、 证明:周长为2n ,边长为整数的三角形的个数等于将n 拆分成恰好三项的拆分数。

专题由递推关系求数列的通项公式(含答案)

专题 由递推关系求数列的通项公式 一、目标要求 通过具体的例题,掌握由递推关系求数列通项的常用方法: 二、知识梳理 求递推数列通项公式是数列知识的一个重点,也是一个难点,高考也往往通过考查递推数列来考查学生对知识的探索能力,求递推数列的通项公式一般是将递推公式变形,推得原数列是一种特殊的数列或原数列的项的某种组合是一种特殊数列,把一些较难处理的数列问题化为熟悉的等差或等比数列。 三、典例精析 1、公式法:利用熟知的公式求通项公式的方法称为公式法。常用的公式有???≥???????-=????????????????=-21 11n S S n S a n n n 及 等差数列和等比数列的通项公式。 例1 已知数列{n a }中12a =,2 +2n s n =,求数列{n a }的通项公式 评注 在运用1n n n a s s -=-时要注意条件2n ≥,对n=1要验证。 2、累加法:利用恒等式()()1211+......+n n n a a a a a a -=+--求通项公式的方法叫累加法。它是求型如 ()1+f n n n a a +=的递推数列的方法(其中数列(){}f n 的前n 项和可求)。 例2 已知数列{n a }中112a =,121 ++32 n n a a n n +=+,求数列{n a }的通项公式 评注 此类问题关键累加可消中间项,而(f n )可求和则易得n a 3、.累乘法:利用恒等式3 21121 n n n a a a a a a a a -=? ???????()0n a ≠求通项公式的方法叫累乘法。它是求型如()1n n a g n a +=的递推数列的方法(){}() g n n 数列可求前项积

求数列通项公式的11种方法

求数列通项公式的11种方法方法 总述:一.利用递推关系式求数列通项的11种方法: 累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、 换元法(目的是去递推关系式中出现的根号)、 数学归纳法(少用) 不动点法(递推式是一个数列通项的分式表达式)、 特征根法 二.四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。等差数列、 等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。 三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等级差数列或等比数列。 四.求数列通项的基本方法是:累加法和累乘法。 五.数列的本质是一个函数,其定义域是自然数集的一个函数。 一、累加法 1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。 2.若1()n n a a f n +-=(2)n ≥, 则 21321(1) (2) () n n a a f a a f a a f n +-=-=-=

两边分别相加得 111 ()n n k a a f n +=-= ∑ 例1 已知数列{}n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1(1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。 例2 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 解法一:由1231n n n a a +=+?+得1231n n n a a +-=?+则 11232211122112211()()()()(231)(231)(231)(231)3 2(3333)(1)3 3(13)2(1)3 13 331331 n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=?++?+++?++?++=++ +++-+-=+-+-=-+-+=+- 所以3 1.n n a n =+- 解法二:13231n n n a a +=+?+两边除以1 3n +,得 111 21 3333 n n n n n a a +++=++, 则 111 21 3333n n n n n a a +++-=+,故

备战2020数学高考三大类递推数列通项公式的求法

三大类递推数列通项公式的求法 湖北省竹溪县第一高级中学徐鸿 一、一阶线性递推数列求通项问题 一阶线性递推数列主要有如下几种形式: 1. 这类递推数列可通过累加法而求得其通项公式(数列{f(n)}可求前n项和). 当为常数时,通过累加法可求得等差数列的通项公式.而当为等差数列时, 则为二阶等差数列,其通项公式应当为形式,注意与等差数列求和公式一般形式的区别,后者是,其常数项一定为0. 2. 这类递推数列可通过累乘法而求得其通项公式(数列{g(n)}可求前n项积). 当为常数时,用累乘法可求得等比数列的通项公式. 3.; 这类数列通常可转化为,或消去常数转化为二阶递推式 . 例1已知数列中,,求的通项公式. 解析:解法一:转化为型递推数列. ∵∴又,故数列{}是首项为2,公比为2的等比数列.∴,即. 解法二:转化为型递推数列. ∵=2x n-1+1(n≥2) ①∴=2x n+1 ② ②-①,得(n≥2),故{}是首项为x 2-x 1 =2, 公比为2的等比数列,即,再用累加法得.解法三:用迭代法. 当然,此题也可用归纳猜想法求之,但要用数学归纳法证明.

例2已知函数的反函数为 求数列的通项公式. 解析:由已知得,则. 令=,则.比较系数,得. 即有.∴数列{}是以为首项,为 公比的等比数列,∴,故. 评析:此题亦可采用归纳猜想得出通项公式,而后用数学归纳法证明之. (4) 若取倒数,得,令,从而转化为(1)型而求之. (5); 这类数列可变换成,令,则转化为(1)型一阶线性递推公式. 例3设数列求数列的通项公式.解析:∵,两边同除以,得.令,则有.于是,得,∴数列是以首项为,公比为的等比数列,故,即,从而.例4设求数列的通项公式. 解析:设用代入,可解出.

组合数学-第十节:递推关系

第4章 递推关系 递推关系几乎在所有的数学分支中都有重要作用,对于组合数学更是如此,这是因为每个组合问题都有它的组合结构,而在许多情况下递推关系是刻画组合结构的最合适的工具。如何建立递推关系,已给的递推关系有何性质,以及如何求解递推关系等,是递推关系中的几个基本问题。 本章首先讨论递推关系的建立问题,然后对一些常见的递推关系作比较深入的讨论,并给出其解法。 4.1 递推关系的建立 在3.3节中讨论集合{}1,2,n 的错排数n D 时,我们建立了关于n D 的递推关系 ()()()1212 130,1n n n D n D D n D D --?=-+≥??==?? (4.1.1) 并由此推出了 ()()11120 n n n D nD n D -?=+-≥??=?? (4.1.2) 等式(4.1.1)和等式(4.1.2)都是递推关系的例子,等式(4.1.1)给出了n 元错排数n D 同1n -元错排数及2n -元错排数2n D -之间的关系,这样,由初值1D 和2D 就可以计算出3D ,由2D 和3D 又可以计算出4D ,如此可以逐次计算出错排数序列123,,D D D 。而等式(4.1.2)给出了n 元错排数n D 同1n -元错数1n D -之间的关系,这样由初始值1D 就唯一地确定了错排数序列。 定义4.1.1 给定一个数的序列()()()0,1,,H H H n ,若存在整数0n ,使当0n n ≥时,可以用等号(或大于号,小于号)将()H n 与其前面的某些项()()0H i i n ≤<联系起来,这样的式子就叫做递推关系。 下面通过几个例子来看看如何建立递推关系,至于递推关系的求解,将在后面的几节中讨论。 例1(Hanoi 塔问题) 现有A ,B ,C 三根立柱以及n 个大小不等的中空圆盘,这些圆盘自小到大套在A 柱上形成塔形,如图4.1.1所示。要把n 个从A 柱上搬到C 柱上,并保持原来的顺序不变,要求每次只能从一根立柱上拿下一个圆盘放在另一根立柱上,且不允许大盘压在小盘上。问至少要搬多少次?

专题由递推关系求数列的通项公式含答案

专题 由递推关系求数列的通项公式 一、目标要求 通过具体的例题,掌握由递推关系求数列通项的常用方法: 二、知识梳理 求递推数列通项公式是数列知识的一个重点,也是一个难点,高考也往往通过考查递推数列来考查学生对知识的探索能力,求递推数列的通项公式一般是将递推公式变形,推得原数列是一种特殊的数列或原数列的项的某种组合是一种特殊数列,把一些较难处理的数列问题化为熟悉的等差或等比数列。 三、典例精析 1、公式法:利用熟知的公式求通项公式的方法称为公式法。常用的公式有???≥???????-=????????????????=-21 11n S S n S a n n n 及 等差数列和等比数列的通项公式。 例1 已知数列{n a }中12a =,2 +2n s n =,求数列{n a }的通项公式 评注 在运用1n n n a s s -=-时要注意条件2n ≥,对n=1要验证。 2、累加法:利用恒等式()()1211+......+n n n a a a a a a -=+--求通项公式的方法叫累加法。它是求型如 ()1+f n n n a a +=的递推数列的方法(其中数列(){}f n 的前n 项和可求)。 例2 已知数列{n a }中112a = ,121 ++32 n n a a n n +=+,求数列{n a }的通项公式 评注 此类问题关键累加可消中间项,而(f n )可求和则易得n a 3、.累乘法:利用恒等式3 21121 n n n a a a a a a a a -=? ???????()0n a ≠求通项公式的方法叫累乘法。它是求型如()1n n a g n a +=的递推数列的方法(){}() g n n 数列可求前项积 例3 已知数列{n a }中1n n s na =- ,求数列{n a }的通项公式 评注 此类问题关键是化 ()1 n n a g n a -=,且式子右边累乘时可求积,而左边中间项可消。 4、转化法:通过变换递推关系,将非等差(等比)数列转化为等差或等比有关的数列而求得通项公式的方法 称为转化法。常用的转化途径有: ⑴凑配、消项变换——如将一阶线性递推公式1n n a qa d +=+(q, d 为常数,0,1q q ≠≠)通过凑配变成 11n d a q ++ -=1n d q a q ??+ ?-?? ,或消常数项转化为()211n n n n a a q a a +++-=- 例4、已知数列{n a }中,11a =,()1212n n a a n -=+≥,求数列{n a }的通项公式 点评: 此类问题关键是利用配凑或消项变换将其转化为等比数列

常见递推数列通项公式求法(教案)

问题 1:已知数列{a } , a 1 = 1 , a n +1 = n + 2 ,求{a n }的通项公式。 2 常见递推数列通项公式的求法 一、课题:常见递推数列通项公式的求法 二、教学目标 (1)会根据递推公式求出数列中的项,并能运用叠加法、叠乘法、待定系数 法求数列的通项公式。 (2) 根据等差数列通项公式的推导总结出叠加法的基本题型,引导学生分 组合作并讨论完成叠乘法及待定系数法的基本题型。 (3)通过互助合作、自主探究培养学生细心观察、认真分析、善于总结的良 好思维习惯,以及积极交流的主体意识。 三、教学重点:根据数列的递推关系式求通项公式。 四、教学难点:解题过程中方法的正确选择。 五、教学课时: 1 课时 六、教学手段:黑板,粉笔 七、教学方法: 激励——讨论——发现——归纳——总结 八、教学过程 (一)复习回顾: 1、通项公式的定义及其重要作用 2、区别递推公式与通项公式,从而引入课题 (二)新知探究: a n 变式: 已知数列 {a n } , a 1 = 1 , a n +1 = a n + 2n ,求{a n }的通项公式。 活动 1:通过分析发现形式类似等差数列,故想到用叠加法去求解。教师引导学 生细致讲解整个解题过程。 解:由条件知: a n +1 - a = 2n n 分别令 n = 1,2,3,? ? ? ? ??,(n - 1) ,代入上式得 (n - 1) 个 等式叠加之, 即 (a 2 - a 1 ) + (a 3 - a 2 ) + (a 4 - a 3 ) + ? ? ? ? ? ? +(a n - a n -1 ) = 2 + 2 ? 2 + 2 ? 3 + 2 ? (n - 2) + 2 ? (n - 1) 所以 a - a = (n - 1)[2 + 2 ? (n - 1)] n 1 a = 1,∴ a = n 2 - n + 1 1 n

组合数学教学大纲

《组合数学》课程教学大纲 课程编码:LX113900 课程名称:组合数学 英文名称:Combinational Mathematic s 适用专业:计算机科学与技术 先修课程:无 学分:3 总学时:48 一、课程简介 该课程是为计算机类学生开设的一门选修课程。主要讲授排列与组合、母函数及其应用、递推关系、容斥原理、抽屉原理、polya定理等内容。通过该课程的学习,能使学生系统掌握组合数学的基本知识、基本理论和基本方法;培养学生抽象思维和慎密概括的能力,使学生具有良好的开拓专业理论的素质和使用所学知识,运用组合数学的思想和方法分析和解决实际问题的能力。 This course’s main contents include permutation and combination, generating function and its application, recursive relation, including excluding principle, drawer principle and Ramsey theorem, Ploya theorem. 二、本课程与其它课程的联系 本课程无先修课程,与计算机科学与技术专业的后续课程如算法设计与分析以及编译原理等课程有一定的联系,排列组合及递推关系与算法设计与分析中的算法复杂性分析有密切关系,为复杂性分析提供了基础知识,容斥原理和抽屉原理在编译原理中有其重要作用。 三、课程内容及要求 (一)排列与组合(6学时) 主要内容:两个基本法则;排列与组合及其计算;排列与组合的生成算法;Striling近似公式。 基本要求:理解排列与组合的概念;掌握组合的主要性质;熟练掌握排列数

递推关系的求解及其应用-组合数学

《组合数学》课程结课作业 题目递推关系的求解及其应用 院系控制与计算机工程学院专业班级 学生姓名 学号 2018年5月

摘要 递推关系作为数学的一种思维,充分的展现了生活中许多事物现象变化所遵循的规律。所有的事物都不是单一存在的,而是和某些东西相互依存的。比如在求解排列组合、数列中都会用到递推关系的思想与方法。本论文将围绕着递推思维及求解在数列、排列组合上的应用展开讨论。本论文阐述递推关系不是单一的个体,它与生成函数、线性关系、数列组合综合使用,并到达解决问题的思想。也说明学科之间是一个统一的整体。 关键词:递推关系;求解方法;递推思维;应用 1 绪论 递推关系几乎在所有的数学领域中都占据着重要的比例和广泛应用,在物理学上也有着深刻的影响,是数学运算中的一个强有力的工具。因此不管是在教学中还是生活中,都可能要用递推关系来解决所碰到的问题,或与其他学科相结合形成性学科的过程中用递推关系,比如递推关系可和数列、线性规划与矩阵相结合形成要实现这一目的新学科,把所学的知识串连在一起,形成一种新的思维。首要的关键是用递推方法来探究这一过程,搭建一桥梁。在此基础上才能用所学的递推理论和方法进行分析和应用,从而才能解决实际理论的问题,是我们所学的知识更上一个台阶。 通常情况下递推关系的求解比较困难,仅局限于使用递推关系的一些定义很多问题是不能解决的,并且所涉及的领域也很广。递推关

系的研究还可以追溯到斐波纳契关系: 它是比萨的数学家Leonardo 在1202年给出的。在他所著的《Liber baci 》一书中,讨论一个一年之内能有多少对兔子的问题,都用到了递推关系的思想。比如常见的线性递推数列,生成函数都是数学中的重要概念,也是解决数学问题的重要工具之一。本文主要介绍线性递推数列通项公式的求解方法及利用生成函数来求解递推关系,以及递推关系的推广。 2 线性递推关系 数列n a 必须有连续个k 项满足),,,(21n k n k n k n x x x f x -+-++=,满足此式的数列则叫它为数列n x 的一个递推关系式。由递推关系式及满足k 个 初始值可以确定的一个数列n x 叫做递推数列。因此,无论是牵涉到递推数列的证明题,解析题,还是需要建立递推关系式的综合题,那么解决递推数列的核心是求通项公式,也是最基本的步骤。 2.1 线性递推数列的相关认识 定义1 如果已知数列n a 的第1项(或前几项),且数列n a 的任意 一项与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示, 对于任意的自然数n ,由递推关系),,,(21n k n k n k n a a a f a -+-++=所确定的数列n a 则叫做递推数列[] 1。 例2.1 求解递推关系17-=n n a a 其中9812=≥a n 且。 解:这是n n a a 71=+其中0≥n 且982=a 的另一种描述形式。于是解具有形式).7(0n n a a =因为),7(98202a a ==于是,20=a 而且),7(2n n a =是唯

由递推公式求通项的9种方法经典总结

精析由递推公式求通项的9种方法 1.a n +1=a n +f (n )型 把原递推公式转化为a n +1-a n =f (n ),再利用累加法(逐差相加法)求解,即a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a 1+f (1)+f (2)+f (3)+…+f (n -1). [例1] 已知数列{a n }满足a 1=1 2,a n + 1=a n +1 n 2 +n ,求a n . [解] 由条件,知a n +1-a n =1 n 2+n = 1nn +1=1n -1 n +1 ,则(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=? ????1-12+? ??? ?12-13+? ????13-14+…+? ?? ???1n -1-1n , 所以a n -a 1=1-1n .

因为a 1=12,所以a n =12+1-1n =32-1 n . 2.a n +1=f (n )a n 型 把原递推公式转化为a n +1 a n =f (n ),再利用累乘法(逐商相乘法) 求解,即由a 2a 1=f (1),a 3a 2=f (2),…,a n a n -1=f (n -1),累乘可得a n a 1= f (1)f (2)…f (n -1). [例2] 已知数列{a n }满足a 1=2 3,a n + 1=n n +1 ·a n ,求a n . [解] 由a n +1=n n +1·a n ,得a n +1a n = n n +1 , 故a n =a n a n -1·a n -1a n -2·…·a 2 a 1 ·a 1=n -1n × n -2n -1×…×12×23=23n .即a n =2 3n . 3.a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0)型

母函数

第二章 母函数及其应用 问题:对于不尽相异元素的部分排列和组合,用第一章的方法是比较麻烦的(参见表2.0.1)。 新方法:母函数方法,问题将显得容易多了。其次,在求解递推关系的解、整数分拆以及证明组合恒等式时,母函数方法是一种非常重要的手段。 表2.0.1 条件 组合方案数 排列方案数 对应的集合 相异元素,不重复 ()! !!r n r n C r n -?= ()! ! r n n P r n -= {}n e e e S ,,, 21= 相异元素,可重复 r r n C 1-+ r n S ={,,21e e ?∞?∞ n e ?∞, } 不尽相异元素(有限重复) 特例 r =n 1 ! !!!m n n n n 21 S ={11e n ?,22e n ?, …,m m e n ?}, n 1+n 2+…+n m =n n k ?1, (k =1,2,…, m ) r =1 m m 所有n k ?r r r m C 1-+ r m 至少有一个n k 满足1?n k < r 母函数方法的基本思想是把离散的数列同多项式或幂级数一一对应起来,从而把离散数列间的结合关系转化为多项式或幂级数之间的运算。 2.1 母 函 数 (一)母函数 (1)定义 定义2.1.1 对于数列{}n a ,称无穷级数()∑∞ =≡0 n n n x a x G 为该数列的(普通型)母函 数,简称普母函数或母函数。 (2)例 例2.1.1 有限数列C (n ,r ),r =0,1,2, …,n 的普母函数是()n x +1。 例2.1.2 无限数列{1,1,…,1,…}的普母函数是 +++++=-n x x x x 2 111 (3)说明 ● n a 可以为有限个或无限个; ● 数列{}n a 与母函数一一对应,即给定数列便得知它的母函数;反之,求得母函数则数 列也随之而定;

数列递推关系式求通项常用方法

由数列的递推公式求通项公式的常用方法 类型1:)(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解 例:已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。 类型2:n n a n f a )(1=+ 解法:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法(逐商相乘法)求解 例:已知31=a ,n n a n n a 2 31 31+-= + )1(≥n ,求n a 类型3:q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq ) 解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1,再利用换元法转化为等比数列求解。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 类型4:n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq ), (或 1n n n a pa rq +=+,其中p ,q, r 均为常数) 解法:一般地,要先在原递推公式两边同除以1+n q ,得: q q a q p q a n n n n 1 11+?=++引入

辅助数列{}n b (其中n n n q a b = ),得:q b q p b n n 11+=+再待定系数法解决 例:已知数列{}n a 中,651=a ,11)2 1 (31+++=n n n a a ,求n a 。 变式:设数列{}n a 的前n 项的和1412 2333 n n n S a += -?+,1,2,3,n = (Ⅰ)求首项1a 与通项n a ;(Ⅱ)设2n n n T S =,1,2,3,n = ,证明:1 32n i i T =<∑ 类型5:递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。 例:已知数列{}n a 中,11=a ,22=a ,n n n a a a 3 1 3212+=++,求n a 变式:已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈求数列{}n a 的通项公式

递推数列通项公式求法(教案设计)

递推数列通项公式的求法 彭山一中 郑昌建 一、课题:常见递推数列通项公式的求法 二、教学目标 1、知识与技能: 会根据递推公式求出数列中的项,并能运用累加、累乘、待定系数等方法求数列的通项公式。 2、过程与方法: ①复习回顾所学过的通项公式的求法,对比递推公式与通项公式区别认识到由递推公式求通项公式的重要性,引出课题。 ②对比等差数列的推导总结出累加法的试用题型。 ③学生分组讨论完成累乘法及待定系数法的相关题型。 3、情感态度与价值观: ①通过对数列的递推公式的分析和探究,培养学生主动探索、勇于发现的求知精神; ②通过对数列递推公式问题的分析和探究,使学生养成细心观察、认真分析、善于总结的良好思维习惯; ③通过互助合作、自主探究等课堂教学方式培养学生认真参与、积极交流的主体意识。 三、教学重点:根据数列的递推关系式求通项公式。 四、教学难点:解题过程中方法的正确选择。 五、教学课型,课时:复习课 1课时 六、教学手段:多媒体课件,黑板,粉笔 七、教学方法: 激励——讨论——发现——归纳——总结 八、教学过程 (一)复习回顾: 1、通项公式的定义及其重要作用 2、学过的通项公式的几种求法 3、区别递推公式与通项公式,从而引入课题 (二)新知探究: 问题1:已知数列}{n a ,1a =1,1n a +=n a +2,求n a ? 变式: 已知数列}{n a ,1a =1,1n a +=n a +2n ,求n a ?

活动:通过分析发现形式类似等差数列,故想到用累加法去求解。教师引导学生细致讲解整个解题过程。 解:由条件知:n a a n n 21=-+ 分别令)1(,,3,2,1-??????=n n ,代入上式得)1(-n 个等式累加之, 即)()()()(1342312--+??????+-+-+-n n a a a a a a a a )1(2)2(232222-?+-?+?+?+=n n 所以[]2)1(22)1(1-?+-=-n n a a n 由 1a =1,12+-=∴n n a n 练习: 已知数列}{n a ,1a =1,n n n a a 2 11=-+,求n a ? 总结:类型1:)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 问题2: 已知数列{a n }满足)(,2,111*+∈==N n a a a n n ,求{a n }的通项公式。 变式:若条件变为)(,21*+∈=N n a a n n n 方法归纳:利用累乘法求数列通项 活动:类比类型1推导过程,让学生分组讨论研究相关解题方案。 解:1342312-??????????n n a a a a a a a a 1 2212222--??=n n 即) 1()2(2112-+-+++=n n n a a 练习: 已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。 总结:类型2型如 用累乘法求解 问题3: 已知数列{a n }满足)(,12,111*+∈+==N n a a a n n ,求{a n }的通项公式。 发现:)1(21,112111+=+++=+++n n n n a a a a 即 令b n =a n +1,则b n+1=a n+1+1 即21=+n n b b ) (1n f a a n n ?=+222n n n a -=∴2=++∴ +11n 1n a a

相关文档
最新文档